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Abstract
Assessment of the Finnish wolf population relies on multiple sources of information. This paper describes how Bayesian 
inference is used to pool the information contained in different data sets (point observations, non-invasive genetics, known 
mortalities) for the estimation of the number of territories occupied by family packs and pairs. The output of the assessment 
model is a joint probability distribution, which describes current knowledge about the number of wolves within each terri-
tory. The joint distribution can be used to derive probability distributions for the total number of wolves in all territories and 
for the pack status within each territory. Most of the data set comprises of both voluntary-provided point observations and 
DNA samples provided by volunteers and research personnel. The new method reduces the role of expert judgement in the 
assessment process, providing increased transparency and repeatability.

Keywords  Markov chain Monte Carlo · Hierarchical modelling · Population dynamics · Canis lupus · Monitoring · 
Abundance

Introduction

An important prerequisite for effective population manage-
ment is reliable population monitoring, because population 
counts are imperative for several activities like assessing the 
conservation status of a species and setting hunting quotas. 
However, large carnivores pose a challenge for population 
monitoring, because they typically inhabit large remote 
areas at low densities (Herfindal et al. 2005; Kindberg et al. 
2011; Mattisson et al. 2013), which is why species observa-
tions often accumulate unevenly and with varying precision.  
Voluntary-provided data are often used in monitoring of 

large carnivore populations (Kindberg et al. 2011; Bragina 
et al. 2015; Cretois et al. 2020). Thus, any population moni-
toring scheme focusing on large carnivores needs to cope 
with varying levels of uncertainty.

The wolf (Canis lupus) has experienced major population 
collapses in its native range in Europe and North America 
due to human activities but is now recolonising many areas 
(Chapron et al. 2014; Ripple et al. 2014). This is the case 
also in Finland, where the wolf population was hunted down 
from approximately 1000 individuals to only some dozens 
in the second half of the 1800s (Mykrä et al. 2017). In the 
1990s, the wolf re-established a permanent population. The 
population has been increasing since 2017 being 32–38 
packs (90% probability interval, PI) and 18–25 pairs (90% 
PI) in March 2021 (Heikkinen et al. 2021).

The recolonisation has resulted in conflicts, as the wolf 
causes damages to domestic animals, attacks hunting dogs 
and evokes fear in people (Marucco and Boitani 2012; 
Flykt et al. 2013; Johansson et al. 2016; Olson et al. 2019; 
Tikkunen and Kojola 2020; Bassi et al. 2021). Damage 
from wolves often generates displeasure and frustration 
and may fuel the illegal killing of wolves (Liberg et al. 
2012; Pohja-Mykrä and Kurki 2014; Suutarinen and 
Kojola 2017; Liberg et al. 2020; Nowak et al. 2021). In 
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Finland, the wolf is classified as an endangered species 
(Liukko et al. 2019). Furthermore, outside the reindeer 
husbandry area, it is included in Annex IV of the EU’s 
Habitats Directive, which requires strict protection of 
the species. However, the wolf is also a game species in 
Finland, and the latest management hunting season was 
implemented in 2015/2016 (Ministry of Agriculture and 
Forestry 2019).

Given the complex situation and conflicting aims and 
views present in the society, it is evident that there is a strong 
need for reliable monitoring of the wolf population in Fin-
land. Today the monitoring is based on volunteer-provided 
point observations, non-invasive DNA samples collected by 
volunteers and wildlife professionals, information acquired 
from GPS-collared animals, and knowledge on known 
annual mortality (Kojola et al. 2018). Until recently, these 
data were used by experts to delineate the wolf territories, 
to estimate the number of individuals per territory, and by 
using the proportion of non-residents reported in the litera-
ture (Fuller et al. 2003), to produce the final population esti-
mate (Kojola et al. 2018). However, as this process is heavily 
expert-driven, the need for a method that integrates avail-
able knowledge in a more transparent and repeatable manner 
while explicitly expressing uncertainty has been recognised.

Here we describe a new method for the estimation of the 
annual size of the Finnish wolf population. The method is 
based on Bayesian inference, which is well suited to the 
question at hand, as it enables efficient integration of multi-
ple data sources and handles uncertainty explicitly. In recent 
years, Bayesian modelling has been applied to estimate wolf 
populations based on, for instance, tracking surveys, sign 
surveys, howling sessions and multistate hierarchical site 
occupancy models (Jiménez et al. 2016; Stauffer et al. 2021), 
spatial DNA capture-recapture (Bischof et al. 2020; López-
Bao et al. 2018), and on an individual-based model which 
uses the number of packs, reproductions and pairs as data 
(Chapron et al. 2016). In our approach, the starting point for 
the analysis is a set of wolf territories, which are delineated 
by experts every year as described by Kojola et al. (2018). 
Our aim is to answer the question: Based on data accumu-
lated within each of these wolf territories, what is the pack 
status and number of wolves per each territory, and what is 

the total number of wolves occupying these territories in 
Finland, given the associated uncertainties?

Material and methods

The Finnish wolf population assessment has two phases. 
In the first phase, potential territory areas are estimated by 
a panel of experts based on all the available information 
(clusters of point observations of packs and twosomes, DNA 
samples, and GPS-locations of collared wolves; Kojola et al. 
(2018)). In the second phase, territory specific data are used 
to infer the number of wolves occupying each territory using 
the Bayesian state-space model, which we describe in this 
section (Fig. 1). We illustrate the model by assessing the 
number of pairs, packs and total number of wolves in Finnish 
wolf territories in March 2020.

Data

The purpose of the state-space model is to pool informa-
tion about the number of wolves within each territory from 
three different data sources: point observations, non-invasive 
DNA samples and reported mortality. The data collection 
protocol is described in detail in Kojola et al. (2018). Here 
we describe different data sets at the level sufficient to under-
stand the modelling work in focus. Table 1 shows how data 
are organised for the two example territories that we refer to 
throughout the paper. The full data set is available as online 
resource.

Point observations  Since 2009, point observations of 
wolves in Finland have been reported in the digital large 
carnivore monitoring system called Tassu (“the Paw”). The 
observations are recorded by approximately 2000 volunteer 
large carnivore contact persons, who have training in wolf 
ecology, behaviour and paw print identification. For each 
observation, the type (sighting, track, prey kill site or live-
stock depredation), date, location and the number of animals 
are reported, and if feasible, also the age status of animals 
and front paw print dimensions. The number of individuals 
associated with each observation is estimated by the contact 

Table 1   Data for two territories (Kallioluoma and Halivaara). DNA data associated to autumn season covers both autumn and spring season 
samples. Full data set for all territories is provided as online resource

Territory Season  Number of wolves observed together (count of observations) DNA Unique Known

name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 samples individuals mortality

Halivaara Autumn 59 55 9 5 8 7 0 0 0 0 0 0 0 0 0 25 7 0
Halivaara Spring 9 8 5 8 4 0 0 0 0 0 0 0 0 0 0 15 6 1
Kallioluoma Autumn 13 2 6 0 5 0 0 0 0 0 0 0 0 0 0 NA NA 0
Kallioluoma Spring 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA NA 2
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person submitting the data. Contact persons have their own 
networks of local people, who are mostly hunters with capa-
bility in species identification. Such a network is particularly 
relevant for sightings, because sight observations cannot 
usually be validated afterwards in snow-free conditions. The 
observations are divided into observations made before and 
after the turn of the year, i.e. in autumn season (from August 
to the end of December, hereafter simply “autumn”) and in 
spring season (January–March, hereafter simply “spring”). 
All types of observations are treated similarly. The highest 
reported pack size, number of pair observations and number 
of observations concerning more than two wolves (packs) 
are used as model input.

The data set for March 2020 population assessment 
includes 2301 pair or pack observations gathered from 55 
territories. The number of point observations reported per 
territory ranges from 1 to 149. The median number of obser-
vations is 25. The highest reported pack size observation 
over all territories is 11 wolves.

DNA samples  Non-invasive DNA samples of wolves have 
been extensively collected for population monitoring pur-
poses from 2016 onwards. Samples (mainly scats) are col-
lected by volunteers (from November to February) and wild-
life professionals (from November to March). The samples 
are used for identification of individuals and for kinship 
analyses. For this analysis, the data are divided into samples 
collected in autumn and in spring seasons. Total number of 

successful DNA samples per territory and the number of 
different individuals found within these samples are used 
as model input.

The data set for March 2020 population assessment 
includes a total of 610 successful DNA samples, from which 
190 different individuals were identified. The number of 
successful DNA samples per territory ranges from 0 to 43. 
The maximum number of individuals found from a territory 
is 10. Fifteen out of 55 territories have no DNA samples 
taken, whereas 50% of all territories have 10 or more suc-
cessful samples. Samples from which enough DNA could 
be extracted for microsatellite genotyping were considered 
successful.

Known mortality  Wolves that are hunted with a derogation 
or damage control licence, found dead, or removed by police 
order are sent to laboratory for autopsy. Regarding these 
individuals, several attributes are reported, including the 
location, date and cause of death, sex, and age. Tissue sam-
ples are taken for DNA analysis. The number of individuals 
found dead within each territory is used as model input.

Previous expert estimates of pack sizes  Before the develop-
ment of the model presented here, the number of individuals 
within each territory was assessed by the expert panel based 
on all the data available from each territory. The expert panel 
gave particular emphasis on the number of unique individu-
als found from DNA samples and on the highest observed 

Fig. 1   The role of the Bayes-
ian state-space model in the 
process of annual Finnish wolf 
population assessment. In the 
first phase, the territories are 
delineated by experts. In the 
second phase, different data 
are used to infer the number of 
wolves within each territory 
using the developed Bayesian 
state-space model. The results 
of the analysis are provided as 
probability distributions



	 European Journal of Wildlife Research           (2022) 68:70 

1 3

   70   Page 4 of 16

pack size reported by volunteers. The panel also considered 
both the total number of DNA samples collected and the 
number of point observations provided. Data gathered in 
spring had more weight than the autumn data on the final 
estimate provided by the panel. Data on known mortality 
was used by the panel. In the face of uncertainty, the panel 
expressed the size of the pack as a range with minimum and 
maximum numbers of wolves. For each territory, minimum 
and maximum estimated numbers of wolves were reported: 
these figures are used as model input in this analysis. These 
types of data are available from wolf population assessments 
conducted in 2018 and 2019. The data set contains estimated 
pack sizes for 88 cases. This data set is used only as train-
ing data.

Training data and assessment data  The data sets are divided 
into two parts, which are modelled separately. Training data 
consists of point observations and previous expert estimates 
of pack sizes from years prior to the target year (2018–2019). 
The purpose of these data is to provide information about 
the link between the point observations and expert assess-
ments. Assessment data consists of point observations, DNA 
samples and known mortality for each territory in the target 
year (2020).

Model structure for wolf population assessment

Here we provide an overview of the model structure and the 
modelling process. A detailed technical description of the 
model is given in Appendix A. The computer code and data 
necessary for replicating our example analysis are provided at 
the bioR� iv repository at https://​www.​biorx​iv.​org/​conte​nt/​10.​
1101/​2021.​12.​21.​47352​7v3.​suppl​ement​ary-​mater​ial.

A prerequisite for the model is wolf territories inferred 
by the experts as described in Kojola et al. (2018). The 
experts delineate the territories based on the spatial distri-
bution of point observations of pairs and potential family 
packs as well as DNA samples, also using information on 
potential natural boundaries such as lakes and urban areas. 
We built our model within the Bayesian state-space mod-
elling framework, which incorporates both process varia-
tion and the uncertainty related to observations in a single 
model (Mäntyniemi et al. 2015). The process model is used 
to describe the survival process within each territory and 
the observation models describe data generating processes 
related to point observations, DNA samples and known 
mortality. We assign prior distributions to the model param-
eters, and this prior knowledge is then updated with the 
information contained in data. The result is a joint posterior 
probability distribution of model parameters which contains 
the current state of knowledge on the number of individuals 
inhabiting each territory.

Process model for survival within a territory

The survival model describes how the number of wolves 
within a territory can change over time. No reproduction 
takes place in wolf populations during the winter season. 
Thus, we assume that the number of resident wolves in a 
territory can only decrease. Although this assumption may 
not always hold because of the adoption behaviour (e.g. 
Mech and Boitani (2003)), we assume such behaviour to be 
relatively rare in Finland. Survival rate is assumed to vary 
between individual wolves around a common mean, which 
is not known exactly. This assumption creates a hierarchi-
cal structure where information can flow between territo-
ries. The mean survival rate of wolves is a model param-
eter which becomes estimated when the model is fitted to 
data from autumn and spring. Territories with more precise 
knowledge about the number of wolves in autumn and spring 
will provide more precise knowledge about the mean sur-
vival of wolves. This information is passed on to territories 
with less data when fitting the model to all territories.

Prior distribution for the number of wolves in each ter-
ritory has a similar hierarchical structure. Territories are 
assumed to be exchangeable a priori in terms of the number 
of wolves that they contain: we do not know which terri-
tory might have larger or smaller number of wolves than the 
others. This assumption means that the number of wolves 
in each territory can be thought of as a random draw from 
a hypothetical superpopulation of wolf territories. In other 
words, the probability of having, say, 6 wolves in a terri-
tory is equal to relative frequency of territories containing 
6 individuals in a very large population of wolf territories. 
These relative frequencies are not known precisely, but they 
are assigned a prior distribution based on the distribution of 
wolf pack sizes in the past. This hierarchical structure pro-
vides another path by which territories can exchange infor-
mation about the number of individuals. Hence, the prior 
distribution for each territory can be thought to be based on 
the distribution of pack sizes in other territories in the past 
and in the current year.

Observation model for point observations from Tassu

The observation model for point observations describes the 
link between the true number of wolves and the point obser-
vations made by citizens within a territory. Prior knowledge 
about this link is available from earlier wolf population 
assessments, where the number of wolves within each ter-
ritory was assessed by experts based on point observations, 
DNA data and known mortality. Finding a statistical model 
between the expert estimates and point observations formal-
ises the logic of expert interpretation of point observation 
data. After this, the data can be automatically applied and 
included as a source of information in the state-space model.

https://www.biorxiv.org/content/10.1101/2021.12.21.473527v3.supplementary-material
https://www.biorxiv.org/content/10.1101/2021.12.21.473527v3.supplementary-material
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Based on data from years 2018 to 2019, it was found 
that the expert estimated pack size is positively associated 
with the highest pack size reported by the volunteers. This 
relationship was modelled as a linear regression through ori-
gin (Fig. 2). The expert estimated pack size was negatively 
associated with the proportion of pair observations of all 
observations concerning packs or pairs. This relationship 
was modelled with logistic regression (Fig. 2).

Posterior distributions of linear and logistic regression 
parameters based on the fit to data from 2018 and 2019 con-
tain the information about the link between the true number 
of wolves and point observations. When fitting the state-
space model to the target year data, these posteriors are used 
as prior distributions. These priors will be further updated 
when fitting the model to the target year data, provided that 
there are at least some territories from which lot of DNA 
data are available. This structure provides the third mecha-
nism by which territories can exchange information through 
common parameters.

Observation model for DNA samples

Miller et al. (2005) presented a model by which the size of a 
small population can be estimated based on DNA recaptures. 
The simplest form of the model assumes that all individuals 
have equal probability of being captured by DNA sampling. 
While this assumption is hardly true in the case of a wolf 
population spanning over a very large area where the sam-
pling effort is highly variable, it can be realistic within a 
single wolf territory, where all the pack members are well 
mixed and move around the same area (but see “Discus-
sion”). In this case, individual sampling histories are not 
needed. The number of successfully analysed samples and 

the number of different individuals found serve as sufficient 
statistics, on which the inference can be based.

We use the likelihood function derived by Miller et al. 
(2005) as a link between the true number of wolves within 
a territory and DNA data. DNA samples collected during 
autumn and spring are assumed to be informative about the 
number of wolves in autumn. This accounts for the fact that 
individuals present in spring must have been present also 
in autumn. However, only samples collected in spring are 
assumed to be informative about the number of wolves pre-
sent in spring. This accounts for the fact that individuals 
found in autumn but not in spring may have died during the 
winter.

Observation model for known mortality

Wolves found dead within a territory provide a lower bound 
for the total number of wolves that may have died during the 
winter. At the same time, they also provide a lower bound 
for the total number of wolves that were initially alive in 
autumn. Known mortality is treated as a censored observa-
tion about the total number of dead wolves in a territory. 
This can provide information about all the model parameters.

Expert assessment

In order to compare the results of the new model to results 
obtained using the previous method based on expert assess-
ment, the same data set was shown to I. Kojola, who has the 
most experience on the logic used in previous wolf popu-
lation assessments in Finland. He assessed the number of 
wolves in each territory by giving the minimum and maxi-
mum estimates for the pack sizes in autumn and in spring.  
We used the mean of the range to compare the expert  

Fig. 2   Model fit for training data on the relationship between propor-
tion of pair observations (left), observed maximum pack size (right) 
and estimated pack size (x-axis). Red lines are based on random 
draws of regression parameters from their joint posterior distribution. 
Grey squares are random draws from posterior predictive distribu-

tion that will be used in population estimation in subsequent analy-
sis. Black circles represent training data. Larger circle indicates larger 
amount of observations. The estimated pack size is plotted by using 
the mean estimate, when the estimated pack size was uncertain
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estimate to the posterior mean from model output for each 
territory. The total number of wolves inhabiting the territo-
ries was described as a range obtained by summing up the 
territory specific minimum and maximum estimates.

Results

Training data

We fitted the model first to training data from 2018 and 2019 
and used the resulting posterior distribution of linear and 
logistic regression parameters as a prior when fitting the 

model to assessment data from 2020. Model fit for training 
data is shown in Fig. 2, which also illustrates the predictive 
density of data values conditional on pack size. When esti-
mating the pack size given an observed value, the likelihood 
function implied for the pack size can be visually seen from 
the graph by fixing a horizontal line at the observation. For 
example, proportion of pair observations equal to 0.4 would 
support pack sizes from 2 to 10 with most weight on 4 to 7.

Territories

Fitting the model to assessment data produces a posterior 
distribution for the number of wolves in each territory. The 

Fig. 3   Marginal posterior distri-
butions of the number of wolves 
in territories in autumn, survival 
rate from autumn to spring, and 
the number of wolves in ter-
ritories in spring

Fig. 4   Marginal posterior 
distributions and posterior 
correlations of the number of 
territories occupied by packs, 
the number of territories occu-
pied by pairs, and the number of 
empty territories
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posterior distributions were approximated using Markov 
chain Monte Carlo simulation, which means that summaries 
of the population can be derived simply by calculating the 
summary statistic for each iteration of the simulation and 
examining the distribution of the summary statistic.

Posterior distributions of the total number of wolves 
inhabiting the territories in autumn and spring are shown in 
Fig. 3 together with the posterior distribution of the mean 
survival rate of all wolves. In addition to density and prob-
ability plots, posterior distributions can also be summarised 
with probability intervals (PI) that contain a specific amount 
of probability mass. For example, 90% PI for the number 
of individuals in autumn is [256, 278]. The interval has the 
interpretation that the true value is thought to lie within this 
range with 90% probability. This is different from the con-
cept of a confidence interval, which does not have interpreta-
tion as a formal statement of uncertainty about the variable 
of interest. The most probable number of individuals inhab-
iting the territories in spring is 218 with 90% PI of [209, 
228]. The mean survival rate of wolves over the winter is 
estimated to be [0.77, 0.86] with 90% probability.

Expert assessment based on the same data resulted in 
lower estimates for the number of individuals compared to 
model based posterior distributions. Based on the expert 
assessment, the range for autumn was [216, 247] which does 
not intersect the 90% PI of the posterior distribution. The 
expert estimate for spring was [176, 204] which is lower 
than the 90% posterior PI.

Posterior distributions of total numbers of packs, pairs, and 
empty (less than two wolves) territories are shown in Fig. 4. 
These variables have negative posterior correlation, because 
there are territories for which the classification is uncertain 
but which can only belong to one class. Non-zero posterior 
correlation means that there is information about probable 
combinations of packs, pairs and empty territories that could 
not be seen directly from the marginal distributions of these 
variables. For example, combinations where both packs and 
pairs are either high or low are less probable than combina-
tions where either one is high and the other one is low.

The functioning of the model is demonstrated with two ter-
ritories, Halivaara (Fig. 5) and Kallioluoma (Fig. 6). Halivaara 
is an example of a territory with high amount of data. It has 
total of 27 DNA samples collected throughout the season, from 
which 7 different individuals were identified. This provides 
strong information that places almost 100% probability for 7 
wolves in autumn (Fig. 5). Fifteen out of 27 DNA samples 
were collected in spring, from which 6 different individuals 
were identified. In addition, one individual was found dead, 
which further corroborates the inference that the number of 
wolves decreased during the winter (Fig. 5). Because there 
is high certainty that there were more than two wolves in the 
territory, the territory is classified as a pack with 100% prob-
ability (Fig. 5).

Kallioluoma territory provides a contrasting example with 
no DNA samples (Fig. 6). There were 13 point observations 
reported on 2 or more wolves, and all point observations 
were made in autumn. One wolf was found dead during the 
winter. The posterior distribution of the number of wolves in 
autumn is wide, with the highest probability on 7 individuals 
(Fig. 6). The highest reported point observation is 5 wolves, 
but the low proportion of pair observations (15%) is typical 
for pack sizes larger than 5 (Fig. 2). Hence, the probability 
of such packs increases. The posterior distribution for the 
number of wolves in spring (Fig. 6) is mostly based on esti-
mated survival rate of wolves across all territories and on 
the number of wolves in autumn. This is backed up also by 
the one observed death. Kallioluoma territory serves also as 
an example of a territory for which the status is not certain. 
Occurrence of territories with uncertain status creates the 
negative correlation (Fig. 4) between the total numbers of 
packs, pairs and empty territories.

Fig. 5   Posterior distributions for the number of wolves (on the left) 
and territory status (on the right) in Halivaara territory in autumn 
(upper row) and in spring (lower row)

Fig. 6   Posterior distributions for the number of wolves (on the left) 
and territory status (on the right) in Kallioluoma territory in autumn 
(upper row) and in spring (lower row)
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Data and results from all territories can be downloaded 
from the bioR� iv repository at https://​www.​biorx​iv.​org/​
conte​nt/​10.​1101/​2021.​12.​21.​47352​7v3.​suppl​ement​ary-​
mater​ial.

Comparison of posterior means from the model against 
the means of expert assessments for each territory shows 
a clear, almost one to one, positive relationship both in 
autumn and spring seasons (Fig. 7). The model tends to give 
slightly higher pack sizes on average than the expert estima-
tion. However, for a few territories, the difference seems 
quite large. See “Discussion” for potential reasons for these 
differences.

Discussion

It is evident that the management of species like wolf, which 
evokes conflicts while being vulnerable to various human 
activities, requires reliable population assessment methods. 
It is also important to acknowledge the strong demand com-
ing from various stakeholder groups in the society concern-
ing the objectivity and transparency of population assess-
ments and existing uncertainties. Furthermore, focusing on a 
large carnivore which prefers forested areas and exhibits elu-
sive behaviour, the assessment methods substantially benefit 
from as comprehensive use of all existing data as possible.

By adopting the Bayesian approach, we have been able 
to meet these demands. The method provides the result as a 
probability distribution, enabling intuitive communication 
of uncertainty. When the result is depicted as a probability 

distribution, the most probable number of wolves per terri-
tory is easily interpreted, but also the uncertainty related to 
the estimate is straightforward to perceive. By communicat-
ing results this way, also the less probable but still possible 
numbers of wolves are made visible. The hierarchical struc-
ture of the model allows for efficient use of all the available 
information, where data-rich territories can share their infor-
mation with data-poor territories (Punt et al. 2011).

The model integrates different types of citizen-provided 
data. DNA samples provide information about the pack size 
based on the number of different individuals found from the 
same territory. The higher the sample size, the higher the 
probability that all individuals become sampled. It is worth 
noting that also other kinds of observations, from which dif-
ferent individuals can be identified, could be used in the 
model in addition to or in place of DNA samples. For exam-
ple, Mattioli et al. (2018) used individual wolves identified 
from camera traps as individual recaptures. However, for 
these to be informative in the sense of individual identifica-
tion, the pack must include enough phenotypic variation so 
that at least some of the individuals can be distinguished 
from the rest.

Citizen-provided point observations provide informa-
tion about the pack size based on two factors: the maximum 
number of wolves observed at once, and the proportion of 
pair observations compared to all observations concerning 
two or more wolves. The total number of point observations 
made from a territory increases the precision of the pack size 
estimation. It also increases the weight of this information 
source when combined with the information provided by 
DNA samples.

We believe that the seamless integration of different infor-
mation sources using a Bayesian state-space model can be 
beneficial also in other cases, where different types of data 
are collected to infer the wolf population size. For example, 
Ausband et al. (2022) compared the use of camera traps and 
DNA samples, and Stenglein et al. (2010) compared the use 
of DNA samples and GPS surveys. In both cases, it would 
be possible to embed both data sources into a single model 
in the same way as we did for citizen-provided DNA samples 
and point observations. Different data sources become cali-
brated against each other, and they can then be flexibly used 
in the analysis to different degree in different territories.

Direct comparison of the developed model with other 
quantitative methods is not possible. To our knowledge, the 
sampling design involving a network of volunteer citizens 
is unique to Finland, and comparable data is not collected 
anywhere else. Other estimation methods typically rely on 
known observer effort (e.g. (Bischof et al. 2020; Jiménez 
et al. 2016; López-Bao et al. 2018)), which is not available 
in Finland. This means that models for analysing this type 
of data have not been presented before. However, we out-
line potential paths for development and similarities to other 

Fig. 7   Comparison of expert assessment (x-axis) and model output 
(y-axis) for the estimated pack size in each territory. Mean of the 
posterior distribution of the pack size is shown for the model output. 
Expert estimates are the mean of minimum and maximum estimates 
for each territory. One to one relationship is shown as a red line

https://www.biorxiv.org/content/10.1101/2021.12.21.473527v3.supplementary-material
https://www.biorxiv.org/content/10.1101/2021.12.21.473527v3.supplementary-material
https://www.biorxiv.org/content/10.1101/2021.12.21.473527v3.supplementary-material
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modelling approaches that have been proposed for the popu-
lation estimation using different types of data.

The only alternative approach for this particular estima-
tion problem is the expert panel approach used previously 
in Finland. We have identified at least two cases, where 
the model could estimate slightly higher pack sizes than 
the expert panel. First, when the average number of DNA 
samples per wolf is low in a territory, there is a consider-
able chance that not all wolves have been sampled during 
the season. In this case, the model correctly gives posterior 
probability also for the pack sizes larger than the number 
of unique individuals found in the DNA samples. However, 
this can be difficult to grasp for human mind, and the expert 
estimate is typically equal to the number of individuals iden-
tified by DNA, especially if the point observations do not 
strongly suggest higher pack sizes.

In such a situation, the model typically produces a proba-
bility distribution with a posterior mode corresponding with 
the number of unique individuals found in the DNA sam-
ples and the pack sizes larger than the mode having smaller 
probabilities. The posterior mean is then higher than the 
mode. This phenomenon is visible in Fig. 7 where the pos-
terior means are slightly higher than the expert estimates. 
This matters when we add up skew probability distributions 
from multiple territories. When the number of territories 
increases, the distribution of the sum starts to resemble a 
Gaussian distribution, and the mode of the sum will be larger 
than the sum of the modes from individual territories. In this 
case, the model works logically and the expert judgement 
could be considered to underestimate the true number of 
wolves.

Another situation where the expert judgement and the 
model might disagree to some extent can occur when there 
are only very few (or zero) observations in spring, but the 
territory is included in the assessment based on observa-
tions made in autumn. Our example from the Kallioluoma 
territory (Fig. 6) falls into this category. In such a case, the 
expert panel would be prone to conclude that wolves have 
disappeared from the territory during the winter. For the 
model, however, the reason for the absence of data is that 
volunteers are not reporting observations, and hence, there 
is no new information about the status of the pack. Thus, 
the status of the territory in spring is predicted based on 
two factors: the status in autumn and the estimated survival 
rate of wolves in other territories. The correct interpretation 
varies case by case and cannot be deduced beforehand. Few 
cases like this are visible in Fig. 7 where the expert has esti-
mated pack size of zero, but the model provides considerably 
higher estimate.

The expert panel may take into consideration the 
amount of data gathered in autumn as well as some exter-
nal knowledge on environmental conditions. For example, 
if the reporting intensity was already low in autumn and 

environmental conditions for wolf observing were challeng-
ing in spring, the panel might conclude that wolves can still 
be present in the territory. Conversely, a sudden collapse in 
previously high reporting activity under favourable observ-
ing conditions would mean that the pack has vanished. Cur-
rently the model does not consider the temporal variation in 
reporting activity nor does it utilise data on environmental 
conditions. These are targets for future development of the 
model. For territories for which there are no data available 
in spring, the model can overestimate the number of wolves. 
We suggest that such cases (no data in spring) should be 
considered by an expert panel for an ad hoc decision on 
whether the territory can be included in the model or not.

The model has other limitations and potential targets for 
development. First, the assumption that all wolves within 
a territory have an equal probability to end up in the DNA 
sample may not always be exactly correct. For example, 
adult wolves may use their feces as territory marks more 
often than younger individuals by leaving them on forest 
roads and paths, which may serve as territory boundaries 
(Vilà et al. 1994). Humans may tend to use the same routes 
and may thus have higher chance of spotting these feces for 
DNA sampling.

Generally, violating the assumption of equal detectability 
leads to underestimation of population size (Cubaynes et al. 
2010; Mäntyniemi et al. 2005; Marescot et al. 2011). In the 
context of our model, such violation could have some rel-
evance in territories occupied by large family packs, where 
offspring may potentially have smaller detectability in DNA 
sampling than adults. Territories inhabited by pairs without 
offspring would not suffer from this problem. High reporting 
intensity related to point observations is expected to mitigate 
the impact of unequal detectability in DNA sampling. Fur-
thermore, DNA sampling with high intensity is expected to 
have a similar effect, as it increases the probability that indi-
viduals with low detectability become sampled at least once.

In summary, large family packs with low point obser-
vation and DNA sampling intensity can be prone to the 
underestimation of the population size. The model could 
be further developed to account for unequal sampling prob-
ability, potentially by utilising the model structure presented 
by Miller et al. (2005) for unequal sampling. However, it is 
worth noting that Stenglein et al. (2010) used the method 
of Miller et al. (2005) for the estimation of wolf abundance 
based on DNA samples (from wolf feces) but did not find 
any evidence of unequal sampling probability.

Second, the model does not consider the history of ter-
ritories. Coupling consecutive years together would enable 
a structure where the past state of the territory could be used 
to inform the prior distribution for the number of wolves in 
the territory next year. For example, an empty territory could 
have higher probability of being empty also in the next year. 
If such an autocorrelation in the territory history was found, 
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it would also increase the precision of the population assess-
ment, or the same assessment precision could be achieved 
with smaller number of observations.

A natural extension of a model with a territorial auto-
correlation would be an individual-based model for each 
territory. This would provide a platform where individual 
DNA captures and survival probabilities could be explicitly 
modelled. Adults, sub-adults and pups could be identified 
by following the DNA samples over years.

Third, further analysis of the relationship between point 
observations and the pack size might focus on exploring 
other functional shapes than linear and logistic regression. 
For example, anecdotal evidence suggests that the relation-
ship between the observed maximum pack size and the pack 
size could be, at least to some extent, non-linear: for terri-
tories with large packs (confirmed by DNA), the observed 
maximum pack size tends to be smaller than the actual pack 
size. This might reflect a potential tendency of large packs to 
split into subgroups more often than smaller packs. Further-
more, for the largest packs, the estimate for pack size based 
on tracks in snow tends to be smaller than the real pack size.

Another line of future research would be to explore the pos-
sibility to develop open-population spatial capture-recapture 
(OPSCR) models (Bischof et al. 2020) for Finnish wolf population 
assessment. The main difference between the model presented 
here and the OPSCR model developed by Bischof et al. (2020) 
is the focus of the assessment. Our main target of inference is the 
number of packs and pairs occupying the expert-provided territo-
ries, whereas the OPSCR model provides estimates of wolf den-
sity and total abundance on a spatial grid. Another key difference 
is the data available for the analysis. The OPSCR model relies on 
extensive genetic monitoring and known mortality with mostly 
known observer effort, whereas the model presented here inte-
grates also point observations reported by volunteers and does not 
require known observer effort, which is not available in Finland.

We have assumed that the size of a wolf pack does not 
increase during the winter. This assumption would be vio-
lated, if a family pack accepted a dispersing wolf as an 
adoptee. While such behaviour is possible (e.g. Mech and 
Boitani (2003)), it is believed to be too rare in Finland to sig-
nificantly affect the population estimation. If an additional 
wolf joins the pack during winter, it can be expected that the 
estimate of the number of wolves already present in autumn 
goes up, or the estimate of wolf survival goes up, or both. 
What happens in a particular territory mainly depends on 
the amount of information available about the number of 
wolves in autumn. However, as the DNA data accumulates 
in the future, the extent of adoptions in Finland can be better 
studied with kinship analyses.

Currently, the monitoring of wolf population in Finland is 
heavily dependent on point observations reported and DNA 
samples collected by volunteers. Both types of data are prone to 
changes in external circumstances. In most parts of Finland, the 

snow-covered season has shortened (Luomaranta et al. 2019), 
which may affect the number of observations in the future. 
Furthermore, the number of collected DNA samples can be 
highly dependent on, e.g. the general opinion on the usefulness 
of DNA collection for volunteers. Such potential changes in 
available data do not affect the developed model as such, but 
they may increase the uncertainty associated with the results. 
This emphasises the need to maintain and reinforce further the 
collaboration between the research and volunteers.

Appendix A

Technical description of the Bayesian state‑space 
model

This appendix provides assumptions and mathematical details 
of the Bayesian state-space model used to estimate the number 
of wolves in Finnish wolf territories. List of symbols used for 
modelling the training data is presented in Table 2. Symbols 
used for the state-space model are listed in Tables 3 and 4.

Training data

The relationship between volunteer made observations 
and the estimated number of wolves in a territory was ana-
lysed from Finnish wolf population assessments conducted 
in 2018 and 2019. Data comprises of 88 territories from 
which the minimum and maximum estimates of the number 
of wolves in each territory in spring were available. The 
estimated pack size was found to be positively associated 
with the highest observed wolf pack size reported by the vol-
unteers (Fig. 2). This relationship was modelled as a linear 
regression through the origin as follows

where N(A)

i
= (1 + ui)N

(S)

i
 . This structure reflects the fact that 

the number of wolves in the territory in autumn must have 
been larger or equal than the number of wolves in the fol-
lowing spring. The residual standard deviation is scaled by 
the square root of the total number of pack and pair obser-
vations made from the territory. This structure implies that 
the maximum observed pack size is more informative about 
the pack size when more data is reported from the territory.

The estimated pack size was found to be negatively associ-
ated with the proportion of pair observations from all pack 
or pair observations (Fig. 2). This relationship was modelled 
using a random effects logistic regression in spring
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and in autumn:
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State‑space model structure for wolf population 
assessment

Territories are first inferred using expert judgement as in 
Kojola et al. (2018). This model infers the number of indi-
viduals within each territory.

This is a Bayesian state-space model which describes 
the latent survival process in each territory. Different data 
sets are linked to the relevant states of the population using 
observation models.

Table 2   Description of variables and notation for the model used to analyse the training data. Prior distributions are reported when relevant. 
Corresponding JAGS variables are also given for reference

Variable Prior/model JAGS code Description

i = 1, ..., n i Running index for territories in training data
n N Number of territories in training data

N
(S)

i
Uniform(m1,i,m2,i) NS[i] Number of wolves in territory i based on training data

m1,i minS[i] Minimum number of wolves in territory i based on experts
m2,i maxS[i] Maximum number of wolves in territory i based on experts

x
(S)

1,i
Binomial XS[i,1] Number of pair observations in spring from territory i

�
(S)

i
Logistic regression pS[i,1 Expected proportion of pair observations in territory i in spring

x
(S)

2,i
XS[i,2] Number of pack observations in spring from territory i

�
(S)

1
N(0, sd = 3.3) s Logistic regression intercept for spring

�
(S)

2
N(0, sd = 33)Truncated > 0 betaS Logistic regression slope for spring

�(S) Uniform(0,2) sdS Residual SD for logistic regression in spring

�
(S)

i
N(0,sd=1) eS[i] Raw residual in logistic regression for spring

N
(A)

i
NAt[i] Number of wolves in territory i

u
i

Beta(2,8) U[i] Relationship between number of wolves in autumn and in spring 
in territory i

x
(A)

1,i
Binomial XA[i,1] Number of pair observations in autumn from territory i

x
(A)

2,i
XA[i,2] Number of pack observations in autumn from territory i

�
(A)

i
Logistic regression pA[i,1 Expected proportion of pair observations in territory i in autumn

�
(A)

1
N(0, sd = 3.3) a Logistic regression intercept for autumn

�
(A)

2
N(0, sd = 33)Truncated > 0 betaA Logistic regression slope for autumn

�(A) Uniform(0,2) sdA Residual SD for logistic regression in autumn

�
(A)

i
N(0,sd=1) eA[i] Raw residual in logistic regression for autumn

M
(S)

i
Linear regression maxobsS[i] Maximum pack size observation reported in spring

�(S) N(0,sd=10) alphaS Linear regression slope for spring
�(S) Uniform(0,10) sigmaS Linear regression residual SD for spring

M
(A)

i
Linear regression maxobsA[i] Maximum pack size observation reported in autumn

�(A) N(0,sd=10) alphaA Linear regression slope for autumn
�(A) Uniform(0,10) sigmaA Linear regression residual SD for autumn
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Table 3   Description of variables and notation for the model used to analyse the population assessment data. Prior distributions are reported 
when relevant. Corresponding JAGS variables are also given for reference

Variable Prior/model JAGS code Description

t = 1, ..., n
A

t Running index for territories in population assessment data
n
A

Territories Number of territories in training data

N
(S)

t
n[t,2] Number of wolves in spring in territory t

x
(S)

1,t
Binomial pairs[i] Number of pair observations in spring from territory t

�
(S)

t
Logistic regression p[i] Expected proportion of pair observations in territory t in spring

x
(S)

2,t
 included in Sample[i] Number of pack observations in spring from territory t

�
(S)

1
posterior from training data a[2] Logistic regression intercept for spring

�
(S)

2
posterior from training data beta[2] Logistic regression slope for spring

�(S) posterior from training data sd[2] Residual SD for logistic regression in spring

�
(S)

t
N(0,sd=1) eps[i] Raw residual in logistic regression for spring

N
(A)

t
n[t,1] Number of wolves in territory t in autumn

s
t

s[t,2 Proportion of wolves that survive from autumn to spring in territory t
� Beta(2,2) surv Survival probability of wolves from autumn to spring in all territories

x
(A)

1,t
Binomial pairs[i] Number of pair observations in autumn from territory t

x
(A)

2,t
included in Sample[i] Number of pack observations in autumn from territory t

�
(A)

t
Logistic regression p[i] Expected proportion of pair observations in territory t in autumn

�
(A)

1
posterior from training data a[1] Logistic regression intercept for autumn

�
(A)

2
posterior from training data beta[1] Logistic regression slope for autumn

�(A) posterior from training data sd[1] Residual SD for logistic regression in autumn

�
(A)

i
N(0,sd=1) eps[i] Raw residual in logistic regression for autumn

Table 4   Description of variables and notation for the model used to analyse the population assessment data. Prior distributions are reported 
when relevant. Corresponding JAGS variables are also given for reference

Variable Prior/model JAGS code Description

m
(S)

t
Linear regression max[i] Maximum pack size observation reported in spring

�(S) posterior from training data alpha[2] Linear regression slope for spring
�(S) posterior from training data sigma[2] Linear regression residual SD for spring

m
(A)

t
Linear regression max[i] Maximum pack size observation reported in autumn

�(A) posterior from training data alpha[1] Linear regression slope for autumn
�(A) posterior from training data sigma[1] Linear regression residual SD for autumn
�1,… ,�15 Dirichlet Np[1:15] Proportions of wolf pack sizes 1 to 15 in a superpopulation of wolf packs
�1,… , �15 alphaN[1:15] Prior parameters for �1,… ,�15

D
t

dead[i] Number of wolves that died between autumn and spring in territory t
d
t

D[i] Number of wolves found dead between autumn and spring in territory t

r
(A)

t
 included in x[i] Number of different DNA individuals found from territory t in autumn

r
(S)

t
x[i] Number of different DNA individuals found from territory t in spring

k
(A)

t
 included in k[i] Number of successful DNA samples from territory t in autumn

k
(S)

t
k[i] Number of successful DNA samples from territory t in spring
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Survival process

Winter is divided into two phases: autumn and spring. Survival 
events of wolves are assumed to be independent of each other. 
The survival probability of all wolves across all territories 
is assumed to vary between individuals with mean survival 
probability � . As shown by Mäntyniemi et al. (2015), these 
assumptions lead to binomial model for the number of wolves 
( N(S)

t  ) that survive from autumn ( N(A)
t  ) to spring. We approxi-

mate the binomial model with a scaled beta distribution for 
computational convenience (Mäntyniemi et al. 2015):

where st is the proportion of wolves that survive to spring in 
territory t. Number of wolves in spring ( N(S)

t  ) is rounded to 
the nearest integer. If the number of wolves is zero after the 
rounding, then the number of wolves is set to one. This is for 
computational convenience that does not affect the results, 
because only pack sizes of two or more are of interest.

Prior distribution for the number of wolves in a territory 
in autumn is defined using a hierarchical structure. Vector of 
proportions �1,… ,�15 describes the relative frequencies of 
different pack sizes in a hypothetical superpopulation of wolf 
packs, from which each pack is considered to be a random 
draw with replacement. The maximum possible wolf pack size 
is assumed to be 15. A Dirichlet prior is assigned to the vector 
of proportions

where parameters �1,… , �15 are fixed based on the distribu-
tion of pack sizes in earlier years. The hierarchical structure 
enables information to flow from territories with lots of data 
to territories with smaller number of observations.

The number of wolves that die during the winter is given by

Model for volunteer observations  The observation model 
for the maximum observed pack size is identical to the 
observation model used for the training data:

(7)N
(S)
t = stN

(A)
t

(8)st ∼ Beta((N
(A)
t + 1)�, (N
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t + 1)(1 − �)),
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The observation model for the number of pair observations 
given the number of wolves in the territory and the number of 
pack observations is identical to the observation model used 
for the training data:

Prior distribution for the parameter vector

is a multivariate normal distribution with mean vector and 
covariance matrix equal to posterior mean vector and covari-
ance matrix obtained by analysing the training data from 
2018 and 2019 wolf population assessments.

DNA observations  All wolves within a territory are assumed 
to have equal chance to end up in the DNA sample. Sam-
pling is conducted with replacement and getting sampled is 
assumed to not affect the future chance of getting sampled. 
Under these assumptions, the likelihood function for the 
number of wolves in a territory given the number of success-
ful samples collected and the number of different individuals 
found is proportional to a multinomial distribution (Miller 
et al. 2005). Dropping constant terms yields the following 
likelihood for the number of wolves in territory t in autumn

where r(A)t  and r(S)t  are the number of different individuals 
found in territory t in autumn and in spring, respectively. 
Number of successful DNA samples collected in autumn 
and spring are denoted k(A)t  and k(S)t  . The spring samples are 
added to autumn samples, because any pack member alive 
in spring must have been a pack member also in previous 
autumn. The likelihood for the number of wolves in a ter-
ritory in spring depends only on the samples collected in 
spring:
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Known mortality and dispersal   Observed number of dead 
wolves ( dt ) in a territory is treated as an interval censored 
observation about the true number of dead wolves, so that the 
observed number of dead wolves gives the lower bound for the 
true number of wolves that died in the territory.

If the last DNA sample of a wolf is found far away from 
a territory where the other samples were found, then the 
DNA sample is excluded from the data. This is because the 
target is to estimate the number of wolves that occupy the 
territory in spring.

Computation  The joint posterior distribution of model 
parameters was approximated using Markov chain Monte 
Carlo (MCMC) simulation. The simulation was imple-
mented using JAGS version 4.3.0 (Plummer 2003). Pre-
processing of data and post-processing of simulation results 
were conducted using R 3.6.0.

The burn-in period of the MCMC simulation for the 
population assessment was run using two chains for 10,000 
iterations, after which 1,000,000 iterations were produced 
with thinning of 1000. Convergence of the simulation was 
assessed using visual inspection of the chains.
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