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Abstract
1.	 Predator–prey interactions are one of the main ecological factors influencing 

the structure of fish communities. The impact of wading and diving semi-aquatic 
predators on riverine fish populations is poorly known. We studied the effect of 
feral American mink predation on brown trout juveniles during winter in two ex-
periments conducted in semi-natural streams (length 26 m, width 1.5 m).

2.	 In the first experiment, we compared the vulnerability of age-1+ hatchery (length 
142 ± 16 mm, average ± SD) and wild (112 ± 8 mm) brown trout of similar genetic 
origin in sympatry and allopatry. In the second experiment we used age-0+ brown 
trout (79 ± 5 mm), increased habitat heterogeneity by addition of fine wood, and 
compared those to treatments without fine wood addition.

3.	 Hatchery fish were more vulnerable to mink predation than their wild counterpart, 
and the predation rate increased with increasing body size among the hatchery 
trout. Predation by mink on wild trout was higher in sympatric than in allopatric 
treatments suggesting that stocking of hatchery fish may increase predation on 
wild conspecifics. Increased habitat heterogeneity resulted in reduced predation 
rate.

4.	 The results show that a large size of hatchery fish in small streams was a negative 
trait, which was opposite to the mainstream observations of salmonid stockings 
made directly of feeding areas in lakes and oceans. Adding habitat heterogene-
ity was found important for habitat enhancements in streams with mammalian 
predators.

5.	 We highlight the importance of taking all the habitats during the life cycle of 
migratory fish into account in management decisions and carefully considering 
whether using hatchery fish to support wild populations in streams.
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1  | INTRODUC TION

Predation has both direct and indirect effects on the structure of 
fish communities (Allouche & Gaudin, 2001; Giam & Olden, 2016; 
Jackson et al., 2001). The direct effect of predation can be defined 
as mortality of prey species, which can be variably high and selective 
for many traits, such as prey size, other morphological characteristics 
and prey availability (He & Kitchell, 1990; Hoey & McCormick, 2004; 
Pinnegar et al., 2003). Responses to predation can lead to indirect in-
teractions among prey species. These can be behavioural (Metcalfe 
et al., 1999; Vehanen, 2003) and physiological (Archard et al., 2012) 
adaptations or morphological changes (Svanbäck & Eklöv, 2006; 
Vinterstare et al., 2020).

Indirect predation effects include also changes in habitat selec-
tion, and it has been suggested that shallow areas are preferred by 
small fish, but avoided by large fish (Power, 1987; Schlosser, 1987; 
but see Sheaves, 2001). Small-sized fish are expected to take refuge 
in shallow areas to reduce predation risk from predatory fish, which 
are considered gape-limited predators (Mihalitsis & Bellwood, 2017; 
Nilsson & Brönmark,  2000). Thus, a larger body size of prey fish 
provides per se a shelter from predatory fishes (Hyvärinen & 
Vehanen,  2004). However, even if shallow areas create refuges 
against fish predators, fish can increase encounters with terrestrial 
piscivores, as wading and diving predators forage effectively in shal-
low water (Crowder et  al.,  1997; Power,  1987). Prey vulnerability 
to predation generally decreases as the environmental complexity 
increases (Beukers & Jones, 1997; Livernois et al., 2019; Nelson & 
Bonsdorff, 1990).

Whereas the effects of fish predation on salmonid fish popula-
tions are relatively well known, the effect of terrestrial mammalian 
predators is less clear. Pacific salmon (Oncorhynchus spp.) have been 
found to be an important resource for terrestrial wildlife through 
the allocation of nutrients to terrestrial predators (Hilderbrand 
et  al.,  2004; Levi et  al.,  2012, 2020). The most widely mentioned 
terrestrial predators on salmon are bears, but the range of verte-
brate consumers includes various species, and also several avian 
foragers (Levi et al., 2015; Shardlow & Hyatt, 2013). Thus the mi-
grating salmonids role to the ecosystem function can be high (Gende 
et  al.,  2002), even when iteroparous migratory species such as 
Atlantic salmon (Salmo salar) or brown trout (Salmo trutta) are consid-
ered (Enbom, 2015; Jonsson & Jonsson, 2003; also see Cairns, 2006). 
When large carnivores have been lost or are rare, smaller sized meso-
carnivores play a larger role in the prey community structure (Roemer 
et al., 2009). In many European freshwater systems, the otter (Lutra 
lutra) and American mink (Neovison vison) play a key role as semi-
aquatic predators (Holland et al., 2018). Both predators feed on fish, 
including salmonids, and otters are known to prey also on large sal-
monids (Carss et  al.,  1990), whereas mink, due their smaller body 
size, typically forage on smaller sized fish (Erlinge, 1969).

The American mink was introduced to Europe from North 
America for fur farming, and escaped minks have established 
naturally reproducing populations around Europe (Bonesi & 
Palazon,  2007). We have relatively limited knowledge about the 

impacts of this invasive species on its prey species, although sev-
eral studies have indicated that it is a potential predator for a wide 
range of prey fauna (Bonesi & Palazon, 2007). Seasonal changes in 
the mink's diet originate from changes in the availability of specific 
prey categories, e.g. poikilothermic fish are an important part of 
the diet of the homeothermic mink especially in winter (Chibowski 
et al., 2019; Filip’echev et al., 2016; Gerell, 1967, 1969) due to lower 
water temperatures and the limited escape ability of fish at low tem-
peratures (Huusko et al., 2007).

Lindstrom and Hubert (2004) concluded that mink predation 
might have a substantial effect on the winter mortality of salmo-
nids in Wyoming mountain streams. Correspondingly, Heggenes and 
Borgstrøm (1988) suggested that mink predation may be a major 
cause of mortality in small streams, but the predation efficiency is 
likely to vary with stream characteristics. For example, in a structur-
ally enhanced stream, where trout juveniles have better possibilities 
to find cover from predation compared to a stream with simplified 
habitat, mink predation was not an important source of mortal-
ity for brook trout (Salvelinus fontinalis) during summer (Burgess & 
Bider, 1980). Erlinge (1969) reported that mink largely fed on fish, 
but the majority of the fish diet consisted of non-salmonid fish, 
suggesting that brown trout could find hiding places from mink pre-
dation in a naturally complex river environment. Where mink are 
sympatric with otters, mink is a more generalised carnivore, and 
therefore switches diet opportunistically (Wise et al., 1981). Stream 
characteristics can affect mink predation efficiency, which has been 
observed, for example, when bears prey on salmonids (Andersson & 
Reynolds, 2018).

Despite, the concerns about the harmful effects to native 
fishes (Aas et  al.,  2018; Pister,  2001)), fish stocking is one of the 
most common methods to mitigate adverse effects on fish stocks 
(Cowx, 1994). Predation by feral predators, such as mink, is partic-
ularly concerning where fish stocking is used as management tool. 
Salmonids are a group of fishes with high socio and ecological value 
where fish stocking is used heavily for management and conser-
vation (Aas et  al.,  2018; Armstrong,  2005; Krueger & May,  1991). 
Hatchery fish are typically raised to large sizes as larger fish have 
higher survival rates in the wild (the bigger is better hypothesis; 
Sogard,  1997). However, hatchery reared salmonids have lower 
survival rates in the wild compared to their wild counterparts or 
to fish raised in enriched environments (Einum & Fleming,  2001; 
Hyvärinen & Rodewald, 2013; Larocque et al., 2020). One major rea-
son for lower survival in the wild is that stocked individuals have 
not been raised in environments that stimulate predator avoidance 
behaviours (Mes et  al.,  2019; Olla et  al.,  1998), and they are thus 
heavily preyed upon (Alioravainen et  al.,  2018; Berejikian,  1995; 
Einum & Fleming, 2001). Surprisingly, there are no published studies 
comparing whether hatchery fish are more vulnerable than wild fish 
to semi-aquatic mammalian predators, such as the American mink.

Habitat restoration is another mitigation tool to enhance the 
survival and reproduction of depleted fish stocks. The restoration 
of natural salmonid reproduction areas has recently gained more 
interest in fish management than more traditional hatchery fish 
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releases. Perhaps the most used technique is in-stream habitat 
restoration (Krall et al., 2019; Roni et al., 2008), which aims to re-
establish channel complexity through the placement of structures 
(Nilsson et al., 2015; Vehanen et al., 2010). More complex habitat di-
versity is expected to increase the suitability of the habitat for juve-
nile salmonids, and provides more refuge from predators (Beukers & 
Jones, 1997; Höjesjö et al., 2014). Adding large or fine wood (FW) into 
the stream channel results in positive responses in the densities of 
juvenile salmonids (Louhi et al., 2016; Nagayama & Nakamura, 2010; 
Roni et al., 2015), and wood can also function as cover from pred-
ators. However, there is an ongoing debate about how success-
ful the in-stream restoration efforts have been, and what are the 
most influential measures behind successful in-stream restorations 
(Krall et al., 2019; Marttila et al., 2019; Nilsson et al., 2015; Stewart 
et al., 2009; Taylor et al., 2019).

In this study, we present the results of two experiments run in 
semi-natural streams to test the hypotheses that: (1) hatchery fish 
are more vulnerable to predation from the semi-aquatic predator, 
American mink, than wild fish; (2) a larger body size protects fish 
from mink predation; and (3) habitat complexity in the form of FW 
protects fish from mink predation. Even if the original aims for the 
experiments were different (see below), the design of the experi-
ments allowed us to study the effects of the unexpected mink pre-
dation on juvenile brown trout.

2  | METHODS

This study assessed the mortality of brown trout juveniles from 
mink predation in stream channels at the Kainuu Fisheries Research 
Station (Natural Resources Institute Finland, http://www.kfrs.fi/en/
front​page/, 64°30′N, 27°10′E). In the experiments, several months 
after the experimental start, we noticed tracks of feral minks in the 
snow in the experimental stream area, and it became obvious that 
the minks had preyed on the experimental fish in both experiments. 
Thus mink predation took place unexpectedly, and we were able 
to study its effect on brown trout juveniles in these experimental 
setups. The first experiment was designed to study the long-term 
patterns in the strength of competition between hatchery and wild 
brown trout (Huusko & Vehanen, 2011), and the second experiment 
was designed to examine growth effects on brown trout with and 
without wood addition (Enefalk et al., 2019). The detailed descrip-
tions of study designs are given for Experiment 1 by Huusko and 
Vehanen (2011) and for Experiment 2 by Enefalk et al. (2019) and are 
only summarised here.

2.1 | Semi-natural streams

We conducted the experiments in six 26  m long and 1.5  m wide 
outdoor artificial stream channels. In the first experiment, we used 
three of the six stream channels, and in the second experiment, we 
used all six channels. The bottom of the streambed consisted of 

natural material, a 10–15 cm layer of gravel and pebbles (15–40 mm 
in diameter). Each stream was divided into three 8.5-m long sections 
(upstream–middle–downstream) with wire mesh panels (mesh size 
10 mm [Experiment 1] or 6 mm [Experiment 2]). All channels shared 
the same water source drained from the nearby Lake Kivesjärvi, thus 
having the same temperature regime. Experiment 1 took place from 
30th August to 8th November 2006, and experiment 2 from 17th 
August 2013 to 24th February 2014. During Experiment 1, water 
temperature decreased from 17.0 to 2.1°C, while during experi-
ment 2, it decreased from 17.1 to 1.1°C. The stream channels sup-
ported benthic invertebrate communities similar to those present in 
a nearby stream in terms of both species composition and densities 
(Korsu et  al.,  2009; Vehanen,  2006). Thus, trout were feeding on 
natural food during the experiments.

2.2 | Brown trout

Brown trout juveniles from the same adfluvial brown trout stock 
were used in both experiments, and originated from the Kuusinkijoki 
River, north-eastern Finland. The river has its own wild genetically 
divergent, lake-migrating brown trout stock (Huusko et  al.,  1990; 
Lemopoulos et  al.,  2018). This brown trout stock has been main-
tained for stocking purposes in the state fish hatcheries in Finland.

The hatchery brown trout juveniles used in Experiment 1 were 
hatched and reared using normal procedures on the Kuusamo Fish 
Farm, a state hatchery about 300 km from the experimental site. The 
brown trout were the first-generation progeny of wild parents from 
the Kuusinkijoki River. The average rearing density in 4-m2 indoor 
ponds was 3 kg/m2. During rearing, the fish were fed with artificial 
food pellets. The wild counterparts for the hatchery fish, also aged 
1+, were caught using electrofishing methods from the Raatekoski 
Rapid (66°23′88.8″N, 29°67′41.1″E) in the Kuusinkijoki River. 
Directly after capture, we transported both the hatchery-reared 
and wild fish to the study site in separate oxygenated containers. 
For recovery, we placed the fish in separate holding tanks with a 
low water flow (velocity 0.02–0.10 m/s) for 48 hr, and during this 
time, we provided no food. Thereafter the fish were anaesthetised 
with clove oil, measured (total length, mm and mass, g), and tagged 
with passive integrated transponder (PIT) tags (HDX Oregon RFID, 
Portland, USA, tag size 23 mm × 3.65 mm, weight 0.6 g) in their body 
cavities for individual recognition. After the fish had recovered from 
tagging and behaved normally, they were randomly placed into the 
different stream sections according to the study design.

The brown trout used in the Experiment 2 were produced in the 
same hatchery, Kuusamo Fish Farm, and originated from wild par-
ents from the Kuusinkijoki River. We transferred the brown trout 
to the experimental site already in their late yolk-sac phase in early 
June 2014. Altogether, 175 age-0+ individuals were placed into each 
of the six channels used in the experiment. In the channels we did 
not feed the fish, instead they started to feed on natural food. After 
two months, we collected all fish by multi-pass sampling with a DC 
electro shocker. The flow in the channels was reduced to a low level 

http://www.kfrs.fi/en/frontpage/
http://www.kfrs.fi/en/frontpage/
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and carefully searched to make sure no fish were left in the channels. 
The collected brown trout were kept in a holding tank (3.5 m2, water 
volume 1.4 m3, and flow 1.5 L/s). From the tank, 360 fish were ran-
domly selected, anaesthetised with clove oil, measured (fork length, 
mm and weight, g), and tagged with a PIT tag (HDX Oregon RFID, tag 
size 12 mm × 2.15 mm, weight 0.1 g), and then placed into the stream 
sections according to the study design.

2.3 | Study design

In Experiment 1, all channels had a similar discharge regime, 
43.7 ± 7.1 L/s (average ± 1 SD). Each study section comprised an 
upstream riffle and a downstream pool section. The water veloc-
ity in the riffle part of each section ranged between 20–60  cm/s 
(depth 15–25 cm, mean substrate diameter 15 cm) and in the pool 
0–20  cm/s (25–35  cm, 4  cm, respectively). We used a substitu-
tive experimental design as such a design is useful for drawing 
conclusions for wider contexts (Vehanen et  al.,  2009; Weber & 
Fausch, 2003, 2005; Yamamoto et  al.,  2008). The design included 
three treatments, with three replicates, in randomly selected sec-
tions: (1) 10 wild brown trout (WBT); (2) five WBT and five hatchery-
reared brown trout (HBT); and (3) 10 HBT, resulting in trout densities 
of 0.78 ind. m−2 in each stream section (Figure 1). The fish densities 
used in the experiment were comparable to average field densities 
of age-1+ brown trout in natural trout streams in northern Finland 
(Korsu et  al.,  2007). The length of the WBT at the beginning of 
the experiment was 112 ± 8 mm (average ± SD, n = 45) and their 
mass was 13.9 ± 3.0 g, and for HBT the corresponding values were 
142  ±  16  mm (n  =  45) and 33.7  ±  12.1  g, respectively. Thus, the 
hatchery trout were larger than the wild trout, with the result that 
the fish biomasses in the treatment areas were different. However, 

the aim was to follow the standard stocking procedure in which 
hatchery brown trout are added to support wild stocks. This meant 
that no changes in the rearing procedures, for example, by restrict-
ing feeding or selecting small-sized hatchery fish to result in match-
ing sizes, were applied for the hatchery fish.

During the study period, we located the fish seven times with 
intervals of 7–14 days over the course of the study at noon by slowly 
moving a customised portable PIT antennae (Texas Instruments 
TIRIS S-2000; Linnansaari et al., 2007) about 20 cm above the water 
surface in the upstream direction. When a fish was located, we 
marked its individual code on a map.

In Experiment 2, the discharge regime in all channels was 
59.0 ± 5 L/s (mean ± 1 SD). Three gravel deflectors (triangle shaped, 
with a side length of 0.5 m) were placed into each section protrud-
ing from the water surface. These deflectors shaped the water flow 
into meandering patterns. Two bricks with an arch underside (height 
4 cm) were placed in each section to provide additional sheltering 
sites for fish. The water depth was 16.1 ± 1.2 cm in treatment areas 
with additions of FW, and 16.3  ±  1.2 in control sections without 
wood additions. The water velocities were 24.4  ±  2.6  cm/s and 
24.9  ±  2.1  cm/s, respectively. The study design was similar to a 
stratified random design (Figure 2). There were three channel sec-
tions in each of the six channels, for a total of 18 sections. According 
to the study design, equal numbers of sections were assigned to 
treatment areas with FW added, and control with no wood added 
(Figure 2). The FW load used in the study equalled 50 m3 of wood/ha 
of the stream bottom surface (Enefalk et al., 2019). About 1 m long 
(Ø = 1 cm) willow sticks (Salix sp.) were collected in early June. The 
sticks were tied in bundles of 25–26 sticks and were waterlogged 
for 2 months before use in the experiment. In Experiment 2, eight 
waterlogged willow stick bundles were placed in the upstream area 
of the FW treatment sections and the rest of the sections (length 
6.5  m) remained free-flowing. Each channel section was stocked 
with 20 brown trout. The fork length of the brown trout individuals 
in the FW treatment section was 78 ± 5 mm (mean ± 1 SD) and mass 
5.5 ± 1.1 g, and correspondingly 79 ± 5 mm and 5.5 ± 1.1 g in the 
controls. Again, the fish density in the Experiment 2 was selected 
to be within the range of natural densities of juvenile brown trout in 
streams in Scandinavia (Korsu et al., 2009).

Similarly to Experiment 1, the daytime distribution of brown 
trout in the channel sections was determined by slowly moving a 
customised portable PIT antenna (Texas Instruments TIRIS S-2000; 
Linnansaari et al., 2007), approximately 20 cm above the water sur-
face. During the study period, in September, October, and December, 
brown trout were captured by electrofishing, counted, and mea-
sured for length and mass for growth and survival responses, and 
returned back to the channels.

2.4 | The mink and mink predation

After 10 weeks from the start of Experiment 1, at the onset of 
winter in November 2006, we noticed tracks of feral minks in the 

F I G U R E  1   Schematic presentation of the study design in three 
semi-natural streams in Experiment 1. Treatment positions for 
the substitute design in the channels are indicated by the letters. 
10W = 10 wild brown trout, 10H = 10 hatchery brown trout, and 
5W + 5H = five wild brown trout and five hatchery brown trout in 
stream sections separated by wire mesh panels
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experimental stream area. After checking the channels, it became 
obvious that the minks had preyed on the brown trout in all the 
streams and sections. A wire mesh fence surrounds the area of 
the experimental streams and it is unclear which route the minks 
used to access the stream channel area. The snow cover in the area 
was about 20 cm deep, and the stream sections had border ice of 
20–40 cm in width. From the mink tracks, we could estimate that 
two minks had visited the experimental area several times in early 
November. The mink had collected the brown trout they had killed 
into piles under the border ice of the streams in sites with a very 
shallow water depth, probably as food storage. Many of them were 
not eaten at all or were only partly eaten. We collected the dead 
fish and electrofished the ones remaining alive, measured their total 
length and mass, and recorded the individual PIT tag codes. PIT tags 
from the channels and the surrounding area were also located with 
the customised portable reader. Altogether, we found 17 tags (nine 
HBT and eight WBT tags) loose and signalling from the channel bot-
tom. Before the mink invasion, only two out of 90 fish had lost their 
tags (during the positioning of the brown trout at the end of October, 
fish found alive but tags were recovered from the bottom), thus the 
tags in the bottom could be classified as eaten by mink.

In Experiment 2, we observed mink tracks for the first time in 
the experimental stream area in late January 2014. The snow cover 
was about 10 cm deep, and from the mink tracks on the snow, it was 
judged that three individuals had visited the area. During the next 
2  weeks, we checked mink tracks and blood patches in the snow 
all weekdays, and estimated that the minks were preying on brown 
trout in the experimental channels. To protect the fisheries station's 
experimental activities, a local hunter trapped and removed one 
mink. Following the detection of mink predation, we electrofished 
the flumes for brown trout on 24 February and 6 May 2014. On both 
occasions, we recorded their PIT tag codes, fork length and mass. 
Fish that were present in the flumes up until the last electrofishing 

in December but were not recorded during these two electrofishing 
occasions were classified as preyed upon by mink. This is an over-
estimation of the predation rate as it also includes other natural 
mortality. The natural mortality outside mink predation (see Results, 
Experiment 2 for exact numbers) was, however, relatively low. For 
example, out of the fish that were detected in the October elec-
trofishing sampling (319 trout), 8.5% (27 trout) were not detected 
alive in later samplings, and thus had died by natural causes between 
October and December. There was no statistical difference in num-
bers of dead fish between treatments (FW/no FW, 12/15 trout, chi 
square test, χ2 = 0.333, df = 1, p = 0.564). Thus, the natural mortality 
outside the mink predation was low, and there was no difference 
between treatments. Because we could not individually identify out 
of PIT-tagged trout the fish that were preyed upon by mink from 
the fish that had died from other sources of natural mortality, we 
used total mortality as a measure of mink predation mortality in our 
analyses.

2.5 | Data analysis

Substitutive comparisons (see Weber & Fausch, 2003) in Experiment 
1 were made between allopatric treatments (i.e. either wild or hatch-
ery fish separately in each section) and sympatric treatments (i.e. 
both wild and hatchery fish in each section) using a t-test. The sig-
nificance level used in the analyses was 0.05. The response variables 
were survival (%), the size of fish (length in mm) killed by mink and 
surviving, respectively. The survival was also compared between al-
lopatric treatments. In the Experiment 2, the survival (%) of brown 
trout in channels with and without FW was analysed using a mixed 
ANOVA model. The treatments (FW addition, control with no wood 
addition) were used as fixed factors and the experimental channels 
(1–6) as random factors. The possible size selectivity of mink preda-
tion was examined using a mixed ANOVA approach using the size of 
the fish (killed by mink or those that survived) as response variables 
and experimental channels as random factors. Statistical analyses 
were done using Systat 13 and SPSS 25 statistical software programs.

3  | RESULTS

3.1 | Experiment 1

Out of 87 brown trout, 58.6% or 51 fish (38 HBT and 13 WBT) were 
killed by mink. Three fish (two HBT and one WBT) were lost: their 
fate could not be identified as they or their tags were not found in 
the flumes or in their surroundings inside the wire mesh fence bor-
dering the area.

There was a significant difference in survival of allopatric WBT 
and HBT (t3 = 6.918, p < 0.002, Figure 3) such that the HBT had a 
survival of 10.4%, which was clearly lower than the 83.3% for the 
WBT. The survival of the sympatric WBT (46.7%) was significantly 
lower than the survival of the allopatric WBT (t3 = 3.317, p = 0.029). 

F I G U R E  2   Schematic presentation of the study design in three 
semi-natural streams in Experiment 2. Treatment positions for the 
design in the channels are indicated by the letters. W, fine wood 
addition; C, control, no wood added. 20 brown trout were in each 
stream section separated by wire mesh panels
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For HBT, there was no treatment effect on the survival (t3 = 0.336, 
p = 0.754),

Both in the sympatric and allopatric treatments the average 
length of HBT fish (measured in October before mink invasion) that 
had been preyed on were significantly greater than that of the sur-
viving fish (Figure  4, allopatry: t3  =  −7.816, p  =  0.004; sympatry: 
t3 = −2.567, p = 0.0083). No similar effects were found for the WBT 
in allopatry (t3 = 0.386, p = 0.719) and in sympatry mink seem to 
prey on larger WBT individuals, but the difference was insignificant 
(t3 = −1.822, p = 0.142, Figure 4a).

3.2 | Experiment 2

After the mink visits in February 2014, in total 56.6% of the trout 
in the FW sections, and 35.7% in control sections were found alive, 
compared to the trout numbers present in early December. The 

survival of the brown trout was significantly higher in the treatment 
areas with FW addition compared to control treatment areas with 
no wood addition (F = 10.570, df = 1, p = 0.023, Figure 5a), but there 
was no effect of channel (F = 1.830, df = 5, p = 0.262) or treatment-
channel interaction (F = 1.603, df = 5, p = 0.290). Neither did the 
minks select brown trout of any particular size (fish lengths based 
on December 2013 measurements of pit-tagged fish, F  =  2.402, 
df = 1, p = 0.182). In treatment areas where the habitat complexity 
was increased by adding FW smaller trout seemed to survive better, 
but this was insignificant (Figure 5b). The channel factor (F = 0.358, 
df = 5, p = 0.858) and the treatment-channel interaction (F = 1.563, 
df = 5, p = 0.171) were insignificant.

4  | DISCUSSION

Our study showed that the predation by mink can cause high 
mortality among juvenile salmonids in small streams. In addition, 
we found that the mortality of wild brown trout was significantly 
higher when in sympatry with hatchery trout than it was in al-
lopatric wild trout treatments. Thus, presence of hatchery fish 
can increase the predation effect from mink on wild brown trout 
juveniles. High predation by feral mink should be considered in 
management actions when restoring and conserving salmonid 
populations in small streams. Increased habitat complexity by 
FW in our small streams decreased the mortality of brown trout 
juveniles from predation by mink, as our hypothesis was, and in-
creasing habitat complexity can be used to decrease mink pre-
dation. We found considerably lower survival rates in hatchery 
brown trout than in wild trout of the same genetic origin, which 
is in accordance with earlier findings that hatchery fish are more 
vulnerable to predation than wild fish (Einum & Fleming, 2001). It 
also confirms our hypothesis that hatchery brown trout are more 
vulnerable to mink predation than wild brown trout. Among the 
hatchery brown trout under mink predation pressure, smaller 
trout individuals survived better than larger individuals, which 
suggests that stocking of large-sized juveniles in small streams 
might not be beneficial. The result of large trout surviving poorer 
was the opposite to our hypothesis that large body size protects 

F I G U R E  3   Average survival (±1 SE) of brown trout from mink 
predation in the outdoor semi-natural streams in Experiment 1. 
Black symbols indicate hatchery-reared brown trout (HBT), the 
open symbols indicate wild brown trout (WBT). N = 3 for each 
treatment, error bars represent standard error of the mean

F I G U R E  4   The average total length 
(±1 SE) of brown trout that survived (open 
symbols) and that were preyed on by 
mink (black symbols) in the Experiment 1 
in semi-natural streams. (a) Wild brown 
trout, (b) hatchery-reared brown trout. 
Allopatry: fish of one origin present, 
sympatry: both fish origins present. N = 3 
for each treatment, error bars represent 
standard error of the mean
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from mink predation, but in this study we cannot rule out a differ-
ent outcome in a different habitat.

4.1 | Mortality of hatchery and wild brown trout

High mortality from mink predation was found in the experimental 
channels, built to simulate small natural streams. Similarly to our re-
sults, minks have been observed to prey effectively on brown trout 
juveniles in corresponding environments in small natural streams 
(Heggenes & Borgstrøm, 1988; Lindstrom & Hubert, 2004). When 
together with hatchery trout, wild trout were preyed on more 
than in treatments when only wild trout were present. This indi-
cates that the occurrence of hatchery fish might increase predation 
pressure, thereby exposing wild conspecifics to a higher preda-
tion risk. Earlier research has shown that large releases can attract 
predators and thereby reducing the production of wild populations 
(Nickelson, 2003; Van Alen, 2000), or that the larger size of hatch-
ery salmonids increase predation because they are in the predators’ 
preferred size range (Nelson et  al.,  2019). Both minks and otters 
are known to use hatchery fish as a food resource by visiting fish 
farms for prey (Manikowska-Ślepowrońska et al., 2016), and otters 
also use salmonid-rich streams of stocked salmonids during the win-
ter (Jacobsen,  2005; Ludwig et  al.,  2002). We suggest that hatch-
ery brown trout, when stocked among the wild trout, can increase 
predation from semi-aquatic predators, thus increasing the preda-
tion mortality also among wild fish, as we observed in semi-natural 
streams.

Higher predation on hatchery fish may be the result of behavioural 
differences. Predator-naïve hatchery fish have not developed the 
same predator avoidance behaviours as wild fish (Mes et al., 2019; 
Olla et al., 1998). Although predator-naïve brown trout are able to 
develop antipredator behaviour, it commonly occurs when they 
sense faeces from minks that have been feeding on their conspe-
cifics (Rosell et al., 2013). During the winter, brown trout juveniles 
shift to deeper water or use more cover to avoid predation (Huusko 
et al., 2007). We did not observe any significant differences in hab-
itat use; both the wild and hatchery trout used mostly the flowing 

stream habitat (see Enefalk et al., 2019; Huusko & Vehanen, 2011). 
Our results support the earlier results that hatchery fish are more 
vulnerable to predation than wild fish (Einum & Fleming, 2001), also 
in the case with a semi-aquatic predator.

4.2 | The effect of body size

We hypothesised that larger brown trout would be less preyed 
upon by mink, which was contradicted by our results. Instead, we 
found higher predation rates on larger brown trout. Generally, larger 
fish individuals both in marine (Sogard, 1997; Vehanen et al., 1993) 
and freshwater lake environments (Hesthagen & Johnsen,  1992; 
O'Grady,  1984; Vehanen,  1998) avoid predation better compared 
to smaller individuals when the main predation pressure stems from 
piscivorous, gape-limited, fish predators. The bigger is better hy-
pothesis, i.e. that fish with a larger body size have higher survival 
than smaller individuals, has led managers to use of large hatchery ju-
veniles for stocking in streams and rivers (Harvey et al., 2016; Nelson 
et al., 2019). These stocked hatchery juveniles are typically consid-
erably larger than their wild conspecifics at the same age. Although 
a large body size is beneficial against gape-limited predators in the 
sea or lake environments, our results from small streams show that 
a smaller body size could be beneficial when coping with wading 
and diving non–gape-limited predators. In streams, small body size 
has been found to be an advantage over larger individuals in terms 
of survival in brown trout (Carlson et al., 2008) and cutthroat trout 
(Oncorhynchus clarkii) (Uthe et al.,2016) juveniles. Also, for bird pre-
dation, enhanced survival of smaller individuals has been observed 
in rare cases among salmonids (Sogard, 1997). Therefore, the gener-
ality of the bigger is better hypothesis could be questioned.

Size-selective mortality may also have prolonged consequences 
for salmonids (Russell et al., 2012; Sogard, 1997). Specifically, mor-
tality during different life stages of salmonids are not independent of 
each other, i.e. characteristics carried over from their juvenile phase 
in rivers may be important determinants of their survival during their 
growth phase also in marine or freshwater environments (Russell 
et al., 2012). To maximise adult returns of declining Atlantic salmon 

F I G U R E  5   (a) Survival (%) of brown 
trout in two treatment areas with the 
addition of small wood and a control 
(no wood addition), in Experiment 2 in 
semi-natural streams. N = 9 for both 
treatments. (b) Size (fork length in mm) 
of brown trout that were preyed on and 
those that survived in both treatments. 
Box plots: box length shows the range 
within which the central 50% of the 
values fall, vertical line marks the median, 
asterisks are outliers
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stocks, restoration efforts should focus on the freshwater life-stages 
to maximise the number and the size of emigrating smolts (Gregory 
et al., 2019). In shallow water in coastal marine environments, how-
ever, otters select larger fish for prey from the prevailing fish com-
munity (Cote et al., 2008). It is obvious that the effect of body size on 
the vulnerability to predation is dependent on the environment and 
the predator or mix of predators (Livernois et al., 2019), which should 
be taken into account in management. In shallow water with wading 
and diving non–gape-limited predators, a large body size of juvenile 
brown trout was a disadvantage.

4.3 | Habitat heterogeneity and predation mortality

As hypothesised, we observed that the mortality from mink pre-
dation was lower in treatment areas where FW was added to the 
streams. FW adds heterogeneity to the habitat by providing shelter 
for juvenile fish. Before the mink entered our semi-natural streams, 
Enefalk et al. (2019) had found that brown trout aggregated among 
wood bundles, whereas fish in the control sections the fish were 
more evenly distributed, and that the growth rate was significantly 
lower in treatment areas with wood addition than without wood ad-
dition. Here, we found (Experiment 2) brown trout juveniles were 
willing to use the cover from the wood addition, possibly to increase 
survival from predation, even at the cost of slower growth. Similar 
results have been observed for chub (Squalius cephalus), that was ob-
served to grow significantly less under bird predation threat, and the 
authors argued that the increased use of cover led to costs in terms 
of lost feeding opportunities but to benefits in terms of predator 
avoidance (Allouche & Gaudin, 2001). The smaller body can also be 
viewed as a benefit in terms of lowered predation rates, as diving 
non–gape-limited predators seem to prefer larger prey.

Understanding the relationships among habitat preferences and 
how these affect predation can be complex and challenging. Habitat 
preferences differ between size classes of brown trout juveniles. 
For example, larger juveniles prefer deeper water and coarser sub-
strate during winter compared to smaller size class (Mäki-Petäys 
et  al.,  1997). Also, larger salmonids prefer to shelter among larger 
wood (Langford et al., 2012). It may be that the habitat in our re-
search units in semi-natural streams, consisting of FW material, up-
stream riffle, and a downstream pool section, were more suited for 
small-sized hatchery trout. We acknowledge that our inferences may 
not extend to larger rivers with larger wood and more diverse hab-
itat. Habitat complexity strongly affects predation rates due to the 
availability of preferred refuges (Beukers & Jones, 1997; Nelson & 
Bonsdorff, 1990). In successful restoration projects, it is important 
to have knowledge about the habitat preferences of native species 
as to create useful refuge habitats (Billman et al., 2013). Restoration 
is specifically important for migrating salmonids, that have com-
plex life cycles involving different habitats, and are thus especially 
vulnerable for habitat changes (Vagg & Hepworth,  2006). In an 
example of habitat improvement, both crayfish (Cambarus bartoni) 
and brook trout (Salvelinus fontinalis) production increased, but the 

mink population only exploited the crayfish population (Burgess & 
Bider, 1980). This implied that crayfish were easier catch for mink, 
whereas trout were capable of taking advantage of the increased 
complexity to avoid mink predation also during summer period. In 
another example otters were found to prey on hatchery brown trout 
in one stream, but not in another, due to different fish community 
composition in the two streams (Jacobsen,  2005). This supports 
the idea that wading/diving predators adapt their foraging to local 
conditions. As mink predation efficiency seems to vary with habi-
tat characteristics (Heggenes & Borgstrøm, 1988), prey populations 
might benefit from habitat restoration. Overall, these results high-
light the complexity of predator–prey interactions and pinpoint the 
need to follow up fish populations in newly restored habitats, to en-
sure that the target species benefits from the restoration.

Additionally, habitat preferences vary seasonally as fish typically 
shift to low velocity areas in the winter (Huusko et al., 2007). In ju-
venile salmonids, these changes in habitat use typically are observed 
at micro- to mesohabitat scale as they prefer lower water velocity 
areas within riffles, such as streambank areas or larger cover sub-
strate, or emigrate relatively short distances to pools (Cunjak, 1996). 
These changes in preferred habitats have been related to the need to 
conserve energy at low water temperatures, but also to obtain shel-
ter from endothermic predators and piscivorous fish (Valdimarson & 
Metcalfe, 1998). Thus, it is possible that overwinter survival of sal-
monids increases if fish has a possibility to move between habitats 
or in search of preferred pool areas (Elso & Greenberg, 2001). If suit-
able winter habitats are not present, brown trout can demonstrate 
greater movements (Huusko et al., 2007), presumably to seek more 
suitable habitat. Larger scale movements between summer habi-
tat in lakes and winter habitat in rivers to avoid predation are also 
common in fishes (Skov et al., 2013). While our semi-natural streams 
consisted of pool and riffle habitat, juvenile brown trout could not 
emigrate outside this area. Therefore, the movements of fish were 
more limited than in a natural stream, and this could have intensified 
the predation intensity from the mink. However, the physical habitat 
(water depth and velocity) in our semi-natural streams was within 
the preferred range of brown trout juveniles during winter in the 
region (Mäki-Petäys et al., 1997).

4.4 | Fish stocking to support wild populations 
in streams

Stocking of hatchery fish is a globally used method to support 
weakening fish stocks (Cowx, 1994). Fish stocking can increase the 
densities of fish, but there is strong evidence of negative ecological 
effects on wild populations (Aas et al., 2018; Huusko et al., 2018; 
Uusi-Heikkilä et al., 2018). For managers, an important decision is 
whether or not to use hatchery fish to support wild populations. 
Our results suggested that stocking hatchery fish among wild trout 
could increase the predation pressure from terrestrial predators, 
such as mink. The brown trout used in our study, both hatchery 
and wild juveniles, originated from one of the last remaining viable 
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naturally reproducing adfluvial brown trout stocks in Finland, and 
the status of this stock is considered endangered due to anthropo-
genic impacts (Huusko et al., 1990, 2018). As this is a worldwide 
trend where migrating salmonids, both anadromous and adfluvial, 
are considered vulnerable (Freyhof, 2014; Hyvärinen et al., 2019; 
Ricciardi & Rasmussen, 1999), it is essential to understand the con-
sequences of hatchery releases in all habitats and all life cycles.

5  | CONCLUSIONS

Our study has management implications specifically in small streams, 
which are important for brown trout (Jonsson et  al.,  2001; Sutela 
et al., 2020; Vehanen et al., 2020). Survival during the juvenile stages 
is highly important for the growth of the brown trout populations 
(Elliott, 1994), and predation is one of the main drivers of fish com-
munity structure (Gebrekiros,  2016). Our results illustrate the im-
portance of considering how the needs differ between life stages of 
migrating salmonids in terms of suitable habitat conditions for feed-
ing and predator avoidance. Second, before supporting wild salmo-
nid stocks with hatchery juveniles, the characteristics of hatchery 
fish, such as the hatchery background, should be considered. For ex-
ample, occurrence of hatchery fish may increase predation on wild 
fish and a large individual size is not necessarily beneficial in small 
streams. Third, we encourage increasing the habitat heterogeneity, 
for example by adding wood to streams, in restoration and habitat 
enhancement efforts, as this is likely to reduce predation from wad-
ing and diving predators, such as feral American mink. In addition to 
restoration of habitat complexity, other management actions should 
be considered to mitigate the predation effect of feral mink. These 
could include eradication (removing all feral mink from a limited 
area), control (keeping mink numbers low) by trapping or hunting or 
prevention of further escapes of feral mink (Bonesi & Palazon, 2007).
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