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A B S T R A C T   

The objective of this study was to evaluate the effectiveness of three standardization approaches for airborne 
laser scanning (ALS) feature values used for individual tree species classification. This study is the first effort to 
assess the transferability of forest tree species classification models derived using monospectral and multispectral 
ALS data. Three research questions were asked; (1) How do the ALS features differ for the same species in 
different though comparable ecological regions? (2) How to train a model with one sub-population and apply it 
in another sub-population? (3) How to fuse models for two areas into a global model? To answer these questions, 
both 3D and intensity features were extracted from the ALS data from Canadian boreal forests. The ALS feature 
values were standardized in two different scenarios, disjoint areas, and partially overlapping areas, across three 
study areas. Feature standardization approaches were used: histogram matching, median-based standardization, 
and linear regression-based standardization. A linear discriminant analysis (LDA) and random forest (RF) al-
gorithms were employed to classify the study area’s major tree species. The Bhattacharyya distance and overall 
accuracy (OA) were used to assess the classification model performance before and after the feature standard-
ization. Three major conclusions were drawn. First, the Bhattacharyya distance confirmed that intensity features 
varied across study areas and among tree species, while 3D features were relatively less variable. Second, for the 
disjoint areas (York Regional Forest (YRF)) and Petawawa Research Forest (PRF)), the feature standardization 
procedure consistently improved the OA classification for both local model and global model approaches. The 
feature standardization improved the OA from 16% to 54% using LDA, and from 20% to 55% using RF in the 
local model. The improvement was from 58% to 66% using LDA, and from 63% to 70% using RF in the global 
model. It can be concluded that intensity features (at YRF and PRF) were most prone to differ between areas 
because of scanners and acquisition settings. If ALS data were available from both areas, intensity features need 
to be normalized so that the local model can be transferred. Finally, for the partially overlapping areas (the 
northern and southern parts of Black Brook Forest), this study suggests that normalization of ALS data is not 
needed because they were captured using quite similar ALS settings.   

1. Introduction 

Tree species information is one of the most requested pieces of in-
formation for decision-making in the forest-based industry and 
ecosystem sciences and management. Currently, species classification 
relies on traditional manual interpretation of multispectral imagery 

(visible and infrared bands), which is expensive, time-consuming, and 
highly uncertain (Budei et al., 2018). The use of airborne laser scanning 
(ALS) data in recent years has helped the evolution of forest inventory 
and management techniques. Numerous studies have been published 
ascertaining the benefits of monospectral ALS features (usually near- 
infrared: 1064 nm) in the characterization of forest inventory 
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variables (e.g. height, volume, species composition). Recently, a multi-
spectral ALS system (i.e. Titan from Teledyne Optech) has been devel-
oped to collect data at different wavelengths (e.g. 532–1550 nm) to 
enhance the retrieval of forest vegetation dynamics. Few studies have 
been performed on the use of multispectral ALS data for tree species 
classification (e.g. Axelsson et al., 2018; Budei et al., 2018; Rana et al., 
2018; Yu et al., 2017). These studies all concluded that there were 
additional gains in tree species classification than monospectral ALS 
data. Multispectral ALS provides a diversity of spectral information that 
offers higher reliability and accuracy for individual tree species classi-
fication than the single wavelength ALS sensors. Budei et al. (2018) 
reported an overall accuracy of 76% for ten tree species classification 
using multispectral ALS data, compared to 65% overall accuracy with 
monospectral ALS data. Yu et al. (2017) reported 86% overall accuracy 
for three tree species using multispectral ALS data, compared to 82% 
overall accuracy with monospectral ALS data. 

ALS features are typically categorized into two broad classes, geo-
metric (based on the 3D distribution of returns in the point cloud 
characterizing a tree) and radiometric (based on return intensity dis-
tribution). The addition of different wavelengths in the multispectral 
ALS system offers more radiometric features than standard ALS. This 
addition can provide crucial information on tree foliage structure, 
branching pattern, leaf size, leaf clumping, and foliage density (Korpela 
et al., 2010b; Shi et al., 2018b). The radiometric features can help to 
differentiate between tree species because ALS echo properties like echo 
width are influenced by tree species characteristics. 

Tree species classification is challenging in diverse ecosystems due to 
the presence of a large number of tree species and diverse tree struc-
tures. Classification accuracy decreases with the increasing number of 
tree species (Feret and Asner, 2013), and it is also strongly affected by 
training sample size (Baldeck and Asner, 2014). Comprehensive training 
data collection plays a crucial role in tree species classification. For 
example, Graves et al. (2016) and Freeman et al. (2012) mention the 
negative impact of small and unbalanced training data on tree species 
identification. Intra and interspecies feature variation also heighten the 
challenge for accurate tree species classification. For example, the crown 
architecture of needleleaf trees (e.g. spruce, balsam fir) is typically 
vertically extended and spiky compared to the roundish shape of 
broadleaf trees (e.g. maple, birch, aspen) (Budei et al., 2018). Tree 
branch orientations also differ between needleleaf and broadleaved 
trees, causing challenges to the classification accuracy. For example, the 
orthotropic branch pattern can be seen in Norway spruce and the 
plagiotropic branch pattern in beech (Millet et al., 1999). Each tree 
species also differs in its foliage distribution, resulting in diverse archi-
tectures. For example, the laser scanning of Norway spruce foliage 
generates conical crown shapes with clustered ALS points near the stem, 
while beech generates an ellipsoidal crown shape with an even distri-
bution of ALS points along the stem (Shi et al., 2018b). 

Tree species classification has been employed at pixel level (Dalponte 
et al., 2012), plot level (Sasaki et al., 2012; Van Ewijk et al., 2014), or 
stand level (Gjertsen, 2007) using various automated or semi-automated 
methods. However, species are unequivocal only at the single tree level, 
which makes the approach of individual tree classification more rational 
and practical. Fassnacht et al. (2016) review found that 56 out of 129 
papers (43%) employed an individual tree classification using remote 
sensing data. However, individual tree level classification could be 
aggregated at plot-level or stand level when needed. The recent review 
of Michalowska and Rapinski (2021) mentioned that 80% (out of 97) of 
studies had four or fewer tree species classified from a single study area. 
While the first study of individual tree classification based on ALS data 
was published at the beginning of this century (Holmgren and Persson, 
2004), various methodological improvements have been suggested in 
the last decade. The use of multispectral ALS data for individual tree 
classification was employed (Budei et al., 2018; Yu et al., 2017), full- 
waveform ALS data was considered (Blomley et al., 2017; Heinzel and 
Koch, 2011), and the fusion of ALS with either multispectral (Deng et al., 

2016; Puttonen et al., 2010) or hyperspectral image data (Liu et al., 
2017; Shi et al., 2018b) was tested. Alongside the isolation and combi-
nation of various classification algorithms such as random forest, neural 
network, and genetic algorithm were employed and compared (Ko et al., 
2014). 

Remote sensing-based individual tree classification is an extensively 
studied subject in the literature. However, most attention has been 
focused on a single study area at a time. Generalization over multiple 
areas is particularly difficult due to e.g. need for radiometric correction, 
differences in the laser’s wavelength, system sensitivity and other sys-
tem properties, and flight parameters (Rana et al., 2018). Theoretically, 
absolute radiometric calibration concepts are used to produce intensity 
values which are fully depend only on the target scattering properties. 
This is necessary for combining large areas covering datasets or multi- 
temporal data from different data acquisition conditions (e.g. Gatzi-
olis, 2011; Hopkinson, 2007; Kaasalainen et al., 2011; Vain et al., 2010; 
Wagner, 2010). Still, there are many uncertainties in this calibration 
approach and 3D canopy structure makes the task very complex. Stan-
dardization procedures (or relative calibration) are often used to 
compensate for these difficulties (e.g. Tuomainen and Pekkarinen, 
2004), because varying imaging conditions can not be fully modeled 
using absolute radiometric calibration procedures. 

To develop a generalized tree species classification model or to 
transfer a classifier from one area to another, feature standardization is 
critical. Feature standardization is a technique to normalize the feature 
values across multiple areas for developing a generalized tree classifier. 
The goal of feature standardization is to change the distribution of each 
feature value to a common scale without distorting differences in the 
range of feature values. Feature standardization can help to proceed 
with a generalized model that can be applied to extensive areas with 
minimal reference data. Feature standardization is also needed to 
improve model transferability. This study hypothesized that feature 
standardization allows us to apply a generalized model over different 
areas if the sampled tree crowns ensure ample coverage of the inter- 
species variability of the tree crown characteristics across areas. A ma-
chine learning classifier trained with the ALS 3D features (also known as 
geometric features) and intensity features derived from these training 
crowns should then be able to generate classifications over multiple 
areas with minimal reference data. 

From the modeling perspective, the inventory of an area can be 
classified using two approaches: (1) a local model: to build a classifi-
cation model using training crowns of a given area and apply it to 
another area; the training area must include all possible classes of trees 
to be classified or (2) a global model: to build a classification model from 
a training sample pooled from different areas. This study hypothesized 
that both models could capture the inter-species variability of tree ar-
chitecture. The practical goal of the models is to minimize field sampling 
by building a “species multi-area catalog” for training a classifier. These 
could reduce the necessity of intensive field sampling in each area, and 
reduce inventory cost and time. 

Histogram matching (HM) is a widely used technique in the litera-
ture e.g. standardizing ALS intensity values (Ørka et al., 2012), matching 
multi-temporal ALS points (Nyström et al., 2013), stem volume match-
ing (Baffetta et al., 2012; Gilichinsky et al., 2012), diameter distribution 
matching (Maltamo et al., 2018; Vauhkonen and Mehtätalo, 2015; Xu 
et al., 2014) and forest biomass matching (Kauranne et al., 2017)). The 
above studies concluded that HM assisted in improving the estimation 
accuracy. 

Calibrating a model with a large training sample in each new study 
area is expected to be more accurate than transferring a model. But 
recalibration at each location is cost-intensive, a problem which this 
paper tried to bring a solution by studying how to recalibrate with 
minimal new training data. The objective of this study was to evaluate 
standardization approaches for ALS feature values used for individual 
tree species classification. Our practical goal was to reduce the number 
of field sample data required for tree species classification. Linear 
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discriminant analysis and random forest classifier were employed to 
classify the major tree species in the study area. The different feature 
categories, 3D or intensity, were tested in the classification, as well as 
separately or combined to highlight their different response to stan-
dardization. The research questions underlying this study are threefold: 
(1) How do the ALS features differ for the same species in different 
though comparable ecological regions? (2) How to train a model with 
one sub-population and apply it to another sub-population (labeled as a 
local model)? (3) How to fuse two areas into one (labeled as a global 
model)? 

The paper is organized as follows: Section 2 describes the experi-
mental areas and associated ALS data, Section 3 presents the proposed 
feature standardization method and candidate classification models. In 
Section 4 and 5, the results of the experiment are presented and dis-
cussed. As a final note, Section 6 provides suggestions for future work. 

2. Study regions and data 

2.1. Study area 

The study was conducted in three case study areas: York Regional 
Forest (YRF, 44.01◦N, 79.20◦W), Petawawa Research Forest (PRF, 
45.59◦N, 77.25◦W), and Black Brook Forest (BBF, 47.09◦N, 67.55◦W). 
YRF and PRF are in Ontario, Canada, whereas BBF is in New Brunswick, 

Canada (Fig. 1). YRF is the first public forest in Canada, with 2300 ha, 
comprised of natural forest (53%), and plantation forest (47%). YRF is 
composed mostly of needleleaf trees, and ~ 57% of its trees are in the 
41–80-years age class (Regional Municipality of York, 2018). PRF has an 
area of 10,000 ha, and ~ 86% of its trees are in the > 80-years age class 
(Canadian Institute of Forestry, 2017). Nine tree species (corresponding 
to eight genera), for a total of 890 tree crowns were sampled for training 
and validation purposes from YRF (n = 445) and PRF (n = 445) 
(Table 1). Individual tree species geolocation and species name were 
recorded during the field survey in the year 2015 and 2016 for YRF and 
PRF, respectively. The sample crowns were equally divided into two 
study areas and equally divided into two height stratified classes: <20 m 
and >=20 m. The geographical distance between YRF and PRF is 260 
km. Table 1 shows the statistics of the sample crowns. 

BBF is a 200,000-ha forest, in which 40% of the land is spruce 
plantations (e.g. white spruce, black spruce, and Norway spruce), and 
28% of the land is natural broadleaf trees (e.g. sugar maple and yellow 
birch). The BBF is divided into northern and southern parts for man-
agement purposes. The species composition and forest structure are 
similar in both parts. Needleleaf stands were managed under the selec-
tion and shelterwood silvicultural systems for timber production. The 
remaining forest area contains natural mixed stands of fir and intolerant 
broadleaf trees (i.e. trees requiring sunlight to maintain vigorous 
growth). 13 tree species (nine genera), for a total of 3910 tree crowns 

Fig. 1. Location map of the three study areas. The geographical distance between York Regional Forest and Petawawa Research Forest is 260 km. There was no 
outline polygon for York Regional Forest, because it is composed of several tracts of land that are not altogether. 
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were sampled for training and validation purposes from BBF north (n =
2007) and BBF south (n = 1903) (Table 1). 

2.2. ALS data 

Multispectral ALS data were acquired for YRF and PRF but mono-
spectral ALS data for BBF. In YRF and PRF, the Teledyne Optech Titan 
system collected data in three different wavelengths: short-wave 
infrared (SWIR, 1550  nm, Channel(C)1), near-infrared (NIR, 1064 
nm, C2) and green (G, 532 nm, C3). The channels have viewing angles of 
0◦ nadir (C2), 3.5◦ (C1), and 7◦ (C3) forward-looking. The ALS data 
acquisition parameters are described in Table 2. For YRF and PRF, the 
system acquired 3D point clouds (XYZ) and intensity (I) values in the 
three wavelengths, i.e. SWIR, NIR, and green. In YRF, aerial photos (10 

cm resolution) were also acquired simultaneously with the ALS data. For 
BBF, Riegl LMS-Q680i ALS data were acquired in two different periods: 
2011 for the northern part and 2013 for the southern part. The system 
acquired 3D point clouds and intensity at near-infrared (NIR: 1550 nm) 
for BBF. 

For YRF and PRF, the vendor provided the range (RG) value for each 
ALS return, which was missing for BBF. The range value for each ALS 
return of the BBF dataset were calculated using Eq. (1). Then Eq. (2) 
(Korpela and Rohrbach, 2010) was used for normalizing intensity. Each 
return intensity value was corrected for YRF, PRF, and BBF. 

RG =
NFA − Z

cosθ
(1)  

In = Iraw × (
RG

RGref
)

α (2)  

where RG is the estimated range, NFA is the nominal flight altitude 
above ground, RGref is the reference range, Z is the normalized elevation 
value of each ALS returns, θ is the angle value for each ALS returns, In is 
range normalized intensity, and Iraw is the raw intensity. The α exponent 
value of 2 was used (Korpela et al., 2010a). 

After range normalization, the ALS point clouds were classified into 
ground returns and vegetation returns (Axelsson, 2000). The ground 
returns were utilized to produce a raster (0.25-m resolution) digital 
terrain model (DTM). The Z (elevation) values of the ALS returns were 
normalized by subtracting the elevation of the underlying DTM. A 
canopy height model (CHM) was generated by assigning the normalized 
Z (elevation) values to each pixel on a raster falling within it. The CHM 
was utilized for individual tree crown segmentation (see Section 3.1). 
CHMs created by interpolating the first returns of ALS data typically 
contain small cavities. The cavities were filled according to the cavity 
filling algorithm described in St-Onge (2008). This algorithm’s funda-
mental idea was to detect the cavities by a Laplacian filter, fill them 
using interpolation, and then apply a median filter to the modified pixels 
to smooth the results. Pixels that are not part of a cavity are left 
untouched. 

3. Methods 

The overall workflow, from the initial ALS input data, crown 

Table 1 
Number and height (m) characteristics of the sample tree crowns (Needleleaf trees = NL, broadleaf trees = BL). / sign was used to separate forest, i.e., YRF/PRF and 
BBF North/BBF South. N: total number of sample tree crowns.  

Forest BL/ 
NL 

Genus Species N Mean Min Max 

YRF/PRF NL Picea glauca (white spruce, Sw) 58/58 18.9/20.1 8.3/13.3 28.5/31.4 
Pinus strobus (white pine, Pw) 74/74 22.5/27.6 9.5/9.2 30.8/37.7 

resinosa (red pine, Pr) 86/86 22.5/25.8 4.3/6.6 29.3/35.2 
Larix laricina (american larch, La) 34/34 18.0/17.9 7.7/10.1 28.4/28.6 

BL Acer saccharum (sugar maple, Mh) 70/70 19.9/20.6 10.2/11.5 29.5/28.9 
Betula papyrifera (white birch, Bw) 29/29 17.9/19.7 8.6/15.1 22.3/25.3 
Populus tremuloides (trembling aspen, Pt) 40/40 18.4/21.1 5.2/16.6 27.8/31.2 
Quercus rubra (red oak, Or) 44/44 17.8/19.4 7.9/10.8 26.2/22.7 
Tilia americana (basswood, Bd) 20/20 19.6/21.2 9.6/13.6 28.1/35.0 

BBF North 
/BBF South 

NL Abies balsamea (balsam fir, BF) 177/63 12.7/15.5 5.4/5.1 29.8/26.2 
Larix laricina (eastern larch, LA) 100/89 16.6/13.3 5.2/5 25.2/25.4 
Picea abies (Norway spruce, SN) 81/57 14.3/9.8 5.3/5 25.3/15.1 

glauca (white spruce, SW) and mariana (black spruce, SB)* 700/49 11.6/19.6 5/5.5 30.2/32.7 
Pinus banksiana (jack pine, PJ) 101/673 15.9/17.6 11.3/13 17.9/20.8 

resinosa (red pine, PR) 136/74 14.1/16.8 11.2/15.4 15.3/18.6 
Thuja occidentalis (eastern white cedar, CW) 51/44 16.1/16.2 9.1/10.8 22.7/27.2 

BL Acer rubrum (red maple, MR) 94/175 18.2/19.5 9.7/5.8 23.3/27.9 
saccharum (sugar maple, MH) 105/190 17.1/18.6 5.1/6.5 26.4/25.7 

Betula alleghaniensis (yellow birch, BY) 120/146 16.3/17.7 8.2/6.3 25.2/26.1 
papyrifera (white birch, BW) 148/116 16.3/15.1 7.2/5.2 24.9/25.1 

Fagus grandifolia (beech, BE) 82/91 15.5/13.9 7.5/5.4 22.6/22.5 
Populus tremuloides (trembling aspen, PT) 112/136 22.1/20.4 8/11 28.4/26.2  

* White spruce and black spruce were combined in one group. 

Table 2 
ALS data acquisition parameters.  

Characteristics Petawawa 
(PRF) 

York (YRF) Black Brook (BBF) 

North South 

Instrument Teledyne 
Optech’s 
Titan 

Teledyne 
Optech’s 
Titan 

Riegl LMS- 
Q680i 

Riegl 
LMS- 
Q680i 

Flight date July 20, 
2016 

July 2, 
2015 

September 
8–11, 2011 

July 16 – 
August 1, 
2013 

Wavelength 532 nm/ 
1064 nm/ 
1550 nm 

532 nm/ 
1064 nm/ 
1550 nm 

1550 nm 1550 nm 

Pulse repetition rate 
(kHz)/channel 

300 100 400 400 

Scan angle (degree) 30 30 30 30 
Flying altitude (above 

ground, m) 
1110 1070 667 600 

Average number of 
first returns m− 2 of 
all channels (C1,C2, 
C3) 

13 20.2 5.2 6.5 

Average number of 
first returns m− 2 by 
channel (C1, C2, 
C3) of individual 
flight lines 

4.3, 4.6, 1.6 3.4, 3.4, 3.3 – –  
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segmentation and feature standardization to the individual tree species 
classification, is presented in Fig. 2. 

3.1. Crown segmentation 

Individual tree crowns for PRF and BBF were delineated using an in- 
house open-source software, “SEGMA”, developed in Python program-
ming language (St-Onge, 2021; St-Onge et al., 2015). The fundamental 
idea of SEGMA relies on the use of an adaptive Gaussian filter for crown 
top identification and an auxiliary use of the watershed algorithm for 
crown boundary delineation. SEGMA calculated a score of between 
0 and 100 for each delineated tree crown, indicating the delineation’s 
quality. This score was computed as a weighted mean of centroid dis-
tance (i.e. a planimetric distance between XY and the height-weighted 
centroid) and eccentric, solidity, and coefficient of variation of the 
CHM height values within the tree crown (St-Onge et al., 2015). The 
segmented crowns with a delineation score of at least 85 were used for 
training and validation in PRF and BBF. 

Individual tree crowns for YRF were manually segmented using the 
CHM, intensity images from multispectral ALS, and aerial photos. The 
manual segmentation was chosen so that species identification accuracy 
could be assessed without causing significant uncertainty, as with 
automated segmentation. However, manual segmentation does not 
guarantee perfect results (Budei et al., 2018). There is a detailed 
description of YRF crown delineation in Budei et al. (2018). For training 
and validation purposes at YRF, PRF, and BBF, the sample tree crowns 
with the following requirements: height ≥ 5 m, area ≥ 1 m2, and min-
imum 1 point/channel were used. 

3.2. Extraction of ALS features 

Feature extraction was categorized into the following two groups, i.e. 
3D features and intensity features which were commonly existed in the 
literature (e.g., Budei et al., 2018; Budei and St-Onge, 2018). The 3D 
features were calculated from ALS point clouds using the relative XY 
coordinates for the treetop location and tree height. The 3D features 
were normalized by the tree height as suggested by Budei et al. (2018), 

Holmgren and Persson (2004). The intensity features were calculated 
from the return intensities in separate channels in the case of multi-
spectral ALS. 

A total of 136 features was calculated for YRF and PRF, whereas 34 
features were calculated for BBF, given the enhanced information pro-
duced by multispectral ALS compared to the standard monospectral 
ALS. A detailed description of each of the features is provided in Ap-
pendix A and B (supplementary file). The 3D features included a coef-
ficient of variation of return heights, normalized height percentile (i.e. 
25th, 50th, 75th), vegetation points ratio in different height bins, the 
ratio of the convex hull volume divided by the maximum height cubed, 
and the slope of the lines linking the apex return to each other return. 

Intensity features were comprised of intensity means, the standard 
deviation, the coefficient of variation, percentiles (5th, 10th, 25th, 50th, 
75th, 90th, 95th), the ratio between different features, and the ratio of 
ALS returns in two channels (e.g. green 532 nm/SWIR 1550 nm) which 
were calculated for each tree crown. Normalized difference vegetation 
index (NDVI)-like features were calculated for the multispectral ALS 
datasets using mean intensity, percentiles at 50th and 75th of green 
(532 nm), infrared (1064 nm), and SWIR (1550 nm) channels. A detailed 
description of each of the features is provided in Appendix B. 

3.3. Feature standardization 

A traditional approach to calibration is to use area-specific models. 
This approach requires intensive field sample data from each area, 
which is rigorous, costly, and time consuming. To overcome the above 
situation, three cross-area standardization approaches were assessed: 
histogram matching (HM); median-based adjustment (MED); and 
regression-based adjustment (REG). All the features of the dependent 
area (PRF and the northern part of BBF) were standardized for the 
reference area (YRF and the southern part of BBF) using the three ap-
proaches mentioned above. 

Two different scenarios (disjoint areas: YRF and PRF, partially 
overlapping areas: BBF north and BBF south) were assessed for feature 
standardization. In the first scenario, this study postulated that a clas-
sifier could be built in one area and then applied to another (i.e. 

Fig. 2. Flowchart of the main line of the feature standardization and individual tree classification method.  
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transferring the model). We assessed the possibility of transferring the 
model from YRF to PRF. YRF was defined as a reference area, because 
the crowns were manually delineated using three auxiliary datasets and 
PRF as a dependent area, which was delineated automatically using 
watershed segmentation algorithm. In the second scenario, this study 
postulated that a classifier could be built from training crowns pooled 
with trees from two areas (i.e. build a global model). A global model was 
developed using a sample composed of YRF (n = 445) and PRF (n =
445). Similarly, for BBF, a global model was build using a sample 
composed of the northern (n = 2007) and southern parts (n = 1903) of 
the study area. The southern part was defined as the reference area and 
the northern part as the dependent area, because the ALS data of BBF 
were acquired during the summer of 2013 (trees have leaves during the 
summer) for the southern part and during the fall of 2011 for the 
northern part (see Table 2). 

HM could be a feasible approach for the standardization of the fea-
tures (i.e. dependent and reference) when the data were acquired in 
different illuminations, by different sensors, and in different atmo-
spheric conditions. Gonzalez (2018) describes the procedure of HM in 
detail. The fundamental of HM is the transformation from dependent 
distribution to reference distribution. HM equalizes the cumulative 
histogram of the dependent feature distribution with the reference 
feature cumulative histogram. Let us consider a cumulative histogram 
for the dependent distribution, D(x), and the reference distribution, R 
(x). First, the empirical cumulative distribution of the dependent and 
reference distribution of features was calculated (CDFd and CDFr, 
respectively). Second, the dependent distribution was modified to fit the 
reference distribution. The idea was to map each value in the dependent 
(i) distribution to the value in the reference distribution (j) that had the 
same probability in the desired probability density function, R(j) = D(i). 

For MED, the median value per feature and area was calculated. The 
residue of the median value of a feature between the two areas was 
added to the dependent area (i.e. Residue = Rmedian − Dmedian, where R 
was the reference area feature value, and D was the dependent area 
feature value). The study expected that the residue of the median value 
between the dependent and reference areas would be an intuitive 
feature of standardization. 

For REG, feature standardization was performed based on linear 
regression per feature per area. REG method used a minimal sample size 
(e.g., ten samples per tree species) for median value per tree species 
which was a limitation of the REG feature standardization method. First, 
a linear model (i.e. R ~ D) was fitted between two areas per feature, 
where D was the dependent area feature median value, and R was the 
reference area feature median value. Second, the slope of the line (b) and 
the intercept (a) were extracted from the above linear model. Finally, 
the feature value of the dependent area was predicted based on the 
above model and the fitted equation as follows: Y = a + bX, where Y is 
the estimated dependent area feature (new), and X is the dependent area 
feature value (old). Fig. 3 shows an example of the scatters plot for REG. 

3.4. Feature selection 

Additional channels (e.g. 532 nm and 1550 nm wavelengths) avail-
able in the multispectral ALS system support the creation of crucial in-
tensity features (e.g., NDVI) which improves the accuracy of individual 
tree species classification model. From the methodological perspective, 
the classification of diverse tree species with a large set of auxiliary 
features is not a trivial task due to several obstacles such as high 
dimensionality (i.e. large number of features and each feature having a 
range of possible values) and computational complexity (i.e. time and 
cost) (Dalponte et al., 2012). Classification accuracy could be increased 
if only useful features were utilized (Millard and Richardson, 2015). A 
hybrid approach was employed for composing the final set of features in 
the classification model. First, a correlation filter was used to refine the 
list of candidate features that was missing in the VSURF variable se-
lection algorithm (see below). The idea of the correlation filter was to 

utilize a pair-wise correlation (the cut-off value was 0.9) among the 
features. findCorrelation function (caret package) in R was used for this 
analysis (R Core Team, 2018). Second, the VSURF (variable selection 
using random forests package) variable selection algorithm in R (R Core 
Team, 2018) was employed to select a subset of candidate features. 
VSURF variable selection was completed in three steps: (1) The mean 
variable importance (VI) index was used to obtain more stable features 
from the initial set by removing all the irrelevant features; (2) The less 
relevant features were further removed based on the mean out-of-bag 
(OOB) error; (3) This step utilized the mean OOB error, but the fea-
tures were added to the model stepwise. The main goal in minimizing 
the number of features was to avoid overfitting and high feature 
dimensionality. In this study, 8–15 of the most essential features 
retained in the above steps were forwarded to run in the classification 
methods. 

3.5. Classification methods 

Linear discriminant analysis (LDA) and random forest (RF) are well- 
suited algorithms for individual tree species classification (e.g., Budei 
and St-Onge, 2018; Budei et al., 2018; Korpela et al., 2010b). This study 
will not focus on the theoretical background of the above methods. For 
more detailed information about the above methods, the reader is 
referred to Breiman (2001) and Fisher (1936). LDA belongs to the 
parametric family and is a simple algorithm that was used in the clas-
sification to highlight the response of tested feature standardization 
methods. LDA offers class separability by sketching a classification 
boundary between different classes. RF is a nonparametric algorithm 
that utilizes the power of ensemble decision trees based on a majority 
vote for its final classification. RF can also handle the overfitting prob-
lem. It is crucial to assess how the feature standardization performance 
varies in linear LDA and non-linear RF individual tree classification 
models. The LDA and RF models were developed using the “MASS” and 
“randomForest” packages in R (R Core Team, 2018). The parameter 
associated with LDA for each classification model was the equal prob-
abilities across each tree species. The parameters used in the RF classifier 
for each classification model were 501 decision trees (ntree), three 
predictors at each split (mtry), balanced sample (sampsize, this 

Fig. 3. An example of the scatter plots for regression-based adjustment at 
Petawawa research forest (PRF) and York regional forest (YRF). Abbreviations 
of the tree species names are explained in Table 1. 
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parameter ensured that the numbers to be drawn from the strata at each 
iteration was the same in each class), and 100 times iterations. LDA and 
RF classifiers separated the individual tree species using a range of 3D 
and intensity features, considered separately or together. This grouping 
was intended to validate the potential of ALS 3D and intensity features 
for tree species classification. 

3.6. Selection of sample size 

Each classification model was tested with different sample sizes to 
assess how feature standardization would affect with different sample 
sizes, subsequently affecting classification accuracy. The size of the 
sampled training of 10, 20 (per tree species), and “all” (i.e. all the 
available sample crowns per tree species) was used. A stratified random 
sampling procedure was used by utilizing tree species and height as 
strata criteria to select a subset of the sample (i.e., 10 or 20 per tree 
species) from all training data. This was implemented using the strata 
function of the sampling package (R Core Team, 2018). The same stan-
dardized routine was maintained for all areas (i.e. YRF, PRF, BBF). For 

YRF and PRF, two height stratified classes, <20 m and ≥20 m, were 
utilized which helped to sample the trees given the wide range of tree 
height (from 4.3 m to 38 m) in YRF and PRF. This stratification was 
proposed because previous studies showed that feature values and 
classification results might be influenced by tree height (Budei et al., 
2018; Budei and St-Onge, 2018). Based on Budei and St-Onge’s (2018) 
suggestion, young and short trees in this study datasets were separated 
from mature and tall trees using 20 m as an arbitrary tree height 
threshold. Young and short trees received few ALS points per crown, 
which creates uncertainty to a feature value within a tree species. On the 
other hand, mature and tall trees received a high number of ALS points 
per crown, which stabilizes the ALS feature values within a tree species 
(Budei and St-Onge, 2018). However, there were not enough samples to 
consider two height stratified classes, <20 m and ≥20 m, for the 
northern (2011) and southern (2013) parts of the BBF study area. The 
process was iterated 30 times with simple random sampling without 
replacement (srswor function of sampling package in R statistical pro-
gramming, R Core Team 2018), and reported the mean and standard 
deviation of the results. 

Fig. 4. 3D feature (I) standardization at York Regional Forest and Petawawa Research Forest. THREED_PE_1st_p50_C2 represents the normalized 50th percentile of 
the first returns in the second Titan channel. Abbreviations of the tree species names are explained in Table 1. 

Fig. 5. 3D feature (II) standardization at York Regional Forest and Petawawa Research Forest. THREED_SLOPE_P75_C2 represents the 75th percentile of the slope’s 
values between the highest return in the point cloud and each other return in the second Titan channel. Abbreviations of the tree species names are explained 
in Table 1. 
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Fig. 6. Intensity feature (I) standardization at York Regional Forest and Petawawa Research Forest. I_PE_1st_p90_C2 represents the 90th percentile of intensity of the 
first returns of the second Titan channel. Abbreviations of the tree species names are explained in Table 1. 

Fig. 7. Intensity feature (II) standardization at York Regional Forest and Petawawa Research Forest. I_DI_1st_sd_C2 represents the standard deviation of the intensity 
of the first returns of the second Titan channel. Abbreviations of the tree species names are explained in Table 1. 

Fig. 8. Intensity feature (III) standardization at York Regional Forest and Petawawa Research Forest. I_NDIR_1st_p75 represents the InfraRed Normalized Difference 
vegetation index calculated from the 75th percentiles of intensity in the Titan C1:1,550 nm and C3:532 nm. Abbreviations of the tree species names are explained 
in Table 1. 
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3.7. Evaluation and performance measures of the standardization 

The performance measures of the standardization were evaluated by 
box plots, scatter plots, Bhattacharyya distance, and overall accuracy. 
The Bhattacharyya distance is widely used as a measure of divergence 
between two distributions. The Bhattacharyya distance between two 
probability distributions Pi and Pj denoted by Bij is defined by 
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where μi and μj refer to the mean of the feature distribution, 
∑

i, and 
∑

j 
refers to the covariance matrix of the feature distribution. The Bhatta-
charyya distance will be zero if two feature distributions overlap 
completely. The Bhattacharyya distance was calculated for (i) 3D fea-
tures, (ii) intensity features, and (iii) all features. Overall accuracy (OA) 
was calculated as the total number of the correctly predicted sample 
divided by the total sample. 

4. Results 

4.1. Results in disjoint areas, YRF and PRF 

Bhattacharyya distances and box plots (Figs. 4–8) confirmed that the 
intensity features’ variability was larger than those of the 3D features 
before feature standardization (Table 3). The Bhattacharyya distances 
were reduced after feature standardization between YRF’s and PRF’s 
feature values (Table 3). 

For the local model (Table 4), both the LDA and RF models had a low 
OA (16% and 20% respectively) for the classification of nine tree species 
at PRF before standardization. However, the OA increased using the 
intensity feature and using all features after feature standardization. For 
example, the LDA classifier and the RF classifier had an OA of 54% and 
55% respectively, using all features and REG feature standardization 
method, compared to an OA of 20% before standardization (Table 4). 
However, it is worth noting that 3D features also slightly improved OA 
after feature standardization. The standardization for the local model 
needed the smallest number of sample sizes and was also relatively 
steady with a minimal number of samples (n = 10/species). 

Table 3 
Bhattacharyya distances between feature values at YRF and PRF.   

3D features Intensity features All features 

Before  
standardization 

0.130 4.142 1.428 

N/species* 10 20 all 10 20 all 10 20 All 

MED  0.215  0.215  0.209  0.394  0.392  0.388  0.130  0.130  0.124 
REG  0.595  0.539  0.546  0.130  0.111  0.099  0.445  0.401  0.401 
HM  0.114  0.097  0.102  0.097  0.087  0.065  0.108  0.094  0.090  

* N/species: Number of sample crowns per tree species. The best performing was put in bold. 

Table 4 
Overall classification accuracy for the local model at PRF (% average | standard deviation).   

3D features, % Intensity features, % All features, % 

LDA Before 
standardization 

36 16 16 
RF 33 16 20 

N/species* 10 20 all 10 20 all 10 20 All 

LDA MED  45|0.8  45|0.5 44|0  45|0.8  45|0.5 44|0  45|0.8  45|0.5 44|0 
REG  31|5.9  29|6.6 40|0  46|4.8  49|2.4 50|0  52|2.8  54|2.3 54|0 
HM  33|2.1  32|1.5 36|0  37|2.7  36|1.9 50|0  42|1.9  42|1.5 51|0 

RF MED  34|0.7  34.|0.7 34|0  47|0.8  47.|0.4 47|0  49|0.8  50|0.5 48|0 
REG  33|2.9  34|1.2 31|0  50|1.5  51|0.7 52|0  54|1.3  55|0.8 55|0 
HM  33|1.3  33|0.9 38|0  44|1.5  44|1.1 50|0  44|1.5  44|1.4 53|0  

* N/species: Number of sample crowns per tree species. The best performing was put in bold. 

Table 5 
Overall classification accuracy for the global model at YRF and PRF (% average | standard deviation).   

3D features, % Intensity features, % All features, % 

LDA Before 
standardization 

41 52 58 
RF 50 62 63 

N/species* 10 20 all 10 20 all 10 20 All 

LDA MED  37|0.6  37|0.3 38|0  48|0.6  48|0.4 49|0  61|0.4  61|0.3 62|0 
REG  42|1.0  42|0.9 45|0  59|0.5  59|0.5 60|0  64|0.7  65|0.5 64|0 
HM  42|0.8  42|0.7 42|0  58|0.5  57|0.5 59|0  64|0.6  64|0.6 66|0 

RF MED  47|0.4  46|0.3 48|0  62|0.3  62|0.1 62|0  67|0.3  67|0.1 67|0 
REG  49|0.3  49|0.2 49|0  62|0.3  63|0.1 63|0  69|0.4  69|0.2 69|0 
HM  49|0.5  48|0.5 50|0  64|0.5  63|0.4 64|0  68|0.4  67|0.4 70|0  

* N/species: Number of sample crowns per tree species. The best performing was put in bold. 
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For the global model (Table 5), the OA resulting from the RF clas-
sifier increased from 63% before standardization to 66% after feature 
standardization. A similar improvement of OA resulted from the LDA 
classifier (Table 5). The improvement of OA was higher using the in-
tensity features than the 3D features. Similar to the local model, the 
global model was also relatively steady, with a minimal number of 
samples (n = 10/species) for the feature standardization. 

4.2. Results in partially overlapping areas, BBF 

The Bhattacharyya distances slightly decreased after feature 

standardization between feature values at BBF (Table 6) which was also 
visible in box plots (Figs. 9–12). The OA for the global model at BBF 
increased but at a minimum level (Table 7). The differences in intensity 
feature variability between the southern and northern part of BBF and 
across species were reduced after standardization (Figs. 11–12). The 3D 
features followed a similar trend (Figs. 9–10). The 3D features were 
chosen less frequently than the intensity feature by the automatic 
VSURF algorithm and were used in the classification model. Similar to 
the disjoint areas, the feature standardization in BBF was also relatively 
steady, with a minimal number of samples (n = 10/species). 

Table 6 
Bhattacharyya distances between feature values at BBF.   

3D features Intensity features All features 

Before 
standardization 

0.078 0.118 0.090 

N/species* 10 20 all 10 20 all 10 20 all 

MED  0.074  0.074  0.084  0.128  0.128  0.111  0.091  0.091  0.093 
REG  0.235  0.170  0.094  0.222  0.192  0.150  0.230  0.178  0.113 
HM  0.119  0.112  0.116  0.163  0.150  0.115  0.133  0.124  0.116  

* N/species: Number of sample crowns per tree species. The best performing was put in bold. 

Fig. 9. 3D feature (I) standardization at Black Brook Forest. THREED_PE_1st_p50 represents the normalized 50th percentile of the return height of the first returns. 
Abbreviations of the tree species names are explained in Table 1. 

Fig. 10. 3D feature (II) standardization at Black Brook Forest. THREED_SLOPE_P75 represents the 75th percentile of the slope’s values between the highest return in 
the point cloud and each other return. Abbreviations of the tree species names are explained in Table 1. 
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5. Discussion 

This study assessed the feature standardization across three study 
areas to optimize field sampling for species classification at the indi-
vidual tree level. Two scenarios, i.e. disjoint areas and partially over-
lapping areas, were assessed that allowed for the scrutiny of the three 
research questions connected to feature standardization for model 
transferability. Concerning the first research question, the ALS intensity 
feature varied more compared to those of the 3D features based on the 

result from nine individual tree species in YRF and PRF and 13 indi-
vidual tree species in BBF. Concerning the second and third research 
questions, feature standardization helps to improve the classification 
accuracy for the local and global models. Results also show that feature 
standardization can help to minimize the need for extensive sample data 
collection. This study was the first attempt to demonstrate the trans-
ferability of forest tree species classification models derived using 
monospectral and multispectral ALS data. 

This study demonstrates the potential of the transferability of tree 

Fig. 11. Intensity feature (I) standardization at Black Brook Forest. I_PE_1st_p90 represents the 90th percentile of the first returns. Abbreviations of the tree species 
names are explained in Table 1. 

Fig. 12. Intensity feature (II) standardization at Black Brook Forest. I_DI_1st_sd represents the standard deviation of the first returns. Abbreviations of the tree species 
names are explained in Table 1. 

Table 7 
Overall classification accuracy for the global model at BBF (% average | standard deviation).   

3D features, % Intensity features, % All features, % 

LDA Before  
standardization 

41 39 47 
RF 47 45 55 

N/species* 10 20 all 10 20 all 10 20 all 

LDA MED  41|0.6  41|0.4 41|0  36|0.6  36|0.4 37|0  47|0.4  47|0.2 46|0 
REG  42|0.7  42|0.8 42|0  40|0.5  40|0.4 40|0  48|0.5  48|0.5 48|0 
HM  40|1.0  40|0.6 41|0  37|0.5  37|0.4 36|0  46|0.6  46|0.4 47|0 

RF MED  46|0.2  46|0.1 46|0  43|0.4  43|0.3 42|0  54|0.3  54|0.2 54|0 
REG  48|0.6  48|0.5 47|0  49|0.7  49|0.7 49|0  57|0.3  56|0.5 56|0 
HM  47|0.3  47|0.2 45|0  46|0.5  46|0.4 42|0  55|0.3  55|0.2 53|0  

* N/species: Number of sample crowns per tree species. The best performing was put in bold. 
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species classification models in both disjoint and partially overlapping 
areas. Study analysis shows that feature standardization approaches 
during tree species classification provide several benefits. The first 
benefit at temporal scale by generating new forest species classification 
when new ALS data were available. Last benefit at a spatial scale by 
transferring a local model to another area. The transferability of ALS- 
based forest tree height and tree volume has been studied by Fekety 
et al. (2015), Fekety et al. (2018), Karjalainen et al. (2019), Kotivuori 
et al. (2016), Nilsson et al. (2017), and Tompalski et al. (2019). How-
ever, this study’s novelty was the use of the feature standardization 
approach for the tree species transferability model. 

The transferability of building a forest tree species classifier was 
assessed using sample data from one area (YRF) applied to another 
(PRF) (i.e. a local model). The OA for the local model at PRF increased 
after feature standardization, indicating that feature standardization 
played a crucial role. The usability of ALS features for tree species 
classification was influenced by the ALS acquisition setting. However, 
tree attributes, e.g. age, site type, and forest management objectives, 
especially influence tree species classification, while other features may 
be more invariant (Budei and St-Onge, 2018). On the one hand, factors 
such as age and site type may have been employed in the tree classifi-
cation model by providing an extensive training dataset and “black-box 
classifier” for implicit learning for such dependencies. On the other, the 
non-standardized ALS feature poses a threat to this implicit learning. 

Feature standardization was also assessed in BBF, where ALS data 
were acquired separately in 2011 for the northern part and in 2013 for 
the southern part. This study analysis demonstrated that the two 
different monospectral ALS datasets with a single global modeling 
approach utilizing feature standardization were capable of classifying 
13 tree species in a mixed forest in BBF. The use of local model approach 
was not attempted, because both areas (northern 2011 and southern 
2013) was considered to be a single study area. The Bhattacharyya 
distance confirmed that both 3D and intensity features varied less at 
BBF. This was quite expected, as both the northern and southern parts of 
BBF had similar forest tree composition and structure. This study also 
found that the feature standardization had contributed to improving the 
OA for the classification of 13 tree species at BBF, but to a limited extent. 
The trend was similar for 3D features and intensity features considered 
separately and together. Both the RF and LDA classifiers showed a 
similar trend of OA improvement after feature standardization. 

Feature standardization increased the OA for the local and global 
models, although the models were trained with sample tree crowns from 
two areas (YRF and PRF) 260 km apart. The results showed that in-
tensity features were most prone to change because of scanners and 
acquisition settings. They needed to be normalized to preserve their 
capacity to separate species in the local model if we had observations 
from both areas. In the result from BBF, the intensity features showed a 
similar response, because the settings in 2011 and 2013 were quite 
similar, except for the 10% difference in average acquisition height. The 
BBF results prompted the suggestion that the ALS data did not need 
feature standardization, because they were captured using a relatively 
similar setting. Differences in wavelength, system sensitivity, and survey 
properties may influence the feature values, feature normalization, and 
models’ transferability (Hopkinson, 2007; Hsu et al., 2015; Ussyshkin 
et al., 2008). 

The cost of field sample data collection is of great concern in forest 
inventory management, because it accounts for most of it (Gobakken 
and Næsset, 2009; Rana et al., 2016). The variability in forest structure 
(e.g. height) and composition should be covered in the sample data 
(Gobakken et al., 2013). The results showed that feature standardization 
approaches could assist in minimizing the number of samples needed for 
such a classification across inventory areas. This study found that OA 
was stable with the small number of samples per tree species (e.g. n =
10) during the feature standardization. For the disjoint areas, the tree 
height distribution (two classes, i.e. tree height < 20 and > 20) were 
utilized during the feature standardization. However, for BBF, this study 

was unable to utilize the height distribution during the sampling se-
lection of the feature standardization. This study demonstrated the po-
tential of feature standardization, which can help to reduce the major 
portion of the inventory cost by downsizing the need for field sample 
data. This study can therefore utilize the findings for future model 
calibration (including field sample data and ALS data). 

Multispectral ALS data have more potential for tree species classifi-
cation than mono-spectral ALS data. The addition of two wavelength 
channels to an ALS system offers the possibility of calculating supple-
mentary ALS features, which can then support the calibration of a 
generalized method of tree species imputation across multiple areas 
(Rana et al., 2018). Intensity-based features were the most valuable for 
tree species classification (result not shown), as has previously been 
observed (Budei et al., 2018; Rana et al., 2018; Shi et al., 2018a; Yu 
et al., 2017). Among the intensity features, NDVI-like features were the 
most useful feature in the classification using multispectral ALS data (see 
also Budei et al., 2018). NDVI features were calculated employing the 
green channel, which provided chlorophyll content, and the infrared 
channels provided foliage structure and water content. Among the three 
channels, the intensity feature of the SWIR channel provided more 
useful information than the NIR and green channels. Another benefit of 
SWIR is that it is less prone to noise than other channels (Budei et al., 
2018). The laser irradiance at the forest canopy layer in the SWIR 
channel was higher than the green channel due to the characteristics of 
SWIR channels (e.g. the lower divergence). The intensity reflectance of 
the tree foliage at the SWIR channel was also much higher than the green 
channel (Budei et al., 2018). 

6. Conclusion 

This study demonstrated a standardization approach for ALS feature 
values to optimize field sampling for species classification at an indi-
vidual tree level in three Canadian forests. Three standardization ap-
proaches were tested to make feature values of a given species similar 
between areas. There are three major related conclusions. First, Bhat-
tacharyya distance analysis confirmed that the intensity features (e.g. 
NDVI vegetation indices) varied to a greater extent than the 3D struc-
tural feature before the feature standardization. Second, for the disjoint 
areas (YRF and PRF), the feature standardization procedure consistently 
improved classification accuracy for both the local and global models. It 
could be concluded that intensity features (at YRF and PRF) were most 
prone to changing (because of scanners and acquisition settings), which 
need to be normalized so that transferring a local model to another area 
is possible if observations from both areas were available. Third, for the 
partially overlapping areas (the northern and southern parts of BBF), 
this study could suggest that the ALS data did not need to normalize 
because they were captured using a relatively similar setting. Although 
the ALS flight parameters were similar, the data were captured in 
different seasons which probably affects the ALS features. Overall, ALS 
point cloud characteristics change with changing sensor settings, such as 
flight height, power, scan angle, and pulse repetition rate. This study, 
therefore, feels that further studies should be undertaken to confirm this 
feature standardization approach’s validity in other forested landscapes 
with similar/different ALS sensors and acquisition settings in the large- 
scale application. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

This research was supported by the AWARE project (NSERC File: 
CRDPJ 462973 – 14, Grantee: NC. Coops, FRM, UBC), in collaboration 

P. Rana et al.                                                                                                                                                                                                                                    



ISPRS Journal of Photogrammetry and Remote Sensing 184 (2022) 189–202

201

with several industrial partners, notably J.D. Irving (New Brunswick, 
Canada). It also benefited from cash contributions during its early stage 
from Natural Resources Canada. At the Natural Resources Institute 
Finland, the research was supported by Solutions (41007-00183800) 
and Peatland biodiversity (41007-00167401) projects. We are grateful 
for the insightful comments from the Associate Editor Dr. Marco Scaioni, 
anonymous reviewers and Ilkka Korpela, the University of Helsinki, on 
an earlier version of the manuscript. 

Appendix A. Supplementary material 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.isprsjprs.2022.01.003. 

References 

Axelsson, A., Lindberg, E., Olsson, H., 2018. Exploring multispectral ALS data for tree 
species classification. Remote Sens. 10 (2), 183. https://doi.org/10.3390/ 
rs10020183. 

Axelsson, P., 2000. DEM generation from laser scanner data using adaptive TIN models. 
Int. Arch. Photogramm. Remote Sens. 33, 110–117. 

Baffetta, F., Corona, P., Fattorini, L., 2012. A matching procedure to improve k-NN 
estimation of forest attribute maps. For. Ecol. Manage. 272, 35–50. https://doi.org/ 
10.1016/j.foreco.2011.06.037. 

Baldeck, C.A., Asner, G.P., 2014. Improving remote species identification through 
efficient training data collection. Remote Sens. 6, 2682–2698. https://doi.org/ 
10.3390/rs6042682. 

Blomley, R., Hovi, A., Weinmann, M., Hinz, S., Korpela, I., Jutzi, B., 2017. Tree species 
classification using within crown localization of waveform LiDAR attributes. ISPRS 
J. Photogramm. Remote Sens. 133, 142–156. https://doi.org/10.1016/j. 
isprsjprs.2017.08.013. 

Breiman, L., 2001. Random Forests. Mach. Learn. 45, 5–32. https://doi.org/10.1007/ 
978-3-030-62008-0_35. 

Budei, B.C., St-Onge, B., 2018. Variability of Multispectral Lidar 3D and Intensity 
Features with Individual Tree Height and Its Influence on Needleleaf Tree Species 
Identification. Can. J. Remote Sens. 44 (4), 263–286. https://doi.org/10.1080/ 
07038992.2018.1478724. 

Budei, B.C., St-Onge, B., Hopkinson, C., Audet, F.A., 2018. Identifying the genus or 
species of individual trees using a three-wavelength airborne lidar system. Remote 
Sens. Environ. 204, 632–647. https://doi.org/10.1016/j.rse.2017.09.037. 

Canadian Institute of Forestry, 2017. Petawawa Research Forest –using 100 years of 
research to combat climate change. www.cif-ifc.org/. (accessed 25 May, 2020). 

Dalponte, M., Bruzzone, L., Gianelle, D., 2012. Tree species classification in the Southern 
Alps based on the fusion of very high geometrical resolution multispectral/ 
hyperspectral images and LiDAR data. Remote Sens. Environ. 123, 258–270. https:// 
doi.org/10.1016/j.rse.2012.03.013. 
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Leppänen, V., 2017. LiDAR-Assisted Multi-Source Program (LAMP) for measuring 
above ground biomass and forest carbon. Remote Sens. 9, 1–36. https://doi.org/ 
10.3390/rs9020154. 

Ko, C., Sohn, G., Remmel, T.K., Miller, J., 2014. Hybrid ensemble classification of tree 
genera using airborne LiDAR data. Remote Sens. 6, 11225–11243. https://doi.org/ 
10.3390/rs61111225. 

Korpela, I., Ørka, H., Maltamo, M., Tokola, T., Hyyppä, J., 2010a. Tree Species 
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