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Abstract: Heterosis refers to the increase in biomass, stature, fertility, and other characters that impart
superior performance to the F1 progeny over genetically diverged parents. The manifestation of
heterosis brought an economic revolution to the agricultural production and seed sector in the last
few decades. Initially, the idea was exploited in cross-pollinated plants, but eventually acquired
serious attention in self-pollinated crops as well. Regardless of harvesting the benefits of heterosis, a
century-long discussion is continued to understand the underlying basis of this phenomenon. The
massive increase in knowledge of various fields of science such as genetics, epigenetics, genomics,
proteomics, and metabolomics persistently provide new insights to understand the reasons for the
expression of hybrid vigor. In this review, we have gathered information ranging from classical
genetic studies, field experiments to various high-throughput omics and computational modelling
studies in order to understand the underlying basis of heterosis. The modern-day science has worked
significantly to pull off our understanding of heterosis yet leaving open questions that requires
further research and experimentation. Answering these questions would possibly equip today’s
plant breeders with efficient tools and accurate choices to breed crops for a sustainable future.

Keywords: heterosis; hybrid vigor; inbreeding depression; genetic models; molecular basis; crop plants

1. Introduction

Heterosis, alternatively known as ‘outbreeding enhancement’, is characterized by the
increase in vigor, biomass, speed of development and fertility relative to the average of

The genetically diverged two parents [1]. Throughout history, heterotic phenomenon
was perceived in different terms in different civilizations, but only by the 1870s, the term
“heterosis” was fully described when Charles Darwin observed increased fertility, height
and overall weight in cross-pollinated species compared to their self-pollinated counter-
parts [2]. The development of hybrid crops is undeniably one of the landmark innovations
in the global seed sector that harvested the heterosis and resulted in a significant increase
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in crop yields and the respective revenue earned from crop husbandry per se. For example,
China has increased its rice production by 44.1% on account of hybrid rice [3], and the
European market has been giving great preferences to hybridsfor many of its main crops
such as sugar beet, rapeseed and rye [4].

Nevertheless, not all parental combinations in a cross breeding program results in the
superiority of hybrid progenies, suggesting that only particular combinations of parents
would play a central role in the expression of heterotic effect [5]. In fact, heterosis is
frequently encountered in allogamous plants that are prone to inbreeding depression,
rather than autogamous plants that prefer selfing [6]. This phenomenon could be explained
via genetic distance, discussed systematically the first time by East in year 1936, and since
then it has been among the most popular research topics in plant breeding [7]. According
to East, the extent of the heterotic effect is proportional to the genetic distance between the
two parental lines, but this relationship ceases at an optimum level and declines beyond
that point due to either reproductive barriers or lack of adaptation of the parents. East’s
discovery was bolstered by Chen [8], who collected and analysed the data from twelve
independent research studies on Arabidopsis thaliana and Zea Mays to show that hybrids of
these plant species derived from distanced parents expressed significant vigour in terms
of biomass and fitness as long as their parents were still within the limit of reproductive
barriers [8].

From the perspectives of plant breeding, heterosis is categorized into three groups
based on the parental genetic distance i.e. (Figure 1): (i) intraspecific heterosis: involving
crosses from two accessions which are members of the same species; (ii) inter-subspecific
heterosis: a result of hybridization between two subspecies which has evidently been
exploited in hybrid rice [9,10]; and (iii) wide hybridization: which is the consequence of
crossing between two individuals belonging to different species from distant gene pools
and are directly aimed at boosting up plant biomass [11,12]. Wide hybridization events
give rise to the development of novel allopolyploid species such as Triticum aestivum
L. (approximately 9000 year ago) [13] and Fragaria× ananassa (approximately 300 years
ago) [14].

Heterosis in plant breeding is often described with different terms andextended defini-
tions. Alternative terminologies such as ‘Heterobeltiosis’ and ‘Commercial Heterosis’ are
used to indicate superior performance of a hybrid compared to either better-performing
parents or a control cultivar, respectively. These definitions might serve as a useful measure
for the development of a crop variety but are not necessarily related to the population
improvement on the genetic scale. In addition, the pronounced phenotypic expression
in the progenies in relation to their parents can be considered either positive or negative
depending on the breeding objectives. For instance, positive heterosis for days to flowering
is alternative to negative heterosis for the rate of plant development, because a ‘late’ flower-
ing plant would have positive value for days to flowering but will have less positive value
for the rate of development as it may mature at a slower pace. Therefore, the perception
of heterosis can be a simple artifact of the researcher’s choice in terms of the phenotypic
measure/trait under investigation [15]. Moreover, the occurrence of heterosis can be dis-
cerned as a ‘system-wide’ phenomenon that results in enhanced size, vigor, resistance to
pest/disease, or climatic factors influencing crop performance on a crop and is taken as an
overall ‘effect’. This standpoint of heterosis has not only made plant breeders benefit from
this phenomenon to breed better crops but has also given rise to the search for a unifying
theory and investigations on various scientific levels to understand the underpinnings of
hybrid vigor.

In summary, heterosis in plants has been a hot topic for plant science researchers
worldwide for a long time. Therefore, in this article, we systematically revise the underlying
mechanisms of heterosis in plants with a particular reference to plant breeding, thereby
suggesting the orientations for future research and the manifestation of hybrid vigor.
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Figure 1. Classification of heterosis in plant breeding based on genetic distance and utilization.

2. Understanding the Molecular Basis of Heterosis

There are various ways to study heterosis on the molecular scale, for instance; genome
organization studies, transcriptome-wide gene expression profiling, and studying allele-
specific contributions to gene expression [4]. Many of these molecular approaches even-
tually root down to the most basic and widely acceptable models of heterosis: combined
allelic expression and diverse allelic interactions in a hybrid [16]. However, heterosis
remains an intriguing research subject until now, and thus, additional knowledge to un-
derstand this phenomenon has been and is continuously uncovered, thanks to state of the
art research techniques in epigenetics, genomics, proteomics, and metabolomics. Here we
summarize and comprehend the current perspectives explaining the existence of hybrid
vigor in plant species.

2.1. Genetic Models Explaining the Phenomenon of Heterosis

Genetic models are predominantly popular and are considered as a prerequisite
approach to understand the rational aspects of heterosis. Different models have been
evolved over time to explain the occurrence of heterosis, but none of them is able to
completely explain the entire basis of this phenomenon alone. The three most important
models are Dominance, Over-dominance and Pseudo-overdominance model (Figure 2).
In addition, Epistasis has also been under discussion as an underlying reason for crop
heterosis (Figure 2, IV).
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Figure 2. Genetic models for heterosis. Diagrams represent that the hypothetical phenotype or trait is
influenced by multiple linked or unlinked loci (e.g., ‘g’, ‘h’, ‘i’). (I) Dominance Model: Inbred parents
1 and 2 exhibit marginally deleterious alleles in homozygous form (g and i in parent 1; h in parent 2).
In F1 hybrid, complementation of superior alleles (G, H, I) occur at each locus resulting in a superior
F1 phenotype. (II) Overdominance Model: Homozygous alleles at locus ‘h’ are different for both the
inbred parents (HH and H’H’). In F1 hybrid, the interaction H and H’ produces a superior phenotype
in comparison to both homozygous parents. (III) Pseudo-Overdominance Model: The superior
performance of F1 hybrid is due to a small chromosomal region harboring two or more loci (e.g., g
and h) linked in repulsion, in which the complementation of G and H is mimicking overdominance.
(IV) Epistasis Model: The superior performance of F1 hybrid is due to the interaction between two
different loci.

2.1.1. Dominance Model

The hypothesis regarding the “Dominance” model focuses on the argument that het-
erosis is the outcome of complementation of recessive alleles present in inbred parents [17].
Inbred parents exhibit homozygous alleles with deleterious effects (inbreeding depression),
the effects of which are masked in a hybrid combination because the superior alleles will
complement the effects of inferior ones. These complementations happen at multiple loci,
leading to the non-expression of the deleterious effects (caused by recessive alleles), result-
ing in a better performing F1 hybrid (Figure 2, I). Consequently, natural selection reduces
the deleterious alleles or encourages their tight linkage with the beneficial alleles [18]. This
way, the model assumes that heterozygosity is not a major requirement of heterosis instead
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the increased number of superior loci is the main contributor [2]. The possible gap in the
Dominance model is that it is unsure whether all the recessive allele complementations
would result in an additive effect on the final phenotype [19].

2.1.2. Overdominance Model

Heterosis can not be described solely based on the complementation of deleterious
alleles, which led to the development of another hypothesis in classical genetics called
the “Overdominance” model. This model proclaims that heterosis is merely thesuperi-
ority of the heterozygotes over each of the homozygotes [20]. The interactions among
diverse alleles in heterozygous genotypes, which occur in neither of the homozygous states
(dominant/recessive), give rise to superior trait performance (Figure 2, II). The model
is supported by the fact that heterozygosity for small genomic regions usually causes a
heterotic response.

2.1.3. Pseudo-Overdominance Model

The imbalance between the Dominance and Overdominance models resulted in the
advocacy of the “Pseudo-overdominance” model. This model is based on the fact that
some small genomic regions in hybrids could have variations in repulsion at two or
more different genes. Those variations complement and result in superior phenotypes,
which apparently looks like an Overdominance action [21]. This model demonstrates that
homozygous dominant (favourable) alleles are linked with recessive (unfavourable) alleles
in parental lines, but after the hybridization, they attain a heterozygous state and behave
as an Overdominant locus (Figure 2, III).

In summary, the major challenge to analyse the basis of heterosis based on all these
models is how to discover the possible roles of multiple genes contributing to the superior
performance of F1 hybrids.

2.1.4. Epistatic Model

It is important to recall that neither the dominance nor the overdominance models
can fully elucidate the phenomena of heterosis. At times, epistatic interactions are also
taken into consideration while discussing the principles of heterosis. Epistasis is defined
as the interaction of genes from at least two loci that affects the phenotypic expression
of a characteristic (Figure 2, IV). The study by Powers suggested that both intra-allelic
and inter-allelic interactions, as well as crosstalk between genes and the environment
seem to be implicated in the phenomenon of heterosis [22]. Particularly in scenarios with
no dominance or even partial dominance in certain genes that are not receptive to an
improvement in the quantitative character, the heterotic expression is still exhibited. For
instance, a study by Liang [23] on determining the genetic basis of heterosis in Upland
cotton (Gossypium hirsutum L.) has shown substantial boost in hybrid productivity for boll
number per plant, directly contributing to lint yield as a result of epistatic interaction [23,24].
Furthermore, to understand the phenomena of heterosis at the metabolic level, metabolite
profiling was done on two mapping populations of Arabidopsis (369 RILs and their
testcross offspring, and 41 introgression lines (ILs) and their test crosses, respectively) by
Lisec et al. [25]. In the first population, the researchers discovered 147 QTLs for metabolite
absolute mid-parent heterosis (aMPH), as well as 153 and 83 QTL for enhanced additive
and dominant effects, respectively. In conclusion, Epistasis was found as a significant
contributor to metabolite heterosis in Arabidopsis.

2.2. Genomic View of Heterosis

The four genetic models based on classical genetics explain the hybrid vigour for
diploid genomes quite reasonably, hence are popular among plant breeders [16]. However,
from a broader perspective, heterosis should be considered as a genome-wide phenomenon
reflecting global changes at both expression levels of genes and proteins. It might be
a consequence of genomic differences among parental lines such as genomic structure,



Genes 2021, 12, 1688 6 of 18

presence and distribution of specific genes in the crossed individuals that generate a net
positive effect [26]. Such changes in hybrid plants, whether additive or non-additive,
possibly affect the regulatory and metabolic pathways associated with plant traits [27].
Logically, such a combination of differential gene expression due to genome incorporation,
which affects a major regulatory pathway, could determine the manifestation of heterosis.

Studies on maize hybrids have revealed that the genetic distance between the parental
inbred lines is correlated to the overall heterotic effect. These results provide the basis for
investigating the impact of genomic constitution of inbred/parental lines onhybrid vigor.
Later, it has been demonstrated that approximately 10% of the genes present in any of the
maize inbred parents (B73 and Mp17) are generally not found in another genotype. Hence,
the missing genes in one parent are complemented by the other in a hybrid offspring [2].

Moreover, QTL analyses have revealed fewer loci with significant effects contributing
to the phenomenon of heterosis, but no single associated QTL has been cloned to date.
Although due to the current advancements in high-throughput technologies, this could
possibly be achieved in the coming days [28]. Several studies have reported genes that
express potential roles in heterosis among various plant species. These genes are found
associated with the expression of higher heterotic effect when overexpressed, silenced,
mutated or epigenetically modified (Table 1).

Table 1. List of genes and their expression associated with various genetic traits contributing to heterotic effect in different
plant species.

Gene Crop/Plant Arabidopsis
Orthologue Expression State Impact Reference

ZAR1
(Zea mays ARGOS1) Maize

ARGOS
(Auxin Regulated
Gene involved in

Organ Size)

Overexpression

Increased organ size
Increased Yield

Improved drought
tolerance

[29]

CNR1
(Cell Number Regulator 1) Maize Silencing Increased plant size

Increased organ size [29]

SFT
(SINGLE

FLOWER TRUSS)
Tomato

FT
(FLOWERING

LOCUS T)

Loss-of-function
mutation Enhanced yield [28]

AP2/EREBP
(APETALA 2/ethylene

responsive element
binding protein)

Arabidopsis Over-expression
Cell proliferation

Enhanced heterotic
effect

[30]

CCA1
(CIRCADIAN CLOCK

ASSOCIATED 1)
Arabidopsis Epigenetic

modification

Increased vigor in plant
development

Increased biomass
production

[8]

LHY
(LATE ELONGATED

HYPOCOTYL)
Arabidopsis Epigenetic

modification

Increased vigour in
plant development
Increased biomass

production

[8]

Abbreviation for Gene names are capital letters and italicized, the respective full-forms are mentioned in parenthesis ().

2.3. Epigenetic View of Heterosis

In addition to the genetic basis, some hypotheses also suggest possible contributions
of non-genetic factors underlying heterosissuch as epigenetics. Epigenetics refers to the
study of heritable changes in gene expression that do not involve the genotype of crop
plants but the alterations in chromatin architecture and/or the post-transciptional process.
The mechanisms that direct plants to translate their genotype in different directions lie in
DNA methylation, histone modification and small RNA (sRNA) pathways (Figure 3).
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when a methyl group (CH3-) binds to the 5′ end of cytosine base (C), usually due to the activity of METHYTRANSFERASE
1 (MET1), CHROMOMETHYLASE 3 (CMT3) and DOMAINS REARRANGED METHYLATION 2 (DRM2). These enzymes
induce different DNA methylation models. The appearance of MET1 and CMT3 would lead to symmetric methylation
(CG, CHG), while DRM2 would be responsible for an asymmetric model (CHH), in which H can be A, T, or C [31,32].
(B) Histone modification refers to the changes in histone proteins that would significantly affect their associated DNA
regions, modifying the transcriptional capability of the genes on those regions. The alteration of histone proteins can be due
to the addition of chemical groups both on histones’ globular domain and at the N-terminal tails. Those chemical groups
are called histone marks. The most well-studied histone marks include Acetylation (Ac) and methylation (Me) [33,34].
(C) sRNA plays both direct and indirect roles in regulating gene expression. The direct role is to activate RNA Induced
Silencing Complex (RISC) that would silence targeted genes after transcription. This activity involves either microRNAs
(miRNAs) or small interfering RNAs (siRNA). MicroRNAs (miRNAs) are produced endogenously from the transcription of
MIR genes, while siRNA synthesis is mostly stimulated by the presence of abnormal double-stranded RNAs produced from
transposons in heterochromatic regions or by invading viral RNAs. These two types of sRNA can be cleaved by DICER
LIKE 1,2,3 or 4 in the cytoplasm into short sequences of 20–27 nucleotides, which would either lead to activation of the RISC
to mediate post-transcriptional gene silencing (direct gene regulation) or to initiate the DNA methylation (indirect gene
regulation) [35,36].

2.3.1. Heterosis and DNA Methylation

Numerous studies have suggested the association between DNA methylation and
heterotic effects in hybrid plants. For example, one study proved that a great majority of
cytosine methylation sites in maize parental lines had changed in their hybrids, suggesting
the possible relevance of methylation-pattern remodeling to heterosis [4]. This hypothesis
was further examined by later experiments on different model plants. He et al. [37]
observed a strong correlation between cytosine methylation (mC) patterns and genetic
expression changes among both rice hybrids and their inbred parental lines. Two years
later, two independent studies by Shen et al. [38] and Greaves et al. [39] performed genome-
wide methylation profiling of Arabidopsis thaliana parental inbred lines and their reciprocal
hybrid lines that displayed heterosis for biomass. They both discovered that F1 hybrids
showed higher overall levels of DNA methylation compared to their parents. These
discoveries suggest a possible role of DNA methylation in the expression of hybrid vigor.
Recently, Lauss et al. [40] crossed Arabidopsis inbred parents with different specifically
induced methylated regions, producing a large number of heterotic hybrids with diverse
epigenetic patterns (epiHybrids). The specific methylated regions in the parental genomes
were statistically analyzed with hybrid performance, revealing strong correlations and
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thus, supporting the hypothesis of direct or indirect influence of epigenetics in parental
lines on hybrid heterotic performance. However, the specific methylated regions and
their respective mechanism(s) to improve hybrid performance from their inbred parents
remained unclear and became an interesting topic for scientific research

2.3.2. Heterosis and Histone Modifications

Histone modification affects many genes and flanking regions on the associated DNA
molecules. Therefore, it is more challenging to study the relationship between histone
modification and heterosis because of its complexity. The most noticeable attempts to
uncover the possible role of histone modification on heterosis focus on the well-known
model genome of Arabidopsis thaliana. In 2009, Ni and colleagues, by observing Arabidopsis
F1 hybrids’ circadian clock and its involving genes, discovered that the transcription
of these genes changed in association with histone modifications [41]. This finding is
important because the circadian clock plays an essential role in many biological processes
of plants, including starch biosynthesis and growth rate (Figure 4). Plants with internal
circadian rhythm matching their living environments are more vigorous than plants that
fail to keep this synchronization [42]. Therefore, the epigenetically histone-mediated
transcriptional changes of genes involved in the circadian rhythmsmay be associated with
the performance of F1 hybrids.
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Together with the evidential support from Arabidopsis studies, further research on
crop plants has also been conducted to discover the relation between histone modification
and heterosis. Maize F1 hybrids showed significant expression variations in the key histone
HTA112 on endosperm transcriptomes compared to their parental inbred lines [43]. The
study provided an entry point to the investigation of specific histone modification regu-
lating crop hybrid performance. In rice, three global histone marks patterns (H3K4me3,
H3K9ac, and H3K27me3) were analyzed among two rice subspecies, ‘japonica’ and ‘in-
dica’, and their F1 hybrids using high-throughput ChIP-Seq [37]. Consequently, H3K4me3
(transcriptional activation mark) and H3K27me3 (transcriptional repression mark) were
expressed differently between hybrids and parents. These findings contribute to the demon-
stration of possible associations between alterations of epigenetic histone modifications
and heterosis.
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2.3.3. Small RNA (sRNAs)—Role in Epigenetic Regulation and Heterosis

Small RNAs (sRNA) plays the role of transcriptional silencing, post-transcriptional
silencing function and are involved in RNA-directed DNA methylation (RdDM) pathway
(Figure 3). sRNAs of 24 nt are associated with transcriptional gene silencing by targeting
DNA methylation to complementary sequences [44]. Many studies support the hypothe-
sis that these multi-functioning sRNA might also be involved in heterosis. As expected,
the amount of 24-nt siRNA accumulated in the Arabidopsis hybrids was significantly
lower than that of Col and Ler parents, correlating to the decrease in CpHpH methylation
patterns [45]. A similar finding was reported from an Arabidopsis genome-wide sRNA se-
quencing project by Shen and colleagues [38]. In addition, other crops such as wheat, maize
and rice also underwent sRNA accumulation analysis and showed significant variation of
sRNA levels between hybrids and parental lines in many independent studies [46–48].

Most of the studies up-to-date on possible links between epigenetics and heterosis
have been based on statistical correlation models without a clear explanation of underlying
mechanism(s). It would require a long journey to precisely unravel the contribution
of epigenetics to heterosis, and thus, opens an interesting research domain for plant
breeding science.

2.4. Heterosis, Proteomics and Transcriptomics

Several proteomic studies in relation to the phenomena of hybrid vigor in crops
have been conducted in the last decade [49,50]. The information obtained provides global
knowledge of protein variations and their impact on the hybrids compared to their parents.
Formerly, intensive research had been conducted on understanding single-molecule models
for heterosis. But presently, published investigations and data propose that heterosis is the
outcome of variable gene expressions, the associated pathways and progressions that are
known and yet undiscovered [50].

In the past decade, it has been revealed through experimentation that the proteome
plays a vital role in the expression of heterosis, providing an improved stress response,
higher photosynthetic and glycolysis rate, and better disease resistance [51]. However,
genetic and other biochemical data are important to testify its precise role in the phenom-
ena across various crop species [50]. In some conditions, hybrid vigor can be explicated
by heterozygote advantage that expresses diverse protein isoforms encoded by the same
locus [29,49]. Isozymes are defined as different variants of the same enzyme with iden-
tical functions that are present in the same individual [50,52] and are considered as one
of the primitive proteomic tools to investigate heterosis. They can be used to identify
genetic affinity between plants by utilizing the data related to isozyme variability and
the variability of genes encoding for the isozymes. However, studies represent that the
isozymes deliver inadequate significance and contributions in the estimation of hybrid
vigor and performance [53]. Investigating complex proteins and proteomes using more
specialized techniques such as two-dimensional electrophoresis and mass spectrometry
would be required to analyse polymorphisms among individual proteins and heterosis for
agronomic traits in different parts of plants (leaf, roots, embryo and seeds) [49,50,54].

Analysis of the proteomic and transcriptomic data obtained from nuclear subcellular
organelles, mitochondria, embryos at their developmental stages, isozymes and histone
modifications have provided viable scientific support that proteins and their expressions
could be essential “biomarkers” for heterosis [55]. These biomarkers can possibly be
used as functional tools to assess the “hybrid vigor prospective” at a very early stage of
development, contributing significantly to the crop improvement research [55].

Preliminary transcriptome studies on various crop species have established that the
expression of favorable genes is predominant in hybrid plants compared to the parental
inbred lines [27,50,56,57]. Modifications in gene expression patterns on a genome level and
their respective action mechanisms in inbred lines and hybrids were documented in many
plant species such as Arabidopsis [38,58,59], wheat [10], cotton [60], maize [56,61,62] and
rice [37].
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Transcriptome studies conducted at the translational phase of gene expression to
estimate the relative contribution of each allele in a hybrid combination is considered
as a potential approach for understanding the gaps in our knowledge of heterosis [18].
Comparison of gene expression levels has also been used to demonstrate that the interaction
between parental genomes can result in modification of transcripts and protein abundance
in the hybrid plants [21]. Steady changes in the protein expression at the transcriptional
levels, along with additive and non-additive proteomic patterns have been observed
in hybrids of several species [29,50]. For instance, studies on embryo, root and leaves
have shown non-additive gene effects in differentially expressed proteins (DEPs) that
determine hybrid vigor of various crops such as maize, wheat and rice [29,51,62]. These
DEPs are found to be involved in signal transduction pathways, resistance mechanisms,
photosynthesis and cellular metabolism, indicating the varying degree of heterosis and
its dependency on these processes [63,64]. Genome-wide alterations in protein expression
could help to achieve an inclusive understanding of heterosis [8]. However, to get a better
apprehension, it is vital to consider the post-transcriptional and translational regulation
of target alleles as studying the differential gene expression alone may not be enough to
measure actual protein activity [1,50]. Post-translational modifications (PTMs) are also
considered as determinants for heterosis; they are found to be critical in the regulation of
proteins and their proper function [49].

2.5. Intrinsic Biological Processes Contributing to Heterosis

Plants are considered biological engines producing biomass with light energy and
inorganic compounds as system inputs. In theory, this biomass is the differential of
the energy going into the system and the energy consumed by the system [27]. Giving
more energy or consuming less energy for metabolic processes of plants could result in
increased plant growth and biomass accumulation. Therefore, the variation between two
components of this equation provides the prediction of the phenotypic performance of
a hybrid individual. This idea was proposed as a model describing the hybrids as more
efficient than the inbred parents in terms of growth and energy consumption as they
save a significant amount of energy from protein metabolism [65]. Such a fine-tuning
of hybrids on a bio-energetic level made them capable of conserving energy that can be
invested in increased growth rate and biomass production. In addition, Ni and colleagues
proposed that resetting the circadian clock of plant species during daytime to a higher
amplitude may lead to an increase in photosynthetic rate, and in turn, result in vigorous
growth and biomass accumulation. Considering the energy dynamics of plants, it is
obvious that a directional modulation of energy can possibly get translated into plant
vigor and biomass [66]. This might be a reason that various hybrid combinations may
achieve such a positive bio-energetic modulation during their whole lifespan or at certain
developmental stages.

Plant metabolomics on the other hand refers to the systematic identification and quan-
tification of the plant metabolites (low molecular weight bio-chemicals) and to understand
their role in systemic biology of plants [67]. It has been speculated that hybrids when
compared to the parental inbred lines, exhibit a lower metabolic rate, resulting in a higher
energy remainder for vegetative growth and biomass production [65]. A genetic explana-
tion of such a scenario may correspond to the lack of allelic choice in homozygous state
for an inbred line. Whereas, hybrids can have more alleles (especially in case of polyploid
species), resulting in a robust metabolic profile as well as growth rate due to enhanced cell
divisions [53]. Metabolome of a plant species serves as a bridge between the genome and
phenome and provides a tool for understanding the complex connections between plant
traits [68–70]. So far, little importance has been given to study plant metabolic profiles to
understand the underlying phenomena of hybrid vigor. A recent study demonstrated that
metabolites associated with yield from rice breeding lines grown in different conditions
have shown an up-regulation of galactose metabolism that possibly promoted the heterotic
effect [70]. A little significance of heterosis on metabolite level was also reported in a study
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conducted on interspecific introgression lines of tomato [68]. This study indicated that
almost 50% of the mapped metabolic loci seems to be associated with the overall yield
of tomato plants. Metabolic profiling of hybrid plants and using such data for genome-
wide association studies would serve as an important tool for understanding the role of
metabolites in the expression of hybrid vigor.

One of the most recent development based on biological process model to explain
heterosis traces back to the publication of Sewall Wright [71], who proposed that the
metabolic flux of the hybrid Aa is higher than the mean parental metabolic flux due to
the intrinsic non-linearity of the biological processes [71]. It remains one of the essential
models in analyzing the superiority of hybrids regarding mongenic traits. Recently, the
model is proven to be applicable to polygenic traits thanks to Rosas et al. [72], who
accessed the flower asymmetry in Antirrhinum, and Fiévet et al. [73], who experimented
the glycolysis/fermentation network in yeast [72,73]. Interestingly, Vasseur et al. [74]
demonstrated the importance of Wright’s model in crops by testing growth rate and fruit
number of A. thaliana and found out the allometric relationships between traits, occuring
in both hybrids and parental lines, constrain phenotypic variation in a non-linear manner.
More interestingly, these allometric relationships behave in a predictable pattern and could
explain up to 75% of heterosis amplitude [74].

2.6. Mitochondrial Inheritance and Heterosis

Apart from various biochemical, molecular, and physiological basis of heterosis,
another significant aspect that caught the attention of plant scientists was the contribution of
maternal inheritance in the manifestation of heterosis. Involvement of maternal inheritance
in the phenomenon of heterosis has been suspected a long time ago when reciprocal
crosses were observed to have variability in expression levels, demonstrating superiority
of either of the resultant hybrids, owing to the specifically dominant role of the female
parent [75]. An important attribute observed initially was higher respiratory rate during
F1 hybrid germination that is related to mitochondrial respiration [76]. McDaniel, and
Sarkissian [77] were the pioneers of this concept as they suggested a strong connection
between mitochondrial complementation and heterosis in corn hybrids through their
experiments for evaluation of differential efficiencies of mitochondria in terms of oxidative
phosphorylation which demonstrated more efficient ATP synthesis in mitochondria of
hybrids than that of inbreds and non-heterotic hybrids [75]. By comparing respiratory
efficiency of mixtures of mitochondria from parental hybrids, an elevated synergic effect
was observed which was, surprisingly, even more efficient than hybrids. Continuing
validation of these findings through density gradient separation, presence of a distinct
population of mitochondria was observed in a corn hybrid produced de novo rather
than coming from either of the parents. Enzyme analysis showed elevated cytochrome
c oxidase in hybrid and complementation effect in parental mixtures. With the same
technique, multiple isozymes of malate dehydrogenase were detected in two mitochondrial
populations of barley which were contrastingly different from their parents [75]. At
that time, researchers were unable to comprehend the actual underlying mechanism but
suspected that it might have arisen by an amalgamation of parental mitochondria or
under the action of some genes or probably due to reasons unknown to scientists at that
time [78]. But now, it is well known that mitochondrial DNA is maternally inherited and
the mitochondrial heterosis can be explained in a better way. Figure 5 describes a simplistic
way of mitochondrial inheritance of traits referring to the observed heterotic effect.
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3. Heterosis in Self-Pollinated and Apomictic Plant Species

Modern molecular genetics suggest that dominance theory can be considered as a
viable contributor to heterosis in many crops. In fact, a better understanding of the hyrbid
vigor may need several genetic and epistatic factors to be taken into account as well [79,80].
Some primitive deductions on hybrid vigor were made on vegetable crops [81]. Soon
after the availability of seeds by various industries, farmers opted for hybrid cultivars [80].
However, hybrid cultivars are more utilized in self-pollinated vegetable species compared
to the cross-pollinated species [81]. Extreme hybrid vigor has been reported in some self-
pollinated crops such as Solanum melongena L., Capsicum annuum L., Solanum lycopersicum,
and Lactuca sativa which expressed higher heterosis (33–97%) than the parents [82]. The
success of hybrid breeding also appears in bulb and root crops, thanks to the discovery
and utilization of cytoplasmic male sterility (CMS). CMS was initially applied on Allium
cepa, resulting in 14–67% increased yield compared to open-pollinated cultivars [81]. This
achievement revolutionized the onion production industry and the hybrid breeding tech-
nique is now widely used for many root and bulb crops [81]. The possible reasons behind
this self-pollinated heterotic phenomenon is a result of remarkable flower structures and
a low out-crossing rate in onion [81]. A previous study about heterosis reveals that this
phenomenon is simply the reclamation of inbreeding depression produced by essential
genes [80]. However, in terms of quantitative genetics, hybrid vigor may possibly occur
whenever there is genetic divergence among the parents that can also be apparent in
self-pollinated species per se [81,83].

Note that although heterotic hybrids are well-known for exhibiting greater biomass,
promptness of development, viable fertility and uniform progenies [20,80], these desir-
able traits can also be found in self-pollinated species. More interestingly, inbreeding
depression is found to be higher in cross-pollinated crops in contrast to its self-pollinated
counterparts [81]. Self-pollinated crops are extremely tolerant to inbreeding essentially
with respect to environmental endurance. Such variety of performance by crops is believed
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to be associated with genetic balance. Reduced fitness in cross pollinated crop species
is an outcome of heterozygous balance. Whereas, self-pollinated species display a po-
tent homozygous balance leading to an overall progeny fitness that surpasses that of the
heterozygous species [81].

In case of apomictic plant species, the phenomena of heterosis is not well-studied,
even though apomixis offers a great deal of opportunities to exploit hybrid vigour. Genetic
improvement in such plant species however is mainly based on traditional selection from
natural ecotypes [84]. The convincing reason to focus on heterosis in apomictic plants
owes to the fact that traits in apomictic hybrids remain fixed over generations and the
maintenance of parental lines is unnecessary [85]. In addition to these advantages, the F1
hybrid seed in apomictic plants can be directly multiplied for advanced studies since the
need of developing parental inbred lines is not a requirement per se, hence, it improves the
efficiency and possibly speed-up the release of new cultivars as well [86]. Therefore, the
exploration and utilization of the phenomenon of heterosis in apomictic plant species is an
attractive goal for the plant breeding research community.

4. Future Perspective on Understanding and Utilizing Heterosis

Heterosis is a genome-wide phenomenon, which reflects global changes at both
expression levels of genes and proteins [49], whereas existing models based on classi-
cal genetics are still popular among plant breeders [16]. The hybrid vigour for diploid
genomes is explained quite confidently with dominance model, but in the case of polyploid
species, it needs to be considered within the context of genome dynamics (cis, trans, and
chromatin/epigenomic interactions) [16]. It has been suggested that hybrid vigor and the
impact of self-pollination on this phenomenon can be better understood by using molecular
markers, allozymes and sequencing plant genomes [87]. Using modern methods can result
in breakthroughs and development of several supportive theories that can suggest factors
other than heterozygosity, for example genetic diversity levels and causes of variances
contributing to hybrid vigor [87].

According to the most sought-after dominance model of heterosis, superior alleles
exceed the effect of the recessive alleles leading to the phenomena known as hybrid vigor
and is by virtue of genetic divergence [82]. However, heterozygosity cannot be considered
as the only fundamental contributor for the phenomena that results in an increased crop
yield, fertility, and weight [79,88]. On the other hand, epigenetic effects [21], masking of
deleterious alleles, dosage- sensitive genes, additive loci and overdominance [89] creates a
barrier to understand the genuine reason for heterosis [90]. Therefore, heterosis in plants
remains a topic requiring keen scientific investigations to develop a deep understanding
and manifestation of the phenomena. Fortunately, the advent of molecular technologies has
given us a hope to study heterosis to a great extent by various genome editing techniques
(TALEN, CRISPR/Cas9) and molecular markers (RAPDs, SNPs) along with morphological
and quantitative data [80]. Similarly, the biochemical tools continue to develop, and the
research on hybrid vigor with respect to the contribution of proteome is becoming exten-
sively detailed and specific. Most studies about the variations in protein structure and
expression in heterosis mainly focus on a single developmental stage, whereas, proteins
are found to be rich and vigorous in several developmental stages of crops, hence is a
matter of further research and development. Similarly, genome-wide technologies and
transcriptome level analyses also contribute significantly to the understanding of hetero-
sis [50,91]. Applying models that account for multi-locus epistasis and using molecular
tools to finely dissect genomic regions contributing to heterosis will allow a plethora of new
insights to plant scientists. Figure 6. shows various physiological processes and molecular
mechanisms involved in the manifestation of heterosis. Therefore, studies focused on these
different aspects of plant biology has and will certainly help unravel the underlying basis
of hybrid vigor.
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Apart from understanding the molecular mechanisms behind heterotic effect, it is
often even more critical to utilize it in an economically efficient way. The knowledge
obtained from the exploration of the underlying basis of heterosis can be applied in
crop breeding, genetic improvement of parents, and development of superior performing
hybrids by optimizing breeding schemes in various crops and ornamental species. In case of
conventional hybrid breeding, the usual way is to screen a large set of individuals obtained
through different crosses for traits of breeder’s intertest. Whereas, a very small number
of tested individuals pass on to elite hybrid varieties after years of field testing. However,
if the loci contributing to mechanism that result in heterosis and the causative variation
are known, it becomes possible to narrow down the potential hybrid combinations based
on strong predicted heterotic potential extracted from genomic information. Once after
such a genotype-based prediction models reach higher accuracies, the time and labor cost
to develop the hybrid variety can be reduced, hence increasing desired genetic gains. An
effective strategy to increase the accuracy of these predictions may involve the utilization of
large-scale well-tailored genomic data relevant to heterotic loci coupled with deep learning
computational techniques [92]. Moreover, genomic selection can be one possible way to
potentially decrease the cost of a hybrid breeding program by enabling the establishment
of heterotic pools and decreasing the loss of genetic variation. An informative review on
this topic has been recently published by Labroo and colleagues [93].

In case of self-pollinated crop species, the artificial emasculation is labor intensive
and time consuming so the reliance on the development of male sterility becomes obvious.
Acquiring and utilizing the knowledge of genes and molecular mechanisms involved
in CMS could help coping with this bottleneck and opening new possibilities of hybrid
breeding in crops where this has not been practiced previously. However, many practical
issues still exist to exploit heterosis including utilization of the genetic diversity among
parental lines, and accumulation of negative loci in F1 generation [1]. Similarly, wide
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hybridization might result in chromosomal aberrations and activation of transposons [94],
leaving open challenges for plant scientists to explore viable use of genetic admixtures.

Taking a step further, speculations were already been made that by virtue of more
knowledge and understanding of heterosis, it might be possible in the future to develop
inbred lines with performance close to elite hybrids but without fulfilling the need of
crossing among individuals [92]. We agree that this could be possible but will be very
challenging to achieve due to the complexity of the genetic and molecular basis of heterosis.
Nonetheless, further research is needed to not only understand the enigmas of hybrid
vigor but to develop novel strategies to handle complex interactions and manage breeding
platforms to meet the needs of global food security.
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