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Abstract
We propose a hierarchical log Gaussian Cox process (LGCP) for point patterns, where
a set of points x affects another set of points y but not vice versa. We use the model
to investigate the effect of large trees on the locations of seedlings. In the model,
every point in x has a parametric influence kernel or signal, which together form an
influence field. Conditionally on the parameters, the influence field acts as a spatial
covariate in the intensity of the model, and the intensity itself is a non-linear function
of the parameters. Points outside the observationwindowmay affect the influence field
inside the window. We propose an edge correction to account for this missing data.
The parameters of the model are estimated in a Bayesian framework using Markov
chain Monte Carlo where a Laplace approximation is used for the Gaussian field of
the LGCP model. The proposed model is used to analyze the effect of large trees on
the success of regeneration in uneven-aged forest stands in Finland.
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1 Introduction

Hierarchical relationships or interactions, where a plant species affects the locations
or intensity of another species but not vice versa, often occur in ecological commu-
nities (e.g. Dieckmann et al. 2000). An example of such a hierarchical relationship is
that proximity of large trees affects the intensity of seedling either positively, e.g. by
protecting against wind, or negatively by giving too much shade. Mathematically, we
can describe such plant communities by two point processes, Y and X , where one (X )
is affecting the other (Y ) but not vice versa.

The hierarchical interaction assumption affects the inference for Y and X greatly
since X can be modeled independently of Y and Y is modeled conditionally on X .
A realization of the point process X acts then as a source of heterogeneity in the
distribution of Y . Högmander and Särkkä (1999) modeled interaction between two
territorial ant species using Gibbs point processes under such an assumption. A similar
hierarchical Gibbs point process approach was used in Grabarnik and Särkkä (2009)
and Genet et al. (2014). Furthermore, Illian et al. (2009) modeled the spatial pattern
of resprouter species (Y ) given the locations of seeders (X ) in a hierarchical set-up
having an inhomogeneous Poisson process as a model for the resprouters.

Here, we model the intensity of new seedlings in a spruce-dominated uneven-aged
(boreal) forest given the locations and diameters at breast height (dbh) of large trees.
Thus, our X process of large trees is a marked point process, where the mark of a
tree is the dbh. The data consist of 14 sample plots from an experiment of continuous
cover forestry involving single-tree selection in four nearby areas in Southern Finland
(Fig. 1). The system relies on the natural emergence of new seedlings, and a continuous
recruitment is necessary for long-term sustainability in a wide sense (e.g. Eerikäinen
et al. 2014; Kuusinen et al. 2019). While a sufficient number of seedlings is necessary
for the success of regeneration, our focus here is on the spatial distribution of the
seedlings within the plots, and the effect of large trees on it.

Like in the resprouter and seeder case above, an inhomogeneous Poisson process
would be a reasonable model since the effect of large trees could be added in the
model as an explanatory variable. However, already visual inspection of the patterns
of seedlings y indicates that the patterns tend to be rather clustered, beyond the clus-
tering that may be explained by the patterns of large trees x. Due to such unexplained
clustering, a log Gaussian Cox process (LGCP) (Møller et al. 1998) is a more appro-
priate model for the conditional point process of seedlings given large trees.

To model the effect of the large trees X , we assume that each tree x ∈ X emits a
signal or impulse that describes the effect of the tree on its neighborhood. We assume
that this effect decreases with the distance from the tree x . In general, the size of the
effect as well as the range of the effect could depend on the size or other properties of
the tree, e.g. its dbh. Because we do not have precise a priori information on the size
and range of the effects, we use parametric signals similar to the ones found in the
literature (Adler 1996; Pommerening et al. 2011; Häbel et al. 2019; Pommerening and
Grabarnik 2019). The individual signals are then superimposed to form an influence
field, which describes the overall influence of the points of X on any location s in the
observation windowW . These kinds of models have been used to model, for example,
effect of neighboring individuals on the growth of a subject tree, survival of seedlings
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Fig. 1 Trees with dbh at least 7 cm (open circles with radii relative to the dbh of the tree) and new seedlings
(red crosses) in areas of size 40 m × 40 m. The headings give abbreviations for the plot locations and
numbers

and ground vegetation in different contexts (e.g. Wu et al. 1985; Miina and Pukkala
2002; Pommerening et al. 2011; Häbel et al. 2019; Kuuluvainen and Pukkala 1989;
Kühlmann-Berenzon et al. 2005).

Our idea here is to include the superimposed individual signals in the log intensity
function of the LGCP model. Using parametric models for the signals, the intensity of
theLGCP is a non-linear functionof themodel parameters.According toPommerening
and Sánchez Meador (2018) the signals are aggregated additively or multiplicatively
and there is no evidence to prefer either of these ways. We follow Pommerening et al.
(2011) and Illian et al. (2009) and aggregate the signals additively.

Our Bayesian inference algorithm is based onMarkov chainMonte Carlo (MCMC)
sampling for parameters, and a Laplace approximation is used for the latent random
field of the LGCP to avoid high-dimensional MCMC sampling. Laplace approxima-
tions are widely used for inference of latent Gaussian fields, for instance within the
popular INLA method (Rue et al. 2009). However, in contrast to INLA, MCMC is
more robust, and can cope with multimodal parameter posteriors.

The large tree process typically extends beyond the borders of the sample plot. How-
ever, we have observed the process in the same observation window as the seedlings.
Thus, the influence field computed only from the observed trees is weaker near the
borders than the field computed from the fully observed large tree process would
be. In order to account for the unobserved trees outside the observation window, we
compute the influence field using an edge correction method similar to that suggested
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in Kühlmann-Berenzon et al. (2005): the unobserved trees are imputed based on the
assumption that the locations of large trees are distributed according to a Poisson pro-
cess. This rather simple edge correction method can be efficiently implemented within
the Bayesian inference, in contrast to alternatives where the locations (and sizes) of
unobserved large trees would be included in the Bayesian inference as unknowns and
simulated within the MCMC approach.

The rest of the paper is organized as follows. In Sect. 2, we give some examples of
influence kernels and introduce the conditional LGCPmodel. TheBayesian estimation
approach, including the edge correction, is described in Sect. 3. Section 4 presents the
results of a simulation experiment that was conducted to explore the performance of
the proposed estimation and edge correction methods. Finally, the forestry data are
described in further detail and studied in Sect. 5. Section 6 is for discussion.

2 Conditional log Gaussian Cox process model

Let us have a bivariate point process in R
2 consisting of an unmarked point process

Y and an unmarked or a marked point process X . Let us further assume that we have
observed a realization of process Y , namely y = {yi }, in a bounded windowW ⊂ R

2.
Our primary interest is in the spatial pattern y which is affected by a realization x of
the spatial point process X . The spatial pattern x can consist only of the point locations
x j or of the point locations and marks, [x j ,m j ], if some characteristics (marks) m j

of the points x j are available. In our forestry application, y consists of the locations
of seedlings, while x is the pattern of locations and dbh’s of large trees.

In our approach, the effect of x on y is modeled using the influence kernels around
the points of x that are explained in Sect. 2.1. To account for the clustering in the
pattern y not explained by x, the LGCP model is proposed and defined in Sect. 2.2.
Replicated point patterns are discussed in Sect. 2.3.

2.1 Influence kernels and influence field

We assume that each point [x j ,m j ] of the process X introduces an influence kernel
around its location. We focus on isotropic influence kernels of the form c(h;m j , θ I ),
where h = ‖s − x j‖ is the distance between the location s of interest and x j . Many
kernels have been suggested in the literature for different applications (e.g. Adler
1996; Illian et al. 2008; Pommerening et al. 2011; Pommerening and Maleki 2014;
Schneider et al. 2006). We used a mark independent Gaussian kernel

c(h; θ) = exp
(
−(h/θ)2

)
, (1)

where θ > 0 is an unknown influence range parameter. Here the influence of a point
gradually decreases with the distance from the point.

A mark dependent generalization of (1) is given by

c(h,m; θ I ) = mα exp

(
−

(
h

θmδ

)2
)

(2)
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with θ I = (θ, δ, α), where θ > 0, δ > 0, and α ≥ 0. If α = 0, the mark affects only
the range of influence and if α > 0, it affects both the range and the strength (e.g.
Pommerening et al. 2011).

The influence field of the process X can then be defined as a superposition of the
individual influence kernels,

C(s; θ I , X) =
∑

[x j ,m j ]∈X
c(‖s − x j‖,m j ; θ I ).

2.2 Conditional model

Since y is affected by x, we introduce a conditional point process model for y given
X = x, where the intensity of Y is affected by the influence field of x. This conditional
model is a LGCP with the intensity

Λ(s;β, θ I , x, Z) = exp(β0 + β1C(s; θ I , x) + Z(s)), (3)

where C(s; θ I , x) is a parametric influence field, β = (β0, β1) and the unknown
coefficients β0 ∈ R and β1 ∈ R are the intercept and the strength of the influence field,
respectively. If β1 < 0, x affects the intensity of Y negatively and the influence field
C(s; θ I , x) can be interpreted as a thinning of the LGCPprocesswith intensityΛ(s) =
exp(β0 + Z(s)). If, however, β1 > 0, x has a positive effect on the intensity of Y and
there aremore points of Y in areas with a high value ofC(s; θ I , x). Furthermore, Z :=
{Z(s) : s ∈ R

2} is a zero-mean stationary Gaussian random field with a covariance
function CZ (r; θ Z ) and independent of the influence field. In our application below,
we use the Matérn covariance function

CZ (r; θ Z , ν) = σ 2
Z
21−ν

Γ (ν)

(√
2ν

r

ρZ

)ν

Kν

(√
2ν

r

ρZ

)
, r > 0, (4)

with the smoothness parameter ν = 2 and θ Z = (σ 2
Z , ρZ ), where σ 2

Z and ρZ are the
variance and range parameters, respectively, and Kν is the modified Bessel function
of the second kind (e.g. Cressie 1993; Chilés and Delfiner 1999; Banerjee et al. 2004).
The choice ν = 2 was made since we expect that the unobserved environmental
conditions that affect the clustering of y in our application vary rather smoothly and
since it is computationally convenient (Lindgren et al. 2011).

2.3 Replicates

Assume that we have several independent replicated point patterns yk , k = 1, . . . , N ,
from the conditional distribution of the point process Y given X = xk , k =
1, . . . , N . Conditionally on X = xk , the model for yk is a LGCP with the intensity
Λ(s;β0, β1, θ I , xk, Zk) in (3), where Zk , k = 1, . . . , N , are independent replicates
of the Gaussian random field with parameters θ Z . For our data, it is not reasonable
to assume that all replicates have the same β0, which controls the number of points
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of Y , and we let each pattern yk have its own intercept parameter β0, i.e. β0k for yk ,
k = 1, . . . , N . Consequently, in our application below, the pattern yk is assumed to
be a realization of the LGCP model with the intensity Λ(s;β0k, β1, θ I , xk, Zk).

3 Inference

The likelihood of the conditional LGCP model for a point pattern y with n points
observed in W is

p( y;β, θ I , θ Z , x) = Eθ Z

n∏
i=1

Λ(yi ;β, θ I , x, Z) exp

(
−

∫

W
Λ(u;β, θ I , x, Z)du

)
,

(5)

where β, θ I , θ Z are the model parameters, Z denotes the Gaussian random field and
the expectation is over Z given θ Z . As we use Bayesian inference we need to be able to
evaluate the likelihood (5) efficiently. Below, we describe the approximations needed:
discretization of the observation window (Sect. 3.1), an edge-corrected influence field
(Sect. 3.2), and approximations related to the Gaussian field (Sect. 3.3), which include
approximating the field by a Gaussian Markov random field and using the Laplace
approximation to evaluate the likelihood. Finally, the approximated likelihood based
on replicates is given in Sect. 3.4 and the MCMC algorithm is described in Sect. 3.5.

3.1 Discretization

To be able to make inference on LGCP models, the observation window W of the
point pattern y is discretized using a regular grid in a similar manner as in Rue et al.
(2009) and Møller et al. (1998). Namely, the observation windowW is divided into G
disjoint cells {wg} with center locations ξg and area A. Furthermore, we let nyg denote
the number of observations y within wg in W and ny = (ny1, . . . , n

y
G). A piecewise

constant approximation is used for theGaussian field Z and the competition fieldC and
the locations of y are replaced by the counts nyg . The approximate likelihood for ny is

p(ny;β, θ I , θ Z , x) = Eθ Z p(n
y;β, θ I , x, ZD), (6)

where

p(ny;β, θ I , x, ZD) =
G∏

g=1

Pois(nyg;Λg),

Λg = A exp(β0+β1CD(ξg; θ I , x)+ ZD(ξg; θ Z )), andCD and ZD are the piecewise
constant approximations of C and Z .
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3.2 Edge correction

The large tree process X is only partially observed, and generating the influence field
only based on the observed large trees would result in too weak influence near the bor-
ders. Therefore, we propose an imputation type approach, similar to the one proposed
byKühlmann-Berenzon et al. (2005), to correct for the unobserved points of X . Specif-
ically, we propose to replace the influence generated by the unobserved trees with the
expected influence generated assuming that the whole process X is an independently
marked homogeneous Poisson process. In the unmarked case, X is assumed to be a
homogeneous Poisson process. In general, the point pattern outside the windowwould
depend on the pattern inside thewindow, but this is not the case for the Poisson process.

Let λ and F be the intensity and mark distribution of X , and XWc the restriction of
X to Wc, the complement of W . Using the Campbell theorem (e.g. Chiu et al. 2013)
we can write

EC(s; θ I , XWc ) = E
∑

[x j ,m j ]∈XWc

c(‖s − x j‖,m j ; θ I )

=
∫

R+

∫

R2
c(s − x,m; θ I )1Wc (x)λ dx dF(m),

where 1Wc is the indicator function of the set Wc, i.e. 1Wc (x) = 1 if x ∈ Wc, and 0
otherwise. By changing the order of the integrals we find that

EC(s; θ I , XWc ) =
∫

R2
f (s − y)1Wc (y)λ dy

=
∫

R2
f (s − y)λ dx −

∫

R2
f (s − x)1W (x)λ dx,

where f (x) = ∫
R+ c(‖x‖,m; θ I ) dF(m). By changing to polar coordinates and with

a slight abuse of notation

∫

R2
f (s − x)λ dx = λ2π

∫ ∞

0
r f (r) dr ,

which can be computed using numerical integration. Since we are only interested in
locations s ∈ W , we can replace the function f with f 1WS , the restriction of f to the
set WS = {s − x : s ∈ W , x ∈ W }, and

∫

R2
f (s − x)1W (x) dx =

∫

R2
( f 1WS )(s − x)1W (x)λ dx = ( f 1WS ∗ 1W )(s).

The discrete convolution of the piecewise constant approximations of f 1WS , and
1W can be efficiently computed using discrete Fourier transforms (Oppenheim et al.
1999; Frigo and Johnson 2005). For F , we use the empirical distribution of marks in
the sample plot under study.
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The edge-corrected influence field value at any location s ∈ W is then obtained
as the sum of the influence field calculated from the observed xW , C(s; θ I , xW ), and
the expected influence load of the unobserved XWc . In general, we use the numerical
approximation explained above, but for the special case of the Gaussian influence ker-
nel (1) and a rectangular observation window, it is easy to compute the edge correction
by hand.

3.3 Approximations related to the Gaussian field

We use Laplace approximation (Tierney and Kadane 1986; Rue et al. 2009) to approx-
imate the likelihood (6) and obtain

Eθ Z p(n
y;β, θ I , x, ZD) ≈

√
(2π)d

det(−H(ẑ))
p(ny;β, θ I , x, ẑ)p(ẑ; θ Z ), (7)

where H and ẑ are the Hessian and maximizer of log p(ny;β, θ I , x, z)p(z; θ Z ),
respectively, and p(z; θ Z ) is the probability density of the vector ZD which contains
the values of ZD at grid cells.

Since the Gaussian random field Z is assumed to have mean zero and the Matérn
covariance function (4) with ν = 2, we can utilize the explicit link between Gaussian
fields and Markov random fields (Lindgren et al. 2011), which tells us that the distri-
bution of ZD should be approximated with a Gaussian distribution with a precision
matrix given by Lindgren et al. (2011).

3.4 Replicates

Since the point patterns are assumed to be conditionally independent, the likelihoods
(5) for each replicate yk can be multiplied to yield the final likelihood

p( y1, . . . , yN ;β, θ I , θ Z , x1, . . . , xN ) =
N∏

k=1

p( yk;β0k, β1, θ I , xk), (8)

where now β contains all the regression coefficients, i.e. β = (β01, . . . , β0N , β1). To
obtain an approximation of (8), the approximations (6) and (7) are applied to each
pattern separately.

3.5 MCMC

Combining the likelihood (8)with the prior p(β, θ I , θ Z ) yields the approximate poste-
rior distribution. To sample from this distribution, we use Robust Adaptive Metropolis
algorithm (Vihola 2012, 2020), which uses a Gaussian random-walk proposal dis-
tribution, whose covariance is updated adaptively. The limiting proposal covariance
matches the shape of the posterior, such that an average acceptance rate of 0.234 is
attained, following the theoretical findings presented e.g. in Roberts et al. (1997).
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4 Simulation experiment

Wemade a simulation experiment to study the performance of the inference approach
and the edge correction method suggested above. The point pattern x was a realization
of either a Poisson process or a regular Strauss process. The Strauss process (e.g. Illian
et al. 2008) was included to see whether the edge correction based on the Poisson
assumption of X would work even in a more regular case. We did not include any
cluster process since in our application, the large tree patterns x are regular. Also,
based on a small simulation study (results not shown here), it is unlikely that the
Poisson correction would work well when the x pattern is strongly clustered. We did
not include marks in the simulation experiment.

4.1 Set-up

The intensity parameters of the Poisson and Strauss processes were chosen such that
they result in approximately 60 points in the observation window W = [0, 40] ×
[0, 40]. In the Strauss process (parametrized as in Baddeley et al. 2015), the intensity
related parameter was 0.06, the interaction strength 0.1, and the interaction radius 2,
making the resulting patterns rather regular. The y patterns were generated on W and
the x patterns on the extended window Wext = [−20, 60] × [−20, 60] to be able to
use plus sampling which represents the ideal situation where no imputation is needed
as the complete pattern is known. The Gaussian kernel (1) was used as the influence
kernel. Initially, the parameters of the competition field and of the Gaussian field were
set to the estimates found in Sect. 5 and the intercept β0 was chosen such that the
resulting LGCP model would have 600 points on average. First we used the estimated
values β1 = −0.7 and θ = 2.1, called “estimated” in Fig. 2. In addition, we used
either the values β1 = −3, and θ = 2.1 corresponding to a much stronger effect of
the influence kernel (β1) (“strong” in Fig. 2) or the values β1 = −0.7, and θ = 6
corresponding to a much larger range of influence θ (“wide” in Fig. 2) than in the
data. In all cases, σZ = 1.6 and ρZ = 2.6. We generated 100 replicates of each X
process and one y pattern for each x. The random intensity of the Cox process was
approximated by a piecewise constant function using 0.1 m × 0.1 m cells.

We fitted the conditional LGCP model to the simulated point patterns. We dis-
cretized the observationwindows to pixels of size 1m×1mand setweakly informative
independent priors for all model parameters as follows: For the parameters in β, we
used Gaussian distributions with mean zero and standard deviation 10. For the range
parameters ρZ and θ , very small and very large values do not make sense based on the
discretization and window used. Thus, we set the prior to be the Gamma distribution
with shape parameter 2.4 and scale parameter 1.8, implying that approximately 90%of
the prior probability is between 1 m and 10 m. Furthermore, the prior for the standard
deviation of the Gaussian field σZ was the exponential distribution with expectation
10, slightly favoring small values.

For each point pattern, we then ran theMCMC scheme using (a) no edge correction,
(b) the Poisson edge correction and (c) plus sampling edge correction with 100,000
updates using the true parameter values as the starting values. For each chain we
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Fig. 2 Quantiles (0.05, 0.25, 0.5, 0.75, 0.95) of differences between posterior means and reference values.
For each row of the figure, we display the X process and the competition effect on the right and within each
subfigure, we label the three different edge corrections (left). The quantiles are based on 100 replicates

discarded 20,000 first samples as burn-in and saved every 10th sample.When influence
was strong, most chains converged and mixed well. However, there were problems
with mixing if the influence was not so strong. In this case the effective sample size
was estimated to be less than 1000 in half of the chains. Upon closer inspection
multi-modality was often the cause. We used posterior means of each chain in the
comparisons. Using posterior modes led to identical conclusions.

4.2 Results

First, we investigated the performance of the Bayesian inference approach. To avoid
edge effects,we estimated the parameters using plus sampling, utilizing the true pattern
x in the extendedwindow.Based on the distributions of the posteriormeans for the plus
sampling method (see Plus in Fig. 2), we can see that the Bayesian MCMC approach
with the approximations used performed reasonably well for the main parameters β1
and θ . However, the less interesting random field parameters were clearly biased.
As expected, the distribution of the X pattern did not affect the performance of the
inference.

Second, we investigated the performance of the Poisson edge correction. An exam-
ple of the expected intensity field with and without edge correction for the conditional
LGCP model with the parameters estimated from the EVO02 pattern and Strauss pat-
tern x is shown in top row of Fig. 3. It can be seen that the Poisson corrected and the
plus sampling corrected intensities are quite similar to each other. The bottom row of
Fig. 3 further shows the components of the influence field for the Poisson correction,
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Fig. 3 Top row: expected intensity of the conditional LGCP with parameters estimated from the EVO02
pattern using no edge correction (left), Poisson correction (middle) and plus sampling (right). Bottom row:
influence field induced by the observed points (left), expected influence field caused by the unobserved
points under the Poisson assumption (middle) and influence field caused by the unobserved points (right).
The x pattern is a realization of a Strauss process with interaction parameter 0.1, interaction range 2, and
with on average 60 points. Dark color means low intensity/high influence

namely the contribution of the observed points (left) and the expected contribution
of the unobserved points under the Poisson assumption (middle). The contribution
of unobserved points is shown for comparison (right). The Poisson correction simply
approximates the contribution of the unobserved points.

To assess the performance of the proposed edge correction method, we compared
the posterior means of the model parameters β0, β1 and θ , obtained by using plus
sampling to the estimates obtained by using the Poisson correction and those obtained
by using no edge correction. The distribution of the posterior means is shown in Fig. 2.
It can be seen that the estimates of the different methods are very similar when the
influence of the large trees was not too wide, for both X processes. However, when
the influence was wide, the proposed Poisson correction produced estimates that were
closer to the plus sampling based estimates than the uncorrected estimates were. The
results were altogether very similar for the Poisson and Strauss processes. Thus, the
edge correction plays a role if the range of influence of the x points on the intensity
of Y is wide.

5 Application

The data shown in Fig. 1 have been collected on 40 m × 40 m squares in southern
Finland. They are part of a larger data set collected for studies on tree and stand
development in managed, uneven-aged Norway spruce forests conducted under the
ERIKA research project at the Natural Resources Institute Finland (Eerikäinen et al.
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2007; Eerikäinen et al. 2014; Saksa and Valkonen 2011). Using the conditional LGCP
model, we studied the effect of large trees xi (black circles) to the seedling patterns
yi (red crosses). The patterns xi consist of trees which had a vital crown with no
damages and with a dbh at least 7 cm in 1991. Most trees (78% of trees, 70% basal
area) were Norway spruces and the remaining ones either Scots pines or broadleaves.
The seedlings were naturally generated with height at least 10 cm in 1996 and had
reached this height after the data collection in 1991. The seedlingsweremostlyNorway
spruces (98%).

We fitted the conditional LGCP model using different mark dependent and mark
independent Gaussian influence fields: the full mark dependent model (2), the two
reduced models where either of the mark specific parameters, namely δ or α were
set to zero, the mark independent model (1), and a model without an influence field.
The mark was always the dbh. We used the same discretization of the observation
window (1 m × 1 m pixel size) and the same priors as in the simulation experiment
(Sect. 4.1). The pixel size 1 m × 1 m was chosen because variations in smaller units
are practically unimportant in forests. The priors for α and δ were both the exponential
distribution with expectation 10. We then ran the MCMC scheme using the Poisson
edge correction with 120,000 updates, leaving out the first 20,000 observations of the
chains as the burn-in.

To compare themodels, we used the posterior predictivemodel assessment based on
various summary characteristics, namely the L-function (variance stabilizing version
of Ripley’s K ), the empty space function F , and the nearest neighbour distribution
function G summarizing the spatial pattern y and, to investigate the relationship
between the large trees and seedlings, the cross L-function, L12 (e.g. Illian et al.
2008; Diggle 2013). We used the standard estimators of these functions with transla-
tional (L , L12) and Kaplan-Meier edge correction methods (F , G) (Baddeley and Gill
1997). For each plot, we generated 10,000 patterns of seedlings from the posterior
predictive distributions of the conditional LGCP models given the observed x and
calculated the summary functions for the data and for each of the generated patterns.
The posterior predictive simulations were made using a discretization with 0.2 m ×
0.2 m cell size.

Figure 4 shows the empirical L12 functions together with the 95% global extreme
rank length envelopes (Myllymäki et al. 2017; Myllymäki and Mrkvička 2020) con-
structed from the L12 summary functions of the simulations of the fitted model with
mark independent influence kernel (1) (shaded region), mark dependent influence ker-
nel (2) (dotted lines), and no influence kernel (dashed line) separately for each plot.
The observed L12 function is distinctly better covered by the envelopes based on the
models with influence field than without. While the envelopes of the model without an
influence field are centred around zero, i.e., no interaction between trees and seedlings,
the empirical L12 functions have the tendency to go below zero in most plots, indi-
cating repulsion or inhibition of trees and seedlings, and the envelopes of the models
with influence kernels are shifted downwards as well. The difference between the two
models with influence kernels is, however, minor. Other summary functions (L , F , G)
produced very similar envelopes regardless of the type or lack of influence field, see
figures in Appendix 1. The empirical functions were inside the envelopes, except the
nearest neighbor distance distribution functions of four sample plots VES07, VES13,
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Fig. 4 Empirical L12 functions (solid line) together with the 95% global envelopes constructed from 10,000
simulations from the posterior predictive distribution of the fitted conditional LGCPmodels for the 14 plots
in Fig. 1 with mark independent (1) (grey shade), mark dependent (2) (dotted lines), and no (dashed lines)
influence

VES14 and VES16, which were slightly outside the envelopes at distances less than
1 m, i.e. less than the pixel size used in the discretization. This may suggest that the
spatial distribution of the seedlings is not Poisson at a very small scale, but we did not
investigate this further.

The envelopes for the models with mark dependent kernels with either δ or α set
to zero are omitted because they were very similar to the envelopes of the other two
influence kernels.

Based on the analysis above, it is clear that an influence kernel is needed. However,
since all the models with an influence kernel fitted the data equally well, we report the
results of the simplest model (1). The marginal posterior distributions of the model
parameters of this model are shown in Fig. 6. The influence of the large trees on the
seedlings (β1) is clearly negativemeaning that the seedlings avoid locations in the close
vicinity of the large trees. The range of influence θ of the large trees was estimated
to be around 2.1 m, indicating that the influence of a large tree decreases from its
maximum influence (at the tree location) to 37% of it at distance 2.1 m from the tree,
or to 5% of it at distance 3.6 m. However, there is a lot of unexplained variability, as
the quite wide envelopes in Fig. 4 and Appendix 1 show.

Figure 5 shows for each plot one realization drawn from the posterior predictive
distribution of the model with mark independent influence kernel. It is difficult to
detect the relationship between trees and seedlings by eye, but one can compare the
clustering of the seedling patterns to the observed patterns (Fig. 1). The patterns in
Figs. 1 and 5 look rather similar, and according to the envelope tests (see Fig. 4 and
Appendix 1) the model captures small scale structures up to 5 m distances.
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Fig. 5 Simulated seedling pattern (red crosses) and observed large trees (black circles, radius relative to
dbh). The simulation was done using the posterior predictive distribution of the fitted conditional LGCP
models for the 14 plots in Fig. 1 with mark independent influence of large trees

Fig. 6 Posterior quantiles (0.05,
0.25, 0.5, 0.75, 0.95) of the
common parameters (top) and
the sample plot specific
intercepts β0 (bottom)
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6 Discussion

We proposed a LGCP model to investigate the effect of large trees on the intensity of
seedlings under the presence of unexplained clustering. The influence of large treeswas
modeled by using parametric influence kernels around them.Our analysis suggests that
tree regeneration is affected by the pattern of large trees in the studied data. Namely,
the large trees were found to have negative effect on the seedling density in the vicinity
of large trees. Further, the LGCP model could capture much of the unexplained clus-
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tering. For parameter estimation, we constructed a Bayesian approach using MCMC
and Laplace approximation. All computations were implemented in Julia language
(Bezanson et al. 2017), while graphics were done using ggplot2 (Wickham 2016).

Estimation of the influence field parameters worked well in our simulation experi-
ment and we did not observe any problems due to possible confounding between the
influence field and the spatial random effect as reported in the literature (e.g. Dupont
et al. 2020). However, the random field parameter estimates were biased. We suspect
that this is caused byweak identifiability (cf. Anderes 2010; Zhang 2004) or discretiza-
tion bias coupled with the Laplace approximation. We used replicates to help with the
weak identifiability which was necessary for the plots with very few seedlings. In our
further experiments with finer discretizations (results not shown), we observed issues
with the approximation. In particular, when the number of points per cell was small,
the approximate posterior appeared to degenerate. We are unaware of exact inference
methods that would be feasible in our setting, but we are currently investigating new
methods that could allow for more detailed investigation of this issue.

There are many alternative approaches to inference with log Gaussian Cox pro-
cesses. For example, theRpackage INLA(Rue et al. 2009) usesLaplace approximation
in a similar fashion as we did, but is somewhat restricted to linear models. Indeed,
INLA can in principle accommodate our model using the rgeneric class (personal
communication with Håvard Rue). However, we faced some computational difficul-
ties in estimation. The R package lgcp (Taylor et al. 2015) uses MALA algorithm for
efficient Bayesian inference for the full model including the latent field. The use of
full MCMC might lead to better estimation of the random field parameters. However,
the lgcp package is also restricted to linear models, whereby we were not able to
apply it directly to our model. For Stan (Stan Development Team 2018) our random
field model appears to be too complicated, however there are some recent advances
see e.g. Margossian et al. (2020). Also, inlabru (Bachl et al. 2019) could be further
investigated.

Since the large trees outside the sampling window may affect the intensity of the
seedlings within the window, an edge correction assuming that the large trees were
from a Poisson process was included in the estimation procedure. We demonstrated
by a small simulation study that this edge correction can work well even when the
large trees are from a regular process. Compared to no edge correction, it improved
the parameter estimates when the range of influence was rather wide.

An obvious alternative strategy would be to include the locations of the unob-
served trees outside the observation window to the MCMC estimation in a similar
manner as considered in the inference for Neyman-Scott point processes (Møller and
Waagepetersen 2004). This approach would allow incorporating prior information on
the large tree process in the edge correction at the cost of increased complexity. Since
we did not have important prior information and the effect of edge correction appeared
minor, we did not explore this approach further. Ideas from Geyer (1999) or Gabriel
et al. (2017) could be used to find further alternative edge correction methods.

Our proposed edge correction method can be efficiently implemented when the
influence field is constructed as the sum of individual signals. In principle, a similar
edge correction could be applied with different combination rules, such as product
(e.g. Wu et al. 1985; Miina and Pukkala 2002) or max-fields (e.g. Penttinen and Niemi
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2007). If also the influence kernel is binary, e.g. c(h; θ) = 1(h ≤ θ), then themax-field
is split into two phases as well, namely influence and influence-free zones. However,
we note that our proposed calculation of the expected influence of trees outside the
observation window W does not generalize directly to other combination rules.

Themodels introduced in this paper could be useful even for natural (e.g. Abellanas
and Pérez-Moreno 2018) or urban forests (Hauru et al. 2012). Furthermore, they could
be used in an experimental setup, where realizations of seedlings would be generated
for different large tree patterns and the success of regeneration evaluated by some
spatial summary functions such as the empty space function. In a similar manner, the
effect of different thinning strategies on the regeneration of trees could be evaluated.

It could be argued that, since the management was the same for all plots and
the geographical differences minor, the plots should have had a common intercept
parameter. However, this was clearly not the case due to large variation in numbers of
seedlings fromplot to plot. Sinceweusedplot specific intercepts, it could be argued that
all other parameters should be plot specific too. This was not possible in practice due
to the problems with the random field parameters. We did not explore the alternative
where the intercept and the influence field parameters would be plot specific but the
random field parameters shared since the envelope tests already suggested adequate
fit of the model.

The observed and simulated seedling patterns in the Figures 1 and 5, respectively,
are very similar in several aspects while quite different in others. For example, the
clusters seemed to be clustered in the VES13 plot. Although the envelope tests suggest
that the model was able to capture the variability in the data, it depends on the specific
application if the model is adequate. To best of our knowledge, this is the first point
process model accounting for clustering of the seedlings in these uneven-aged forests.

There are many other factors than the vicinity of large trees that may affect the
intensity of seedlings (Valkonen and Maguire 2005; Kuusinen et al. 2019). Therefore,
the model could be further improved and unexplained variability decreased if some
covariate information on local conditionswithin plotswould be available to be included
in themodel. Further, plot level covariate effects could be added to themodel in order to
explain the numbers of seedlings in different plots. Finally, we modeled the influence
of large trees as a function of the dbh, whose effect on the influence was, however,
minor in our data. Other possibly useful marks could be the height, crown ratio or
crown width of the tree, for example.
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Appendix: Envelopes

See Appendix Figures 7, 8 and 9.
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Fig. 7 Empirical L functions (solid line) together with the 95% global envelopes constructed from 10,000
simulations from the posterior predictive distribution of the fitted conditional LGCPmodels for the 14 plots
in Fig. 1 with mark independent (grey shade), mark dependent (dashed lines), and no (dotted lines) influence
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Fig. 8 Empirical empty space functions (solid line) together with the 95% global envelopes constructed
from 10,000 simulations from the posterior predictive distribution of the fitted conditional LGCP models
for the 14 plots in Fig. 1 with mark independent (grey shade), mark dependent (dashed lines), and no (dotted
lines) influence
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Fig. 9 Empirical nearest neighbor distance distribution functions (solid line) together with the 95% global
envelopes constructed from 10,000 simulations from the posterior predictive distribution of the fitted condi-
tional LGCPmodels for the 14 plots in Fig. 1 with mark independent (grey shade), mark dependent (dashed
lines), and no (dotted lines) influence
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