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Abstract
Declining carbon (C) content in agricultural soils threatens soil fertility and makes

soil prone to erosion, which could be rectified with organic soil amendments. In a

4-yr field trial, we made a single application of three different organic sludges from

the pulp and paper industry and studied their effects on cereal yield, soil C content,

and fungal and bacterial composition. In laboratory rainfall simulations, we also stud-

ied the effects of the soil amendments on susceptibility to erosion and nutrient mobi-

lization of a clay-textured soil by measuring the quality of percolation water passing

through 40-cm intact soil monoliths during 2-d rainfall simulations over four con-

secutive years after application. A nutrient-poor fiber sludge reduced wheat yield in

the first growing season, but there were no other significant effects on cereal yield or

grain quality. An input of ∼8 Mg ha−1 C with the soil amendments had only minor

effects on soil C content after 4 yr, likely because of fast microbe-mediated turnover.

The amendments clearly changed the fungal and bacterial community composition.

All amendments significantly reduced suspended solids (SS) and total phosphorus

(TP) concentrations in percolation water. The effect declined with time, but the reduc-

tion in SS and TP was still >25% 4 yr after application. We attributed the lower ten-

dency for particle detachment in rain simulations to direct interactions of soil min-

erals with the added particulate organic matter and microbe-derived compounds that

stabilize soil aggregates. In soils with low organic matter content, pulp and paper

industry by-products can be a viable measure for erosion mitigation.

1 INTRODUCTION

The pulp and paper industry produces large quantities of

organic sludges as side streams (in Finland, 420,000 Mg

dry matter per year) that are incinerated with low net energy

recovery (Joona, Kuisma, Alakukku, & Kahiluoto, 2012).

Abbreviations: CPMS, composted pulp mill sludge; DOC, dissolved

organic carbon; DRP, dissolved reactive phosphorus; EC, electrical

conductivity; FS, fiber sludge; LPMS, lime-stabilized pulp mill sludge; PP,

particulate phosphorus; SS, suspended solids; TP, total phosphorus.
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In a circular economy, these valuable organic side streams

could be used elsewhere in new value chains, creating

jobs, business opportunities, and environmental benefits.

Agricultural use of organic sludges derived from the pulp

and paper industry has been studied for different soil types

and climates, with the results generally indicating positive

impacts on crop production and soil physical properties

(e.g., Chow, Rees, Fahmy, & Monteith, 2003; Gallardo,

Cea, Tortella, & Diez, 2012; Sippola, Mäkelä-Kurtto, &

Rantala, 2003). For example, Chow, Rees, Fahmy, and

Monteith (2003) reported that pulp mill fibers improved soil
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aggregation on a gravelly loam soil at application rates of

20–160 Mg ha−1. They also found that it took longer before

surface runoff started and that soil loss was reduced up to

90% from the level of control when pulp fiber was used as

soil amendment. However, less is known about whether these

organic side streams can contribute to water protection (i.e.,

reduced nutrient transport) in clayey agricultural soils for a

longer period by improving soil structure and protecting the

soil surface against water erosion over several years.

In general, organic matter in soils enhances aggregate sta-

bility (Greenland, Lindstrom, & Quirk, 1962; Soinne, Hyvälu-

oma, Ketoja, & Turtola, 2016; Tisdall & Oades, 1982). Also,

organic soil amendments can directly form organo-mineral

compounds that bind soil particles together. At the same time,

mineralization of introduced organic matter is likely to cause

changes in microbial activity and community composition,

which affects soil structural properties (Abdi et al., 2017;

Gallardo et al., 2012; Zibilske, Clapham, & Rourke, 2000).

Microbiological decomposition changes the chemical com-

position of the added organic matter and provides new types

of compounds (e.g., extracellular polymeric substances, fun-

gal hyphae, and microbial necromass), contributing to soil

aggregation (Costa, Raaijmakers, & Kuramae, 2018; Peele &

Beale, 1941). Decomposition of relatively slowly degradable

organic compounds, such as cellulose and lignin present in

pulp and paper industry sludges, provides a platform for a suc-

cession of microbial substances potentially forming organo-

mineral associations with clay-sized soil particles. If intro-

duced organic matter increases the degree of soil aggregation

and aggregate strength, the greater aggregate stability makes

the soil less prone to erosion (Diacono & Montemurro, 2010;

Le Bissonnais, 1996).

The carbon (C) content of agricultural soils is currently

declining in Finland (Heikkinen, Ketoja, Nuutinen, & Regina,

2013) and on a global scale (Lal, 2004). Organic soil amend-

ments are an attractive option to increase and stabilize soil

C storage in the long term (Poulton, Johnston, Macdonald,

White, & Powlson, 2018; Six, Conant, Paul, & Paustian,

2002). Organic side streams from the pulp and paper indus-

try have been shown to decompose rather quickly (Foley &

Cooperband, 2002; Zibilske et al., 2000). Thus, the effect of a

single addition of organic matter on soil structure and C con-

tent is likely transient. However, recent literature highlights

the importance of microbially derived organic material in sta-

bilizing C via organo-mineral interactions and protecting it

against decomposition (Kopittke et al., 2018, 2020). Carbon

protected by organo-mineral associations leads to the forma-

tion of small, water-stable micro-aggregates, contributing to

soil structural stability over several years (Tisdall & Oades,

1982). In theory, enhanced microbial activity and potential

changes in microbial communities due to added organic mat-

ter can contribute simultaneously to long-term C storage and

protection of soil structure against water-induced stresses.

Core Ideas
∙ Erosion mitigation using pulp and paper mill

sludges was tested in a 4-yr study.

∙ Intact soil monoliths were taken from field for lab-

oratory rainfall simulations.

∙ Sludge addition reduced particle and P losses from

soil to percolation water.

∙ Sludges decomposed quickly and had minor effects

on soil C content after 4 yr.

∙ Sludge addition clearly altered soil bacterial and

fungal community composition.

The effect of pulp mill sludge on soil structure and the

role of soil microbiology have been reported by Bipfubusa,

Angers, N’Dayegamiye, and Antoun (2008). They measured

increased aggregate stability after 2 yr of pulp mill sludge

application (fresh and composted) on loam-textured soil con-

taining 20% clay. They suggested that both stimulation of soil

microflora and binding of humic substances with soil min-

eral particles contributed to aggregate stabilization. Abdi et al.

(2017) observed changes in microbial community structure

for 3 yr after 9 yr of continuous application of pulp mill

biosolids, whereas no changes were observed when soil was

amended with liming materials.

In a 4-yr field experiment, we examined the potential of

three different pulp and paper industry organic sludges to

reduce the susceptibility of a clay-textured soil to erosion

and nutrient mobilization (rainfall simulation test), the poten-

tial to increase soil organic matter content (soil sampling),

and the potential to bring about changes in soil microbiol-

ogy (DNA sequencing). Our starting hypotheses were that

(a) organic matter input derived from pulp and paper indus-

try side streams can improve soil structural stability, which

reduces soil dispersion during rain events and the risk of asso-

ciated off-site nutrient transfer through structured clay soils,

and (b) the effect will vary depending on soil amendment

properties and over time. We also tested the hypotheses that

(c) a single, large input of organic soil amendments will pre-

serve soil organic C over several years and (d) application of

wood-derived amendments to an agricultural soil is reflected

in soil microbial activity and community structure. Although

research on the functionality of the soil microbial community

and its responses in terms of soil functions is limited (Nan-

nipieri et al., 2003; Yang et al., 2018), these interactions are

increasingly highlighted when promoting sustainable man-

agement of soils and attempts to maintain soil C stocks (Liang,

Amelung, Lehmann, & Kästner, 2019). In the present study,

we attempted to comprehend changes in erosion vulnerabil-

ity due to pulp mill sludge amendments using a combination
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T A B L E 1 Dry matter content (DM) of the three pulp and paper mill side streams used as soil amendments and amount of organic matter (OM),

C, total N (TN), soluble N (Sol-N), and total P, K, S, Ca, and Mg supplied to soil with the amendments

Sludgea DM OM C TN Sol-N P K S Ca Cd Cr
% Mg ha−1 kg ha−1 g ha−1

CPMS 43.4 14.3 7.8 211 34 45 39 109 949 21 727

LPMS 49.7 17.3 9.0 253 32 53 30 131 2,181 16 528

FS 33.5 15.7 8.4 13 1 2 1 7 2,269 0.2 100

aCPMS, composted sludge; FS, fiber sludge; LPMS, lime-stabilized sludge.

of research methods dealing with soil physical, chemical, and

microbiological properties.

2 MATERIALS AND METHODS

2.1 Origin and quality of soil amendments

The three soil amendments used in the experiment were pro-

duced by Soilfood Oy (formerly Tyynelän maanparannus Oy)

from organic side streams provided by Stora Enso’s Imatra

Mill located in southeastern Finland. These were (a) com-

posted pulp mill sludge (CPMS) and (b) lime-stabilized pulp

mill sludge (LPMS), both derived from the process water

treatment plant at the factory, and (c) fiber sludge (FS), which

consists of cellulose fibers that are too short for the final prod-

uct of the mill. The main difference between the materials is

that those recovered from the mill’s wastewater treatment pro-

cess contain phosphorus (P), nitrogen (N), and other nutrients

added to the biological purification step to cut down oxygen

demand of effluent waters, whereas FS is a nutrient-poor cel-

lulose material from the pre-clarifier of cardboard machine

process water, removed in a wire sieve as semi-dry mass. The

origin, processing, analytical methods, and detailed proper-

ties of the soil amendments derived from these side streams

are given in the Supplemental Material (p. S2, Supplemental

Table S1).

2.2 Field experiment

The field experiment was established at Jokioinen in south-

western Finland on a clay-textured soil classified as a Luvic

Stagnosol (Eutric, Clayic, Protovertic) (IUSS Working Group,

2015).

The experiment layout was a randomized complete block

design with five replicates with a total of 20 plots, each mea-

suring 6 by 15 m. Unamended plots served as the control

treatment. The amendment rates used for the sludges at their

original moisture content were 52, 51, and 72 Mg ha−1 for

LPMS, CPMS, and FS, respectively (Table 1). These rates

were based on an attempt to increase soil C content as much

as possible without exceeding the soluble N (Sol-N) limit of

30 kg ha−1 allowed as autumn application. The sludges were

spread on the soil in September 2015 as a single applica-

tion in the beginning of the experiment, and the field was

tilled immediately to a depth of approximately 10 cm. Details

of establishment and maintenance of the experiment are

given in the Supplemental Material (pp. S2–S4, Supplemental

Table S2).

All field plots were sampled at the 0-to-20-cm depth in

autumn 2015, just before the amendments were applied, and

again in autumn 2019, by taking from each plot three repli-

cate samples that were combined for analyses. At the initial

sampling in 2015, soil clay content, determined by a pipette

method (Elonen, 1971), was 47%. Total C and total N (LECO

CN-2000) content was 2.3 and 0.19%, respectively. Soil test

P (1-h extraction at 1:10 vol/vol ammonium acetate at pH

4.65; Vuorinen & Mäkitie, 1955) was 10 mg L−l, which indi-

cates that annual P fertilization would be unlikely to give yield

responses (Valkama, Uusitalo, Ylivainio, Virkajärvi, & Tur-

tola, 2009). Soil pH (H2O) was 6.4, and electrical conductiv-

ity (EC) was 0.051 μS cm−1.

Total C, total N, pH, and EC were determined for sam-

ples taken from each field plot at the end of the experiment

(autumn 2019). Additionally, soil total cadmium (Cd) content

in samples from each plot was analyzed by using a graphite

furnace atomic absorption spectrofotometer (AA280Z, Var-

ian) in aqua regia digestate (SFS-ISO 11466:2007).

In 2016 and 2019, the crop grown was wheat (Triticum aes-
tivum L.); in 2017 and 2018, the crop was oats (Avena sativa
L.). At the end of each growing season, the plots were har-

vested with an experimental harvester, fresh weight of crop

biomass was recorded, and grain samples were dried at 105 ˚C

overnight to calculate moisture content. For analyses of nutri-

ent and heavy metal content, grain samples were milled with

a hammer mill and digested with 7 M HNO3, and the extracts

were analyzed using inductively coupled plasma-optical emis-

sion spectrometry.

2.3 Rainfall simulation test

To investigate the ability of the soil amendments to

stabilize soil aggregates, and thus reduce erosion and nutri-

ent leaching through soil profile, large undisturbed soil
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monoliths (30 cm in diameter, ∼40 cm deep) were extracted

from all field plots in sections of polyvinyl chloride sewage

pipe using a tractor-driven soil auger. Sampling was repeated

in four consecutive springs (May 2016–May 2019).

After coring and transport to the laboratory, the bottom

of the monoliths was prepared to expose intact natural ped

surfaces. Void spaces created during preparation were filled

with washed 3-to-5-mm quartz sand. On the top side of

each polyvinyl chloride cylinder, a 32-mm-diameter hole

was drilled (center of the drill hole at the level of soil sur-

face) to lead water out of the monolith surface if pond-

ing occurs. The monoliths were then saturated from below

for 1 d, maintained at saturation for an additional 2 d, and

allowed to drain overnight. The monolith sampling and rain-

fall simulation procedures are described in detail in Uusitalo

et al. (2012).

Simulated rain was applied for 5 h d−1 on two consec-

utive days at an intensity of 5 mm h−1 (25 mm in both

days). Four individual percolation water samples were

collected from each monolith during the rainfall simula-

tion. Samples were analyzed separately to detect possible

within-simulation trends. The first water sample was taken

from water draining after the saturation period, the second

and fourth samples were taken during the consecutive

simulated rainfall events, and the third sample was taken

from water draining during the night between the events.

The total volume of percolation water was close to equal

in all treatments, and typically all rain applied percolated

through the soil (Supplemental Figure S1). All samples were

immediately analyzed for turbidity (2100 AN IS Turbidime-

ter, Hach), and subsamples were passed through a 0.2-μm

filter (Nuclepore, Whatman). All unfiltered samples and

filtered subsamples were frozen and stored at −18 ˚C for

later analysis.

Dissolved reactive P (DRP) was analyzed in the filtered

(0.2 μm) subsamples (Lachat QuikChem Method 10-115-01-

1-Q), and total P (TP) was analyzed after acid peroxodisulfate

digestion of unfiltered samples in an autoclave (120 ˚C,

100 kPa, 30 min; Turtola, 1996) based on molybdate col-

orimetry (Murphy & Riley, 1962). Particulate P (PP) was

taken as the difference between TP and DRP. Water samples

were further analyzed for suspended solids (SS) (material

retained on a Whatman GF/A 1.6-μm filter), dissolved organic

C (DOC) and total organic C (Shimadzu TOC-V CSH Total

organic C analyzer), pH, EC (electrodes Mettler Toledo InLab

Expert Pro-ISM and InLab 731-ISM, respectively), and total

N (unfiltered), nitrate-N (NO3–N), ammonium-N (NH4–N;

Lachat QuikChem Methods 10-107-04-2-C, 10-107-04-2-C

and 10-107-06-2-B, respectively), calcium (Ca2+), potas-

sium (K+), magnesium (Mg2+), sodium (Na+), sulfur (S),

and Cd using inductively coupled plasma-optical emission

spectrometry.

2.4 Microbiological analyses

Samples for microbial analyses were taken from all 20 field

plots (0-to-10-cm depth, composite samples comprising 10

subsamples) in spring and autumn 2018, 3 yr after the sin-

gle application of the soil amendments. The methods used

to analyze basal respiration, microbial biomass (amount of

C and N in microbial biomass), phospholipid fatty acids,

and soil-extractable C and N are presented in the Supple-

mental Material (pp. S5–S6). The methods used for DNA

extraction, amplicon sequencing, and bioinformatics are pre-

sented briefly below. Glomalin-related soil proteins were ana-

lyzed in triplicate 0.25-g samples of air-dry soil (autumn sam-

ples only) as described in Moragues-Saitua, Merino-Martín,

Stokes, and Staunton (2019).

The DNA in both spring and autumn samples from all

20 plots was extracted using the NucleoSpin soil kit

(Macherey) and sequenced at the Institute of Genomics, Tartu

University, as paired-end 2 × 300 bp with the MiSeq platform

(Illumina) using the MiSeq v3 kit, producing about 20–25 mil-

lion reads per flow cell. For bacteria, the 16S SSU rRNA gene

V4 region was amplified using primers 515F and 806R (Capo-

raso et al., 2011, 2012). For fungi, the ribosomal internal tran-

scribed spacer 2 region was amplified using primers gITS7

(Ihrmark et al., 2012) and ITS4 (White, Bruns, Lee, & Taylor,

1990) with 8 bp dual index for 24 cycles. Raw sequences of 40

samples have been stored in the NCBI genebank BioProject

PRJNA607883 under accession numbers SAMN14150014-

53.

Quality filtering, removal of artefacts, chimeric sequences,

primer-dimers, and primers from raw 16S rRNA and inter-

nal transcribed spacer 2 sequence reads and clustering and

taxonomy annotation were conducted using the PipeCraft 1.0

pipeline (Anslan, Bahram, Hiiesalu, & Tedersoo, 2017) as

described in Soinne et al. (2020). Details are provided in the

Supplemental Material (pp. S5 and S6).

2.5 Statistical analyses

Preliminary inspection showed that there were no clear

within-simulation trends in SS or nutrient concentrations, so

the results for the four individual water samples taken from

each monolith were pooled for statistical analysis. The statis-

tical analyses were performed using generalized linear mixed

models. Treatment (control, FS, LPMS, CPMS) and year

(2016–2019) and their interaction were used as fixed effects,

and block and the interaction of block × year were used as

random effects. Correlated observations between years were

taken into account using the most suitable covariance struc-

ture (homogeneous or heterogeneous compound symmetry or

first-order autoregressive, or unstructured). The unstructured
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covariance matrix is the most flexible because it imposes no

pattern on the covariances, whereas CS assumes a constant

covariance between all years. The lowest Akaike information

criterion value was used as the most important criterion for

selection of covariance structure, together with normality of

the residuals (Gbur et al., 2012).

Microbial variables (basal respiration, microbial C and N,

extractable C and N, glomalin-related soil protein, and phos-

pholipid fatty acids) were analyzed with the same model

using two correlated seasons (spring and autumn) instead of

years. Glomalin-related soil proteins were determined only

for autumn samples. Unequal variances of treatments were

allowed for total phospholipid fatty acids based on a lower

Akaike information criterion value and a likelihood ratio test.

Parameters measured in soil samples (C, N, Cd, EC, and

pH) were analyzed from one depth (0–20 cm), using only

treatment as a fixed effect and block as a random effect.

Assumptions of gamma (with log link for PP, TP, DRP, and

NH4–N) and Gaussian (with identity link for the other param-

eters analyzed) distributions were used for all dependent vari-

ables. All models were fitted by using the residual pseudo

likelihood (for gamma) or the restricted maximum likelihood

(for Gaussian) estimation method. The method of Westfall

(1997) was used for pairwise comparisons of treatments with

the control within the same year, depth, or season. Pairwise

comparison of treatment effect over years was conducted with

the Tukey–Kramer method. A significance level of α = .05

was used in all analyses. Degrees of freedom were calculated

using the Kenward–Roger method (Kenward & Roger, 2009).

The analyses were performed using the GLIMMIX procedure

in the SAS Enterprise Guide 7.15 (SAS Institute).

Operational taxonomic unit data from amplicon sequenc-

ing were normalized using the GMPR method (Chen, Reeve,

Zhang, Huang Wang, & Chen, 2018) in R 3.5.2. One out-

lier sample, LPMS autumn, was removed because of its small

library size. Permutational multivariate ANOVA was per-

formed using distance matrices with function adonis from

vegan 2.5–5 (Oksanen et al., 2019), with block as the stra-

tum. Nonmetric multidimensional scaling was conducted with

stable solution from random starts, axis scaling, and species

scores with function metaMDS from vegan using the Bray–

Curtis dissimilarity index and plotted with fitted environmen-

tal variables envfit from vegan.

3 RESULTS

3.1 Rainfall simulation study

Rainfall simulations carried out over four consecutive years

after application of the different pulp and paper industry side

streams suggested that all amendments tested significantly

decreased soil susceptibility to particle mobilization and asso-

ciated PP losses (Figure 1; Supplemental Table S3). In all

individual years, the unamended control produced the highest

SS, PP, and TP concentrations in percolation water (Figure 1),

although differences between the control and treatments var-

ied between years. In contrast, mobilization of DRP, which

made up 11–33% of TP in percolation water, was not affected

by application of the different organic amendments (Figure 1)

despite the fact that they all slightly increased soil pH (Sup-

plementary Material Table S4), which could have increased P

solubility.

Particle mobilization in amended soil was suppressed more

strongly during the first 2 yr of the study, when particle con-

centration in percolation water of the control treatment was

twice as high (∼500 mg L−1), than in the latter 2 yr (mean

SS, ∼250 mg L−1). Whether the effect of the amendments was

gradually subsiding with time or if the less pronounced effect

of the amendments was due to more stable soil structure in the

drier conditions in the latter half of the study period remains

unresolved.

Of the three organic soil amendments studied, FS appeared

to act most consistently throughout the years, with a mean

47–76% reduction in SS compared with the control. The low-

est mean reduction in SS mobilization was associated with

CPMS, but it still resulted in a 62% reduction in SS concen-

tration compared with the control in the first year and a 30–

34% reduction during the last 3 yr. The highest single-year

SS reduction (80–82%) was associated with LPMS in the first

2 yr; thereafter, the effect was 30–51% compared with the con-

trol. Mobilization and transport of PP with percolation water

closely followed the same trends as SS because of the natural

close correlation between these parameters.

Overall, the FS and LPMS treatments resulted in signif-

icant increases in DOC mobilization (Figure 2). A flush of

DOC was recorded in percolation water collected during the

first year’s rainfall simulation (7 mo after amendment appli-

cation) in all treatments, with 84–160% higher concentrations

for the amended soils compared with the control. However,

the water samples from the control treatment had highly vari-

able DOC in the first year, and no statistically significant dif-

ferences were established. In the second study year, DOC con-

centrations in percolation water were significantly higher in

the LPMS treatment (by 54%), whereas DOC concentrations

in the other treatments were similar to that in the control.

No differences between treatments and control were observed

during the last 2 yr of the study (for inorganic and total C, see

Supplemental Table S5).

Total N and NO3–N concentrations tended to be lower in

amended soils than in the control in the first study year but

were typically similar or higher in the later years (Figure 2).

The overall treatment effects regarding N species in perco-

lation water were not significantly different from the control

(Figure 2). The pH and EC of percolation water increased in

FS and LPMS treatments, whereas no effect was observed
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F I G U R E 1 Concentrations of suspended solids (SS), total phosphorus (TP), particulate P (PP), and dissolved reactive P (DRP) in percolation

water from 40-cm deep monoliths of control and treated soil. Treatment effects over 4 yr are summarized in the right-hand panels, where the differences

of means are represented in a link scale when the dependent variable was not normally distributed. Error bars denote 95% confidence intervals. Asterisks

indicate significant difference between treatment and control (*p < .05, **p < .01, ***p < .001, Op < .1; ns [p ≥ .1]). Ctrl, control; CPMS, composted

sludge; FS, fiber sludge; LPMS, lime-stabilized sludge

in CPMS treatment (Supplemental Figure S2). For other ele-

ments in percolation water, see Supplemental Table S6.

3.2 Effect on cereal yield

No significant treatment effects on yield or yield quality were

observed during the study (Supplemental Figure S3; Supple-

mental Tables S7 and S8). However, in the first study year, the

grain yield was 14% lower in the nutrient-poor FS treatment

compared with the control. This was likely due to immobiliza-

tion of N. In the second year, yield in the LPMS treatment was

over 500 kg ha−1 higher than in the control treatment (p = .2).

Due to very dry spring in the third year, the mean yields were

exceptionally low (<1,500 kg ha−1).

3.3 Heavy metals

One of the main concerns related to agricultural use of indus-

trial side streams is whether they contain heavy metals or

other harmful elements (Cd in particular) that may accumu-

late in the soil and end up in plants. Of the soil amendments

studied here, FS did not contain quantifiable amounts of
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F I G U R E 2 Concentrations of dissolved organic C (DOC), total N, and NO3–N in percolation water from 40-cm-deep monoliths of control and

treated soil monoliths. Treatment effects over 4 yr are summarized in the right-hand panels. Error bars denote 95% confidence intervals. Asterisks

indicate significance difference between treatment and control (*p < .05, **p < .01, ***p < .005, Op < .1; ns [p ≥ .1]). For fiber sludge (FS) treatment

year 2017, data on total N and NO3–N of one of the five replicate samples were removed as outliers. Ctrl, control; CPMS, composted sludge; LPMS,

lime-stabilized sludge

Cd, whereas the Cd content in CPMS and LPMS was 0.96

and 0.60 mg kg−1 DM, respectively (Supplemental Table

S1). These concentrations where unexpectedly high, but they

did not exceed the maximum permissible Cd concentration

for soil amendments under Finnish legislation, which is

1.5 mg kg−1 DM. Due to high application rates (>20 Mg

ha−1 DM), the total Cd loads were 20 and 14 g ha−1 for

CPMS and LPMS, respectively. For these soil amendments,

application exceeded the maximum permissible Cd load

of 7.5 g ha−1 summed for a 5-yr period. However, soil Cd

concentration did not change due to Cd application with the

amendments (Supplemental Table S4). Moreover, Cd and

lead (Pb) concentrations in grain did not exceed the maxi-

mum permissible levels (0.1 and 0.2 mg kg−1 wet weight,

respectively) set by European legislation (European Union,

2006; Supplemental Tables S7 and S8). Water samples

from the rainfall experiment were also analyzed for Cd in

the third and fourth years of the study, but all values were

below the detection limit of 0.7 μg L−1 (data not shown).

Concentrations of other harmful elements were low enough

to allow even higher amendment rates than used in this study

(Supplemental Table S1).

3.4 Effects of amendments on soil
and microbes

Four years after application of a single large dose of the

organic soil amendments, only minor effects on soil C and N

content were detectable (Supplemental Table S4), apart from

the CPMS treatment having slightly higher (p = .053) soil C

content than the control (by 0.18 percentage points).

The soil amendments increased basal respiration in

spring and microbial biomass (estimated by the fumigation-

extraction technique) in autumn (Table 2). Clear changes

in bacterial and fungal communities (Figure 3; Supplemen-

tal Tables S9 and S10), revealed by DNA-based amplicon

sequencing were observed in soils that received the amend-

ments, although the coarser phospholipid fatty acid method

indicated that microbial biomass remained rather unchanged
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T A B L E 2 Basal soil respiration (BR), microbial biomass C (CMB) and N (NMB), and glomalin-related soil proteins (GRSP) in control and

treatment plots (n = 5)

Treatmenta BR CMB NMB GRSPb

μg CO2 kg−1 h−1 mg kg−1 g kg−1

Spring samples

FS 95.8 (82.7–111)*** 0.18 (0.16–0.21) 0.027 (0.022–0.032)

LPMS 61.9 (53.4–71.7) 0.18 (0.16–0.20) 0.028 (0.024–0.033)

CPMS 91.0 (78.6–106)** 0.17 (0.15–0.19) 0.027 (0.022–0.031)

Control 56.6 (48.9–65.6) 0.16 (0.15–0.18) 0.028 (0.023–0.032)

Autumn samples

FS 42.0 (36.3–48.7) 0.25 (0.22–0.28)** 0.046 (0.041–0.051)** 1.71 (1.43–1.99)†

LPMS 42.6 (36.8–49.4) 0.25 (0.23–0.28)** 0.046 (0.042–0.051)** 1.55 (1.27–1.83)

CPMS 45.6 (39.3–52.8) 0.25 (0.22–0.28)** 0.042 (0.037–0.047)** 1.63 (1.35–1.91)

Control 45.4 (39.2–52.7) 0.20 (0.18–0.22) 0.032 (0.027–0.037) 1.42 (1.14–1.70)

Note. Values in parentheses are 95% confidence intervals. Asterisks indicate significant difference between treatment and control.
aCPMS, composted sludge; FS, fiber sludge; LPMS, lime-stabilized sludge. bDetermined for autumn samples but not for spring samples.
*Significant at the .05 probability level. **Significant at the .01 probability level. ***Significant at the .001 probability level. †Significant at the .1 pobability level.
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F I G U R E 3 Plot of (a) bacterial and (b) fungal communities in control and treated soil, shown as 95% confidence interval ellipses of SD of the

mean of five replicate samples (three-dimensional nonmetric multidimensional scaling [NMDS] with Bray–Curtis dissimilarity index, showing only

axis 1 and axis 3). Grey arrows show increasing direction of significantly correlated (p < .01) environmental factors pH, microbial C (Cmb), and

microbial N (Nmb). Axis 2 is not shown in the figure; it separated samples by sampling time (spring vs. autumn). Ctrl, control; CPMS, composted

sludge; FS, fiber sludge; LPMS, lime-stabilized sludge

(Supplemental Table S11). The treatments also affected the

amount of K2SO4–extractable C in soil, but the changes inter-

acted with the season (Supplemental Table S11). The levels of

K2SO4–extractable N and glomalin-related soil proteins were

only marginally affected by the treatments (Table 2).

Sampling time and amendment type explained roughly 8

and 19% of the variation in microbial community compo-

sition (p < .001) of both bacterial and fungal operational

taxonomic units, respectively (Figure 3; Supplemental Table

S12). All amendments increased soil pH (Supplemental
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Table S4), which seemed to be an important environmental

factor affecting the bacterial and fungal communities in

the soil (Figure 3). The bacterial and fungal communities

in the LPMS treatment, with the highest soil pH, differed

most from the control and had the highest microbial N and

microbial C (Figure 3; Table 2; Supplemental Table S4).

Closer analysis of the microbial communities (Supplemental

Table S9) revealed a distinct increase in plant root-associated

fungal species, such as Sebacinales (around 300–700%

increase in log-scale) and the arbuscular mycorrhizal fungus

Funneliformis mossae, in plots receiving soil amendments.

Operational taxonomic units representing various bacterial

groups showed significant differences between the treatments

and control plots (Supplemental Table S10). Bacterial

representatives clustering into eight taxa (Anaerolineae,

Chitinophagaceae, Demequinaceae, Microscillaceae, Myx-
ococcales, Pedosphaeraceae, Rhodanobacteraceae, and

Xanthomonadaceae) were more common in all amended

plots, showing 200–700% increases (in log-scale, p Adj. ≤

.0001) compared with the unamended control.

4 DISCUSSION

Rainfall simulation was conducted with an intensity of 5 mm

h−1, which represents typical rains in Finland (Kuusisto,

1980). Although heavier storms naturally cause severe ero-

sion events if occurring when soils are bare, the persistent but

less spectacular losses of clay particles mobilized by lower

intensity rains maintain turbidity of rivers flowing through the

landscapes of southwestern Finland. This relatively flat area

has predominantly clay-textured, structured soils and requires

pipe drains to carry the weight of machines in spring. Thus,

after frost disappears, most of the excess water discharges as

subsurface drainage flow (Koskiaho et al., 2002; Turtola &

Paajanen, 1995). Our rainfall simulation setup aimed to mimic

the generation of subsurface drainage discharge during typical

rainy periods.

Amending soil with pulp mill side streams decreased parti-

cle mobilization to percolation water and associated P losses

over multiple years. As compared to other soil amendments

used as erosion or PP control agents, our results suggest that

the pulp mill wastes bring about as large reductions in SS

and PP as gypsum or highly reactive lime [CaO/Ca(OH)2,

so called “structural lime”] applications have done in earlier

Finnish and Swedish studies (Ekholm et al., 2012; Svanbäck,

Ulén, & Etana, 2014; Ulén & Etana, 2014). Ekholm et al.

(2012) reported 64% reduction in PP exports from a 245-ha

catchment having 100 ha of agricultural land that was almost

all amended with gypsum at 4 Mg ha−1 and monitored after

that for 3 yr. Ulén and Etana (2014) reported a 40–57% reduc-

tion in TP losses from two field sites after application of reac-

tive lime at a rate of 5 Mg ha−1 CaO equivalents. In the 6-yr

study of Svanbäck et al. (2014), reactive lime applied to annu-

ally plowed soil decreased PP losses by one-third.

Because soil amendments used in our study had a large C/P

ratio, mobilization of DRP was not observed but DRP con-

centration in percolation water were in all treatments practi-

cally the same as that of percolates from control soil. Ekholm

et al. (2012) estimated that gypsum amendment would have

decrease DRP loss by about 30% during their study, because

marked elevation of EC of soil solution suppresses P desorp-

tion from soil particle surfaces. For reactive lime, Ulén and

Etana (2014) reported 10–40% reduction in DRP loss from the

two field sites. Svanbäck et al. (2014) measured equal annual

DRP losses for control plots and those treated with reactive

lime.

The mechanism behind the observed multi-year improve-

ment in surface soil stability is likely more complicated with

the addition of fiber sludge materials than in the case of inor-

ganic, soluble soil-improving materials. In a previous study

conducted using the same experimental set-up with intact soil

monoliths cored for indoor rainfall simulations from gypsum-

amended fields, Uusitalo et al. (2012) found that gypsum sig-

nificantly elevated EC in the soil solution and in percolation

water (>300 μS cm−1), which promoted aggregate stability

and flocculation of clay particles. The effect on SS concen-

tration was dependent on how long it took for gypsum to

leach out of the soil profile. In the present study, addition

of sludges from the pulp and paper industry also increased

EC (Supplemental Figure S2) but not to the same degree

as gypsum. We hypothesize that, in the case of organic soil

amendments used in the present study, direct interactions of

soil minerals with the added particulate organic matter and

microbe-derived compounds stabilizing aggregates played a

major role (see discussion below). The effect was also at least

as long-lived as the effect brought about by gypsum applica-

tion (Ekholm et al., 2012; Uusitalo et al., 2012).

Due to their high C/nutrient ratios, these soil amendments

can be used in much higher quantities than many organic

materials that are more nutrient rich, such as manures and

composted biosolids. However, attempts to increase soil C

content may lead to increased leaching of C, especially on

soils with higher C stocks. The present results indicate an ini-

tial flush of DOC that subsides with time. Declining DOC in

percolation water may indicate fast microbial decomposition

of the organic matter added to soil and/or stabilization of par-

ticulate organic matter within soil aggregates, thus immobi-

lizing them in soil.

Only a small proportion of the added C was recovered in

the soil at the end of the 4-yr study (Supplemental Table

S4), leaning to rapid microbial turnover of the added organic

matter. The most easily degradable organic matter is bro-

ken down during composting, whereas more recalcitrant com-

pounds end up in the soil (Heikkinen et al., unpublished data,

2020; Hubbe, Nazhad, & Sánchez, 2010). In line with those
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findings, a small increase in soil C concentration was only

measured for the CPMS treatment. In boreal mineral soils,

the mean annual C decline is estimated to be 0.4% relative

to the existing C concentration (data from Finnish cropland

soils for the period 1974–2009; Heikkinen et al., 2013). If the

amendments tested in the present study had decomposed at

this rate, almost all of the C applied would have been recov-

ered after 4 yr. The almost 8 Mg of nonrecovered applied C

indicated that losses of added C were two orders of magnitude

greater than average decline of 0.4% in soil organic matter in

Finnish soils.

In our study, relative proportions of numerous microbial

groups were changed compared with the control treatment

3 yr after addition of pulp and paper industry side streams.

It is shown that changes even at the species level can alter the

chemical composition of extracellular polymeric substances

produced by microorganisms (Costa et al., 2018) and that dif-

ferent microbial species have different effects on soil aggre-

gation and erosion (Lehmann et al., 2020; Rigardo & Troeh

1979). In the present study, observed changes in microbial

community were well in line with our hypothesis. However,

to what extend microbiological interactions with soil minerals

could explain improved soil stability against water-induced

stresses remains open.

Although the concept of aggregate stabilization due to

microbial excretion was established almost a century ago

(Peele & Beale, 1941), recent studies have revealed new

details relating to stabilization of soil particles and C seques-

tration. Kopittke et al. (2018, 2020) showed that microbe-

derived, N-rich organic compounds in particular are capable

of forming new organo-mineral associations on the surface

of mineral particles. In the present study, microbial-bound N

increased in all treated soils (Table 2).

Lavallee, Soong, and Cotrufo (2020) addressed the impor-

tance of conceptualization of soil organic matter pools in order

to deepen understanding of organic matter functioning, per-

sistence, and formation. In their approach, mineral-associated

organic matter is distinguished from free particulate organic

matter, and mineral-associated organic matter fraction is con-

sidered to be physically protected against microbial turnover.

Recently, Lehmann et al. (2020) reported that the fungal

strains showing a dense growth of mycelia possessed the

highest probability of aggregate formation, and most of these

effective aggregator strains belonged to the phylum Ascomy-

cota. Apart from Sebacinaceae, almost all of the most abun-

dantly increased fungi in our study belonged to Ascomycota.

For example, Tetracladium marchalianum, which showed a

230% increase (in log-scale) under all treatments (Supple-

mental Table S9), was one of the most efficient aggregator

fungi according to Lehmann et al. (2020). In addition, micro-

bial necromass was recently estimated to make up more than

half of soil organic matter in temperate soils (Liang et al.,

2019). These new findings suggest that the effects of added

organic matter on soil properties are largely mediated by soil

microbiology. Thus, the reduction in particle mobilization

observed in the present study might be associated with acti-

vation of soil microbiota and a subsequent increase in the

proportion of mineral-associated organic matter, which sta-

bilizes soil aggregates. However, because the data only reveal

positive associations rather than deeper mechanistic features,

this remains speculation. More detailed studies are required to

confirm whether the quality and stability of soil C is affected

by organic soil amendments.

The processing of the organic material (lignocellulosic

material processed in elevated temperature) appeared to

directly affect fungal species found in soil, as thermotol-

erant species (e.g. Thermomyces lanuginosus; Singh, Mad-

lala, & Prior, 2003) and species decomposing lignin and

cellulose (e.g., Mycothermus thermophilus; Natvig, Tay-

lor, Tsang, Hutchinson, & Powell, 2015) were abundant

in LPMS and CPMS treatments. Among other abundant

fungi, Sebacinales are suggested to indicate the less inten-

sive land use typical of organic farming (Verbruggen et al.,

2014), and F. mossae is found to improve nutrient sta-

tus and biomass of ryegrass (Berthelo, Blaudez, Beguiris-

tain, Chalot, & Leyval, 2018). Also, many bacteria groups

that are beneficial for agricultural soils were detected, such

as parasites on other bacteria (Bdellovibrionaceae; Starr &

Baigent, 1966) and aerobic chemoheterotrophs mineralizing

organic C from plant biomass (Chthoniobacteraceae; Kant

et al., 2011). They were also abundant in the soils that

received pulp and paper industry side streams (Supplemen-

tal Table S10). It is tempting to speculate that their rise

could be connected to qualitative changes in soil caused by

the amendments.

Overall, the studied organic side streams had only a

minor effect on yields, and Cd present in amendments did

not accumulate in soil or grains. In the study of Price and

Voroney (2007), significant changes in soil heavy metal con-

centration after multiple applications of papermill biosolids

were not found either. However, caution should be exercised

if repeated applications are planned. In practice, Cd con-

centrations in side streams from the pulp and paper industry

vary between individual mills, which allows selection of

soil amendment materials with low Cd content for use in

agricultural applications.

5 CONCLUSIONS

This 4-yr field-scale experiment indicated that FS and com-

posted and lime-stabilized sludge from the pulp and paper

industry can be used to mitigate adverse effects of food pro-

duction to the quality of discharge waters. The amendments

showed a potential to reduce soil erosion through soil mono-

liths over several years. They also increased the pools of
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microbial-bound C and N in soil. A particularly interesting

observation was an increased proportion of Sebacinales fungi,

which are used as indicators of improved quality of agri-

cultural soil in organic farming. However, the organic soil

amendments tested had only minor effects on cereal yield and

grain quality. The only concern with their use related to the

Cd contents of the amendments. Although soil and grain Cd

content was not affected in this study, care must be taken to

select appropriate sources of materials with low Cd content.

Further research on the contributions of industrial and forest-

derived organic side streams to soil microbiological functions

and their relations to food production and long-term C seques-

tration are required.
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