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Abstract: The increasing public awareness of health and sustainability has prompted the
development of functional foods rich in health-promoting ingredients. Processing technologies
and sustainable multifunctional ingredients are needed for structuring these formulations. Spruce
galactoglucomannan (GGM), the main hemicelluloses in softwood cell walls, are an abundantly
available, emerging sustainable food hydrocolloid that have the ability to efficiently emulsify and
stabilize oil-in-water emulsions. In this study, we illustrate how this lignocellulosic stabilizer affects
the digestion of polyunsaturated fatty acids (PUFAs) in vitro. A 100% decrease in the initial TAG
content was observed during the in vitro digestion, suggesting that complete hydrolysis of the TAGs
was achieved by the digestive enzymes. Besides, no release of mono-, di-, and oligosaccharides or
phenolic compounds from GGM was detected. Our results demonstrate that the GGM-stabilized
emulsion could potentially deliver lipophilic bioactive ingredients and enhance their bioaccessibility.
In addition, this bio-stabilizer itself would remain stable in the upper gastrointestinal track and serve
as a prebiotic for gut microbiota. We anticipate GGM to complement or even replace many of the
conventional carriers of bioactive components in future health care products and functional foods.

Keywords: bioaccessibility; bioactive; digestion; emulsion; galactoglucomannan; polyunsaturated
fatty acids

1. Introduction

Conventional technologies for utilizing wood biomass were originally developed for mainly
recovering cellulose for the pulp and paper industry. Cellulose constitutes 40%–45% of wood biomass,
while the remaining 55%–60% are hemicelluloses (20%–35%) and lignin [1]. Thus far, the two latter wood
biomass components have the most untapped value. In order to implement a resource-wise circular
economy, strategies to recover all these three constituents have recently been developed. Currently,
the novel use of wood biomass is being extensively explored, with food use as one of the potential
application areas. Wood biomass may provide potential multifunctional ingredients to not only improve
the technological properties of food products but also introduce health-promoting compounds.

Bioactive compounds are often enriched in functional foods according to the dose-based intake
of the individual. A range of lipophilic bioactive compounds, such as β-carotene, tocopherols,
and polyunsaturated fatty acids, have been suggested to protect against various diseases, such as
cancer, type II diabetes, myocardial infarction, atherosclerosis, and hypotension [2–4]. Being lipophilic,
these compounds are soluble in lipid media but not miscible in an aqueous matrix. The development
of functional foods or edible health care products thus requires the design of suitable delivery systems
that help disperse, protect, carry, and release bioactive compounds [5–7]. Therefore, the food industry
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has been focusing on developing formulations, e.g., emulsions, to generate multiphase systems in
which various bioactive ingredients may be incorporated.

Emulsification is a process in which an immiscible liquid is dispersed into another liquid to
generate an emulsion [5–8]. Water and oil are the two most commonly used liquids for preparing food
emulsions. Examples of these include beverages, sauces, and ice cream. Different types of emulsions
are formulated by adjusting the oil-to-water ratio and the mechanical force generated by different
homogenization techniques. Since emulsions are thermodynamically unstable systems, they tend to be
separated into two phases. To assist their formation and increase their long-term stability, emulsifiers
and stabilizers, such as small surfactants, proteins, biopolymers, and polysaccharides, are used.

Due to consumer awareness of and negative attitudes toward synthetic food additives, emulsifiers
and stabilizers from natural sources are attracting more attention. Hemicelluloses, including xylans
and mannans, are among the most abundant renewable organic materials in nature [9]. However, they
are still under-utilized when compared with the other major plant polysaccharides, such as cellulose
and starch [10]. Methods to recover hemicelluloses from wood biomass have greatly advanced within
the past decades, providing further opportunities for their utilization [11–15].

We have previously shown that various different galactoglucomannan (GGM)-rich lignocellulosic
extracts from Norway spruce (Picea abies) efficiently stabilize emulsions against physical breakup
and lipid oxidation [16–22]. GGM are the main hemicelluloses in softwoods [11–13]. They
consist of (1→4)-linked β-d;-mannopyranosyl (Manp) and β-d-glucopyranosyl units with single
α-d-galactopyranosyl side groups attached to the C-6 position of Manp. Acetylation occurs naturally
in the C-2 or C-3 hydroxyl groups of the Manp, with a degree of approximately 0.26 [11]. The average
molar mass of GGM ranges from 10,000 to 25,000 g/mol depending on the isolation method [11,12,14–17].
Lignocellulosic extracts rich in GGM and containing residues of lignin can be fractionated from Norway
spruce by pressurized hot water extraction (PHWE) [14,15]. Some lignin-derived phenolic compounds
and wood extractives remain with GGM after the isolation and purification process [23]. Our previous
studies have shown that GGM have better emulsion stabilizing capacity than other polysaccharide-based
stabilizers, such as corn fiber gum and gum Arabic [16]. Co-extracted phenolic residues introduce
amphiphilic characteristics and interfacial activity to GGM. They also improve the adsorption of GGM
on the lipid droplet surface and provide protection against lipid oxidation [16,17,19–23].

The bioaccessibility of lipophilic compounds in emulsions depends on the used emulsifiers
and stabilizers. Starch and proteins are hydrolyzed during the oral and gastric phases of digestion,
whereas many of the polysaccharides remain largely intact until reaching the large intestine. Plant
cell wall polysaccharides are generally resistant to digestion in the upper gastrointestinal tract.
Thus, if they are used as emulsion stabilizers, the changes occurring in the emulsion microstructure
during digestion may be influenced and, furthermore, the bioaccessibility of the lipids affected.
A decrease in the rate and extent of lipid digestion has been reported for pectin- and chitosan-stabilized
emulsions, for example [6,24,25]. Pectin and chitosan are relatively large polysaccharides with a
branched structure. Owing to the intermediate molar mass of GGM and their low viscosity-modifying
ability [17], GGM-stabilized emulsions may exhibit unique behavior compared to other polysaccharides.
Additionally, in food applications, GGM could potentially serve as a prebiotic, antioxidant and
anti-inflammatory agent, as suggested by recent in vitro and in vivo studies [26–29].

With its high stabilizing capacity and health-related potential, the GGM-rich lignocellulosic
extract could be a valuable candidate for the development of multiphase functional food fortified
with both lipophilic and hydrophilic bioactive compounds. In this study, we reveal the potential
of GGM-stabilized emulsions to deliver bioactive lipids by utilizing in vitro digestion. While GGM
influences the bioaccessibility of bioactive lipids, it may also function as a prebiotic for gut microbiota.
The results provide valuable insight into the use of novel, wood-derived hydrocolloids as part of a
sustainable and healthy future diet.
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2. Materials and Methods

2.1. Materials

Lignocellulosic extract rich in GGM was obtained by the pressurized hot water flow-through
extraction (PHWE) of Norway spruce (Picea abies) saw meal [14]. The extract was concentrated by
ultrafiltration prior to spray-drying (Spdr-GGM) or ethanol precipitation (EtOH-GGM). Gum Arabic
(Cerospray SW, C.E. Roeper GmbH, Hamburg, Germany) was used as an emulsion stabilizer for
comparison. Rapeseed oil (Bunge Finland Oy, Raisio, Finland), used as lipid phase of the emulsions,
was purchased from a local supermarket.

Simulated saliva fluid, simulated gastric fluid, and simulated intestinal fluid were prepared
according to the INFOGEST model [30]. Bile extract (from porcine, CAS 8008-63-7), enzymes (pancreatin
from porcine pancreas, CAS 8049-47-6; pepsin from porcine gastric mucosa, CAS 9001-75-6) and mucin
(from porcine stomach, CAS 84082-64-4) used in the in vitro digestion model were acquired from
Sigma-Aldrich (St. Louis, MO, USA). The activities of pepsin (EC 3.4.23.1), trypsin (EC 3.4.21.4),
and pancreatic lipase (EC 3.1.1.3) and the concentration of bile salts were determined according to
Minekus et al. [30].

Tripalmitin, which was used for the quantification of the triacylglycerols, was acquired from
Sigma-Aldrich (St. Louis, MO, USA). D-glucose, D-mannose, and D-galactose, used for the
quantification of mono-, di- and oligosaccharides, were acquired from Merck (Darmstadt, Germany).
Phenolic acids (protocatechuic acid, ferulic acid, ellagic acid, and cya-3-glu; Extrasynthese, Genay,
France) were used as external standards for the quantification of individual phenolic compounds.
Solvents used in the analysis of the triacylglycerols, mono-, di- and oligosaccharides, and phenolic
compounds were HPLC grade: ethanol (EtOH; 99.5%; ALTIA, Helsinki, Finland), ethyl acetate
(Honeywell, Seelze, Germany), 2,2,4-trimethylpentane (iso-octane; Sigma–Aldrich, Saint Louis, MO,
USA), heptane (Sigma–Aldrich, Saint Louis, MO, USA), and methanol (MeOH; Sigma–Aldrich, Saint
Louis, MO, USA).

2.2. Emulsion Preparation

The stability of GGM against gastrointestinal digestion was investigated in Spdr-GGM- and
EtOH-GGM-stabilized oil-in-water emulsions. The emulsions were prepared according to Mikkonen
et al. [16]. In brief, 1 wt.% of either Spdr-GGM, EtOH-GGM, or GA was dissolved in a 25-mM citrate
buffer (pH 4.5) overnight at room temperature. Then, 5 wt.% rapeseed oil was added and subsequently
mixed for two minutes with an Ultra-Turrax (T-18 basic, IKA, Staufen, Germany) at 11,000 rpm to
obtain coarse emulsions. The coarse emulsions were homogenized with a high-pressure homogenizer
(Microfluidizer 110 Y, Microfluidics, Newton, UT, USA) for two minutes at 800 bar to obtain the final
emulsion. Sodium azide (0.02 wt.%) was added to the final emulsions to inhibit microbial growth.

2.3. In Vitro Digestion

The lipid delivery potential of the Spdr-GGM- and EtOH-GGM-stabilized emulsions in
gastrointestinal digestion was investigated via a static INFOGEST in vitro digestion model [30]
after some modifications. This model simulates the oral, gastric, and small intestinal phases of
gastrointestinal digestion.

For the simulated oral phase, 5 mL of emulsion was mixed with 5 mL of simulated saliva
fluid containing 150 mg of mucin. A formed oral bolus was placed on an orbital shaker for five
minutes at 100 rpm and 37 ◦C. Mucin was included in the oral phase according to Zhang et al. [31]
and Sarkar et al. [32], since it potentially destabilizes or even breaks emulsions. The use of salivary
α-amylase was omitted as the studied Spdr-GGM- and EtOH-GGM-stabilized emulsions did not
contain any α-linked polysaccharides.

For the gastric phase, 10 mL of simulated gastic fluid (1:1, v/v) and pepsin (200 U/mL gastric
chyme) were added to the oral bolus formed during the oral phase. The pH of the formed gastric
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chyme was adjusted to 3.0 with hydrochloric acid. The gastric chyme was placed in an orbital shaker
for two hours at 100 rpm and 37 ◦C. Gastric lipase was not included in the gastric phase, as it was not
commercially available. The amount of pepsin was reduced from the original model, as the studied
GGM fractions did not contain proteins. It was not anticipated that the proteases would influence the
microstructure of the GGM-stabilized emulsions.

For the intestinal phase, 20 mL of simulated intestinal fluid and 200 mg of bile extract
(corresponding to the bile salt concentration of 6 mM) were added to the gastric chyme formed
during the gastric phase. The pH of the formed intestinal chyme was adjusted to 7.0 with sodium
hydroxide, after which pancreatin was added (lipase activity 1700 U/mL intestinal chyme). The gastric
chime was placed in an orbital shaker for two hours at 200 rpm and 37 ◦C. The pH of the intestinal chyme
was maintained at 7.0 for the two-hour intestinal phase through the addition of sodium hydroxide.

In vitro digestion was repeated three times for each emulsion type (n = 3). Blank digestion
(i.e., replacing the emulsion with a buffer solution) was performed to monitor the background various
ingredients cause in the chemical analyses. The samples were protected from light throughout the
experiments in order to avoid any light-induced alterations in the phenolic compounds and lipids.

After each of the three digestion phases, aliquot samples were withdrawn for the investigation of
emulsion morphology and lipid release. Structural changes in the Spdr-GGM, EtOH-GGM, and GA
were examined from the initial emulsion and from the intestinal chyme. The emulsion morphology
was studied immediately after sampling, whereas the samples intended for chemical analyses were
pretreated and stored at −20 ◦C. Pretreatment included termination of enzyme reactions by denaturing
proteins either by the addition of ethanol (4:1, v/v) or by placing the fluid vessel in boiling water for
five minutes.

2.4. Emulsion Morphology

The emulsion morphology was visualized before and after each digestion step by optical
microscopy (Axio Scope A1, Carl Zeiss Inc., Oberkochen, Germany). The droplet size distribution
was determined by static light scattering (Mastersizer 3000, Malvern Instruments, Worcestershire,
United Kingdom).

2.5. Analysis of Triacylglycerols by HPLC-ELSD

The bioaccessibility of lipids was investigated by measuring lipid release during digestion.
Triacylglycerol (TAG) content was determined at each stage of digestion. For the analysis, enzymatic
reactions were terminated and simultaneously Spdr-GGM, EtOH-GGM, or GA were precipitated from
a 20-mL aliquot oral bolus, gastric chyme, and intestinal chyme with 80 mL of ethanol. The released
lipids were then extracted three times with 100 mL isooctane. The combined extracts were evaporated
to dryness and redissolved in 25 mL of heptane for further analysis with high-performance liquid
chromatography in combination with an evaporative light-scattering detector (HPLC-ELSD) [33].
TAGs were quantified using an external standard method using tripalmitin as a standard at a standard
curve range of 40 to 2000 ng per injection. The results were expressed as proportions (%) to the
measured initial TAG content in the emulsion.

2.6. Determination of Molar Mass by HPSEC-MALLS-RI

To assess the stability of Spdr-GGM, EtOH-GGM during digestion, weight-average molar mass
(Mw) was determined by size-exclusion chromatography (HPSEC) in combination with multi-angle
laser light scattering (MALLS) and refractive index (RI) detection [16,17]. A 20 mL aliquot of the
initial emulsion and intestinal chyme were placed in boiling water for five minutes to terminate the
enzyme reactions yet not causing dramatic changes to the structures and orientation of Spdr-GGM,
EtOH-GGM and GA. After the heat treatment, 1 mL of the sample was filtered through a 0.45-µm nylon
syringe filter (Pall Corp., Ann Arbor, MI, USA) and diluted with a 0.1-M NaNO3 to a final Spdr-GGM,
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EtOH-GGM, or a GA concentration of 2 mg/mL. The molar mass of the samples was determined
against the pullulan standards with a molar mass range of 342 to 212,000 g/mol.

2.7. Analysis of Monosaccharides by HPAEC-PAD

The release of mono-, di-, and oligosaccharides from Spdr-GGM, EtOH-GGM, and GA was
studied to evaluate the stability of these polysaccharides during digestion. Enzyme reactions were
terminated and simultaneously Spdr-GGM, EtOH-GGM, and GA were precipitated from 0.4 mL
aliquot samples of the initial emulsions and intestinal chyme with 3.2 mL of ethanol. The released
lipids were removed with 3 × 3.6 mL of isooctane. The remaining ethanol solution was evaporated
to dryness, redissolved in 1 mL MilliQ-water, and filtered using Amicon Ultra-0.5 centrifugal filter
units (Millipore, Billerica, MA, USA) at 12,000× g for 10 min. Mono-, di-, and oligosaccharides were
separated by high-performance anion exchange chromatography coupled with pulse amperometric
detection (HPAEC-PAD) [34]. Quantification was performed with an external standard method using
D-glucose, D-mannose, and D-galactose as standards at a range of 0.05 to 5 µg per injection. The results
were expressed as µg/g emulsion.

2.8. Analysis of Phenolic Compounds by UHPLC-DAD-FLD

The release of phenolic residues from Spdr-GGM, EtOH-GGM, or GA was investigated to evaluate
the stability of these polysaccharides during digestion. Enzyme reactions were terminated and
simultaneously Spdr-GGM, EtOH-GGM, and GA were precipitated from a 20-mL aliquot emulsion and
intestinal chyme with 80 mL of ethanol [19]. The released lipids were then removed with 3 × 100 mL
of isooctane. The remaining ethanol solution, containing free and ethanol-soluble phenolic residues,
was evaporated to dryness and redissolved in 1 mL of MilliQ-water. The pH was adjusted to 2.0,
and the phenolic compounds were extracted with 3 × 0.5 mL of ethyl acetate. The combined extracts
were evaporated to dryness and redissolved in 0.2 mL of 10% methanol. The analysis of the phenolic
compounds was performed by ultra-high-performance liquid chromatography coupled with ultraviolet
and fluorescence detection (UHPLC-DAD-FLD) [19,20,35]. The phenolic compounds were identified
based on their retention times and UV and MS spectra. The compounds were grouped into six classes
and quantified as: (1) hydroxybenzoates (protocatechuic acid, 280 nm); (2) flavan-3-ols (protocatechuic
acid, 280 nm); (3) hydroxycinnamates (ferulic acid, 320 nm); (4) flavonols (365 nm); (5) ellagic acids and
ellagic tannins (ellagic acid, 280/365 nm); and (6) anthocyanins (cya-3-glu, 520 nm). Quantification
was performed using an external standard method with a content range of 4 to 180 ng per injection.
The results were expressed as µg/g emulsion.

2.9. Statistical Analyses

Averages and standard deviations were calculated over three replicate digestions (n = 3). One-way
ANOVA (p < 0.05; IBM® SPSS® Statistics 24) and post-Hoc analysis with a Dunnett T3 test were
performed to ascertain how the emulsions changed during digestion and how the studied emulsions
differed from each other at different phases.

3. Results

We have previously shown that spruce-derived, hemicellulose-rich extracts function as an efficient
emulsion stabilizer by providing protection against physical breakup and lipid oxidation [17–22,36].
These properties are ideal for the protection and delivery of sensitive bioactive components, such as
polyunsaturated fatty acids. To ensure the bioaccessibility of lipids, they need to be accessible to
hydrolyzing enzymes, namely gastric and pancreatic lipases. Large polysaccharides, such as pectin and
chitosan, are known to interfere with this interaction. To understand how GGM-stabilized emulsions
would behave in gastrointestinal digestion and which alterations could occur in GGM themselves,
these emulsions were assessed in a static in vitro digestion model. At the moment, GGM is an emerging
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novel food stabilizer that has not yet been approved for food use, and, therefore, the study was
conducted under in vitro conditions.

3.1. Lipid Release from GGM-Stabilized Emulsions

The release of lipids from Spdr-GGM-, EtOH-GGM-, and GA-stabilized emulsions was detected
as changes in the TAG content. A 100% decrease in the initial content was observed during the in vitro
digestion, suggesting that the TAGs were completely hydrolyzed into free fatty acids by the digestive
enzymes. Both of the studied GGM fractions enabled complete lipid release from the emulsions
(Table 1).

Table 1. Proportion of triacylglycerols (TAG %) in Spdr-GGM-, EtOH-GGM-, and GA-stabilized
emulsions during in vitro digestion.

TAG % Spdr-GGM EtOH-GGM GA

Initial emulsion 100 Aa 100 Aa 100 Aa

Oral phase 88 Ab
± 2 92 Aa

± 7 96 Aa
± 1

Gastric phase 87 Aab
± 5 94 Aa

± 7 85 Aa
± 8

Intestinal phase nd nd 7 c
± 3

Lower case letters compare the gastrointestinal stages, and capital letters compare the emulsions (Dunnett T3 test,
p < 0.05). EtOH-GGM = Ethanol precipitated spruce galactoglucomannan-rich extract, GA = Gum Arabic, nd = not
detected, Spdr-GGM = Spray-dried spruce galactoglucomannan-rich extract.

Lipid release and hydrolysis did not occur during the oral phase, as the pH was neutral and no
lipid hydrolyzing enzymes were present at this stage (Table 1). The observed small changes in the
TAG contents resulted from the interference of mucin during the analytical procedure.

The studied emulsions remained stable during the gastric phase, and no release of lipids was
observed (Table 1). The structure formed by interfacial GGM was resistant against drastic pH changes,
enabling the protection of the TAGs against acid hydrolysis. In addition, since the functionality of GGM
is not based in protein residues, pepsin (i.e., protease) did not influence the emulsion microstructure
and stability.

A drastic change in the content of the TAGs was observed in the intestinal phase (Table 1). GGM
located at the lipid droplet interface was either efficiently replaced by other surface-active components,
such as phospholipids and bile salts, or directly enabled the adsorption of pancreatic lipase on the
droplet surface. This enabled the interaction between the lipase and TAGs, and, therefore, the complete
hydrolysis of the TAGs was possible.

The GA-stabilized emulsions exhibited somewhat different behavior during the in vitro digestion.
Like in GGM-stabilized emulsions, the TAGs were not hydrolyzed during the oral phase (Table 1).
Even if the interfacial properties of GA depend on protein residues, the stability of this emulsion
was not influenced by oral mucin and Ca2+. However, the hydrolysis of lipids was evident during
the gastric phase: A 10% decrease in the TAG content was observed. Although GA forms a bulky
and thick interfacial layer on the lipid droplet, providing steric support against emulsion breakup,
the structure was not fully resistant against the influence of acidic pH and pepsin. Nevertheless, during
the intestinal phase, the bulky structure interfered with the interaction between the pancreatic lipase
and TAGs, slowing down the hydrolysis of the TAGS. After two hours of intestinal digestion, 7% of the
TAGs remained intact.

3.2. Physical Stability of GGM Stabilized Emulsions

To detect the changes occurring in the microstructure of the GGM-stabilized emulsions during the
in vitro digestion, droplet size distribution was measured, and the emulsion droplets were visualized
with an optical microscope.

Initially, the droplets of the Spdr-GGM- and EtOH-GGM-stabilized emulsions were uniform
and relatively small: D [3, 2] being 0.178 and 0.190 µm, respectively (Figures 1 and 2, Appendix A
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Figure A1). On the contrary, in the GA-stabilized emulsion, the droplets were aggregated, and the
average droplet size was 1.65 µm.
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Figure 1. Droplet size distributions of Spdr-GGM-, EtOH-GGM-, and GA-stabilized emulsions before
and after in vitro digestion: (a) Emulsion, (b) Oral phase, (c) Gastric phase, and (d) Intestinal phase.

The GGM- and GA-stabilized emulsions remained physically stable, and, thus, no significant lipid
release occurred during the oral and gastric phases of digestion. The droplet size distribution remained
similar to that of the studied emulsions (Figure 1), and no further aggregation was observed (Figure 2).
Significant changes were observed in all the studied emulsions during the intestinal phase: They fell
apart during the two-hour intestinal phase, releasing hydrolyzed TAGs. Lipid droplets disappeared
from the GGM-stabilized emulsions, but a few large droplets were visible in the digested GA emulsion
(Figure 2). Additionally, the droplet size distribution indicated the presence of some large particles
with a size between 0.1 and 1 mm. Other surface-active components, such as phospholipids and
bile salts, and released free fatty acids may have interfered with the emulsion stability by replacing
adsorbed GGM or GA from the droplet surface and eventually breaking down the emulsion structure.
As concluded earlier, the bulky structure of GA most likely interfered with the interaction between the
pancreatic lipase and TAGs, slowing down the hydrolysis of the TAGs while, at the same time, slowing
down the breakup of the emulsion.

3.3. Stability of GGM

The stability of the studied GGM during the in vitro digestion of the GGM-stabilized emulsions
was investigated by measuring the changes occurring in their molar mass, by determining the released
mono-, di-, and oligosaccharides as well as by determining the released phenolic residues.
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Figure 2. Optical microscopy images of Spdr-GGM-, EtOH-GGM-, and GA-stabilized emulsions before
and after in vitro digestion.

The results show that GGM and GA remained stable under the digestion conditions. The average
Mw of the Spdr-GGM was 6000 g/mol and, for EtOH-GGM, it was 11,000 g/mol. GA was much larger
than the studied GGM, with a Mw of 160,000 g/mol. No significant change in Mw occurred during the
in vitro digestion (Figure A2). Spdr-GGM-, EtOH-GGM- and GA-stabilized emulsions did not contain
or release any free mono-, di-, or orligosaccharides during the in vitro digestion. The total content
of free phenolic residues was as low as 0.7 ± 0.1 µg/g in Spdr-GGM-stabilized emulsion, 0.1 ± 0.01
µg/g in EtOH-GGM-stabilized emulsion, and 0.5 ± 0.4 µg/g in GA-stabilized emulsion. No release of
phenolic compounds was detected during the in vitro digestion. The results illustrate that GGM and
GA remained stable under the gastrointestinal digestion conditions.

4. Discussion

The inclusion of bioactive lipophilic compounds in aqueous media enables the formulation of a
large variety of food products rich in, or enriched with, these health-promoting compounds. In order to
create a homogenous and stable mixture of lipophilic components and aqueous media, multifunctional
stabilizers are needed. We have previously shown that GGM-rich extracts of spruce efficiently stabilize
emulsions against physical breakup and inhibit lipid oxidation [17–22]. These are key features for
the delivery and bioaccessibility of lipophilic compounds, for preserving bioactive components in
the active state, and for avoiding the formation of adverse flavors caused by lipid oxidation. Due to
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their multifunctionality, GGM could be utilized in the formulation of plant-based milk products and
beverages for the delivery of essential PUFAs [21].

According to the obtained results, the GGM-stabilized emulsions were able to resist the conditions
during the oral and gastric phases of in vitro digestion and remained stable until the intestinal phase.
Lipid droplets could be detected and visualized throughout the oral and gastric phase, and no
hydrolysis of TAGs was observed. During the intestinal phase, the lipids were released and hydrolyzed
by the pancreatic lipase. These observed results correlate with the stability of GGM, which retained its
structure and conformation throughout the gastrointestinal digestion; in other words, the hydrolysis of
GGM was not detected.

The interfacial properties of emulsifiers and stabilizers determine the formed droplets (e.g., size,
charge, number, and concentration), which, in turn, influence the perceived sensory properties of
emulsions [37–39]. Both the rheological properties and stability of emulsions influence their perceived
attributes, such as creaminess and fattiness. When an emulsion breaks up during mastication,
lipids form a coating on the oral surfaces, influencing, among others, flavor release and mouth feel.
For example, protein-stabilized emulsions are destabilized by oral mucin, leading to early lipid release
in the oral cavity and causing creamy sensations. Similarly, starch-rich formulations are degraded
by oral α-amylase. The viscosity of GGM-stabilized emulsions remains very low compared to other
polysaccharide-stabilized emulsions, making them potentially feasible for a wide range of food use.
The viscosity of GGM solutions itself is between that of small-molecular surfactants and high molar mass
macromolecular stabilizers [18]. Based on the current study, the emulsions stabilized by GGM would
not break up during the oral phase through surface- or saliva-induced coalescence. These features
would enable the incorporation of bioactive lipids in aqueous formulations in which a fatty mouthfeel
or flavor is not desired. In addition, GGM-stabilized emulsions, being resistant against oxidation
during storage and processing, lack the formation of off-flavors in lipid media [19–22]. In addition,
the GGM-rich extract of spruce does not induce adverse flavors itself but has a characteristic woody
flavor (unpublished data).

GGM are stable within a wide pH range and temperatures below 37 ◦C, and their interfacial and
stabilization properties are not significantly influenced by pH [40,41]. As shown by the current data,
GGM retained its structure and conformation under the gastric conditions. GGM were able to stabilize
emulsions even at pH 3. When an emulsion is resistant to a low pH and gastric enzymes (namely
pepsin and gastric lipase), it remains stable during the gastric phase and is able to slow down the
gastric emptying [39,42]. This feature can, in turn, increase the feeling of satiety. Moreover, the slow
release of homogenous gastric chyme into the intestine will be beneficial for those whose digestion
is sensitive to fatty foods. In addition, when the lipid droplets remain small, a large surface area
provides a large adsorption area for the pancreatic lipase. This enables efficient lipid hydrolysis and,
consequently, enhances bioaccessibility. For PUFAs to get absorbed, they first need to be hydrolyzed
before they can be transported to the absorption site.

The interfacial properties of GA depend on protein residues in the structure, while the amphiphilic
nature of GGM depends on the coextracted lignin residues [20,22,23]. PHWE-extracted GGM are
hypothesized to orientate in parallel to the droplet surface, forming a thin layer at the interface:
The surface load of the GGM-stabilized emulsion is only 0.5 mg/m2 [20,36]. A thin layer would enable
the interaction of pancreatic lipase with TAGs, resulting in an efficient hydrolysis of the TAGs and,
consequently, the increased bioaccessibility of the lipids. Thus, the observed complete hydrolysis
resulted from the efficient adsorption of pancreatic lipases on the droplet interface. Alternatively,
other surface-active components, namely phospholipids and bile salts, efficiently replaced GGM at the
surface, providing a thinner surface for the lipase to adsorb onto. While the TAGs were hydrolyzed,
formed free fatty acids destabilized the emulsion structure, enabling the release of lipids. GA, having a
larger Mw and more branched structure than GGM, orientates differently at the lipid droplet surface,
forming a bulky and thick interface (6–10 mg/m2) [43]. In addition, the larger droplet size in GA
emulsions decreased the contact area. The decreased surface area and increased distance between the
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TAGs and lipase lead to the less efficient hydrolysis of TAGs and slower lipid release. Similar behavior
has been reported for other large polysaccharides [44,45]. Additionally, GA may act as a viscosity
modifier and therefore reduce the mobility of lipid droplets and enzymes [46]. The bioaccessibility of
lipids would thus be lower in GA-stabilized emulsions than in GGM-stabilized emulsions.

GGM being resistant against the oral, gastric, and intestinal phases of in vitro digestion indicate
that they would remain intact in the gastrointestinal track and be transported to the gut intact. Gut
microbiota are able to breakdown many of the ingestible dietary polysaccharides. The composition of
microbial species in the gut is dependent on the dietary habits of the individual. Thus, by providing a
suitable composition of ingredients that are selectively fermented (i.e., prebiotics), the composition of
microbiota may be altered. In addition, fermentation metabolites are important for immune health.
Recent studies have shown that softwood galactoglucomannans act as prebiotics [28,29,47]. A complete
hydrolysis of β-mannans is achieved by the human gut Firmicute Roseburia intestinalis [47]. In addition,
in an in vivo experiment on mice, softwood hemicelluloses shifted the composition of microbiota to
such a position that it could potentially reduce obesity and provide cardio protection [29]. Different
GGM fractions, such as Spdr-GGM and EtOH-GGM, could influence the population of gut microbiota
in a different way. For example, the EtOH precipitated fraction, which contained high molecular weight
oligosaccharides, produced a microbiota composition in favor of weight loss. GGM-rich extracts,
which are isolated by pressurized hot water extraction, also contain lignin-carbohydrate complexes
(LCC) and lignin residues [23]. Their role in gut microbiota has yet to be discovered.

For the moment, GGM is an emerging novel food stabilizer that has not yet been approved for
food use. However, wood-originating polysaccharides, which are similar to the spruce GGM, namely
arabinogalactan, konjac glucomannan, and guar gum, are accepted for food use. According on our
recent literature review, safety hazards related to GGM are highly unlikely [48]. Thus, based on these
examples, we believe that GGM has great potential as a multi-functional ingredient in future foods
and health-promoting formulations.

5. Conclusions

The potential of GGM-stabilized emulsions to deliver bioactive compounds was evaluated through
in vitro digestion. According to the obtained results, the emulsions remained stable during the oral and
gastric phases but enabled efficient enzymatic hydrolysis of TAGs during the intestinal phase. Thus,
GGM-stabilized emulsions are potential delivery systems of lipophilic compounds in aqueous systems,
providing protection to sensitive compounds during processing and storage while enabling or even
enhancing their bioaccessibility. GGM themselves remained intact during the gastrointestinal phase,
but they may, in turn, function as prebiotic for gut microbiota. Due to their extensive existence and
multifunctionality, GGM have great potential to be utilized not only in health-promoting formulations
but also in a large variety of food applications.
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26. Ebringerová, A.; Hromádková, Z.; Hříbalová, V.; Xu, C.; Holmbom, B.; Sundberg, A.; Willför, S. Norway
spruce galactoglucomannans exhibiting immunomodulating and radical-scavenging activities. Int. J.
Biol. Macromol. 2008, 42, 1–5. [CrossRef] [PubMed]

27. Pan, L.H.; Lu, J.; Luo, J.P.; Zha, X.Q.; Wang, J.H. Preventive effect of a galactoglucomannan (GGM) from
Dendrobium huoshanense on selenium-induced liver injury and fibrosis in rats. Exp. Toxicol. Pathol. 2020, 64,
899–904. [CrossRef] [PubMed]

28. Polari, L.; Ojansivu, P.; Mäkelä, S.; Eckerman, C.; Holmbom, B.; Salminen, S. Galactoglucomannan extracted
from spruce (Picea abies) as a carbohydrate source for probiotic bacteria. J. Agric. Food Chem. 2012, 60,
11037–11043. [CrossRef]

29. Deloule, V.; Boisset, C.; Hannani, D.; Suau, A.; Le Gouellec, A.; Chroboczek, J.; Botté, C.; Yamaryo-Botté, Y.;
Chirat, C.; Toussaint, B.; et al. Prebiotic role of softwood hemicellulose in healthy mice model. J. Funct. Foods
2020, 64, 103688. [CrossRef]

30. Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.;
Dupont, D.; et al. A standardised static in vitro digestion method suitable for food: An international consensus.
Food Funct. 2014, 5, 1113–1124. [CrossRef]

31. Zhang, R.; Zhang, Z.; Zhang, H.; Decker, E.A.; McClements, D.J. Influence of emulsifier type on gastrointestinal
fate of oil-in-water emulsions containing anionic dietary fiber (pectin). Food Hydrocoll. 2015, 45, 175–185.
[CrossRef]

32. Sarkar, A.; Goh, K.K.T.; Singh, H. Colloidal stability and interactions of milk-protein-stabilized emulsions in
an artificial saliva. Food Hydrocoll. 2009, 23, 1270–1278. [CrossRef]

33. Lampi, A.-N.; Damerau, A.; Li, J.; Moisio, T.; Partanen, R.; Forssell, P.; Piironen, V. Changes in lipids and
volatile compounds of oat flours and extrudates during processing and storage. J. Cereal Sci. 2015, 62,
102–109. [CrossRef]

34. Xu, Y.; Wang, Y.; Coda, R.; Säde, E.; Tuomainen, P.; Tenkanen, M.; Katina, K. In situ synthesis of
exopolysaccharides by Leuconostoc spp. and Weissella spp. and their rheological impacts in fava bean
flour. Int. J. Food Microbiol. 2017, 248, 63–71. [CrossRef] [PubMed]

35. Kylli, P.; Nohynek, L.; Puupponen-Pimiä, R.; Westerlund-Wikström, B.; Leppänen, T.; Welling, J.;
Moilanen, E.; Heinonen, M. Lingonberry (Vaccinium vitis-idaea) and European cranberry (Vaccinium
microcarpon) proanthocyanidins: Isolation, identification, and bioactivities. J. Agric. Food Chem. 2011,
59, 3373–3384. [CrossRef] [PubMed]

36. Bhattarai, M.; Pitkänen, L.M.; Kitunen, V.; Korpinen, R.; Ilvesniemi, H.; Kilpeläinen, P.O.; Mikkonen, K.S.
Functionality of spruce galactoglucomannans in oil-in-water emulsions. Food Hydrocoll. 2019, 86, 154–161.
[CrossRef]

37. Moore, P.B.; Langley, K.; Wilde, P.J.; Fillery-Travis, A.; Mela, D.J. Effect of emulsifier type on sensory properties
of oil-in-water emulsions. J. Sci. Food Agric. 1998, 76, 469–476. [CrossRef]

38. Malone, M.E.; Appleqvist, I.A.M.; Norton, I.T. Oral behaviour of food hydrocolloids and emulsions—Part 1:
Lubrication and deposition considerations. Food Hydrocoll. 2003, 17, 763–773. [CrossRef]

39. Chung, C.; Smith, G.; Degner, B.; McClements, D.J. Reduced fat food emulsions: Physicochemical, sensory,
and biological aspects. Crit. Rev. Food Sci. Nutr. 2016, 56, 650–685. [CrossRef]

40. Xu, C.; Pranovich, A.; Vähäsalo, L.; Hemming, J.; Holmbom, B.; Schols, H.A.; Willför, S. Kinetics of acid
hydrolysis of water-soluble spruce O-acetyl galactoglucomannans. J. Agric. Food Chem. 2008, 56, 2429–2435.
[CrossRef]

41. Bhattarai, M.; Valoppi, F.; Hirvonen, S.-P.; Hietala, S.; Kilpelainen, P.; Aseyev, V.; Mikkonen, K.S.
Time-dependent self-association of spruce galactoglucomannans depends on pH and mechanical shearing.
Food Hydrocoll. 2020, 102, 105607. [CrossRef]

http://dx.doi.org/10.3389/fchem.2019.00871
http://dx.doi.org/10.1007/s11483-005-9001-0
http://dx.doi.org/10.1016/j.foodchem.2008.11.012
http://dx.doi.org/10.1016/j.ijbiomac.2007.08.001
http://www.ncbi.nlm.nih.gov/pubmed/17881047
http://dx.doi.org/10.1016/j.etp.2011.04.001
http://www.ncbi.nlm.nih.gov/pubmed/21530204
http://dx.doi.org/10.1021/jf303741h
http://dx.doi.org/10.1016/j.jff.2019.103688
http://dx.doi.org/10.1039/C3FO60702J
http://dx.doi.org/10.1016/j.foodhyd.2014.11.020
http://dx.doi.org/10.1016/j.foodhyd.2008.09.008
http://dx.doi.org/10.1016/j.jcs.2014.12.011
http://dx.doi.org/10.1016/j.ijfoodmicro.2017.02.012
http://www.ncbi.nlm.nih.gov/pubmed/28258980
http://dx.doi.org/10.1021/jf104621e
http://www.ncbi.nlm.nih.gov/pubmed/21370878
http://dx.doi.org/10.1016/j.foodhyd.2018.03.020
http://dx.doi.org/10.1002/(SICI)1097-0010(199803)76:3&lt;469::AID-JSFA974&gt;3.0.CO;2-Y
http://dx.doi.org/10.1016/S0268-005X(03)00097-3
http://dx.doi.org/10.1080/10408398.2013.792236
http://dx.doi.org/10.1021/jf703702y
http://dx.doi.org/10.1016/j.foodhyd.2019.105607


Foods 2020, 9, 672 14 of 14

42. Marciani, L.; Faulks, R.; Wickham, M.S.J.; Bush, D.; Pick, B.; Wright, J.; Cox, E.F.; Fillery-Travis, A.;
Gowland, P.A.; Spiller, R.C.; et al. Effect of intragastric acid stability of fat emulsions on gastric emptying,
plasma lipid profile and postprandial satiety. Br. J. Nutr. 2009, 101, 919–928. [CrossRef]

43. Atgié, M.; Masbernat, O.; Roger, K. Emulsions stabilized by gum arabic: Composition and packing within
interfacial films. Langmuir 2019, 35, 962–972. [CrossRef]

44. Chu, B.S.; Rich, G.T.; Ridout, M.J.; Faulks, R.M.; Wickham, M.S.J.; Wilde, P.J. Modulating pancreatic lipase
activity with galactolipids: Effects of emulsion interfacial composition. Langmuir 2009, 25, 9352–9360.
[CrossRef] [PubMed]

45. Torcello-Gómez, A.; Foster, T.J. Influence of interfacial and bulk properties of cellulose ethers on lipolysis of
oil-in-water emulsions. Carbohydr. Polym. 2016, 144, 495–503. [CrossRef] [PubMed]

46. Espinal-Ruiz, M.; Parada-Alfonso, F.; Restrepo-Sánchez, L.P.; Narváez-Cuenca, C.E.; McClements, D.J.
Impact of dietary fibers [methyl cellulose, chitosan, and pectin] on digestion of lipids under simulated
gastrointestinal conditions. Food Funct. 2014, 5, 3083–3095. [CrossRef] [PubMed]

47. La Rosa, S.L.; Leth, M.L.; Michalak, L.; Hansen, M.E.; Pudlo, N.A.; Glowacki, R.; Pereira, G.; Workman, C.T.;
Arntzen, M.Ø.; Pope, P.B.; et al. The human gut firmicute roseburia intestinalis is a primary degrader of
dietary β-mannans. Nat. Commun. 2019, 10, 905. [CrossRef]

48. Pitkänen, L.; Heinonen, M.; Mikkonen, K.S. Safety considerations of plant polysaccharides for food use:
A case study on phenolic-rich softwood galactoglucomannan extract. Food Funct. 2018, 9, 1931–1943.
[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1017/S0007114508039986
http://dx.doi.org/10.1021/acs.langmuir.8b02715
http://dx.doi.org/10.1021/la9008174
http://www.ncbi.nlm.nih.gov/pubmed/19438174
http://dx.doi.org/10.1016/j.carbpol.2016.03.005
http://www.ncbi.nlm.nih.gov/pubmed/27083841
http://dx.doi.org/10.1039/C4FO00615A
http://www.ncbi.nlm.nih.gov/pubmed/25312704
http://dx.doi.org/10.1038/s41467-019-08812-y
http://dx.doi.org/10.1039/C7FO01425B
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Zhao et al 2020.pdf
	Spruce galactoglucomannan stabilized emulsions enhance bioaccessibility of bioactive compounds
	Introduction 
	Materials and Methods 
	Materials 
	Emulsion Preparation 
	In Vitro Digestion 
	Emulsion Morphology 
	Analysis of Triacylglycerols by HPLC-ELSD 
	Determination of Molar Mass by HPSEC-MALLS-RI 
	Analysis of Monosaccharides by HPAEC-PAD 
	Analysis of Phenolic Compounds by UHPLC-DAD-FLD 
	Statistical Analyses 

	Results 
	Lipid Release from GGM-Stabilized Emulsions 
	Physical Stability of GGM Stabilized Emulsions 
	Stability of GGM 

	Discussion 
	Conclusions 
	
	References


