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Abstract

The Oja median is one of several extensions of the univariate median to the multivari-
ate case. It has many desirable properties, but is computationally demanding. In this
paper, we first review the properties of the Oja median and compare it to other multi-
variate medians. Then, we discuss four algorithms to compute the Oja median, which
are implemented in our R package OjaNP. Besides these algorithms, the package contains
also functions to compute Oja signs, Oja signed ranks, Oja ranks, and the related scat-
ter concepts. To illustrate their use, the corresponding multivariate one- and C-sample
location tests are implemented.

Keywords: Oja median, Oja signs, Oja signed ranks, Oja ranks, R, C++.

1. Introduction

The univariate median is a popular location estimator. It is, however, not straightforward to
generalize it to the multivariate case since no generalization is known that retains all prop-
erties of the univariate estimator, and therefore different generalizations emphasize different
properties of the univariate median. So besides the Oja median described here, there are
several other multivariate median concepts. Hayford (1902) suggested the first generalization
by simply using the vector of the marginal medians. Other popular multivariate medians are
Tukey’s median (Tukey 1975) and the spatial median (also known as L1 median). The spa-
tial median was initially defined as a bivariate median (Weber 1909, 1929) and subsequently
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extended to the general multivariate case. These and more multidimensional medians are
surveyed in Small (1990) and Oja (2013). While the vector of marginal medians is quite easy
to compute, the other multivariate medians are more computationally expensive. Particularly
the Oja median (Oja 1983) has, despite its compelling statistical properties, not been used
very often in practice so far, since it is difficult to compute. The main topic of this paper
is to describe the R (R Core Team 2019) package OjaNP (Fischer, Mosler, Möttönen, Nord-
hausen, Pokotylo, and Vogel 2020), which provides several algorithms for the computation of
the Oja median in R and is available from the Comprehensive R Archive Network (CRAN)
at https://CRAN.R-project.org/package=OjaNP.
The outline of this paper is as follows. In Section 2.1, we review and compare some multi-
variate medians and show which properties of the univariate median is generalized by which
multivariate median. Our main focus is on the Oja median, whose basic properties are dis-
cussed in Section 2.2, followed by an introduction to Oja signs and ranks (Section 2.3), Oja
signed ranks (Section 2.4) and Oja sign and rank covariance matrices (Section 2.5). To demon-
strate the application of the Oja median and its sign and rank concepts, Section 2.6 discusses
one- and C-sample tests of location.
In Section 3, we focus on the different algorithms provided by the package OjaNP to calculate
the Oja median. Four different algorithms are available: two exact algorithms and two
approximate algorithms based on different designs.
Section 4 shows how to use the package OjaNP in order to calculate the Oja median and
related statistics. We provide simple examples, and additional benchmarks are calculated to
analyze the performance of the implementations.
A concept frequently encountered in this paper is affine equivariance. We use it in the sense of
full-rank affine equivariance, which is common in robust statistics. Given the k-dimensional
sample x1, . . . ,xn we let X = (x1 . . .xn)> be the data matrix of dimension n× k, containing
the data points as rows. Subsequently the data sample is identified with X. For a given affine-
linear transformation T : Rk → Rk, x 7→ Ax + b with b ∈ Rk and A ∈ Rk×k non-singular,
the data matrix Y of the transformed data T (x1), . . . , T (xn) is given by

Y = T (X) = XA> + 1b>,

where 1 denotes the n × 1 vector consisting of ones. We call an Rk-valued location statistic
µ(X) affine equivariant, if

µ(T (X)) = T (µ(X)) for all T as above. (1)

This applies analogously to set-valued location statistics µ, such as median sets. For a
matrix-valued scatter statistic S taking on values in Rk×k, affine equivariance is commonly
understood as

S(T (X)) = AS(X)A>.

For a more detailed introduction to affine equivariance, see Oja (2010).

https://CRAN.R-project.org/package=OjaNP
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2. Oja median and related concepts

2.1. Oja median and other multivariate medians

We start by introducing the univariate median for distributions. Given a distribution function
F , let

F−1
(1

2−
)

= inf
{
x ∈ R : F (x) ≥ 1

2

}
and

F−1
(1

2+
)

= sup
{
x ∈ R : F (x) ≤ 1

2

}
.

Then the median (set) of F is given by the interval

Med(F ) =
[
F−1

(1
2−
)
, F−1

(1
2+
)]

. (2)

Any point of the interval divides the distribution in two halves of equal probability weight
and can represent the median. In case a unique selection is needed, we use the gravity center
of the median set as a (single-point) median and denote it by the lower case symbol,

med(F ) =
F−1

(
1
2+
)

+ F−1
(

1
2−
)

2 . (3)

For a given sample X = (x1, . . . , xn), the median med(X) is obtained as

med(X) =

x( n+1
2 ) if n is odd ,

1
2

(
x( n

2 ) + x( n
2 +1)

)
if n is even ,

with x(i) being the ith order statistic. The latter definition is a special case of (3), obtained
by taking F to be the empirical distribution of X, which gives equal probability mass to each
of the points x1, . . . , xn. Note that med(X) is an affine equivariant location statistic.
Now let X = (X1, . . . ,Xk) be a k-dimensional data set, where Xi denotes the ith column
of X and corresponds hence to the ith variable. The many existing notions of a k-variate
median for such data have in common that they reduce to the univariate median for k = 1.
Multivariate medians are generally non-unique, and we select, as above, the gravity center of
the median set to obtain a unique representation.
To the best of our knowledge the first generalization of the univariate median to the multi-
variate case is the vector of marginal medians mmed described in Hayford (1902).

Definition 1. The vector of marginal medians mmed of the sample X is defined as

mmed(X) = (med(X1), . . . ,med(Xp))>.

The vector of marginal medians is easily computed but not affine equivariant.

Example 1. A simple rotation of two-dimensional data visualizes the problem of not affine
equivariant transformations. In the left part of Figure 1 a two-dimensional data set is plotted
and rotated around the center point +. At the same time the marginal median mmed is
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Figure 1: Transformation of different multivariate medians.

continuously plotted in red. An affine equivariant median would follow the rotation on a
circle, meaning that it would not be affected by the degree of the rotation of the original data.
The blue circle represents the Oja median and hence, illustrates the behavior of an affine
equivariant median.
In the right part of Figure 1 we visualize the behavior of a rotation invariant estimator that is
not scale invariant. We use the spatial median smed as an example for a not scale invariant
statistic, see Definition 3 below. For five example points the median is calculated and indicated
as the center point, connected with lines to the data points. Then, the scale of those five points
was transformed into the star shape on the right side of this plot. The location of the spatial
median of the transformed data is indicated at the top of curved arrow. An affine equivariant
median, however, would still be equivalent to the transformed median of the original data.
The Oja median (and any other affine equivariant statistic) fulfills this criterion.

The second generalization of the univariate median reviewed here is based on the fact that
for a given sample X and its median med(x) the equation

n∑
i=1

11(−∞,med(x)](xi) =
n∑
i=1

11[med(x),∞)(xi)

holds, where 11A(xi) = 1 if xi ∈ A and = 0 otherwise. This means, there are as many
observations smaller than med(x) as are bigger, as it was pointed out, e.g., in Hotelling
(1929). Given a k-dimensional data set, we consider halfspaces in every direction v ∈ Sk−1 =
{x | ‖x‖ = 1}. Let Hv denote the “minimal” halfspace with normal vector v that contains at
least half of the data points, i.e., for any other halfspace H̃v with these properties Hv ⊂ H̃v
holds. The intersection of all Hv,v ∈ Sk−1, forms the Tukey median Tmed(X). If the data
are in general position, each such halfspace is bordered by a hyperplane through exactly k
data points, and the Tukey median is in general no singleton. (A set of k-variate data is in
general position if at most k of them lie on the same hyperplane.) The unique Tukey median
tmed(X) is defined as the gravity point of this median set; see Tukey (1975) and Donoho and
Gasko (1992). It is affine equivariant (Chen 1995) and can be introduced as the maximizer
of a depth function as follows.

Definition 2. Let X be a k-dimensional sample as above. For any x ∈ Rk,

tdepX(x) = 1
n

min
‖v‖=1

#{i : v>xi ≥ v>x} (4)
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is called the Tukey depth or location depth of x w.r.t. X. (Here #{S} denotes the cardinality
of a set S.) The Tukey median Tmed(X) of the sample X is defined as the maximizer of the
Tukey depth,

Tmed(X) = argmax
x∈Rk

{tdepX(x)} . (5)

Another way to generalize the univariate median is to transfer its minimizing feature into
higher dimensions. Consider again a univariate sample X = (x1, . . . , xn) in R. When mini-
mizing the sum ∑n

i=1 |xi − x| over x ∈ R we obtain

med(X) = argmin
x∈R

n∑
i=1
|xi − x| . (6)

This minimizing feature of the univariate median is interpretable in two ways: It is the sum
of absolute deviations, but it can also be viewed as the sum of one-dimensional simplices.
The first interpretation will lead us to the spatial median, the second to the Oja median.
The spatial median is presumably the most popular multivariate median and almost as old
as the marginal median. Weber (1909) first described the spatial median and used it to solve
an economic problem: He was looking for the best place of a distribution center in the sense,
that the sum of distances between outposts and the distribution center becomes minimal.
The k-dimensional extension of this approach is the spatial median.

Definition 3. The spatial median smed of a k-variate data sample X is defined as

smed(X) = argmin
x∈Rk

{
n∑
i=1
‖xi − x‖2

}
. (7)

Here ‖·‖2 denotes the Euclidean norm. The spatial median is sometimes also referred to as the
L1 median since it minimizes the L1 norm of the n-variate vector of distances ‖xi−x‖2. The
spatial median is not affine equivariant as is visualized in the right part of Figure 1. Given an
affine transformation T : R2 → R2 which transforms the data points from the left star-shaped
figure into the right star-shaped figure, the center of each star is the spatial median of the
data points. However, due to the lack of affine equivariance, the transformed spatial median
T (smed(X)) (marked with the arrow) does not coincide with the spatial median smed(T (X))
of the transformed data set. The spatial median is rotation invariant, but not scale invariant.
Oja (1983) introduced a multivariate median based on volumes of simplices. A k-dimensional
simplex is the convex hull of (k + 1) spanning points in general location. Let

x1 = (x1,1, . . . , x1,k)>,x2 = (x2,1, . . . , x2,k)>, . . . ,xk+1 = (xk+1,1, . . . , xk+1,k)>

be k + 1 points in general location from Rk. The volume V (x1, . . . ,xk+1) of the simplex
spanned by the points x1, . . . ,xk+1 is then given by

V (x1, . . . ,xk+1) = abs


1
k! det


1 1 · · · 1
x1,1 x2,1 · · · xk+1,1
x1,2 x2,2 · · · xk+1,2
...

...
...

x1,k x2,k · · · xk+1,k



 , (8)
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see, e.g., Stein (1966). Let F be a distribution on Rk having finite first moment. The Oja
median Omed(F ) of F is defined as follows: for i.i.d. random vectors X1, . . . ,Xk, each
distributed with F , define the Oja median set as

Omed(F ) = argmin
µ∈Rk

E(V (X1, . . . ,Xk,µ)).

For data we have the following definition. Let

Pn,k = { p = (i1, . . . , ik) | 1 ≤ i1 < · · · < ik ≤ n} (9)

be the set of all ordered k-tuples out of {1, . . . , n}, 1 ≤ k ≤ n.

Definition 4. The Oja median Omed of a k-dimensional sample X = (x1 . . .xn)> of size
n > k is defined as

Omed(X) = argmin
x∈Rk

 ∑
(i1,...,ik)∈Pn,k

V (xi1 , . . . ,xik ,x)

 . (10)

This means that the Oja median of a k-dimensional sample is any point x ∈ Rk for which the
sum of simplex volumes over all combinations of possible k data points is minimal. Note that
Omed(X) equals Omed(FX), where FX is the empirical distribution on x1 . . .xn. A unique
version of the Oja median, denoted omed(X), is obtained by selecting the point of gravity of
Omed(X).

2.2. Properties of the Oja median

As other multivariate extensions of the median, the Oja median is not unique. In the bivariate
case, we have the following result.

Theorem 1. If n is even and the data points x1, . . . ,xn ∈ R2 are in general position, then
the Oja median is unique.

For details see Niinimaa (1995). The author also identifies a necessary and sufficient condition
for the bivariate Oja median to be unique if n is odd. There appears to be no result for higher
dimensions, but Oja (1999) conjectures that the Oja median is unique for even (odd) sample
sizes if the dimension k is even (odd). Figure 2 visualizes the Oja median in several small-
sample data situations.

Theorem 2. The Oja median of a sample is a convex set.

See Oja and Niinimaa (1985) for details. Theorem 2 is illustrated in Figure 3. Contour lines
of the objective function (10) are plotted for two small data clouds. The objective function
is convex for, both, even and odd sample sizes.

Theorem 3. The Oja median is affine equivariant.

Hence the Oja median is a proper location statistic in the sense of (1), i.e., omed(T (X)) =
T (omed(X)). The next result can be found, e.g., in Arcones, Chen, and Gine (1994), Shen
(2008).
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Figure 2: Example plots for the bivariate case.
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Figure 3: Contour plot for the bivariate case.

Theorem 4. Under mild regularity conditions (including the existence of first moments) for
an i.i.d. sample X = (x1 . . .xn)> from the distribution F , we have

√
n(omed(X)− omed(F ))→d Nk(0,A−1B(A−1)>),

where B is the Oja sign covariance matrix (OSCM) defined later in Section 2.5 at F and A is
the expected covariance matrix between the Oja signs (osgn, see Section 2.3) and the optimal
location score of F .



8 OjaNP: Computing the Oja Median in R

Median Affine equivariance Breakdown point
Marginal median No 1/2
Tukey median Yes 1/(k + 1)
Spatial median No 1/2
Oja median Yes 0

Influence function Asymptotic distribution
Marginal medians Niinimaa and Oja (1995) Babu and Rao (1988)
Tukey median Romanazzi (2001) Bai and He (1999)
Spatial median Niinimaa and Oja (1995) Möttönen, Nordhausen, and Oja (2010)
Oja median Niinimaa and Oja (1995) Shen (2008)

Table 1: Main properties of different multivariate medians.

Concerning robustness the Oja median has the following properties.

Theorem 5. Let F have a finite first moment. Then the Oja median has a bounded influence
function.

The influence function is for example given in Niinimaa and Oja (1995). The Oja median
has an asymptotic breakdown point of 0. Niinimaa, Oja, and Tableman (1990) show the
following:

Theorem 6. The finite-sample breakdown-point of the bivariate Oja median is 2/(n+ 2).

Table 1 summarizes the main properties of the Oja median and other common multivariate
medians discussed here. For another recent discussion of the different medians see also Oja
(2013).

2.3. Oja signs and ranks

Closely related to the median is the concept of signs and ranks. In this section we introduce
the multivariate Oja sign and Oja rank and relate them to other multivariate signs and ranks,
corresponding to the marginal and the spatial median. Again, to motivate the subsequent
derivations we take a brief look at the univariate case. Suppose we have a univariate data set
X = (x1 . . . xn)>, n ∈ N. We call

sgnX(x) = sgn(x−med(X)), x ∈ R, (11)

the sign of x w.r.t. the data sample X, where sgn is the univariate sign function (sgn(x) = x
|x|

if x 6= 0 and zero otherwise), and med(X) is the univariate median of the sample X. There
are several possibilities of suitably assigning ranks to the data points. By

rnkX(x) = 1
n

n∑
i=1

sgn(x− xi), x ∈ R, (12)

we define normalized central ranks, which may take on 2n + 1 possible values ranging from
−1 to 1. In the following we call rnkX(x) simply the rank of x w.r.t. X.
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The median appropriately centers the data, i.e., the signs of the data points, centered by the
median, sum up to zero:

n∑
i=1

sgnX(xi) =
n∑
i=1

sgn(xi −med(X)) = 0. (13)

The sample mean does the same for the data points themselves. In other words we may say
that the median has central rank zero,

rnkX(med(X)) = − 1
n

n∑
i=1

sgn(xi −med(X)) = 0 , (14)

and, in this respect, is the most central point. Identities (13) and (14) (which are different
formulations of the fact that half of the data lies above and below the median) provide the
essential link between signs and ranks and the median and are a motivating principle behind
the multivariate sign and rank functions we will introduce next. Note that a k-variate sign
function should be a vector that can point in any direction of the k-dimensional space. The
same holds for a multivariate rank function based on signs.
An obvious extension of (11) to the multivariate setting is its componentwise application,
leading to the marginal sign function. We call

msgnX(x) = msgn(x−mmed(X))

the marginal sign of x ∈ Rk w.r.t. the k-variate data sample X = (x1 . . .xn)>, where x =
(x1 . . . xk)>,

msgn(x) = (sgn(x1) . . . sgn(xk))>,

and mmed(X) is the marginal median of X. An equally straightforward generalization is the
spatial sign of x w.r.t. X:

ssgnX(x) = ssgn(x− smed(X)), x ∈ Rk,

where

ssgn(x) =


1
‖x‖ x if x 6= 0,
0 if x = 0,

and smed(X) is the spatial median of X. The corresponding rank functions, the marginal
rank mrnkX and the spatial rank srnkX, are obtained by replacing sgn in (12) by msgn and
ssgn, respectively. The Oja sign is defined as follows. For 0 ≤ k ≤ n, let Nn,k =

(n
k

)
and Pn,k

as in (9). We call

osgnX(x; m) = 1
Nn,k−1

∑
(i1,...,ik−1)∈Pn,k−1

∇x
∣∣ det(xi1 −m, . . . ,xik−1 −m,x−m)

∣∣ (15)
= 1

Nn,k−1

∑
(i1,...,ik−1)∈Pn,k−1

∇x

∣∣∣∣∣ det
(

1 1 . . . 1 1
m xi1 . . . xik−1 x

)∣∣∣∣∣
the Oja sign of the point x ∈ Rk w.r.t. the data sample X and the center location m and

osgnX(x) = osgnX(x; omed(X)) (16)
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simply the Oja sign of x w.r.t. X. Furthermore

ornkX(x) = 1
n− k + 1

n∑
i=1

osgnX(x; xi)

= 1
Nn,k

∑
(i1,...,ik)∈Pn,k

∇x

∣∣∣∣∣ det
(

1 . . . 1 1
xi1 . . . xik x

)∣∣∣∣∣ (17)

is the Oja rank of x w.r.t. X. The notation ∇x means the gradient (the derivative as a column
vector) w.r.t. x. We define the derivative of | · | to be zero at the origin, i.e., d

dx |x| = sgn(x),
x ∈ R.
We note a qualitative difference in the definition of the Oja sign to the marginal and the spatial
sign. The Oja sign function osgnX depends on the sample X not only through the centering
point omed(X), but is a function of the whole sample. By introducing the parameter m in
definition (15) we allow the data to be centered by a different central location than the Oja
median. This may be useful under some circumstances, for example to speed up computation.
The function ojaSign offers this option.
We also note that for k = 1 expressions (16) and (17) reduce to

osgnX(x) = d

dx
|det(x−med(X)) | = sgnX(x)

and
ornkX(x) = 1

n

n∑
i=1

d

dx

∣∣∣∣∣ det
(

1 1
xi x

)∣∣∣∣∣ = 1
n

n∑
i=1

sgn(x− xi) = rnkX(x),

hence osgnX and ornkX are proper generalizations of sgnX and rnkX, respectively, in the
sense that for k = 1 they coincide with their univariate counterparts.
In dimensions 2 and 3, Oja signs and ranks allow a descriptive geometric interpretation:
Recall that the k-dimensional volume of the simplex spanned by k+ 1 points x1, . . . ,xk+1 in
Rk is given by V (x1, . . . ,xk+1), cf. (8). Hence

det
(

1 . . . 1 1
x1 . . . xk x

)
= 0

characterizes all points x ∈ Rk that lie on the k − 1 dimensional hyperplane spanned by
the k points x1, . . . ,xk. Then for k = 3, osgnX(x) is the average of the Nn,k−1 =

( n
k−1
)

k-dimensional vectors vp, p = (i1, . . . , ik−1) ∈ Pn,k−1, where vp

• is perpendicular to the plane going through the k points xi1 , . . . ,xik−1 and omed(X),

• has length equal to (k − 1)! times the area of the triangle that is bordered by the k
points and,

• points from the plane to the point x.

If x itself lies on the plane or if the k points do not uniquely determine a plane, the vector vp is
zero. Likewise, ornkX(x) is the average of Nn,k =

(n
k

)
vectors vp, p = (i1, . . . , ik) ∈ Pn,k, each

perpendicular to the plane spanned by xi1 , . . . ,xik . This holds analogously for k = 2 with
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Figure 4: Three points in R2: The Oja sign (in red) of point x1 is the average of three vectors:
the two black vectors and the null vector.

plane, triangle, and area being replaced by straight line, line segment, and length, respectively.
The construction of the Oja sign is visualized in Figure 4 at the very simple example of three
points in R2: The red ⊕ is an interior point (let it be denoted by m0) of the Oja median set.
The latter is the triangle bordered by the three data points. Then osgnX(x1; m0), the vector
in red, is formed as the average of the two black vectors and the null vector (the latter being
interpreted as a vector pointing perpendicularly from the straight line x1–m0 to x1). In this
example, osgnX(x1; m0) is invariant w.r.t. the specific choice of m0 as long as m0 is below
both lines x1–x2 and x1–x3.
As in the univariate case, cf. (13) and (14), the multivariate signs of the data points sum up
to zero, i.e.,

n∑
i=1

sgnX(xi) = 0,

where sgnX may be any of msgnX, ssgnX or osgnX. Equivalently,

rnkX(med(X)) = 0, (18)

where rnkX may be any of mrnkX, srnkX or ornkX, and med(X) the respective multivariate
median. This is generally only true if the appropriate median is chosen as centering point, for
Oja signs in particular, the data has to be centered by the Oja median. Some further care must
be given to these statements. If the median set is no singleton, they may be false for median
points on its border. This also happens in the univariate case, when, for an even number
n of observations, one chooses the median to be x( n

2 ) or x( n
2 +1). The function ojaMedian

is likely to return points at the border of the median set. In (7) and (10), respectively, the
spatial median and the Oja median were introduced as minimizers of objective functions, both
generalizing the univariate case (6). Spatial and Oja ranks may be introduced as derivatives
of these objective functions. Thus (18) is in concordance with the optimality property of the
medians.
The negative rank function −ornkX(x) defines a hyperplane through x, on the positive side
of which the Oja median is found. This property is used by the exact bounded algorithm
(Section 3.2) to reduce the search region for the median.
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Similar to the multivariate medians, the multivariate signs differ by their equivariance and
invariance properties. All multivariate signs are translation invariant, i.e., for Y = X+ 1nb>,
b ∈ Rk, we have

sgnY(x + b) = sgnX(x), x ∈ Rk,
where, again, sgn is any of msgn, ssgn, osgn. Marginal signs are furthermore invariant
w.r.t. monotonously increasing, componentwise transformations, in particular

msgnXD>(Dx) = msgnX(x), x ∈ Rk,

for D = diag(d1, . . . , dk) with di > 0, i = 1, . . . , k. Spatial signs on the other hand are
equivariant under orthogonal transformations, i.e.,

ssgnXU>(Ux) = U ssgnX(x), x ∈ Rk,

for any orthogonal U ∈ Rk×k. Oja signs even obey a form of affine equivariance, an inverse
proportional affine equivariance:

osgnXA>(Ax) = det(A)(A−1)>osgnX(x), x ∈ Rk, (19)

for any non-singular A ∈ Rk×k, and they appear in the literature under the name affine
equivariant signs. The respective multivariate rank functions have analogous equivariance
and invariance properties. More details on Oja signs and ranks and their applications can
be found, e.g., in Oja (1999). Hettmansperger and McKean (2011) and Nordhausen and Oja
(2018) give an overview of multivariate sign and rank methods in general, Puri and Sen (1971)
treat methods based on marginal signs and ranks and Oja (2010) describes spatial sign and
rank methods.

2.4. Oja signed ranks
As in the Section 2.3 we consider first the univariate case. Suppose we have a univariate data
set X = (x1, . . . , xn). The signed rank of x w.r.t. X can be defined by

rnk+
X (x) = 1

2n

n∑
i=1

∑
a∈A

sgn(x− axi), (20)

where A = {−1, 1}. Note that the signed rank of the jth observation can be written as

rnk+
X (xj) = 1

2n{2 rnk(|xj |)− 1} sgn(xj), (21)

where |xj | is ranked among absolute values |x1|, . . . , |xn|. The Wilcoxon signed rank statistic∑n
i=1 rnk(|xi|) sgn(xi) is thus asymptotically equivalent with n∑n

i=1 rnk+
X (xi).

The signed rank can be extended to the multivariate case, provided we have a concept of
multivariate sign. We get spatial signed rank srnk+

X (x) if we replace sgn in (20) by ssgn.
The Oja signed rank can be defined in the following way. Let A be the set of 2k possible
vectors (±1, . . . ,±1), i.e., A = {a = (a1, . . . , ak) : a1 = ±1, . . . , ak = ±1}. Then

ornk+
X (x) = 1

2kNn,k

∑
Pn,k

∑
a∈A
∇x

∣∣∣∣∣ det
(

1 · · · 1 1
a1xi1 · · · akxik x

)∣∣∣∣∣ (22)

is the Oja signed rank of x w.r.t. X. It is easy to see that the Oja signed rank coincides with
the univariate signed rank when k = 1. Furthermore, it can be shown that
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• ornk+
X (x) is odd: ornk+

X (−x) = −ornk+
X (x).

• ornk+
X (x) points (approximately) in the direction of x.

• ornk+
X (0) = 0.

• ornk+
X (x) is bounded, piecewise constant and increases in magnitude as x moves away

from 0.

2.5. Oja sign and rank matrices

Multivariate signs can be useful for obtaining information about the spread of the data and
dependencies among the variables. We call

OSCM(X; m) = 1
n

n∑
i=1

osgnX(xi; m)osgnX(xi; m)>

the Oja sign covariance matrix of X w.r.t. the central location m ∈ Rk,

OSCM(X) = OSCM(X; omed(X)) = 1
n

n∑
i=1

osgnX(xi) osgnX(xi)>

the Oja sign covariance matrix of X and

ORCM(X) = 1
n

n∑
i=1

ornkX(xi) ornkX(xi)>

the Oja rank covariance matrix of X. In an analogous way we define marginal and spatial sign
and rank matrices MSCM, SSCM and MRCM, SRCM by replacing osgnX by msgnX, ssgnX
and ornkX by mrnkX and srnk, respectively. A comparative study of all sign and rank
matrices presented here can be found in Visuri, Koivunen, and Oja (2000). Figure 5 shows
a small two-dimensional data sample, together with the different multivariate medians and
the corresponding signs and sign covariance matrices visualized as ellipses. The ellipses have
radius

√
χ2

2,0.9, i.e., the positive definite matrix S is depicted by the ellipse x>S−1x = χ2
2,0.9.

The affine equivariance (19) for Oja signs and ranks translates into a similar equivariance for
the corresponding covariance matrices,

OSCM(XA> + 1nb>) = det(A)2(A−1)>OSCM(X)A−1

and
ORCM(XA> + 1nb>) = det(A)2(A−1)>ORCM(X)A−1,

for b ∈ Rk and A ∈ Rk×k with full rank. This has, roughly speaking, the consequence
that OSCM and ORCM estimate the inverse of the covariance matrix up to scale. More
specifically, Ollila, Oja, and Croux (2003) show that OSCM(X; m) converges to a multiple
of the inverse of the covariance matrix at the

√
n rate, if m is a

√
n-convergent location

estimator and the data stem from a linear transformation of a reflection and permutation
invariant distribution having finite second moments. The statistical theory of the Oja rank
covariance matrix ORCM is treated in Visuri, Ollila, Koivunen, Möttönen, and Oja (2003)
and Ollila, Croux, and Oja (2004).
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Figure 5: Data sample together with a) mean and sample covariance matrix, b) marginal
median, marginal signs and MSCM, c) spatial mean, spatial signs and SSCM and d) Oja
median, Oja signs and OSCM.

A further consequence of this remarkable property is that Oja sign and rank matrices provide
easily-obtained, positive definite, consistent estimates for the covariance matrix up to scale,
which is a significant advantage over the other sign and rank covariance matrices. Multivari-
ate data analysis is primarily aimed at analyzing the dependencies and interactions between
variables. For multivariate methods such as correlation, canonical correlation analysis, princi-
pal component analysis, or factor analysis, it is fully sufficient to know the covariance matrix
only up to scale. In particular, the OSCM and the ORCM directly estimate a multiple of the
concentration matrix or precision matrix, i.e., the inverse covariance matrix, which plays an
important role in graphical models. The application of OSCM in this context is examined
in Vogel, Köllmann, and Fried (2008) and Vogel and Fried (2008). Due to their (inverse
proportional) affine equivariance, the theory developed in Vogel and Fried (2011) also applies
to the OSCM and the ORCM.
Furthermore Ollila et al. (2003) and Ollila et al. (2004) also derive the limiting distributions of
OSCM and ORCM in the elliptical model. Contrary to the other non-parametric covariance
matrices based on marginal and spatials signs and ranks, the OSCM and the ORCM are
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Figure 6: The effect of an outlier on the empirical covariance matrix (black) and on the
OSCM-based covariance estimate (red). In the right-hand plot, one observation has been
replaced by an outlier at (−1, 19).

not invariant w.r.t. the elliptical generator within the elliptical model. Their asymptotic
distribution depends on the tail behavior of the population distribution. But, and this is also
in contrast to marginal and spatial non-parametrics, Oja sign and rank matrices are very
efficient at the normal model in low dimensions. Their performance almost equals that of the
empirical covariance matrix, the normal maximum likelihood estimator. They outperform
the empirical covariance matrix ECM at heavier tailed distributions, but are generally less
efficient at light tails. They maintain the good efficiency at small sample sizes n and small
dimensions k, which is not true for many robust scatter estimators.
The gain in using the OSCM or the ORCM instead of the sample covariance matrix lies in
their higher robustness, which comes at practically no loss in efficiency (but unfortunately at
a large increase in computing time). However, similar to the Oja median, the Oja sign and
rank matrices do not qualify as globally robust estimators in the sense of having a breakdown
point near 1/2. They require first moments; their influence functions are unbounded but
grow linearly (instead of quadratic as in the case of the sample covariance matrix), and the
asymptotic breakdown point is zero. Very few misplaced observations suffice to let the bias
of the estimators become arbitrarily large, but the bias is significantly smaller than that of
the sample covariance matrix. This is visualized in Figure 6: The left-hand plot shows a
data sample of size n = 50 drawn from a two-dimensional normal distribution. The black
ellipse represents the empirical covariance matrix, the red ellipse the OSCM-based covariance
estimate. In the right-hand plot, one observation has been replaced by an outlier at (−1, 19),
and the ellipses represent the corresponding estimates of the contaminated data set.

2.6. The one- and C-sample location tests based on Oja signs and ranks

The notions of multivariate location and spread together with the corresponding concepts of
sign and rank allow the general derivation of multivariate inference methods. The general idea
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is there to view the signs, signed ranks and ranks as scores, which replace the observations
in the classical multivariate procedures. In principle, robust counterparts of any multivariate
method can be derived this way. We demonstrate here the multivariate one-sample and C-
sample location tests. For that purpose, denote for a sample point xi the corresponding score
s(xi; m), where m is an optional location w.r.t. to which the score is computed.

The one-sample tests
Assume X = (x1, . . . ,xn) is a sample of size n from a k-variate symmetric distribution F with
symmetry center µ. We are interested in testing the null hypothesis H0 : µ = µ0 against
H1 : µ 6= µ0.
Denote s̄ = 1

n

∑n
i=1 s(xi,µ0) as the average of the score values under the null hypothesis and

Σs = 1
n

∑n
i=1 s(xi,µ0)s(xi,µ0)>. The test statistic is then

Q = n s̄>Σ−1
s s̄ .

Using Oja signs or Oja signed ranks as scores, this yields a straightforward extension of
Hotelling’s classical one-sample T 2-test. The test is invariant under affine transformations
and asymptotically distribution-free and has a limiting χ2

k distribution. Test decisions can
also be based on permutation principles by randomly changing the signs of the scores. The
tests are described in detail in Hettmansperger, Nyblom, and Oja (1994) and Hettmansperger,
Möttönen, and Oja (1997). Similar tests can also be naturally constructed using marginal or
spatial signs and signed ranks. See Puri and Sen (1971) and Oja (2010) for details.

The C-sample tests
Let Xc = (xc,1, . . . ,xc,nc), c = 1, . . . , C, correspond to k-variate samples coming from C ≥ 2
groups having distributions Fc that differ only in location parameters µc, c = 1, . . . , C. The
null hypothesis is µ1 = . . . = µC , i.e., the C groups have the same location.
Denote X = (X1, . . . ,XC) as the combined sample and n = ∑C

i=1 ni. Then s̄c = 1
nc

∑nc
j=1 s(xc,j),

c = 1, . . . , C, is the average score value of group c computed w.r.t. to the location of the com-
bined sample. Similarly, Σs = 1

n

∑n
i=1 s(xi)s(xi)> is computed for the combined groups.

The test statistic is obtained as

Q =
C∑
c=1

ncs̄>c Σ−1
s s̄c .

When Oja signs and Oja ranks are used as scores, C-sample tests for multivariate loca-
tion are obtained that are asymptotically distribution-free and affine invariant. The limiting
distribution of the test statistic is χ2

k(C−1), but p values can be obtained by permuting obser-
vations between the groups. The two tests are described in Hettmansperger and Oja (1994);
Hettmansperger, Möttönnen, and Oja (1998). Similar tests based on other concepts of signs
and ranks are described also in Puri and Sen (1971) and Oja (2010).

3. Description of the algorithms
The package OjaNP contains four different algorithms to calculate the Oja median. Two
exact algorithms and two approximate algorithms. The first exact algorithm was developed
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in Ronkainen, Oja, and Orponen (2003) as well as one of the approximate algorithms. The
second exact algorithm (Mosler and Pokotylo 2015) is based on the first one: It accelerates
the computation considerably by introducing bounds to the region of search. The numeri-
cal calculation is a non-trivial problem which consumes enormous calculation resources and
hence, the exact algorithms are limited to small data situations only and, as a consequence,
approximate algorithms are needed. These offer parameters to regulate the speed vs. accuracy
trade-off, and the user has to decide from case to case which algorithm to choose with which
tuning parameters. In Section 4 we will give an overview over the several options and their
effect onto the calculation precision and time. Before that, we are going to describe the four
algorithms.

3.1. Exact algorithm

Ronkainen et al. (2003) implemented the ideas from Niinimaa, Oja, and Nyblom (1992) and
generalized them into higher dimensions based on the result described in Hettmansperger,
Möttönen, and Oja (1999), whereby the vertices of the Oja median set are always located on
intersections of hyperplanes that are spanned by data points.
Ronkainen et al. (2003) constructed a Las Vegas algorithm as follows. (This is a simplified
version; a more detailed description can be found in the original paper.)

1. Let H be the set of all (k − 1)-dimensional hyperplanes spanned by the points in X.

2. Take the data point xc ∈ X closest to the mean as an initial candidate point.

3. Sample k − 1 hyperplanes out of H such that the candidate point is on their intersec-
tion L.

4. Calculate the Oja depth of each intersection point between L and the hyperplanes in H.

5. Take the point x∗c with the highest Oja depth as next candidate point for the Oja
median.

6. Repeat steps 3 to 5 until no improvement in the objective function is possible (or latest
after n repetitions).

7. The result for the exact Oja median is the last candidate point x∗c .

Ronkainen et al. (2003) focused on computational stability rather than efficiency. In case a
candidate point is a data point, there are k − 1 possible intersection hyperplanes L. Instead
of only following the one determined by the gradient of the objective function, the algorithm
tries all possible ones.
This algorithm finds just one of the vertices of the median set. While searching for the
median, the algorithm may pass through several vertices of the median set, although it is not
guaranteed that it visits all of them. The reason is that on step 5 only the first of possibly
two points having highest Oja depth is taken as x∗c . However, in case of a non-unique median,
there exist two such points lying on an edge of the median set. To deliver all vertices of the
median set, the algorithm can be modified as follows: It has to store both points as vertices
and, in addition, check all lines passing through them.
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The algorithm is implemented in C++ and was initially published as stand-alone software
on the personal webpage of Tommi Ronkainen but cannot be accessed anymore in that form.
The implementation was modified such that it can be used directly from R.

3.2. Exact bounded algorithm

Based on the exact algorithm of Ronkainen et al. (2003), Mosler and Pokotylo (2015) de-
veloped a faster exact algorithm. This algorithm uses the centered rank functions to build
bounded regions which contain the median. The negative rank function −ornkX(x) is a vec-
tor that points in a direction of ascent of the depth function. It defines a hyperplane through
x, on the positive side of which the Oja median is found. The halfspaces defined by the
negative rank function are used to build a bounded region that contains the median. In this
algorithm, these halfspaces are selected in an iterative way and the further search is restricted
to their intersection. The hyperplanes bordering such a search region will be called bounding
hyperplanes or simply bounds.
The steps of the algorithm are as follows. (A more detailed description can be found in the
original paper):

1. Let H be the set of all hyperplanes spanned by the points in X.

2. Create the initial rectangular bounded region B, limited by hyperplanes that are per-
pendicular to the coordinate axes and go through the maximal and minimal coordinates
of the data points on these axes.

3. Iteratively reduce the bounded region B by adding hyperplanes that go through a
properly chosen central point of the region and have their normal vectors equal to
the corresponding negative rank function. Specifically, the mean value of the bounds’
intersection points is selected as a central point in our implementation. The bounds of
B are cut off by newly added hyperplanes.

4. The region is reduced until the desired final volume of the bounded region is reached.

5. Add the bounds from B to H.

• At the first iteration: Take a random initial line L on the border of B.
• At further iterations: Sample k − 1 hyperplanes out of H in that way, that the

candidate point is on their intersection line L.

6. Calculate the Oja depth on each intersection point between L and hyperplanes in H
that lies in the bounded region.

7. Take the point x∗c with the highest Oja depth as next candidate point for the Oja
median.

8. Repeat steps 6 to 8 until no improvement in the objective function is possible (or latest
after n repetitions).

9. The result for the exact Oja median is the last candidate point x∗c .
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Figure 7: Dependence of calculation time on the size of the bounded region; time needed for
bounding (Tbounds), for minimizing (Tcount), and total time (Ttotal). For comparison: total
time of the first exact algorithm is about 340 seconds.

The bounded regions reduce the complexity of the searching procedure by reducing the number
of hyperplanes that cross the searching lines as well as the number of their intersections to
be considered in the minimization procedure.

The algorithm is driven by the desired final volume of the bounded region, which is the volume
of the minimal rectangle containing the region and having edges parallel to the coordinate
axes. As this parameter is reduced, the time needed to build the bounded regions (Tbounds) in-
creases, while the minimization time (Tcount) decreases along with the number of hyperplanes
and their intersections; see Figure 7. The total computing time (Ttotal) decreases rapidly
with the volume, but then slowly grows again. Beyond some point the procedure becomes less
efficient. For comparison, the original algorithm needs a total time Ttotal of ca. 340 seconds
in this example. It appears that the fastest computation is obtained if bounds are imposed
until the volume of the bounded region ranges around 10−8 of the original volume. Note that
the bounds may cut off some of the vertices of the median set. Moreover, if the central point
of the bounded region lies in the median set on step 3, its negative rank function is zero, and
this point is directly returned as a median, as on Figure 9.

Due to limitations in computing memory and long calculation time, the exact algorithm and
its bounded version are only able to calculate the Oja median for small data sets in low
dimensions. For example, the calculation of the median in a data set of size 100× 5 needs 12
GB RAM. Therefore, approximate algorithms are needed.

Obviously, the bounded algorithm can be stopped at any iteration and some mean value of
the last bounded region be taken as an approximation of the Oja median. However, unlike
the approximate algorithms presented below, this approach requires the calculation of all
hyperplanes. Due to its high computational requirements it is less suited as an approximate
algorithm for big data sets in high dimensions.

For calculation speed reasons, also this algorithm is implemented in C++.
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3.3. Grid-based algorithm

The third algorithm, which calculates an approximation to the Oja median, was also proposed
in Ronkainen et al. (2003). Technically it is a Monte Carlo algorithm. The algorithm lays a
uniform grid over the data set. At each grid point a test is performed whether the point is a
possible candidate. The amount of candidate points is reduced as long as only one grid point
is left. This point is afterwards the center for a smaller but denser grid, where again each grid
point is tested. The algorithm stops when the distance between two grid points gets smaller
than a predefined parameter. A second tuning parameter is the significance level of the point
tests. The steps of the algorithm are:

1. Create a grid G with equidistant knot distance h, covering the whole data set.

2. Choose randomly a set of hyperplanes, build the test statistic and test each of the grid
knots in G whether it is an Oja median.

3. Remove those grid knots which have been tested not to be an Oja median.

4. If there is more than one knot left, sample additional hyperplanes and repeat the test
for the remaining knots.

5. Repeat these steps until only one grid knot is left over. If the last test removes all
remaining ones, take the last set.

6. Build a new grid around the last remaining old grid knot with equidistant knot distance
h/2.

7. Repeat all these steps until the grid distance reaches a predefined threshold.

8. The last point is taken as the Oja median.

For further details, especially about the testing procedure, we refer to the original paper
Ronkainen et al. (2003). It may happen that there is continually more than one point left on
step 5. In this case sampling of the additional hyperplanes may not help and the algorithm
hangs. We restrict the algorithm to 5000 iterations on step 5, after which the grid point with
the best test statistic is passed to step 6 and the number of iterations is reduced to 100. We
repeat until the grid threshold is reached and return the grid point with the best test statistic
as an Oja median approximation.
The grid-based algorithm is part of the initially stand-alone tool that contains also the im-
plementation of the first exact algorithm. It is as well written in C++ to speed up the
computational burden.

3.4. Evolutionary algorithm

The fourth algorithm to calculate the Oja median is an evolutionary algorithm, which is
based on mutations of the latest candidate points. It was developed by the Department of
Computer Science, Efficient Algorithms and Complexity Theory at the TU Dortmund, but
has not been published before. The algorithm works as follows:

1. Set the level of initial mutation variance σ2
0.
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2. Take 10 randomly chosen observations from X.

3. Evaluate the objective function for all these points and take the minimum as starting
candidate point η.

4. Choose k + 1 random numbers x1, . . . , xk, l from a N(0, σ2
0) distribution and calculate

the k-variate mutation vector

ν = |l|√
x2

1 + · · ·+ x2
k

(x1, . . . , xk)> .

The mutation vector ν has a normally distributed length with given variance σ2
0 and

uniformly distributed direction.

5. Calculate m mutation points ηi = η + νi for i = 1, . . . ,m from the last candidate point
η.

6. Calculate the ratio r how often the objective function is bigger at the mutations than
at η.

7. If r > 0.2 then σ2
0 · κ else σ2

0 · 1
κ for some κ > 1.

8. Choose as a new candidate point the mutation with the smallest objective function
value.

9. Repeat steps 4 to 8 until the variance for the next mutation drops under a predefined
value s.

10. If the algorithm has not terminated after nt steps, stop the calculation.

Step 7 controls the dynamic of the mutation. If at more than 20% of the mutations the
objective function has a smaller value than at the last candidate point, the algorithm increases
the variability of the mutation; hence the search area is enlarged. Step 10 ensures that the
algorithm terminates in any case.
As the other implementations also this algorithm is implemented in C++.

3.5. Other algorithms for the Oja median in R

There are other implementations of algorithms for the Oja median available in R, but they
are mostly restricted to two dimensions.
The function med in the package depth (Genest, Masse, and Plante 2019) uses the Fortran
code of Niinimaa et al. (1992) and is restricted to the bivariate case.
Another method to compute the Oja median was suggested by Roger Koenker on R-help on
2003-08-16 (see https://hypatia.math.ethz.ch/pipermail/r-help/2003-August/037702.
html using the quantreg package; Koenker 2019):

R> oja.median <- function(x) {
+ n <- dim(x)[1]
+ A <- matrix(rep(1:n, n), n)

https://hypatia.math.ethz.ch/pipermail/r-help/2003-August/037702.html
https://hypatia.math.ethz.ch/pipermail/r-help/2003-August/037702.html
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+ i <- A[col(A) < row(A)]
+ j <- A[n + 1. - col(A) > row(A)]
+ xx <- cbind(x[i, ], x[j, ])
+ y <- xx[, 1] * xx[, 4] - xx[, 2] * xx[, 3]
+ z1 <- (xx[, 4] - xx[, 2])
+ z2 <- -(xx[, 3] - xx[, 1])
+ return(quantreg::rq(y ~ cbind(z1, z2) - 1)$coef)
+ }

4. The R package OjaNP

The main purpose of the OjaNP package is to provide users with the possibility to compute
the Oja median. The package includes, however, also other useful functions. The main
functions of the package are visualized in Figure 8.
Most of the function names are self-explanatory. For details about them we refer to the
corresponding help pages. In the following we will first explain the function ojaMedian and
its options in detail. Then we demonstrate the use of some of the functions with a small but
illustrative data set, which is also contained in the package.

ojaMedian

ojaSign

ojaSignRank

ojaRank

ojaSCM

ojaRCM

oja1sampleTest

ojaCsampleTest

Figure 8: The main functions in package OjaNP.
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Figure 9: Example plot for all four algorithms: exact algorithms (red), evolutionary algorithm
(blue), grid algorithm (green). The convex median set is marked with yellow.

4.1. The computation of the Oja median in OjaNP
The main function of OjaNP is

ojaMedian(X, alg = "evolutionary", sp = 1, na.action = na.fail,
control = ojaMedianControl(...), ...)

The user can choose via the alg option between four algorithms to calculate the Oja median.
Furthermore, we have an option to calculate the Oja median repeatedly and average these
results in order to receive less varying results. The amount of repetitions can be controlled
with the sp parameter.
In what follows we are going to explain the different parameters which control the flow of the
different algorithms in detail and give insights how to choose the parameters in a given data
situation. The default algorithm of the ojaMedian function is the evolutionary algorithm.
The evolutionary algorithm relaxes the affine equivariance property of the Oja median. In
order to restore it we first perform a scatter matrix transformation to obtain an invariant
coordinate system (implemented in ICS; Nordhausen, Oja, and Tyler 2008), apply the algo-
rithm to the transformed data and re-transform afterwards. That way we restore the affine
equivariance for this implementation.
Figure 9 shows the exemplary outcome of the four implemented algorithms in simple data
situations for the unique (left) and non-unique (right) case. We have chosen simple data
situations with 6 and 7 data points, run the different algorithms 500 times and plotted the
outcome into the figure.
In the left part of Figure 9 we have a data set that has a unique Oja median. This one is
correctly determined by the exact implementations (red), whereas both approximate algo-
rithms have a systematic behavior which does not differ strongly from the non-unique case in
the right side of the graphic. The evolutionary algorithm (blue) determines the Oja median
always along lines of intersection with the result of a bordered area. The right-hand side of
Figure 9 exhibits data that have a non-unique Oja median. Here the two exact algorithms
find a vertex (red) of the median set, while the evolutionary algorithm (blue) yields any point
of the border of the median set, that is the area with the lowest Oja depth (yellow). The grid
algorithm, however, terminates in this case usually within the convex median set.
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Figure 10: Example plot for all four algorithms: exact algorithms (red), evolutionary algo-
rithm (blue), grid algorithm (green).

In a next step we are going to analyze the outcome of the algorithms in more complex data
situations. The first typical data situation is a multivariate normal distributed data cloud
and we calculate the Oja median with the exact (red), the grid (green) and the evolutionary
algorithm (blue). As we can see the evolutionary algorithm has the biggest variation within
the results, but we have to keep in mind that the default setting of our function is tuned to
calculate fast results. In the next paragraph we will discuss how to get more precise results in
trade-off for calculation time. For most applications the faster, less accurate settings appear
to be preferable.
The second data set of interest consists of two data clouds, which are far away from each
other. The motivation for that is to see whether the algorithms take this into account or if
they get stuck in one cloud. As you can see in the right part of the figure, that all included
algorithms are capable of calculating the Oja median to be in the center between both data
clouds.
Let us now compare the runtime of the two approximate algorithms depending on the dimen-
sion and size of the data in the bivariate case. We do not perform a runtime analysis for the
exact algorithms. Their performance depends strongly on the computer used (particularly
memory), much more so than the approximate ones.
On an average computer, bivariate problems up to 1,000 observations are solvable in accept-
able time, but for higher dimensions and sizes this decision has to be made from case to case.
For example in the seven-dimensional case with tens of observations it takes minutes for the
exact algorithm to find the solution. The biggest limitation of the exact algorithm is the
memory required to store all hyperplanes. Even if we would allow infinite calculation time,
the algorithm would still not be able to calculate the exact Oja median in more complex data
situations because it cannot pre-calculate and access the total amount of hyperplanes, and
hence we are facing a corresponding address space problem. This also applies to the exact
bounded algorithm. Compared with the original exact algorithm, the bounded one finds the
solution approximately two to five times faster.
In order to analyze the runtime for different dimensions we simulated 10,000 multivariate
normal distributed random numbers (with µ = 0, Σ = I). The approximate grid algorithm
(solid green line) is only able to calculate the Oja median up to 5 dimensions in acceptable
time for this amount of data; this is why we did not take higher dimension situations into
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Figure 11: Runtimes for the approximate algorithms: the approximate grid algorithm (solid
green line), the evolutionary algorithm (solid blue line), the raw method without transforma-
tions or validation checks (dotted blue line).

consideration. The evolutionary algorithm (solid blue) can calculate in the same time the
Oja median of a 35-dimensional data set, and even higher dimensional problems are solvable.
Since the ICS step (and there especially the data validation checks) takes a lot of computa-
tional time we implemented also a raw command to access the algorithms directly without
transformations or validation checks (dotted blue line). In the analysis of different dimensions
the raw algorithm does not bring huge advantages, but in the runtime analysis concerning
the size of the data in the bivariate case (right-hand side of Figure 11) we can detect a huge
advantage for more than 105 observation. The raw algorithm is even able to calculate the Oja
median for sample size 5 · 107. Hence, our advice in time-critical situations with high sample
size is to use the raw method. If the affine equivariant property is still required, we advise to
perform beforehand ICS separately without performing the included data validation steps.
The evolutionary algorithm has many tuning parameters, some of which control its accuracy.
As we have seen in Figure 10, the default settings for these tuning parameters are pre-
set to deliver fast results. In trade-off for higher computational time, the user can adjust
the settings to obtain a more precise algorithm. The key parameters are useAllSubsets,
nSubsetsUsed, and sigmaLog10Dec. The latter is the main abort criterion of the algorithm.
It forces the algorithm to stop if the logarithmized initial variance differs more then the value
of sigmaLog10Dec from the actual logarithmized variance. In other words, when the variance
of the mutation vector is getting small enough, the algorithm stops.
The settings for useAllSubsets and nSubsetsUsed control how many spanned hyperplanes
should be taken into account during the calculation of the Oja median. Since the total amount
of possible hyperplanes could be huge (it is

(n
k

)
for n observations in the k-variate case), the

flag for useAllSubsets should be used carefully. It is more advisable to control this with
the argument nSubsetsUsed. Raise this value together with sigmaLog10Dec for more precise
values, lower them for faster results.
The dynamics of the evolutionary algorithm are controlled via the parameters sigmaInit,
sigmaAda and adaFactor. All these take control over the variance adjustments of the muta-
tion vector. The parameter sigmaInit sets the initial variance of the mutation, the settings
for sigmaAda control after how many mutation steps the mutation variance is adjusted and
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adaFactor defines how the variance is adjusted. In most cases the default settings work
nicely.
To conclude this section, we would like to mention that there are many R packages available to
compute various medians: The depth package (Genest et al. 2019) contains Tukey’s median,
Liu’s median, spatial, marginal, and also the Oja median. The authors use the early Fortran
implementation by Niinimaa et al. (1992) that is only able to calculate the bivariate Oja
median and that is much slower than the here presented implementations. Other packages
containing different algorithms to compute the spatial median are, e.g., ICSNP (Nordhausen,
Sirkiä, Oja, and Tyler 2018b), MNM (Nordhausen, Möttönen, and Oja 2018a; Nordhausen
and Oja 2011) and pcaPP (Filzmoser, Fritz, and Kalcher 2018). Some of these packages
also offer functions for multivariate signs and ranks and methods based upon them. Conse-
quently, the aforementioned packages provide other multivariate medians that follow different
generalizations, as described in Section 2.

4.2. Short demonstation of the package’s main function

In this section we will demonstrate the main functions of the package using the biochem data
set. This data set consists of the amounts of two chemical components in the brain measured
at 22 mice. Ten of the mice belong to a control group and twelve received a drug.
This is a very basic example just to demonstrate the basic use of the main functions. For
details about the functions see also their corresponding help pages.
We first load the package and the data and create data objects for easier handling as well as
fixing the random seed for reproducibility.

R> library("OjaNP")
R> data("biochem", package = "OjaNP")
R> set.seed(1)
R> X <- as.matrix(biochem[, 1:2])
R> GROUP <- biochem$group
R> GRlabel <- as.numeric(GROUP)

Next we compute the bivariate Oja median of the two components using the default evolu-
tionary algorithm.

R> OMev <- ojaMedian(X)
R> OMev

comp.1 comp.2
1.150 0.425

As this toy data set is quite small, it is no problem to compute here also the exact Oja median
using either of the algorithms provided.

R> OMex <- ojaMedian(X, alg = "exact")
R> OMex

comp.1 comp.2
1.1515385 0.4269231
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Figure 12: Visualization of the biochem data and of the Oja median when computed using
the exact algorithm and the evolutionary algorithm.

R> OMbo <- ojaMedian(X, alg = "bounded_exact")
R> OMbo

comp.1 comp.2
1.1515385 0.4269231

As can be seen, the difference between the exact and the approximate estimate is rather small,
which is also visualized in Figure 12, produced by the following code:

R> plot(X[, 1], X[, 2], col = GRlabel, pch = GRlabel + 14,
+ xlab = "Component 1", ylab = "Component 2")
R> points(OMev[1], OMev[2], cex = 2, pch = 17, col = 3)
R> points(OMex[1], OMex[2], cex = 2, pch = 18, col = 4)
R> legend("topright", legend = levels(GROUP), col = 1:2, pch = 15:16)
R> legend("topleft", legend = c("exact algorithm", "evolutionary algorithm"),
+ col = 3:4, pch = 17:18, pt.cex = 2)

Next we look at the Oja signs of the data.

R> head(ojaSign(X))

[,1] [,2]
[1,] 0.011223776 0.114446387
[2,] -0.063951049 0.019644522
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[3,] -0.056363636 -0.036818182
[4,] -0.060769231 0.064644522
[5,] -0.062587413 -0.005810023
[6,] -0.017272727 0.119545455

These signs are computed with respect to the Oja median. But the ojaSign function has
several options to compute them also with respect to some other location. For example the
vector of marginal medians can be specified as

R> head(ojaSign(X, center = "compMedian"))

[,1] [,2]
[1,] 0.010681818 0.1145454545
[2,] -0.063409091 0.0195454545
[3,] -0.059772727 -0.0240909091
[4,] -0.058863636 0.0781818182
[5,] -0.063409091 0.0004545455
[6,] -0.015681818 0.1200000000

The Oja signs covariance matrix can be similarly obtained as

R> ojaSCM(X)

comp.1 comp.2
comp.1 0.0021343943 -0.0003989038
comp.2 -0.0003989038 0.0075945852

Next we test whether the Oja median of the control group corresponds to the value c(1,
0.5).

R> oja1sampleTest(X[1:10, ], mu = c(1, 0.5))

OJA 1 SAMPLE SIGN TEST

data: X[1:10, ]
Q.S = 3.3745, df = 2, p-value = 0.185
alternative hypothesis: true location is not equal to c(1,0.5)

The test decision is here based on the limiting distribution. The sample size is rather small in
this example, and one may prefer to use permutation p values. Using the method argument
of the function, p values can be computed by permutation.

R> oja1sampleTest(X[1:10, ], mu = c(1, 0.5), method = "permutation")

OJA 1 SAMPLE SIGN TEST

data: X[1:10, ]
Q.S = 3.3745, replications = 1000, p-value = 0.203
alternative hypothesis: true location is not equal to c(1,0.5)
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To demonstrate the C-sample location test, we use the rank test to test whether the two
groups differ and want to base the decision on permutation principles.

R> ojaCsampleTest(X ~ GROUP, scores = "rank", method = "permutation")

OJA C SAMPLE RANK TEST

data: X by GROUP
Q.R = 15.17, permutations = 1000, p-value < 2.2e-16
alternative hypothesis: true location difference is not equal to c(0,0)

4.3. A more complex data example

For a more complex example we choose the data set LASERI that is contained in the ICSNP
package. The data set contains for 223 individuals the cardiovascular responses to a passive
head-up tilt. For this purpose several haemodynamic variables are measured before, during
and after the tilt. One question of interest here, e.g., is if the haemodynamic system 5 minutes
after the tilt has reached already pre-tilt levels.
For demonstration purpose we consider the three variables HR (heart rate), CO (cardiac
output) and SVRI (systemic vascular resistance index). The testing problem is then if the
3-variate difference between pre-tilt and post-tilt values has location zero. The differences
of interest are saved in the data set as variables HRT1T4, COT1T4 and SVRIT1T4. For more
details about the data set see its help page.
After preparing the data we first compute the Oja median of the differences using three
different algorithms and time the methods.

R> library("OjaNP")
R> data("LASERI", package = "ICSNP")
R> set.seed(1)
R> X <- as.matrix(subset(LASERI, select = c(HRT1T4, COT1T4, SVRIT1T4)))
R> system.time(OMev <- ojaMedian(X)))

user system elapsed
0.038 0.000 0.043

R> OMev

HRT1T4 COT1T4 SVRIT1T4
3.4775306 0.4529893 -208.2378473

R> system.time(OMex <- ojaMedian(X, alg = "exact"))

user system elapsed
82.405 0.176 82.588

R> OMex
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HRT1T4 COT1T4 SVRIT1T4
3.4179008 0.4152541 -198.9544360

R> system.time(OMbo <- ojaMedian(X, alg = "bounded_exact"))

user system elapsed
16.391 0.000 16.394

R> OMbo

HRT1T4 COT1T4 SVRIT1T4
3.4179008 0.4152541 -198.9544360

Clearly the default evolutionary algorithm is the fastest (0.04 seconds) but the results differ
from the exact algorithms where as expected the bounded algorithm is much faster than the
other exact algorithm (16.4 vs. 82.4 seconds).
The data together with the three estimates is visualized in Figure 13 which is however bet-
ter used online interactively (https://plot.ly/~fischuu/9). We used the plotly (Sievert,
Parmer, Hocking, Chamberlain, Ram, Corvellec, and Despouy 2019) package for the visual-
ization.

R> library("plotly")
R> plotThis <- rbind(X, OMev, OMex)
R> useColors <- factor(c(SEX, "EV", "EX"),
+ labels = c("Female", "Male", "Evo", "Exact"))
R> plot_ly(as.data.frame(plotThis), x = ~ HRT1T4, y = ~ COT1T4,
+ z = ~ SVRIT1T4, color = useColors,
+ colors = c("#BF382A", "#0C4B8E", "green", "yellow"),
+ type = "scatter3d", mode = "markers", marker = list(size = 2)) %>%
+ layout(scene = list(xaxis = list(title = "HRT"),
+ yaxis = list(title = "COT"), zaxis = list(title = "SVRIT")))

Next we test for each sex separately if the Oja median of the differences is significantly
different from zero using Oja ranks.

R> SEX <- LASERI$Sex
R> oja1sampleTest(X[SEX == "Male", ], scores = "rank")

PLEASE NOTE: You have requested to compute 1414808
hyperplanes in R^3. This may take a while.

OJA 1 SAMPLE SIGNED RANK TEST

data: X[SEX == "Male", ]
Q.R = 73.11, df = 3, p-value = 8.882e-16
alternative hypothesis: true location is not equal to c(0,0,0)

https://plot.ly/~fischuu/9
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Figure 13: Visualization of the LASERI data, together with the Oja median calculated with
the evolutionary (green) and the exact (yellow) algorithm. An interactive version of the figure
can be found here: https://plot.ly/~fischuu/9.

.

R> oja1sampleTest(X[SEX == "Female", ], scores = "rank")

PLEASE NOTE: You have requested to compute 2246720
hyperplanes in R^3. This may take a while.

OJA 1 SAMPLE SIGNED RANK TEST

data: X[SEX == "Female", ]
Q.R = 79.553, replications = 1000, p-value < 2.2e-16
alternative hypothesis: true location is not equal to c(0,0,0)

Therefore neither women nor men return in the time frame considered here to their pre-tilt
levels.
To conclude this example we test then still if these differences differ between women and men
using a two sample Oja sign test where the p value is computed using permutation arguments.

R> ojaCsampleTest(X ~ SEX, scores = "sign", method = "permutation")

OJA C SAMPLE SIGN TEST

data: X by SEX
Q.S = 12.982, permutations = 1000, p-value = 0.007
alternative hypothesis: true location difference is not equal to c(0,0,0)

This indicates with a p value of 0.007 that also this null hypothesis needs to be rejected.

https://plot.ly/~fischuu/9
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5. Conclusions
There are many different multivariate medians. In this paper we explained how the different
medians extend different properties of the univariate median to the multivariate case. The
Oja median has very convincing statistical properties, but is also among the computationally
more challenging ones. We described the R package OjaNP, which provides four different
algorithms for its computation. Along with the concept of the Oja median comes the notion
of Oja signs and ranks and multivariate scatter estimators based upon them. The package
provides also functions for these useful tools, which can then be used for robust multivariate
inferential procedures. As examples, we described and implemented the one-sample and the
C-sample location test based on Oja signs and ranks and showed their practical use in simple
and complex data situations.
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