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Abstract 

Background: This paper aims to investigate the correlations between the concentrations of nine heavy metals in 
moss and atmospheric deposition within ecological land classes covering Europe. Additionally, it is examined to what 
extent the statistical relations are affected by the land use around the moss sampling sites. Based on moss data col‑
lected in 2010/2011 throughout Europe and data on total atmospheric deposition modelled by two chemical trans‑
port models (EMEP MSC‑E, LOTOS‑EUROS), correlation coefficients between concentrations of heavy metals in moss 
and in modelled atmospheric deposition were specified for spatial subsamples defined by ecological land classes of 
Europe (ELCE) as a spatial reference system. Linear discriminant analysis (LDA) and logistic regression (LR) were then 
used to separate moss sampling sites regarding their contribution to the strength of correlation considering the areal 
percentage of urban, agricultural and forestry land use around the sampling location. After verification LDA models 
by LR, LDA models were used to transform spatial information on the land use to maps of potential correlation levels, 
applicable for future network planning in the European Moss Survey.

Results: Correlations between concentrations of heavy metals in moss and in modelled atmospheric deposition 
were found to be specific for elements and ELCE units. Land use around the sampling sites mainly influences the 
correlation level. Small radiuses around the sampling sites examined (5 km) are more relevant for Cd, Cu, Ni, and Zn, 
while the areal percentage of urban and agricultural land use within large radiuses (75–100 km) is more relevant for 
As, Cr, Hg, Pb, and V. Most valid LDA models pattern with error rates of < 40% were found for As, Cr, Cu, Hg, Pb, and V. 
Land use‑dependent predictions of spatial patterns split up Europe into investigation areas revealing potentially high 
(= above‑average) or low (= below‑average) correlation coefficients.

Conclusions: LDA is an eligible method identifying and ranking boundary conditions of correlations between 
atmospheric deposition and respective concentrations of heavy metals in moss and related mapping considering the 
influence of the land use around moss sampling sites.
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Background
The United Nations Economic Commission for Europe 
(UNECE) Convention on Long-range Transboundary 
Air Pollution (CLRTAP) of 1979 and its eight protocols 
are aimed at limiting and reducing air pollutants. Under 
the LRTAP convention, the European monitoring and 
evaluation programme (EMEP) gathers information on 
emission from its parties, collects data on air and pre-
cipitation quality and models atmospheric transport and 
deposition of air pollutants [1]. Beyond this, biomoni-
toring programmes provide data on concentrations in 
various biological matrices potentially correlated with 
atmospheric deposition of heavy metals (HM). Within 
the LRTAP convention, European Moss Survey (EMS) is 
conducted using naturally growing mosses as biomoni-
tors of atmospheric deposition of air pollutants. Since 
1990, moss specimens have been sampled every 5 years 
at up to 7300 sampling sites in up to 35 countries [2–4] 
to determine the concentrations of heavy metals (HM), 
nitrogen (N, since 2005) and persistent organic pollutants 
(POPs, since 2010) [4, 5]. The EMS is coordinated by the 
ICP Vegetation, an international cooperative programme 
(ICP) reporting on impacts of air pollution on vegetation 
to the LRTAP convention [3].

Based on EMS data from 2005, atmospheric deposi-
tion has been identified as the main factor determining 
the spatial variation of concentrations of cadmium (Cd) 
and lead (Pb) in moss specimens collected throughout 
Europe [6–8]. Harmens et  al. [9] found significant cor-
relations between Cd and Pb concentration in moss and 
respective atmospheric deposition modelled by EMEP 
for more than two-thirds of the countries participating 
in the European Moss Survey. Schröder et al. [10] corre-
lated Cd, mercury (Hg), and Pb concentrations in deposi-
tion and moss data from the EMS 2005 within a spatial 
framework of ecologically defined land classes by use of 
the numeric chemical transport model (CTM) of EMEP 
MSC-East [11]. In further studies, also land use around 
the sampling sites is shown to be an important factor 
affecting element concentrations in moss [12–14].

The above-mentioned findings were verified in the 
investigation presented in this paper using data collected 
in the EMS 2010. The present study addresses the follow-
ing objectives.

1. Correlation analysis Examination of correlations 
between concentrations of HM in moss from the 
EMS 2010/2011 and respective atmospheric deposi-

tion as modelled by use of the CTMs EMEP MSC-
East and LOTOS EUROS (LE), and to which extent 
the correlations are specific for ecological land 
classes of Europe (ELCE) [15].

2. Statistical modelling Calculation, to which extent the 
amount of ELCE-specific correlation coefficients is 
affected by the areal percentage of land use around 
the sampling sites potentially indicating influences 
of local emission sources as for instance agricultural 
and urban land use or point sources of air pollutants. 
Hence, the reason for different ELCE-specific corre-
lation coefficients was investigated.

3. Predictive mapping Land use-dependent predictions 
and mapping of correlation patterns across Europe 
(site-related/area-related) and, finally, aggregation of 
predicted spatial patterns for decision support (e.g. 
moss survey network planning).

For this investigation, data on atmospheric deposition 
of HM derived from the EMEP MSC-East [11] were sup-
plemented by deposition data calculated by use of the 
chemical transport model LOTOS-EUROS (LE) [16].

Methods
Data on element concentration in moss were correlated 
with respective modelled atmospheric deposition spe-
cifically for ecological land classes of Europe (ELCE) 
and major land use categories around the sampling sites 
derived from CORINE land cover 2006 and Global land 
cover 2000 [17, 18] (Table 1).

Data on element concentrations in moss
In 2010/2011, moss specimens were collected at 4499 
sample sites in 26 countries across Europe following a 
standardized experimental protocol [19]. Further coun-
tries like Germany, Ireland and United Kingdom who 
participated in former moss surveys did not participate 
in 2010. To provide field-based evidence of the extent of 
long-range transboundary pollution in Europe the moni-
toring sites are located in background areas, e.g. sam-
pling sites were at least 300  m away from major roads 
and 100  m away from any road or houses. Primarily, 
Pleurozium schreberi (Brid.) Mitt., Hylocomium splen-
dens (Hedw.) Schimp., Hypnum cupressiforme Hedw. 
s.str. and Pseudoscleropodium purum (Hedw.) M. Fleisch 
(synonym Scleropodium purum Hedw. Limpr.) [20] were 
sampled, but also 32 other species (7% of the samples). 
For each site, at least five individual moss samples of the 
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discriminant analysis, Logistic regression



Page 3 of 17Nickel et al. Environ Sci Eur           (2018) 30:53 

same species were collected. Only the 2- to 3-year-old 
shoots of the mosses were used for the analyses. Concen-
trations of nine HMs: arsenic (As), cadmium (Cd), chro-
mium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead 
(Pb), vanadium (V), and zinc (Zn) were determined [4, 9].

Data on atmospheric deposition
Statistical relations between element concentrations in 
moss and atmospheric deposition of HM derived from 
the numeric chemical transport models (CTMs) LOTOS-
EUROS (LE) [16, 21] and EMEP [11] were examined. 
CTMs are based on mathematical descriptions of rel-
evant physical and chemical processes in the atmosphere 
and are mostly used for large-scale, area-wide estimates 
of atmospheric deposition [21]. The accuracy of deposi-
tion modelling basically depends on the quality of the 
input data (emission, meteorology, land use, other condi-
tions) used for modelling atmospheric transport and dep-
osition processes as well as intrinsic model uncertainties.

The EMEP deposition data were supplied by the 
meteorological synthesizing centres MSC-East (Mos-
cow) of EMEP operating under the LRTAP convention. 
Travnikov and Ilyin [11] used emission data to calculate 
atmospheric deposition of Cd, Hg, and Pb. To verify 
these model calculations, the results were compared to 
Cd and Pb measurement data from up to 66 EMEP sites 
and to Hg data collected at up to 22 EMEP sites [22]. 
The verified model results were then mapped on grids of 
50 km × 50 km [11].

Following Harmens et  al. [9], in this investigation the 
3-year sum of HM deposition modelled by EMEP (on a 
50  km by 50  km grid) corresponds to the HM concen-
tration in the sampled 3-year-old shoots of the mosses. 
Here, the deposition data from 2008 to 2010 was assigned 
to the data collected in EMS 2010/2011. The 3-year sums 
of deposition 2009–2011 from LE [16, 21] were assigned 
to the concentrations of HM in moss collected in EMS 
2010/2011. LE provides deposition rates of As, Cd, Cr, 
Cu, Ni, Pb, V, and Zn on a 25 km by 25 km grid covering 

Europe. Additional information about the CTM is given 
in Additional file 1: Table S2.

Ecological land classification of Europe
The data on element concentrations in moss and atmos-
pheric deposition were spatially joined to the map of eco-
logical land classes of Europe (ELCE) (Additional file  1: 
Figure S1, Table S1) derived from Hornsmann et al. [15]. 
According to the level of spatial differentiation, the eco-
logical classification encompasses 40  (ELCE40) to 200 
 (ELCE200) classes identified by 48 geo-data layers on 
potential natural vegetation [23], altitude above sea level 
[24], soil texture [25], and monthly averages of precipita-
tion and air temperature (1961–2002) [26].  ELCE40 and 
 ELCE200 were calculated and mapped by means of clas-
sification and regression trees [27]. To ensure the best 
possible compliance with minimum sample size specified 
for each ecoregion [28, 29],  ELCE40 was used, whereby 
ELCE units occurring sporadically and with a total spa-
tial extent below 4.2% were summarized to one class 
(“others”).

Statistical analysis
Correlation analysis
The statistical design comprises the calculation of Spear-
man rank correlation coefficients (rs) for quantifying the 
relation between concentrations in mosses and modelled 
atmospheric deposition of HM and N (Fig. 1). The meas-
ured concentrations of As, Cd, Cr, Cu, Hg, Ni, Pb, V, and 
Zn in moss were correlated with respective total atmos-
pheric deposition data as modelled by EMEP and LE. 
Thereby, ecological land classes  (ELCE40) within partici-
pating European countries were used as coding variable 
for calculating ELCE-specific correlations. Due to a non-
normal distribution in most of the subsamples, Spearman 
rank correlation coefficients (rs) were determined. The 
correlation coefficients were classified according to Bro-
sius [30] as very weak (< 0.2), weak (0.2–0.4), moderate 
(0.4–0.6), strong (0.6–0.8), and very strong (> 0.8).

Table 1 Data used for statistical analysis

a HM data provided by MSC-East (November 2013)

Data Comment and source Unit

Element concentration in moss As, Cd, Cr, Cu, Hg, Ni, Pb, V, and Zn conc. in moss from the European Moss Survey 2010/2011 μg/g

Atmospheric deposition Modelled total deposition of As, Cd, Cr, Cu, Ni, Pb, V, Zn summed over 3 years (LOTOS‑EUROS 
2009–2011, [21])

µg/m2

Modelled total atmospheric deposition of Cd, Hg, Pb (EMEP MSC‑East) summed over 3 years (EMEP 
2008–2010)a

µg/m2

ELCE40 Ecological land classes of Europe [15] 40 land classes

Spatial density of land use 
around moss sampling sites

Areal percentage of urban, agricultural, and forestry land use, each within a 1, 5, 10, 25, 50, 75, and 
100 km radius around the moss sampling sites, derived from CORINE land cover 2006 [17] and 
global land cover 2000 [18] for Russia, Ukraine and Belarus

%
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Linear discriminant analysis/logistic regression
The second step is to investigate the reason for the dif-
ference of ELCE-specific correlations. LDA models were 
used to find linear separation lines as best discrimi-
nate of sampling sites in ELCE regions revealing high 
or low element-specific correlation coefficients. LDA 
attempts to find a multivariate discriminant function 
Y = b0 + b1X1 + b2X2 +  ⋯ describing a linear combination 
of two or more predictors (X1, X2, …) and respective coef-
ficients (b0, b1, b2, …). The aim is to separate groups of 
data in a scatterplot so that the variation in data within 
each group is minimized [31–33] and express the con-
tribution of each predictor in the selected discriminant 
model. For binary classification of ELCE and their allo-
cated sampling sites showing high (= A) or low (= B) 
correlations, medians of the ELCE-specific Spearman 
coefficients were taken for defining element-specific 
class boundaries between high and low correlation lev-
els. ELCE with coefficients above the class boundaries in 
terms of element-specific medians were classified as ‘A’ 
and ELCE below the class boundaries as ‘B’. Twenty-one 
variables for spatial density of agricultural, forestry, and 
urban land use within a 1, 5, 10, 25, 50, 75, and 100 km 
radius around the sampling sites (Table  1) were taken 
as potential predictors for HM concentrations in moss 
samples. As the target variable is already determined by 
atmospheric deposition, it was not considered as a pre-
dictor. Further potential influencing factors like eleva-
tion, precipitation, population density as investigated by 
Nickel et  al. [34] were examined in a pre-analysis using 
LDA, but were excluded due to low relevance. Since the 
values of each of these predictors range between 0 and 
100%, data did not need to be standardized as recom-
mended for LDA by Schönwiese [35]. Overall, twelve 
LDA models were built with regard to available EMEP 

deposition values for (Cd, Pb, Hg) and LOTOS-EUROS 
deposition estimations for (As, Cd, Cr, Cu, Ni, Pb, V, and 
Zn). It was examined whether the variance could be suf-
ficiently explained by just two of the potential 21 linear 
discriminants (= spatial density [%] of urban, agricul-
tural, and forestry land use, each within a 1, 5, 10, 25, 50, 
75, and 100  km radius around the moss sampling sites, 
Table  1) to keep the models as simple as possible and 
allowing for a better interpretation and visualization of 
the results. Here, near-zero coefficients (linear combina-
tion coefficient ranges between − 1 and 1) and correlated 
predictors have been removed to avoid multicollinearity. 
For example, if the coefficient of urban land use within a 
10 km radius was closer to zero than the 5 km coefficient, 
the latter was taken.

Logistic regression (LR) is similar to LDA, as it also 
explains a categorical variable by the values of continu-
ous independent variables. LR is preferable in applica-
tions where the independent variables are not normally 
distributed. Since LR is less concrete, LDA in the present 
study was used for model building and LR for verification 
of LDA results.

Predictions
LDA models were firstly applied on the Europe-wide 
dataset of moss sampling sites with information on land 
use density around the sampling sites. Model-specific 
error rates (%) were calculated by means of confusion 
matrix values (actual vs. predicted values). Charts for the 
linear discriminant functions were used for plausibility 
checks. Logistic regression models were built using the 
same predictors from the LDA models. Confusion matri-
ces and error rates (%) specified for each LR model were 
calculated and compared with the statistical characteris-
tics of the LDA models.

To verify to which extent the models really separate 
sampling sites showing high or low correlations between 
element concentrations in moss and respective atmos-
pheric deposition, bivariate Spearman coefficients for 
the correlations between element concentrations in moss 
and atmospheric deposition were again calculated for the 
following subsamples: sampling sites located within all 
ELCE classes, ELCE classes showing correlations above 
and below the element-specific class boundaries between 
high and low correlation levels defined in Table 1. Each 
subsample was further divided into groups of sampling 
sites classified by LDA into category A or B. The more B 
sampling sites modelled by LDA show low or, vice versa, 
A sites reveal high correlations, the more efficient the 
between-class separation through the modelling and thus 
the relevance of predictors.

Geographic information on the spatial density of agri-
cultural, forestry, and urban land use within a 1, 5, 10, 

Fig. 1 Design of statistical analysis (LDA linear discriminant analysis, 
LR logistic regression)



Page 5 of 17Nickel et al. Environ Sci Eur           (2018) 30:53 

25, 50, 75, and 100 km radius around the sampling sites 
available with blanket coverage of Europe was taken as 
predictors for estimating categories of correlations (A, B) 
between atmospheric deposition of nine HM in Europe 
using LDA models and to transform spatial informa-
tion on the land use to spatial correlation patterns across 
Europe. Finally, spatial patterns estimated by the best 
LDA models were aggregated by calculating the number 
of element-specific A classifications (= above element-
specific class boundaries between high and low correla-
tion levels as defined in Table  2) to reduce complexity 
which is more appropriate for decision support. All sta-
tistical analyses were performed using R programming 
language [36], in particular functions for LDA as imple-
mented in the ‘MASS’ package extending R’s core func-
tionality [37].

Results
Correlations between HM concentrations in moss 
and atmospheric deposition for ELCE categories 
across Europe and for Europe as a whole
All analyses with HM concentration in moss were based 
on a reasonably large sample size of at least 3274 (As) out 
of 3965 (Zn) sample points. The minimum sample sizes 
for elements and  ELCE40 classes were calculated and pre-
sented by Schröder et al. [28, 29]. As the number of moss 
sampling sites was very low (> 10 in the classes D_16, 
D_21, L_2, M_5, and M_6), the correlations for these 
classes are not considered reliable and are not described 
below. However, these four classes altogether repre-
sent only 2.3% (= 69,600 km2) of the sampled area in the 
countries participating in the EMS (= 3,083,500 km2).

Cadmium
Strong correlations between element concentrations 
measured in moss and modelled deposition (EMEP, 
LE) with coefficients (rs) ranging from 0.6 to 0.8 were 
achieved for 7% (EMEP) up to 10.5% (LE) of the area of 
 ELCE40 coverage of all countries participating in the EMS 
2010 together (Table 2). These  ELCE40 categories (D_13, 
F1_1, S_0, and “others”) are located in Poland, Switzer-
land and Austria (Fig. 2). The strength of the Europe-wide 
correlation is also high (rs = 0.65, p < 0.01). Moderate  rs 
values occurred for  ELCE40 units covering 47.0–49.6% 
of the landmass. Moss data from each 5  ELCE40 (for LE 
in parts other than for EMEP) are weakly correlated with 
the modelled Cd deposition (EMEP: 15.0%; LE: 17.5%). 7 
(EMEP) up to 9 (LE) out of 27  ELCE40 units reveal non-
significant or very weak correlations (23.5–31.1%).

Lead
For Pb, in 4 (EMEP) up to 6 (LE) out of 27  ELCE40 units 
the rs values were not significant (12.0–20.3% of area of 

ELCE units covered by moss sampling sites) (Table  2). 
From the remaining  ELCE40 classes, 6 (in case of LE, 
26.3%) and 7 (EMEP, 28.9%) ELCE units show Spear-
man’s rank coefficients between 0.2 and 0.4. For another 
10 ELCE categories (LE) and, respectively, 11 ELCE cat-
egories (EMEP), correlation coefficients came out to be 
between 0.4 and 0.6. The area comprises 36.6–43.5% of 
the total area covered by moss samples mainly located 
in Finland, Sweden and France (Fig. 2). Highest correla-
tions (0.6 > rs > 0.8) were found for max. 5 ELCE classes: 
D_13 (only EMEP), S_0 (only LE), B_2, C_0, F1_1, “oth-
ers” (both EMEP and LE) (15.6–16.8% of the landmass) 
predominately distributed in Norway. With regard to the 
samplings across Europe, Spearman’s rank coefficients 
are 0.64 (LE) and 0.7 (EMEP).

Mercury
For Hg, in 21 out of 27 ELCE units, the rs values were 
not significant, below 0.02 or even negative (82.5% of 
area of ELCE classes covering all participating countries 
together). It is clear that the correlation between moss 
data from the EMS 2010 and EMEP modelled deposi-
tion is very low (rs = 0.14, Table  2). Above-average cor-
relations with coefficients between 0.4 and 0.6 were only 
found for ELCE units B_1, D_14, F4_1, and J_2 (9.2% 
of the area), sparsely located in Fennoscandia, Estonia, 
Poland, France and Spain (Fig.  2). For another 2 ELCE 
classes (D_7, F1_1), correlation coefficients were between 
0.2 and 0.4, comprising 8.3% of the area covered by moss 
samples.

Arsenic
For Europe as a whole, low correlations between As con-
centrations in moss and respective modelled atmospheric 
deposition (LOTOS-EUROS) were found (rs = 0.3). 14 
out of 27  ELCE40 units reveal non-significant correlations 
within 41.1% of the sampled  ELCE40 area (Table 2). In 5 
out of the remaining 13  ELCE40 units, variables were neg-
atively correlated (30.1%). Three  ELCE40 classes reveal 
significant weak correlations with rs values between 0.2 
and 0.4 (13.1%). Merely 4  ELCE40 units show moderate 
coefficients between 0.4 and 0.6 (C_0, D_17, D18, and 
F1_1). The  ELCE40 unit with the highest correlation was 
U_1 (rs = 0.72, p < 0.01) comprising dispersed small areas 
within the participating countries (1%) (Fig. 3).

Chromium
Of all elements examined, Cr reveals the weakest Europe-
wide correlation between concentrations in moss and 
total deposition modelled by LE (rs = 0.03, Table  2). For 
16 out of 27  ELCE40 units, the  rs values were not signifi-
cant (49.5% of area of ELCE units covered by moss sam-
pling sites), and for 37.3%, the  rs values were below 0.02 
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0 1.000500 KilometersCorrelations Cd (EMEP)
> 0.8
0.6 - 0.8
0.4 - 0.6
0.2 - 0.4
< 0.2

0 1.000500 KilometersCorrelations Cd (LE)
> 0.8
0.6 - 0.8
0.4 - 0.6
0.2 - 0.4
< 0.2

0 1.000500 KilometersCorrelations Hg (EMEP)
> 0.8
0.6 - 0.8
0.4 - 0.6
0.2 - 0.4
< 0.2

0 1.000500 KilometersCorrelations Pb (EMEP)
> 0.8
0.6 - 0.8
0.4 - 0.6
0.2 - 0.4
< 0.2

0 1.000500 KilometersCorrelations Pb (LE)
> 0.8
0.6 - 0.8
0.4 - 0.6
0.2 - 0.4
< 0.2

Fig. 2 ELCE‑specific correlations of Cd, Pb and Hg concentrations in mosses and respective modelled atmospheric deposition. Atmospheric 
deposition was modelled by LE (2009–2011) or EMEP (2008–2010); concentration values in mosses were determined in 2010
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Fig. 3 ELCE‑specific correlations of As, Cr, Cu, Ni, V and Zn concentrations in mosses and respective modelled atmospheric deposition. Atmospheric 
deposition was modelled by LE (2009–2011) or EMEP (2008–2010); concentration values in mosses were determined in 2010
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or even negative (Fig. 3). A strong correlation (rs = 0.69) 
could be shown for land class D_17, covering 2.4% of the 
analysed area, located in Sweden, Finland and Russia. 
D_22 (5.4%) as a part of Sweden reveals at least moder-
ate correlations (rs = 0.43). The remaining surface show-
ing low correlations is allocated to ELCE unit D_7, which 
covers 5.4% of the landmass.

Copper
The largest area covered by moss sampling sites (48.9%) 
is allocated to low correlations (rs) between 0.2 and 0.4. 
Moderately strong correlations were found for 6 out of 
27  ELCE40 units (C_0, D_8, D_17, F1_1, J_2, and U_2) 
sparsely distributed in almost every participating country 
and comprising 15.6% of the ELCE units. In comparison, 
Europe as a whole is also characterized by an intermedi-
ately strong correlation (rs = 0.5). All other 10 out of 27 
 ELCE40 units reveal non-significant correlations within 
35.5% of the sampled  ELCE40 area.

Nickel
For Ni, most of the  ELCE40 units reveal negative correla-
tions (28.5% of the analysed area) or non-significant val-
ues (53.8%). Significant positive correlations in  ELCE40 
classes were found for D_17 (0.2 > rs > 0.4), D_18, G2_0 
(0.4 > rs > 0.6) and J_2 (0.6 > rs > 0.8) (Table  2). Together, 
these four land classes comprise only 13.1% of the ELCE 
territory within participating countries, in particular 
Sweden, Estonia and France (Fig.  3). Overall, this cor-
responds to a very low correlation of rs = 0.09 across 
Europe.

Vanadium
With respect to atmospheric V deposition modelled by 
LE and respective concentration in moss, merely 5 of 31 
 ELCE40 classes (plus “others”) reveal significant positive, 
low Spearman’s rank coefficients (C_0, D_18, D_19, D_22, 
and U_1). They cover 25.7% of the sampled area and can 
be primarily found in Fennoscandia, northern Spain and 
France (Fig.  3). 2.4% of the area analysed (D_17) shows 
significant low correlations. The remaining ELCE units 
(66.8%) reveal non-significant or negative correlations 
(Table 2). For V across Europe, the Spearman coefficient 
also has to be classified as low and amounts to rs = 0.19.

Zinc
On the European level, the correlation between modelled 
Zn deposition (LE) and concentrations in moss is signifi-
cantly low with rs = 0.17. The only  ELCE40 unit with an 
intermediately high correlation is S_0, located in parts of 
Estonia, Finland and Russia (1.4% of the sampled area). 
The 7 out of 26  ELCE40 classes with at least low correla-
tions were the following: D_18, F1_1, F2_5, F3_1, G1_0, 

U_1, and “others”, located in eastern and northern parts 
Europe. The coefficients for the remaining ELCE units 
are very low or non-significant (29.5% and 45.6% of the 
landmass).

Linear discriminant analysis/logistic regression
The frequency of the predictors used as discriminants in 
the 11 LDA models ranges between 1 and 3, which means 
that none of the factors in particular stands out (Fig. 4). 
Moreover, the relevance of the predictors for separat-
ing sampling sites contributing to high or low correla-
tions is element specific. When taking areal percentage of 
urban and agricultural land use as indicators for poten-
tial influences of areal and point emission sources, small 
radiuses around the sampling sites (5 km) are obviously 
more relevant for Cd, Cu, Ni, and Zn than that for the 
other elements examined. Vice versa, areal percentage 
of urban and agricultural land use within large radiuses 
(75–100 km) is more relevant for As, Cr, Hg, Pb, and V.

LDA models with the highest quality corresponding 
to error rates ≤ 30% were found for Cr and V followed 
by As, Cu, Hg, and Pb (only LE) with error rates ≤ 40% 
(Table 3), i.e. in 7 out of 11 cases < 40% of the sampling 
sites has been incorrectly classified according to their 
surrounding land use. Although all predictors were not 
normally distributed, which is a fundamental assump-
tion for LDA, error rates of the logistic regression models 
(LR) using the same predictors as the LDA models were 
very similar.

From Tables  2 and 3, it is obvious that LDA models 
are appropriate, particularly in case of elements show-
ing low correlations between atmospheric deposition and 
concentrations in moss (Cr, Cu, Hg, V). For Cd and Pb 
with strong correlations, density of land use around the 
sampling sites seems to be less relevant. This is also con-
firmed by the statistical indicators for the significance of 
the predictors given from LR modelling: Density of urban 
land use (5 km) for Cd (EMEP, LE) and agricultural land 
use (100 km) as a predictor for Pb (EMEP) was both non-
significant, which may also explain the high error rates of 
41–44%.

Figure  4 shows the discriminant lines obtained from 
LDA. The 11 scatter plots exemplify the separation 
between sampling sites contributing to high and low cor-
relation. Since the whole set of ELCE would lead into 
non-readable graphs, ELCE units with maximum and 
minimum correlation coefficients have been selected as 
examples. Error rates of 26–44% (Table  3) are reflected 
in discriminant lines not really separating green and red 
points. Resulting from this, LDA models for As, Cr, Cu, 
Hg, Pb, and V prove to be the most appropriate. The 
location of point clusters in case of Ni and Zn appears 
to be implausible, because low densities of urban and 
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Fig. 4 Discriminant functions of LDA models for As, Cd, Cr, Cu, Hg, Ni, Pb, V, and Zn. Discriminant functions (black lines) with relevant densities of 
land use around the sampling sites as predictors for separating between two ELCE revealing extremely high (= green) and low (= red) correlations 
selected as examples; atmospheric deposition was modelled by LE (2009–2011) or EMEP (2008–2010)
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agricultural land use around the sampling sites should 
result in a higher and not in a lower correlation (Ni), and 
discriminant lines between forestry and urban land use 
should in principal reveal a positive slope (Zn), as can 
be seen for As, Cr, Cu, and Pb. This may also explain the 
high error rates of 41–43% in case of Ni and Zn.

Table 4 shows which LDA models are feasible for pre-
dicting correlation levels depending on land use around 
the sampling sites: The subset of A sites selected from the 
whole dataset by LDA (row 2) reveals increased correla-
tion coefficients in case of Hg, As, Cr, Cu, and V com-
pared to the European dataset, despite a smaller sampling 
size. Regarding the subsample of sites within ELCE 
regions showing above-average correlations (rows 4–6), 
sampling sites classified to B (row 6) reveal remarkably 
lower correlations for Cd, Pb, and Cr, and sites classi-
fied to A (row 5) remarkably higher correlations for Cr 
compared to the whole partial sample (row 4). The same 
effect of increasing (row 8) and decreasing correlations 
(row 9) is visible also for the sampling sites within ELCE 
B regions (rows 7–9) with respect to the LDA modelling 
results for Hg, As, Cr, Cu, Ni, Pb, and V.

Based on the study results described above, LDA mod-
els for Pb (LE), As, Cr, Cu, Hg, and V were selected as 
the most valid models further pursued for predictive 

mapping of correlations in “Predictive mapping of corre-
lations” section.

Predictive mapping of correlations
The application of LDA models for As, Cr, Cu, Hg, Pb 
(LE), and V on the whole European dataset with infor-
mation on density of land use around the sampling sites 
led to typical correlation patterns as depicted in Fig.  5. 
While northern Europe and the Alps are predominately 
characterized by correlations above the average, the other 
regions frequently reveal low correlation levels. Further 
correlation patterns for the remaining element are pre-
sented in Additional file 1: Figure S2.

An aggregated view on LDA predictions for As, Cr, Cu, 
Hg, Pb, and V feasible within countries supplying suffi-
cient information on LDA predictors with blanket cover-
age derived from CLC 2006 is shown in Fig. 6.

Areas with 5–6 out of 6 LDA models revealing poten-
tial high correlations are located in Fennoscandia, Scot-
land, Austria and parts of the Baltics, South-eastern 
Europe, Turkey, France, and Spain (= 20% of the area 
covered with spatial information on land use density 
around 10  km × 10  km grids). Information about the 
elements being relevant at specific locations is given in 
Fig.  5. Countries comprising regions with consistently 

Table 3 Error rates of LDA and LR models specified for nine heavy metals and two chemical transport models

Error rates of best models (< 40%) are in italic print; atmospheric deposition was modelled by LE (2009–2011) or EMEP (2008–2010)

EMEP LOTOS-EUROS

Cd Hg Pb As Cd Cr Cu Ni Pb V Zn

LDA (%) 41 34 42 36 44 29 39 43 34 26 41

LR (%) 41 33 42 36 44 30 39 43 34 26 41

Table 4 Correlations between  heavy metal concentrations in  moss and  atmospheric deposition specified for  ELCE 
categories and sampling site categories

ELCE category: All = ELCE regions as a whole; A = ELCE regions showing correlations above the element-specific class boundary between high and low correlation 
levels given in Table 2; B = ELCE regions showing correlations below the element-specific class boundary between high and low correlation levels given in Table 2; site 
category: All = Moss sampling sites as a whole; A = moss sampling sites classified by LDA model as A; B = moss sampling sites classified by LDA model as B; correlation 
coefficients according to Spearman; significant correlations are in italic print (*p < 0.05, **p < 0.01); atmospheric deposition was modelled by LE (2009–2011) or EMEP 
(2008–2010)

Row ID ELCE category Site category EMEP LOTOS-EUROS

Cd Hg Pb As Cd Cr Cu Ni Pb V Zn

1 All All 0.65** 0.14** 0.70** 0.30** 0.65** 0.03* 0.50** 0.09** 0.64** 0.19** 0.17**

2 All A 0.66** 0.24** 0.70** 0.42** 0.62** 0.44** 0.62** 0.15** 0.67** 0.28** 0.17**

3 All B 0.41** − 0.05** 0.46** 0.09** 0.60** − 0.29** 0.40** − 0.20** 0.44** 0.01 − 0.02

4 A All 0.75** 0.22** 0.72** 0.45** 0.72** 0.22** 0.50** 0.16** 0.67** 0.21** 0.22**

5 A A 0.77** 0.22** 0.74** 0.44** 0.72** 0.49** 0.52** 0.19** 0.66** 0.21** 0.22**

6 A B 0.26** 0.17 0.28 0.35** 0.45** − 0.15** 0.51** − 0.08** 0.60** 0.14** 0.06

7 B All 0.50* 0.06 0.67** 0.07** 0.58** − 0.26** 0.45** − 0.04** 0.44** 0.13** 0.10**

8 B A 0.47** 0.27** 0.62** 0.32** 0.48** 0.15** 0.65** 0.09** 0.54** 0.33** 0.10**

9 B B 0.54** − 0.18** 0.55** − 0.10** 0.67** − 0.36** 0.27** − 0.34** 0.27** − 0.02 − 0.11
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Fig. 5 Predicted correlation patterns for As, Cr, Cu, Hg, Pb, and V (moss; EMEP/LE) at site level as classified according to their surrounding land use 
with above element‑specific average (= A) or below‑average (= B) correlations (cf. Table 2)
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low potential correlations (0 out of 6 classifications to A) 
can be in particular found in western, Central and South-
eastern Europe (= 38% of the area being investigated). 
The remaining area (42%) is characterized by locations 
where correlation levels for 1–4 out of 6 elements were 
classified to A.

Discussion
Correlation analysis
For all investigated HM (As, Cd, Cr, Cu, Hg, Ni, Pb, V, 
and Zn), the correlations between concentrations in 
moss and the modelled total atmospheric deposition 
(EMEP, LOTOS-EUROS) were land class specific and 
element specific. Significant positive correlations were 
found for about 30% (As), 78–81% (Cd), 15% (Cr), 63% 
(Cu), 44% (Hg), 15% (Ni), 78–89% (Pb), 19% (V), and 
44% (Zn) of 27 ELCE units being represented by moss 
sample sizes n > 10. This is in line with similar findings 
for Cd, Hg and Pb based on data from 2005 [9, 10] and 
was supplemented for further seven elements. This study 
confirms that mosses are good biomonitors for atmos-
pheric deposition of Cd and Pb [38] and to some extent 

also for Cu, but this study suggests that mosses are less 
good as biomonitors for other HM like Cr, Hg, Ni, V, and 
Zn. The amount of ELCE-specific correlation coefficients 
is closely connected to uncertainties in deposition mod-
elling contributing to variation and potential influencing 
factors in the use of mosses as monitors of atmospheric 
deposition [38, 39]. Particular mention is to be made 
of different emission data used for EMEP and LE [40] 
probably explaining the differences in the correlations 
(Table 2) and, respectively, the direction and/or intensity 
of the discriminant lines (Cd and Pb in Fig.  4). Besides 
this, modelled data are grid-specific (LE: 25 km × 25 km; 
EMEP: 50  km × 50  km) and moss data are site specific, 
meaning that we are always working at spatial limits of 
extrapolation in the moss monitoring network. Density 
of land use around the sampling sites should not only 
considered as a relevant factor for element concentra-
tions in moss [12, 13], but even more as an indicator 
for influencing factors such as areal and point emission 
sources that are very evident in some Balkan countries 
effected mainly from windblowing dust and mineral 
particles [41–43]. Further important factors than those 

Fig. 6 Number of A classifications as modelled by LDA for As, Cr, Cu, Hg, Pb, and V
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considered in the modelling of background atmospheric 
deposition influencing the amount of correlation are par-
ticularly mineral particles, mainly windblown dust from 
local soil (As, Cd, Cr, Cu, Hg, Ni, V) and root uptake in 
higher plants from soil and transfer to mosses by leach-
ing from dead or living plant material [44]. Low correla-
tions with As implies that As metabolism could be more 
involved than expected [45]. Also precipitation pH may 
play a role because it affects the solubility of heavy metals 
and hence their uptake by mosses which should be taken 
into account in further investigations. Due to the existing 
uncertainties in the deposition modelling, future studies 
should also include comparisons between heavy metal 
concentrations in moss tissue and atmospheric depo-
sition measured by technical samplers, e.g. within the 
EMEP framework [22]. Also, other potential pollutants, 
such as nitrogen or persistent organic pollutants (POP), 
should be included. First pilot studies on POP exist, for 
example, in Germany [5].

Statistical modelling
The use of LDA enables a separation of moss sampling 
sites regarding their contribution to the correlation level 
in dependency on urban, agricultural and forestry land 
use around the sampling location. LDA and LR help 
explaining spatial patterns of ELCE-specific correlation 
levels by identifying most relevant land uses and radiuses 
around the sampling sites. A very valuable indicator for 
this was that moss sampling sites classified by LDA as A 
within ELCE B units defined by below element-specific 
average correlations show stronger correlations than the 
whole set of sampling sites within ELCE B units (Hg, As, 
Cr, Cu, Pb, V). Vice versa, category B sites from ELCE A 
units reveal lower correlations than the whole subsample 
from ELCE A units (As, Cd, Pb, Cr, Ni). This means that 
the ELCE-specific correlation levels are more strongly 
dependent on land use within the specified radii around 
the sampling sites and less on the spatial assignment to 
specific ELCE units, which per se have high or low cor-
relations. For example: Each random subsample within 
regions showing low correlations between Hg concen-
trations in moss and respective atmospheric deposition 
is expected to reveal low correlations. If LDA selects a 
subsample indicating high correlations within regions 
showing low correlations, the importance of the pre-
dictors for Hg can be graded as high. Best LDA models 
with error rates < 40% were found for As, Cr, Cu, Hg, Pb, 
and V. Similar error rates were found by means of LR, 
confirming the validity of LDA models, which are more 
graphic and less difficult to interpret. This supports our 
approach to use LDA in conjunction with a confirma-
tion by LR, which is in any case recommended for mul-
tivariate statistics, especially since predictors are not 

normally distributed. Likewise, relevant factors for pre-
dicting potential correlation levels are element specific. 
While density of forestry land use might characterize a 
seclusion of sampling locations, urban and agricultural 
land use around the sampling sites might indicate pro-
nounced influences of local emission sources. For Cd, Cu, 
and Ni, small radiuses are relevant. For Cd and Cu, the 
relevance of agricultural land use within a small range of 
0–5 km could be caused by fertilizers (Cd) and copper-
containing pesticides [46]. For Cd and Ni, the relevance 
of urban land use within a radius of 5 km might be con-
nected to local industrial emission sources. By contrast, 
large radiuses of 75–100 km are most relevant for As, Hg, 
Cr and V, which predominantly show the weakest statisti-
cal relations to modelled atmospheric deposition. At least 
for Hg, this could be a result of long residence times of 
Hg components in the atmosphere and correlated long-
range transport [47, 48]. Regarding As and Cr, high den-
sity of forestry land use within a 100  km radius, which 
might indicate a low influence of local emission sources, 
seems to be a crucial factor. Regarding As, Hg, Cr and 
V, this study indicates that the radius for examining the 
influence of different spatial land use density around the 
sampling sites could be even more enlarged (e.g. 150, 
200 or 250 km) for a probably better consideration of the 
long-range transboundary air pollution.

Predictive mapping
LDA modelling in combination with LR is an eligible 
method for predicting and mapping spatial patterns of 
correlations in dependency of the influence of the envi-
ronmental factors. Based on error rates and spatial pat-
terns analysis, the explanatory power of 6 out of 11 LDA 
models with error rates < 40% (As, Cr, Cu, Hg, Pb, and 
V) was found to be sufficient. However, error rates of 
26–39% imply strong influences of other factors, i.e. the 
predictions are connected with high uncertainties and 
should be regarded as indications only.

Conclusions
The predictive mapping provides spatial indication on 
the presence of other factors for element concentra-
tion in moss than those considered in the modelling of 
background atmospheric deposition, e.g. local emission 
sources or mineral windblown dust from soil [44]. The 
LDA discriminants could be, at least on the large scale, 
used as additional criteria for planning moss survey net-
works beyond the recommendations of the Moss Manual 
such as minimum distances from roads or houses [19]. 
Besides, the classification and selection of sampling sites 
can serve as a preliminary stage for detailed site-spe-
cific investigations of possible local factors. To this end, 
binary classification (A, B) of the LDA models should be 
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refined, in order to increase the spatial differentiation in 
particular for countries revealing low predicted correla-
tion levels (e.g. Belgium, northern France). The predicted 
correlation level could then be integrated into more 
comprehensive sets of criteria for planning (reductions 
of existing) moss survey networks [49]. Predictive maps 
could also be useful for initial estimations of the corre-
lation level in regions beyond the EMS network having 
sufficient information on land use with blanket cover-
age (e.g. Estonia, Kosovo, parts of Spain or Turkey). The 
underlying assumption is that land use around potential 
sampling sites in countries that did not submit data for 
2010 EMS affects the correlation on the same order of 
magnitude as in countries that participate in EMS. For 
decision support, it is recommended to aggregate models 
results to reduce complexity. LDA models and predictive 
mapping should be validated with further independent 
data from the EMS 1990, 1995, 2000, 2005, and 2015.
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data source. Figure S2. Predicted correlation patterns for Cd, Ni, Pb, and 
Zn (moss; EMEP/LE) at site level as classified according to their surround‑
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average (= B) correlations.
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