TUHKAN KÄYTTÖ
METSÄLÄNNOITTEENA
Noora Huotari
Tuhkan käyttö metsälannoitteena

Noora Huotari

Takakannen pienet kuvat ylhäältä alas: Erkki Oksanen, Asko Kaikusalo, Noora Huotari ja Noora Huotari

Valokuvat: Jorma Issakainen / Metla (ellei toisin mainita)

Taitto, kansi, ulkoasu ja kuvankäsittely: Irene Murtovaara / Metla

2., päivitetty painos

ISBN 978-951-40-2403-0 (PDF)

Paino: Vammalan kirjapaino Oy 2012
Sisällys

ALKUSANAT..5

1 TUHKAN KOOSTUMUS ...6
 1.1 Kirjallisuutta..7

2 TUHKAN LAATUVAATIMUKSET JA ESIKÄSITTELY ...9
 2.1 Tuhkalannoitteiden laatuvaatimukset...9
 2.2 Tuhkan stabiloinnin ...10
 2.3 Tuhkan ”terästämien” ...11
 2.4 Kirjallisuutta..12

3 TUHKALANNOITUKSEN MAAPERÄVAIKUTUKSET ...14
 3.1 Maan happamuus (pH) ja ravinteet ...14
 3.2 Raskasmetallit ...15
 3.3 Maaperäeliot ...15
 3.4 Maaperän kasvihuonekaasupäästöt (CO₂, CH₄, N₂O) ..16
 3.5 Kirjallisuutta..17

4 TUHKALANNOITUKSEN PUUSTOVAIKUTUKSET ..22
 4.1 Puiden ravinneta ja kasvu ..22
 4.1.1 Ojitetut suometsät ..22
 4.1.2 Entiset turvetuotantoalueet ja suopellot ...24
 4.1.3 Kangasmetsät ...25
 4.2 Puiden raskasmetallipitoisuudet ..26
 4.3 Kirjallisuutta..26

5 TUHKALANNOITUKSEN KASVILLISUUSVAIKUTUKSET ...30
 5.1 Kasvilajisto ja -lajien väliset runsaussuhteet ..30
 5.2 Kasvien ravinne- ja raskasmetallipitoisuudet ..32
 5.3 Marjat ja sienet ...32
 5.4 Kirjallisuutta..33

6 TUHKALANNOITUKSEN VAikutukset ELÄMIIN ..36
 6.1 Kirjallisuutta..36

7 TUHKALANNOITUKSEN VESISTÖVAikutukset ...38
 7.1 Kirjallisuutta..39

8 TUHKALANNOITUKSEN TOTEUTTAMINEN ...41
 8.1 Tuhkalannoitukseen soveltuvat kohteet ...41
 8.2 Logistiikka ja tuhkan levittäminen ..43
 8.3 Kirjallisuutta..44

9 YHTEENVETO ..46

Oulussa 3.5.2012 Noora Huotari

Yhteystiedot
Metsäntutkimuslaitos Oulu
Rakentajantie 3
PL 413
90014 Oulun yliopisto
e-mail: noora.huotari@metla.fi

Ravinteiden lisäksi tuhkaan rikastuu jonkin verran myös puun ja turpen sekä muiden polttettavien biomassojen sisältämä raskasmetalleja, esimerkiksi kadmiumia (Cd), arseenia (As), kromia (Cr) ja nikkelia (Ni). Turvetuhkan raskasmetallipitoisuudet ovat tavallisesti pienemmät kuin puutuhkan (Korpilahti 2004). Arseenia on kuitenkin turvetuhkassa usein enemmän kuin puutuhkassa. Useat raskasmetalleiksi luokiteltavista alkuaineista, kuten mangaani (Mn), kupari (Cu) ja sinkki (Zn), ovat kasveille tarpeellisia hivenaineita. Osa raskasmetalleista, kuten kadmium ja liiyjy (Pb), on kuitenkin kasveille ja muille eliöille haitallisia tai jopa käytetty polttoaine vaikuttaa syntyvään tuhkan alkuainekoostumukseen ja laatuun.

<table>
<thead>
<tr>
<th>Polttoainesuhde keskimäärin</th>
<th>Oulun Energia (6 näyttettä)</th>
<th>Laanilan Voima (3 näyttettä)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>11,1–11,5</td>
<td>12,1–12,4</td>
</tr>
<tr>
<td>Alkuaine</td>
<td>g/kg %</td>
<td>g/kg %</td>
</tr>
<tr>
<td>Fosfori (P)</td>
<td>9,1–12</td>
<td>6,6–7,4</td>
</tr>
<tr>
<td>Kalium (K)</td>
<td>4,3–5,8</td>
<td>4,6–7,5</td>
</tr>
<tr>
<td>Kalsium (Ca)</td>
<td>65–89</td>
<td>59–76</td>
</tr>
<tr>
<td>Magnesium (Mg)</td>
<td>11–16</td>
<td>12–26</td>
</tr>
<tr>
<td>Rikki (S)</td>
<td>4,9–6,5</td>
<td>7,0–13</td>
</tr>
<tr>
<td>Mangaani (Mn)</td>
<td>1,8–2,2</td>
<td>1,3–1,8</td>
</tr>
<tr>
<td>Natrium (Na)</td>
<td>2,8–3,5</td>
<td>2,6–3,8</td>
</tr>
<tr>
<td>Rauta (Fe)</td>
<td>125–151</td>
<td>86–101</td>
</tr>
<tr>
<td>Alumiini (Al)</td>
<td>41–44</td>
<td>39–60</td>
</tr>
<tr>
<td>Arseeni (As)</td>
<td>26–34</td>
<td>28–35</td>
</tr>
<tr>
<td>Boori (B)</td>
<td>36–60</td>
<td>100–120</td>
</tr>
<tr>
<td>Sinkki (Zn)</td>
<td>180–260</td>
<td>130–220</td>
</tr>
<tr>
<td>Kupari (Cu)</td>
<td>77–100</td>
<td>51–63</td>
</tr>
<tr>
<td>Kromi (Cr)</td>
<td>92–110</td>
<td>55–71</td>
</tr>
<tr>
<td>Nikkeli (Ni)</td>
<td>42–53</td>
<td>200–250</td>
</tr>
<tr>
<td>Kadmium (Cd)</td>
<td>1,2–1,8</td>
<td>0,8–1,4</td>
</tr>
<tr>
<td>Lyijy (Pb)</td>
<td>33–51</td>
<td>26–39</td>
</tr>
<tr>
<td>Molybdeeni (Mo)</td>
<td>5,2–7,5</td>
<td>8–8,9</td>
</tr>
</tbody>
</table>

1.1 Kirjallisuutta

2 TUHKAN LAATUVAAATIMUKSET JA ESIKÄSITTELY

2.1 Tuhkalannoitteiden laatuvaatimukset

Tuhkalannoitteena tai sen raaka-aineena voidaan käyttää puun, turpeen tai peltobiomas-san polttamisessa syntynyt tuhka sekä eläinlannan poltossa syntynyt tuhka. Tuhka on myös käsiteltävä siten, että pölyäminen on mahdollisimman vähäistä. Metsälannoitteena käytettävissä tuhkassa fosforin (P) ja kaliumin (K) yhteispitoisuuden tulee olla vähintään 2 % ja kalsiumin (Ca) vähintään 6 % (MMM asetus 24/11). Fosforin ja kaliumin keskinäisen suhteen tulee kuitenkin olla noin 1:2, jotta tuhkalannoitteella olisi optimaalinen vaikutus puiden kasvun. Rakeitettuun tuhkalannoitteeseen saa lisätä epäorganisia lannoitevalmisteita sen käyttökelpoisuuden lisäämiseksi tai vähimmäisvaatimusten täyttämiseksi. Jos tuhkalannoitevalmisteeseen on lisätty booria, sen levittäminen pohjave-sialueella ja suojelualueilla on kielletty. Jos tuhkaan halutaan lisätä orgaanista ainetta, esimerkiksi biolietettä typpipitoisuuden lisäämiseksi, on sitä valmistavan toiminnanharjoittajan haettava Eviralta tyyppinimeä ennen tuotteen markkinoille saattamista.

Taulukko 2. Metsälannoitteena käytettävälle tuhkalle asetetut haitallisten metallien sallitut enimmäispitoisuudet mg/kg kuiva-ainetta (MMM asetus 24/11).

<table>
<thead>
<tr>
<th>Alkuaaine</th>
<th>Raja-arvo (mg/kg)</th>
<th>Enimmäiskuormitus (g/ha/v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arseeni (As)</td>
<td>40</td>
<td>Enintään 160 g/ha 60 vuoden ajanjaksona annettuna</td>
</tr>
<tr>
<td>Elohopea (Hg)</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>Kadmium (Cd)</td>
<td>25</td>
<td>Enintään 100 g/ha 60 vuoden ajanjaksona annettuna</td>
</tr>
<tr>
<td>Kromi (Cr)</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Kupari (Cu)</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>Lyijy (Pb)</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Nikkeli (Ni)</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Sinkki (Zn)</td>
<td>45001</td>
<td></td>
</tr>
</tbody>
</table>

1) Enimmäispitoisuuden ylitys sallittu ainoastaan suometsissä käytettäessä, silloin kun sinkin puute on todettu kasvustosta joko maaperä-, lehti- tai neulasanalyysilla. Tällöin sinkkiä saa olla lannoitevalmisteessa enintään 6 000 mg/kg.
Tuhkalannoitteet eivät saa aiheuttaa vaaraa tai haittaa ihmisille, eläimille, kasveille tai ympäristölle. Tämän vuoksi valmisteiden tulee täyttää niille erikseen asetetut vaatimukset. Metsälannoitteena käytettävälle tuhkalle on määritelty lannoitevalmistelualaisia haitallisten metallien sallitut enimmäispitoisuudet (Taulukko 2). Tuhkalannoitevalmisteen ostajalle ja/tai käyttäjälle on aina myynnin tai luovutuksen yhteydessä annettava tuoteseloste, jossa on tiedot lannoitevalmisteen tyypin- ja kauppanimestä, ominaisuuksista, koostumuksesta, käyttöstä, valmistajasta ja maahantuojasta. Tällä hetkellä tuhkalannoitteisiin liittyviä tyypinimimiä ovat ”Puun- ja turpeen tuhka” ja ”Eläinperäinen tuhka”. Tuhkan käyttötarkoitus määritellään tuoteselosteen käyttöohjeessa ja se määräytyy pääasiassa haitallisten aineiden pitoisuksien perusteella.

2.2 Tuhkan stabiloiminen

Käsittelemätön tuhka on erittäin hienojakoista ja helposti pölyävää. Kuljetuksen ja levyysen helpottamiseksi sekä pölyämisestä aiheutuvien ympäristö- ja terveysriskien poistamiseksi tuhka on esikäsiteltävä ennen käyttöä.

2.3 Tuhkan ”terästäminen”

Rakeistus on tehokkain käytössä oleva tuhkan stabiloimismenetelmä. Rakeistarumisen yhteydessä tuhkaa voidaan ”terästää” eli siihen voidaan lisätä ravinteita tarpeen mukaan.

2.4 Kirjallisuutta

Kuopanportti H (2001) Disc pelletization of wood ash from a pulp mill to be used as a forest fertilizer. University of Oulu, Department of Process and Environmental Engineering, Report 264.

3.1 Maan happamuus (pH) ja ravinteet

3.2 Raskasmetallit

3.3 Maaperäeläimet

Maaperäeläimet, kuten mikrobit, mykorritsasienet ja maaperäeläimet ovat keskeisiä metsän ravinnekerroksen säätelyssä. Ne osallistuvat maahan kerääntyvän orgaanisen aineksen eli karikkeen hajottamiseen ja ravinteiden palauttamiseen kasveille käyttökoelpoiseen muotoon.

Tuhkalanoituksen on todettu muuttavan maaperän mikrobiyhteisöjen rakennetta ja lajistoaa, mutta samalla usein myös lisäävän niiden aktiivisuutta sekä turve- että kivennäismail-

3.4 Maaperän kasvihuonekaasupäästöt (CO₂, CH₄, N₂O)

Tuhkalannoitus vaikuttaa maaperän mikrobiologisiin prosesseihin ja sitä kautta myös maaperän kasvihuonekaasujen eli hiilihioksidin (CO₂), metaanin (CH₄) ja dityppioksidin (N₂O) päästöihin. Erityisesti tuhkalannoituksen hyvin soveltuvien typpirikkaiden turvemaiden hiilihioksidi- ja dityppioksidipäästöjen on arvioitu kasvavan, jos orgaanisen aineksen hajotustoiminta lisääntyy merkittävästi.

Tähänastisissa tutkimuksissa tuhkalannoituksella ei ole havaittu olevan merkitsevää vaikutusta maan dityppioksidin (N₂O) päästöihin eli typen siirtymiseen maaperästä ilmakehas, tai turvemailla (Maljanen ym. 1999, 2006 a ja b, Ernfors ym. 2010,

3.5 Kirjallisuutta

Huikari O (1953) Tutkimuksia ojituksen ja tuhkalannoituksen vaikutuksista eräiden soiden pienelööstöön. Communicationes Instituti Forestalis Fenniae 42: 2. 18 s.

4.1 Puiden ravinnetila ja kasvu

4.1.1 Ojitetut suometsät

Fosforin ja kaliumin niukkuus rajoittavat tavallisesti puiden kasvua runsastyppisillä turvemällä. Tuhkalannoituksella saadaan aikaan hitaasti käynnistyvää, mutta pitkäkestoista ja voimakasta puiston kasvureaktia. Lannoittamaton (ylh.) ja 15 vuotta aikaisemmin tuhkaa saanut koelamia (alh.) Vaalan Pelson suolla.

4.1.2 Entiset turvetuotantoalueet ja suopellot

Tuhkalannoitus nopeuttaa merkittävästi hieskoivutiheikön alkukehitystä suopohjilla. Lannoittamaton (etualalla) ja 8 vuotta aikaisemmin puututkaa saanut koela (taustalla) Limingan Hirvinevalla.

4.1.3 Kangasmetsät

4.2 Puiden raskasmetallipitoisuudet

4.3 Kirjallisuutta

Sikström U (1992) Stamtilväxt hos tall och gran på fastmark efter behandling med låg kalkgiva, kvävegödsel och vedaska. (Summary: Stemgrowth of Scots pine and Norway spruce on mineral soils after treatment with a low lime dose, nitrogen fertilizer and wood ash.) Institutet för Skogsförbättring. Rapport 27, 22 s.

5.1 Kasvilajisto ja -lajien väliset runsausuhteet

5.2 Kasvien ravinne- ja raskasmetallipitoisuudet

5.3 Marjat ja sienet

Marjojen ja sienien pinnalle mahdollisesti kertyvän tuhkapölyn takia niiden keräämistä on syytä välttää tuhkan levitystä seuraavan kesän aikana erityisesti, jos raetuhkan asemasta on käytetty pölyyväää irtotuhkaa.

5.4 Kirjallisuutta

Tuhkalannoituksen mahdollisesti eläimille aiheuttamia haittavaikutuksia ovat raskasmetallien, erityisesti kadmiumin, kertyminen elimistöön ja rikastuminen ravintoketjuissa. Tuhkalannoituksen jälkeisiä kadmiumpitoisuksia on mitattu muutamissa tutkimuksissa piennisäkkäistä, lintujen munista, madoista, vesiljöistä sekä erilaisista hyönteisistä. Piennisäkkäät ovat hyviä biologisia indikaattoreita, sillä niitä on helppo pyydystää, ne liikkuvat rajatulla alueella ja niihin kuuluu sekä kasvinsyöjä että hyönteissyöjä. Tutkimalla tuhkalannoituksen vaikutuksia hyönteisten, kasvien ja marjojen raskasmetallipitoisuksiin sekä niitä ravinnokseen käytävien eläinten raskasmetallipitoisuuksiin saadaan tietoa raskasmetallien mahdollisesta rikastumisesta ravintoketjuissa.

6.1 Kirjallisuutta

Tuhkalannoituksen vesistöille mahdollisesti aiheuttamina ympäristöriskeinä pidetään tuhkan suhteellisen korkeaa fosforipitoisuutta sekä tuhkan sisältämiä raskasmetalleja, jotka liuetessään saattavat huuhtoutua vesistöihin. Vaikka tuhka itsessään ei sisällä typpeä, tuhkalannoituksen aiheuttama maan happamuuden vähentyminen sekä hajotustoiminnan aktivoituminen voi lisätä typen vapautumista runsastypiissä alueilla. Tällöin myös riski typen huuhtoutumiselle kasvaa.

7.1 Kirjallisuutta

8 Tuhkalannoituksen toteuttaminen

8.1 Tuhkalannoituksen soveltuvat kohteet

Metsälannoituksen tarkoituksena on lisätä kasvupaikalle niitä ravinteita, joita maassa on niukasti puiston tarpeeseen nähden. Tavoitteena voi olla joko puiston kasvun paraneminen eli puunottoksen lisääminen tai maan ravinne-epätasapainon korjaaminen puuston häiriöttömän kehityksen turvaamiseksi pitkällä aikavälillä (Päivänen 2007).

Tuhkalannoituksen parhaiten soveltuvia kohteita ovat runsastyppiset ojitetut puuterit, joiden turvekerroksen paksuus on vähintään 30 cm ja puuston kasvua rajoittaa fosforin ja kaliumin puute.

8.2 Logistiikka ja tuhkan levittäminen

Esikäsittelty tuhka kuljetetaan metsään kuorma-autolla, joten tien kantavuudesta sekä talviaikaan mahdollisesta aurauksesta ja hiekoituksesta on huolehdittava. Tukkalannoitteen varastopaikaksi valitaan kovapohjainen ja tasainen alue, jonka tulee olla suuruudeltaan noin 5 m x 8 m jokaista rekka-autollista kohden. Varastoalueen on oltava myös riittävän avara, jotta raska kuljetuskalusto pääsee liikkumaan esteettä. Lannoitevarasto koskevat urakoitsijakohtaiset vaatimukset on varmistettava ja huomioitava aina erikseen. Kun käytetään säästettävää tuhkaa, tukkalannoitevarasto voidaan sijoittaa vapaammin ja varastoa on mahdollista jakaa pienemmässä erissä tarpeen mukaan.

8.3 Kirjallisuutta

Suomessa syntyy energiantuotannon sivutuotteena vuosittain yhteensä noin 600 000 tonnia puu-, turve- ja sekatuhkaa. Erilaisten tuhkien alkunaineisto on vaihteleva huomattavasti riippuen mm. käytetystä polttoaineista. Puhdas puutuhka sisältää tyyppeä lukuun ottamatta kaikki puiden kasvuvuona tarvitsemat ravinteet oikeissa suhteissa. Turvetuhkan kaliumpitoisuus on pienempi kuin puutuhkan. Ravinteiden lisäksi tuhkan rikastuu jonkin verran myös puun ja turpeen sisältämiä raskasmetaleja, kuten kadmiumia ja arseenia. Suomessa tuhkasta hyötykäyttöä lannoitteena sätelee lannoitevalmistelaki (539/2006) ja sen perusteella annetut asetukset (MMM asetus 24/11). Metsilannoitteena käytettävää tuhkkaa fosforin ja kaliumin yhteispitoisuuden pitää olla vähintään 2 % ja kaliumin vähintään 6 %. Lisäksi asetuksessa on määritelty haitallisten raskasmetallien sallitut enimmäispitoisuudet: esim. tuhkan kadmiumpitoisuus saa olla enintään 25 mg/kg.

ti niiden pinnalle kertyvän tuhkapölyn vuoksi, joten niiden poimimista heti levitystä seu-raavana kesänä tulisi välttää.

Tuhkalannoituksen ei ole havaittu lisäävän kadmiumin kertymistä erilaisten hyönteisten, jyrsijöiden tai kalojen elimistöön eikä linnunmunniin. Jos tuhkaa ei joudu lannoituksen yhteydessä suoraan ojiin, ravinteiden ja raskasmetallien huuhtoutuminen tuhkalannoite-tuilta alueilta vesistöihin on ollut hyvin vähäistä. Pitkän aikavälin riskien minimoinmiseksi on kuitenkin tärkeää, että metsälannoituksessa käytettävälle tuhkalle on määritetty selkeät raskasmetallipitoisuksien raja-arvot.