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Highlights
•	 High water potential and carbon gain during bud forming favoured height growth.
•	 High water potential during the elongation period favoured height growth.
•	 A spring with high carbon gain favoured diameter growth.
•	 The obtained regression models had generally low generalization performance.

Abstract
Despite the numerous studies on year-to-year variation of tree growth, the physiological mecha-
nisms controlling annual variation in growth are still not understood in detail. We studied the 
applicability of data-driven approach i.e. different regression models in analysing high-dimensional 
data set including continuous and comprehensive measurements over meteorology, ecosystem-
scale	water	and	carbon	fluxes	and	the	annual	variation	in	the	growth	of	app.	50-year-old	Scots	pine	
stand in southern Finland. Even though our dataset covered only 16 years, it is the most extensive 
collection of interactions between a Scots pine ecosystem and atmosphere. The analysis revealed 
that height growth was favoured by high water potential of the tree and carbon gain during the bud 
forming period and high water potential during the elongation period. Diameter growth seemed 
to be favoured by a winter with high precipitation and deep snow cover and a spring with high 
carbon gain. The obtained models had low generalization performance and they would require 
more evaluation and iterative validation to achieve credibility perhaps as a mixture of data-driven 
and	first	principle	modeling	approaches.
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1 Introduction

Both primary and secondary tree growth are sequential processes that include division, subsequent 
enlargement and wall formation of new cells. Under a strong hormonal control (e.g. Aloni 2013), 
growth process is driven by temperature, the availability of resources for biosynthesis and a suf-
ficient	turgor	pressure	for	cell	expansion	(e.g.	Hölttä	et	al.	2010;	Pantin	et	al.	2012).	Photosynthesis	
is the primary driver for ecosystem productivity as it absorbs solar energy for plant metabolism. 
Other important drivers are nitrogen, which is an essential constituent of proteins (Ågren 1996; 
Hari	et	al.	2013),	and	water	availability,	as	drought	prevents	sufficient	turgor	pressure	needed	to	
expand	the	growing	tissues	(De	Schepper	and	Steppe	2010;	Hölttä	et	al.	2010)	and	inhibits	pho-
tosynthesis	(Mäkelä	et	al.	1996).

In the boreal zone, the annual cycle in light and temperature regulates the timing of tree 
growth. The year-to-year variation of radial growth (i.e. secondary growth) has been widely studied 
and connected with the variation in weather such as warm temperature in spring (Hordo et al. 2011; 
Babst et al. 2012; Henttonen et al. 2014) and in summer (Misson 2004; Korpela et al. 2011; Seo et 
al. 2011; Xu et al. 2014), especially in the northernmost regions and at high altitudes. The growth 
variation has been connected to precipitation as well (Zweifel et al. 2006; Pichler and Oberhuber 
2007; Zubizarreta-Gerendiain et al. 2012; Henttonen et al. 2014) but the effect is clearer in the 
temperate zone where water is limiting. The growth variation of boreal trees has also correlated with 
light intensity (Hari and Siren 1972; Li et al. 2014) and air humidity (Li et al. 2014). As regards 
the	primary	growth	of	pines,	Lanner	(1976)	confirmed	that	the	height	growth	is	affected	both	by	
conditions during bud formation and by conditions during the elongation period. Recent studies 
have emphasized the environmental conditions during bud formation in the previous summer in 
determining the extent of height increment (Salminen and Jalkanen 2007; Schiestl-Aalto et al. 2013).

In addition to the immediate environmental responses of growth, delayed responses have 
been observed. For example, Babst et al. (2012) studied conifers, mainly Scots pine (Pinus sylves-
tris L.), in southern Finland and Sweden and found that the temperature in previous July–August 
was negatively correlated with radial growth. Henttonen et al. (2014) found a similar negative 
correlation between radial growth and temperature of previous August in southern Finland and 
Estonia. Winter temperature and precipitation have also correlated with annual growth variation 
(Misson 2004; Seo et al. 2011; Babst et al. 2012). The variation of snow cover depth and its melt-
ing, for example, may cause these effects (Helama et al. 2013). Also, the storage of non-structural 
carbohydrates can cause such delayed responses (Sala et al. 2012).

Despite the numerous studies on annual variation in tree growth, the year-to-year growth vari-
ation is still not understood in detail. During recent decades, various human-induced threats (acid 
rain, climate change, etc.) have caused a range of direct and indirect environmental changes and, as 
a result, the rates of forest ecosystem processes have been altered, (e.g. Olesen et al. 2007). In addi-
tion, the growth response to environment may be changing (Briffa et al. 1998; Vaganov et al. 1999; 
Berninger et al. 2004; D’Arrigo et al. 2004). This has raised interest in increasing our understand-
ing about the linkages between tree growth, whole-tree physiology and the environmental drivers.

Since the 1970s and 1980s, measuring techniques have rapidly developed. This has facilitated 
field	measurements	on	tree	metabolism	and	tree	growth	with	high	temporal	resolution.	For	exam-
ple, the long time series of eddy covariance (EC) measurements are used to analyse the relation-
ship	between	tree	growth	and	the	carbon	and	water	fluxes	between	forests	and	atmosphere.	Some	
of the studies have not found a coupling between ring width and the EC-derived net ecosystem 
productivity (NEP) (Rocha et al. 2006; Gough et al. 2008), but positive connections between the 
growth and NEP or gross primary production (GPP) have also been reported (Ohtsuka et al. 2009; 
Zweifel et al. 2010; Gea-Izquierdo et al. 2014; Babst et al. 2014; Schiestl-Aalto et al. 2015). The 
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conflicting	results	may	be	due	to	the	large	range	on	uncertainty	involved,	largely	because	short	
data sets on different spatial and temporal resolution have been combined.

SMEARII station (Hari and Kulmala 2005) was established in 1995 and since 1996 the 
continuous and comprehensive measurements over forest-atmosphere interactions have created a 
massive high-dimensional data set that is unique in the world. The versatile measurements open a 
new possibility to combine different metabolic phenomena in the analysis of forest ecosystems. In 
this study, we analysed the relationship between tree growth and the SMEAR measurements using 
established data-driven computational methods such as data mining, pattern mining and iterative 
regression. These offer potential for new insights to understand factors affecting tree growth with 
the	flexibility	to	consider	a	wide	range	of	variables.	In	addition	to	traditional	statistical	analysis,	
data-driven approaches can distil information from a large numbers of variables and samples. 
However, a high number of partly intercorrelated candidate variables may result in tangled models 
with low accuracy and with explanatory variables unlikely driving the growth.

Our objectives were to study, 1) whether there are any persistent correlations between the 
growth and the environmental variables over prolonged periods before or during the growth, 2) 
whether it is possible to model the growth variation with a single variable or combination of a 
few	variables	at	fixed	times,	and	3)	does	a	manual	preselection	of	candidate	explanatory	variables	
improve the accuracy of the prediction.

2 Materials and methods

2.1 Study site

The study site at the SMEAR II (Hari and Kulmala, 2005) is a Scots pine stand established by 
sowing in 1962. It is located in southern Finland (61°52´N, 24°17´E) on a medium fertile site, clas-
sified	as	Vaccinium type (Cajander 1926). In 2012, the dominant height and mean stem diameter 
at	1.3	m	were	17.5	m	and	19.6	cm,	respectively,	(Bäck	et	al.	2012)	with	the	density	of	700	stems	
ha−1. In 2002, the stand was partly thinned from below decreasing the stand basal area from 24.3 
m2 ha−1 to 17.9 m2 ha−1 on the thinned area.

The site belongs to the middle boreal zone and has a harsh boreal climate with long cool days 
in the summer and short cold days in the winter. The mean annual temperature is +3.5 °C and mean 
monthly	temperature	varies	from	−7.7	°C	in	February	to	16.0	°C	in	July	(mean	for	1980–2009)	
(Pirinen et al. 2012). Mean annual rainfall is 711 mm distributed evenly throughout the year.

2.2 SMEAR II data

The SMEAR II station was set up in 1995, with an extensive range of measurement including 
atmospheric	physics,	meteorology,	material	and	energy	fluxes,	tree	physiology,	and	soil	and	soil	
water characteristics. For our analysis, we selected 31 explanatory variables with less than 15% of 
the records missing (Table 1). Except for the snow depth, all the other measurements were avail-
able as 30 min averages during the years 1997–2013. Snow depth was measured mostly weekly 
during the snow-covered season. Linear interpolation was used for days when no snow measure-
ments were available.

Global	shortwave	radiation,	reflected	shortwave	radiation,	photosynthetic	photon	flux	den-
sity	(PAR),	reflected	PAR,	ultraviolet	radiation	A	and	B	(UVA	and	UVB)	and	precipitation	were	
measured at the height of 18 m at 1 min intervals. Air temperature, CO2 and water vapour (H2O) 
concentrations, relative humidity (RH), wind speed and wind direction were measured at the height 
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of	16.8	m	at	1	min	intervals.	Vapour	Pressure	Deficit	(VPD,	kPa)	was	computed	as	a	function	of	
relative humidity, and the saturated water pressure as in Parry (1983).

Soil volumetric water content (m3 m–3) was measured at 15 min intervals (Ilvesniemi et al. 
2010)	by	time	domain	reflectometry	(TDR)	and	soil	temperature	with	thermocouples	from	the	A,	B	
and C horizons (2–5, 5–23 and 23–60 cm, respectively). The soil moisture during November–April 
was	excluded	from	the	analysis	since	the	soil	moisture	in	winter	is	close	to	field	capacity	but	the	
measurement signal is biased in frozen soil. More information about the measuring devices used 
is available in Vesala et al. (1998).

The ecosystem CO2 net exchange (NEE) was measured with a closed-path eddy-covariance 
measuring system (Vesala et al. 2005). The net exchange was partitioned into gross primary pro-
duction (GPP) and total ecosystem respiration (TER) that was modelled from night time observa-
tions using an exponential function with the temperature in soil organic matter as the explanatory 
factor	(Kolari	et	al.	2009).	The	evapotranspiration	and	sensible	heat	fluxes	were	calculated	using	
standard	methodology	with	stability	filtering	described	in	Mammarella	et	al.	(2009)	and	Launiainen	
(2010), respectively.

Table 1. Measurements from SMEAR II station. The Manual selection indicates subjective pre-selection to the any 
time model by LARS (see 2.4.2).

Manual 
selection

Variable Abbreviation Units Specifications Missing 
values

√ Precipitation Prec mm includes snow 1%
√ Air temperature T °C  –

Atmospheric pressure P hPa  –
√ Air relative humidity RH %  –

CO2 concentration in air CO2  ppm  –
Water vapour in air H2O  ppth  –

Soil volumetric water content MO m3 m–3 O horizon 50%
√ Soil volumetric water content MA m3 m–3 A horizon 50%

Soil volumetric water content MB m3 m–3 B horizon 50%
Soil volumetric water content MC m3 m–3 C horizon 50%

Soil temperature TO °C O horizon 1%
Soil temperature TA °C A horizon 1%

√ Soil temperature TB °C B horizon 1%
Soil temperature TC °C C horizon 1%

√ Net ecosystem exchange NEE μmol	m–2 s–2 for CO2 –
√ Total ecosystem exchange TER μmol	m–2 s–2 for CO2 –
√ Gross primary production GPP μmol	m–2 s–2 for CO2 –
√ Evapotranspiration ET μmol	m–2 s–2  1%

Sensible	heat	flux	 H W m–2  –
Vapour	Pressure	Deficit	 VPD kPa  –

√ Global shortwave radiation SW W m–2  9%
Reflected	shortwave	radiation	 SWR W m–2  10%

√ Photosynthetically active radiation PAR μmol	m–2 s–2 400–700 nm –
Reflected	PAR	 PARR μmol	m–2 s–2  11%
Ultraviolet A UVA W m–2 320–400 nm 6%
Ultraviolet B UVB W m–2 280–320 nm 7%

√ Snow depth dsnow cm 3%
√ Snow presence Snow present/absent 3%

Wind speed WS m s–1 –
 wind direction E–W WDEW ° cos of direction 8%
 wind direction N–S WDNS ° sine of direction 8%
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The measurements were averaged over four-week time windows over the year since aver-
age over one month is traditionally used in growth studies and a shorter period is not expected to 
affect noticeably the final increment. There were 43 of four-week time windows in all. Measure-
ments from the growth year and from the previous year were included as candidate variables for 
the analyses. At the study site, the height growth is completed in late June – early July and the 
tracheids in stems expanded to their full widths in early August even the cell wall formation con-
tinues till late autumn (Schiestl-Aalto et al. 2015). Thus, we considered data from January in the 
year before to August of the current year.

2.3 Tree growth: response variables RWI and HII

The annual ring widths were measured from increment cores taken at breast height (1.3 m) of 29 
randomly selected trees in late summer 2014. One core per tree was sampled and the year 2014 
was excluded from the analysis. All trees were germinated from sown seeds and were of the same 
age (50-years in 2012), even if the diameter of the sample trees ranged from 8.6 to 31.4 cm with 
a mean of 19.4 cm. Ring widths were measured using an Addo tree ring analyser (Parker Instru-
ments, Malmo, Sweden). One tree was later discarded from the analysis since the growth had been 
barely noticeable for years.

The annual height increments were measured from seven trees felled either in 2012 or 2013. 
The annual height increment was determined from the distances between the whorls of branches 
along stems. Five of them grew in the unthinned and two in the thinned part of the stand (see 
Chapter 2.1). The measured tree heights ranged from 12.2 to 20.1 m. The thinning resulted in no 
differences in annual height increments between the treatments.

A modified negative exponential function was fitted separately for each tree (1984–2014) 
for detrending the size related changes from the tree ring width series whereas for height 
growth, a smoothing spline was fitted for each tree for the same purpose (1982–2012). R pack-
age dplR (Bunn 2008) calling ModNegExp (modified negative exponential with the default 
parameter settings) and Spline (smoothing spline with the default rigidity parameter 0.67) were 
used for fitting the negative exponential and spline smoothing functions, respectively. The long-
term trend of height growth resembled a concave function (Figures S1–S2, available as a sup-
plementary file at http://dx.doi.org/10.14214/sf.1680), which cannot be accurately modelled by 
the negative exponential function, and therefore, a spline was used for height growth. Autocor-
relation was not removed from the growth series since the time span was too short for its reli-
able estimation. In addition, previous season weather variables were related to tree growth.

Tree ring widths and height growth were standardized by dividing the original measurements 
of each tree by the values of the fitted function. Thereafter, the annual increment indices were 
calculated as the bi-weight mean of the individual trees (Cook 1985; Cook and Kairiūkštis 1990).

The final correlation and regression analyses were performed over the period 1998–2013, 
for which data from SMEAR II was available. Even though the detrending was successful, the 
shortened period included again a minor trend in the obtained ring width and height growth 
indices (RWI and HII). We removed it by fitting a simple linear regression function, subtract-
ing the fitted values from the observed values, and dividing by the standard deviation of the 
response variable. The resulting standardized response variable has zero mean and unit variance 
(Fig. 1).

We computed the intercorrelations of the detrended target variable (bi-weight mean over 
all other trees), and each individual tree (Figure S3, available as a supplementary file at http://
dx.doi.org/10.14214/sf.1680). Most of the individual trees were highly correlated with the master 
chronology. There were 6 outliers out of 28 trees with respect to ring widths; with respect to 
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height growth, only the smallest tree was an outlier. The expressed population signals using R 
package dplR were 0.74 and 0.52 for detrended ring widths and height increments, respectively. 
Even though we had relatively few trees, especially for height growth, the analysed trees showed 
reasonably consistent signals.

2.4 Data analysis methods

2.4.1 Fixed time analysis with one to four predictors

As a starting point, we computed linear correlations between each independent variable before and 
during the growth period and each target variable. We used linear models in order to restrict the 
search	space	and	reduce	the	risk	of	overfitting	(Hastie	et	al.	2001),	i.e.,	a	situation	where	a	model	
is	so	flexible	that	it	fits	the	sample	data	to	every	detail,	but	fails	to	capture	the	essential	features	
of	the	unseen	data.	The	correlations	were	statistically	significant	(two	tailed	t-test)	at	5%	level	of	
significance	if	the	absolute	correlation	with	the	radial	increment	indices	was	higher	than	0.49,	and	
with the height increment indices higher than 0.51. The goal of this analysis was to get a basic 
understanding about the relationships at a single variable level, while further modelling analysed 
the combinations of variables.

For the second objective, we built and analysed regression models on one, two, three or four 
independent variables to predict the annual variation in height and cambial growth. The models are 
referred	to	as	greedy	fixed-time	models,	because	in	these	models	all	the	independent	variables	come	
from equal time intervals. First, we generated all possible models using the standard linear regres-
sion. There were 465 models with two explanatory variables, 4495 models with three variables, 
and	31	465	with	four	variables.	Then	the	models	were	filtered	out	based	on	their	testing	accuracy	
score	using	a	pattern	mining	approach.	Testing	accuracy	score	is	measured	as	the	coefficient	of	
determination (R2)	on	data	not	used	in	model	fitting	via	cross-validation	procedure,	described	later.	
The main principle of the pattern mining approach is that for a more complex model to be selected, 
the testing accuracy for this model has to be better than the accuracy of any of the models built on 
subsets of its variables. For example, a model built on A, B, C must be better than models built on 
A and B, B and C, A and C, and models built only on A, only on B, and only on C.

One-variable	fixed-time	models	were	the	simplest	models	build	with	only	one	explanatory	
variable. A separate model was built for each environmental variable in Table 1. The time of year, 
which had the maximum absolute correlation with the response variable, was selected.

Traditional	fixed-time	models	 included	 two	explanatory	variables,	which	are	often	used	
in modelling tree growth (e.g. Garcia-Suarez et al. 2009): air temperature and precipitation. The 

Fig. 1. Standardized response variables i.e. indices for ring width (RWI) 
and height increment (HII). 
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times of year for each variable were chosen such that they had the maximum absolute correlation 
alone with the response variables.

For each model, we report two performance measures: R2 fit and R2 test. R2 fit is the tradi-
tional	coefficient	of	determination,	measured	on	the	data	used	for	model	fitting.	It	gives	informa-
tion	about	the	goodness	of	the	model	fit.	For	the	baseline	predictor	that	always	predicts	a	constant	
value, R2 fit = 0. R2 can be negative, which means that the performance is worse than the baseline. 
R2 test	is	a	coefficient	of	determination,	computed	in	the	same	way,	but	the	predictions	are	made	on	
data	that	has	not	been	used	for	model	fitting.	We	used	the	leave-one-out	cross-validation	procedure	
(LOOCV), see e.g. Hastie et al. (2001) for more details. Firstly, parameter estimation was done 
on all observations except one. Then, a prediction was made for the remaining observation. The 
procedure was repeated as many times as there were observations in the dataset. For example, ring 
width observations were available for the years 1998–2013. First we selected the year 1998 as a 
test-year.	Models	were	fitted	on	the	years	1999–2013	and	tested	on	1998.	Next,	the	year	1999	was	
a	test	year.	Models	were	fitted	on	the	years	1998,	2000–2013,	and	tested	on	1999,	etc.

Before	each	model	fitting,	we	standardized	the	explanatory	variables	to	zero-mean	and	unit-
variance. When LOOCV procedure was used, the parameters for standardization were computed 
on	the	training	data	while	no	parameter	fitting	was	done	on	the	testing	data.	Missing	values	were	
replaced by the mean. When LOOCV procedure was used, means were estimated on only training 
data. The response variables were converted back to the original representation (growth indices) 
before computing R2 measures.

We also report a consistency index, which indicates how consistent the best time of year 
is during LOOCV. It was computed as the number of observations for which the most frequent 
time of year appeared, divided by the total number of observations. Consistency, 1 means that at 
each iteration of the cross validation cycle the same four-week period is nominated as the most 
informative. If the value is close to 0, then the time selection is very inconsistent.

2.4.2 Variable time analysis with different number of predictors

Least Angle Regression (LARS, Efron et al. 2004) is a regression technique designed for high 
dimensional data. It iteratively adds predictors to the regression model taking into account dependen-
cies	between	predictors.	The	result	is	a	linear	model,	but	the	procedure	of	parameter	fitting	results	
to	different	coefficients	from	the	standard	linear	regression.	We	selected	LARS	technique	to	analyse	
how the number of variables affects the model accuracy, i.e. to what extent high number of partly 
intercorrelated explanatory variables result in tangled models with low accuracy, and whether the 
results can be improved by the expert-based pre-selection of candidate variables.

We used the R package ‘lars’ implementation where the maximum number of variables was 
set to 10 and analysed the occurrence of the parameter values (from 1 to 10). Models obtained by 
LARS did not have any time constraints. Explanatory variables from any time of year (43 time 
windows) could have been included, also containing several time periods for an explanatory vari-
able.	We	used	LARS	technique	for	fitting	the	regression	models	with	three	approaches	in	variable	
selection:

1: BB, black-box had no restrictions on candidate variables, the selection pool was 31 × 43 = 1333 
variables (Table 1),

2: MS, manual pre-selection of 13 variables that have occurred in earlier studies (indicated in Table 
1), the selection pool was 13 × 43 = 559 variables, and

3: TR, traditional pre-selection, where only two variables: air temperature and precipitation were 
allowed, but they could come from any time of year, the selection pool was 2 × 43 = 86 variables.
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The	analysis	was	based	on	the	variable	selection	while	fitting	LARS	regression	via	cross-
validation. For each iteration of LOOCV, a regression model was built. For each variable, we took 
an	average	over	all	the	regression	coefficients	from	all	LOOCV	models.	We	scaled	each	coefficient	
by the total number of candidate variables considered. This way the magnitude of the regression 
coefficients	produced	by	all	three	types	of	any-time	models	(BB,	TS	and	TR)	became	comparable.	
The	higher	 the	absolute	magnitude	of	 the	coefficient,	 the	more	important	 the	variable	 is	when	
considered in a set together with all other variables.

In addition to LARS models, we considered a Baseline model, which does not use any 
explanatory variables, but always predicts a constant value, equal to the mean of the target variable.

We made the dataset as well as the code implementing our experiments in R publicly 
available (https://github.com/zliobaite/tree-growth-smear).

3 Results 

3.1 Fixed time models

3.1.1 Correlation analysis

There were several periods when individual variables showed consistent correlations with RWI 
for	three	or	more	pixels	(i.e.	≥8	weeks,	Fig.	2):

1. During the supposed growing season, relative humidity and water vapour were negatively correlated 
with RWI. Air temperature, carbon gain (GPP), PAR and precipitation during the growing period 
did not strongly correlate with RWI.  

2. Just before or in the early phase of the supposed growing season, air and organic soil temperature, 
GPP and water vapour concentration positively correlated with RWI while the correlations with 
global radiation and UVA were negative.  

3. Snow depth in the previous winter positively correlated with RWI.  
4. Correlations with soil water turned from positive to negative during previous summer
5. GPP in May–Sep in the previous summer (y-1) negatively correlated with RWI while the correla-

tion with NEE was positive for the same period.  
6.	Soil	and	air	 temperatures,	water	vapour,	evapotranspiration	and	all	carbon	fluxes	 (NEE,	TER,	

GPP) negatively correlated with RWI in Jan–Feb in the winter in the previous year (y-1), while 
the correlation with RH was positive for the same period.

Likewise, several periods were consistently correlated with HII (Fig. 2):
1. During the supposed growing season, RH, soil water and global radiation positively correlated 

with HII while the correlations with air and soil temperatures and VPD were mostly negative 
during the same period.

2. Just before or in the early phase of the supposed growing season, RH and snow presence positively 
correlated with HII while air temperature, TER, GPP, VPD and PAR, UVA and UVB showed 
negative correlations.

3. Air and soil temperatures and water vapour concentration during winter positively correlated with 
HII while snow depth, PAR and global radiation showed negative correlations.

4. Precipitation, soil water, RH, GPP, TER and evapotranspiration in the previous summer (y-1) cor-
related positively with HII, while correlations with VPD, UVA and air temperatures were negative.

5. UVA and UVB in previous spring (y-1) correlated positively with HII while correlation with snow 
was negative. 

https://github.com/zliobaite/tree-growth-smear
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6.	Soil	and	air	temperatures,	water	vapour	concentration,	evapotranspiration	and	all	carbon	fluxes	
(NEE, TER, GPP) in Jan–Feb in the winter in the previous year (y-1) positively correlated with 
HII while the correlations with snow depth in Jan–Apr (y-1) and radiation in Jan–Mar (y-1) were 
negative.

3.1.2 One-variable models

The overall predictive power of individual explanatory variables was low for RWI and HII 
(Table 2ab). Even though R2 was notable in many cases, the testing mostly resulted in negative 
R2 values indicating that the performance was worse than the baseline. However, for both growth 
variables, there were a few single predictors individually producing positive R2 test values with 
high stability. For RWI, those predictors were precipitation during the preceding Dec (y-1), as well 
as NEE and GPP in April. The predictors producing positive test values for HII were both from 
preceding year (y-1): UVB during April and NEE in August.

Table 2a. Predictive accuracies of explanatory variables for the ring width indices. Cons. indi-
cates the consistency index for the best time, R2 fit	the	coefficient	of	determination	of	the	model	
fit	on	all	data	and	R2 test	 the	coefficient	of	determination	of	 leave-one-out	cross-validation	
testing. The abbreviations are introduced in Table 1.

Feature Best time Cons. R2 fit R2 test

Prec.  Dec 4 – Dec 31 [y-1]  1  0.44  0.35 
T  Jan 2 – Jan 29 [y-1]  0.9  0.37  –0.17 
P  Dec 4 – Dec 31 [y-1]  0.9  0.3  –0.91 
RH  May 22 – Jun 18 [y-1]  0.4  0.22  –2.23 
CO2  Aug 13 – Sep 9  0.8  0.02  –0.62 
H2O  Aug 14 – Sep 10 [y-1]  0.8  0.3  –0.48 
MO  Jul 3 – Jul 30 [y-1]  0.8  0.14  –0.73 
MA  May 22 – Jun 18 [y-1]  0.8  0.12  –0.56 
MB  May 22 – Jun 18 [y-1]  0.9  0.23  –0.13 
MC  May 22 – Jun 18 [y-1]  0.9  0.26  –0.04 
TO  Jul 2 – Jul 29  0.3  0.17  –1.28 
TA  Jan 16 – Feb 12 [y-1]  0.9  0.34  –0.68 
TB  Jan 16 – Feb 12 [y-1]  0.9  0.43  –0.07 
TC  Jan 2 – Jan 29 [y-1]  0.8  0.3  –0.37 
NEE  Apr 9 – May 6  1  0.38  0.2 
TER  Aug 13 – Sep 9  0.6  0.25  –0.98 
GPP  Apr 9 – May 6  1  0.42  0.26 
ET  Jan 2 – Jan 29 [y-1]  0.6  0.12  –1.45 
H  Jan 2 – Jan 29 [y-1]  0.9  0.39  –0.06 
VPD  May 22 – Jun 18 [y-1]  0.4  0.16  –1.23 
SW  Nov 20 – Dec 17 [y-1]  0.6  0.3  –1.33 
SWR  Apr 23 – May 20  1  0.4  0 
PAR  May 22 – Jun 18 [y-1]  0.8  0.22  –0.66 
PARR  Aug 28 – Sep 24 [y-1]  0.8  0.26  –0.96 
UVA  Nov 20 – Dec 17 [y-1]  0.7  0.28  –0.93 
UVB  Nov 20 – Dec 17 [y-1]  0.4  0.26  –1.31 
dsnow  Apr 24 – May 21 [y-1]  0.8  0.24  –5.28 
Snow  Apr 24 – May 21 [y-1]  0.7  0.15  –3.77 
WS  Apr 9 – May 6  0.6  0.2  –1.29 
WDEW  Jun 5 – Jul 2 [y-1]  0.9  0.18  –1.74 
WDNS  Sep 25 – Oct 22 [y-1]  0.9  0.09  –1.22 
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3.1.3 Traditional combination of temperature and precipitation

The model for RWI with the two traditionally used explanatory variables (precipitation and air 
temperature)	fitted	reasonable	well	(R2 fit = 0.62) and the generalization was decent (R2 test = 
0.27) when periods were as in Table 2a, i.e. precipitation in previous December and air tempera-
ture in January (y-1). However, the generalization performance was worse than it would be using 
only precipitation as a single variable (Table 2a). For HII, the best periods for precipitation and 
air temperature were in winter and summer in the previous year (Table 2b), respectively. As these 
were	combined,	the	model	fit	was	low	(R2 fit = 0.38) and it failed at generalization i.e. R2 test was 
lower than the baseline.

Table 2b. Predictive accuracies of explanatory variables for height growth indices. Columns 
as in Table 2a.

Feature Best time Cons. R2 fit R2 test

Prec.  Jan 16 – Feb 12 [y-1]  0.8  0.25  –1.24 
T  Jul 3 – Jul 30 [y-1]  0.4  0.26  –2.19 
P  Feb 12 – Mar 11  0.4  0.32  –0.66 
RH  Jun 4 – Jul 1  0.9  0.36  –0.84 
CO2  Aug 13 – Sep 9  0.5  0.01  –0.92 
H2O  Apr 23 – May 20  0.9  0.3  –0.82 
MO  Jun 4 – Jul 1  0.6  0.14  –1.19 
MA  Jun 4 – Jul 1  0.3  0.12  –1.32 
MB  May 8 – Jun 4 [y-1]  0.4  0.17  –1.15 
MC  May 22 – Jun 18 [y-1]  0.8  0.13  –1.2 
TO  Jan 16 – Feb 12 [y-1]  0.9  0.29  –0.84 
TA  Jan 2 – Jan 29 [y-1]  0.8  0.25  –1.21 
TB  Jan 2 – Jan 29 [y-1]  0.9  0.22  –0.62 
TC  Nov 20 – Dec 17 [y-1]  0.3  0.08  –1.2 
NEE  Jul 31 – Aug 27 [y-1]  0.9  0.42  0.14 
TER  Mar 26 – Apr 22  0.6  0.29  –0.83 
GPP  Jul 31 – Aug 27 [y–1]  0.9  0.38  –0.27 
ET  Jun 18 – Jul 15  0.8  0.22  –0.71 
H  Jan 2 – Jan 29 [y-1]  0.8  0.34  –0.76 
VPD  Jun 4 – Jul 1  0.7  0.4  –0.78 
SW  Jul 31 – Aug 27 [y-1]  0.7  0.31  –0.78 
SWR  Sep 25 – Oct 22 [y-1]  0.6  0.31  –1.59 
PAR  Jul 3 – Jul 30 [y-1]  0.9  0.39  –0.14 
PARR  Nov 20 – Dec 17 [y-1]  0.9  0.46  –0.09 
UVA  Jan 29 – Feb 25  0.9  0.43  –0.79 
UVB  Apr 10 – May 7 [y-1]  1  0.51  0.31 
dsnow  Nov 6 – Dec 3 [y-1]  0.4  0.17  –5.13 
Snow  Apr 9 – May 6  0.9  0.38  –0.6 
WS  Mar 12 – Arp 8  0.6  0.21  –1.02 
WDEW  Sep 25 – Oct 22 [y-1]  0.8  0.29  –0.2 
WDNS  Jun 19 – Jul 16 [y-1]  0.9  0.28  –0.34
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3.1.4 Greedy models with 2–4 predictors

Explanatory factors in the RWI models by the greedy approach were mostly related to water (pre-
cipitation, soil water, water vapour, evapotranspiration), soil temperature and CO2 uptake (GPP) 
(Table 3). For HII, explanatory factors related to radiation (PAR, UVB), but also to water (soil 
water, water vapour, precipitation, snow depth) and CO2 exchange (GPP, NEE), appeared several 
times (Table 3). The used time periods for the variables were the same as indicated in Table 2ab. 
For few combinations, the resulting R2 fit and test values were reasonably high in comparison with 
the models with a single predictor.

Table 3. Predictive accuracy of selected models with 1–4 predictors for the ring width and height growth 
indices by the greedy approach. The abbreviations are introduced in Table 1. The used periods are as in 
Table 2 a and b.

Predictor R2 fit R2 test
1 2 3 4

Ring width Prec. MC GPP H 0.81 0.52
H2O  MC TB NEE 0.92 0.48
Prec. TB TC ET 0.70 0.41

T MB MC SWR 0.75 0.38
H2O H SWR - 0.67 0.36
Prec. NEE - - 0.59 0.35
H2O MB TC GPP 0.28 0.84
MO TB SWR - 0.17 0.57

Height growth PARR UVB dsnow Snow 0.81 0.63
MA GPP H UVB 0.89 0.60
H2O TB NEE PAR 0.74 0.46
Prec. RH TER UVB 0.84 0.38
PAR UVB - - 0.63 0.33
H2O GPP SWR PARR 0.77 0.31
MB TA NEE H 0.17 0.79

NEE PARR WD - 0.15 0.64

Fig. 3. Accuracy	of	fit	and	test	models	by	LARS	(see	2.4.2)	as	a	function	of	the	
number of included variables.
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3.2 Variable time models

The	fit	and	the	test	accuracies	for	Black-Box	(BB),	manual	selection	(MS),	and	traditional	(TR)	
models are reported in Fig. 3. Many test results for the ring width modelling were negative, but TR 
models with 2–4 selected variables (i.e. periods) performed reasonably well (Fig. 3). The height 
growth	models	had	a	fair	fitting	performance,	but	the	generalization	was	generally	poor,	except	
for BB approach with one selected variable producing a positive R2 test. The variable was UVB 
during proceeding April–May (y-1), which also performed well in one-variable models (Table 2b). 

Fig. 4. Analysis of variable selection by LARS in three types of any-time models with different number of candidate 
predictors (BB, MS and TR). The vertical axis lists variables and the horizontal axis times of year. Black-lined rectan-
gles indicate the most probable actual growing period (Schiestl-Aalto et al. 2015). For time reference, the mean tem-
perature over time is plotted in the middle of the models. Each square is an average over 15–16 models obtained using 
leave-one-out cross-validation procedure. Blue squares indicate negative relations, and red squares indicate positive 
relations. Darker colours encode more stable (consistent) performance over multiple trials. Abbreviations are intro-
duced in Table 1.



14

Silva Fennica vol. 50 no. 5 article id 1680 · Kulmala et al. · Environmental control of growth variation in a…

Generally, the models with fewer input variables did not perform any better than the models with 
all available input.

LARS analysis focused on predictors that appear most often and most consistently in terms 
of their relation with the target variables. The Black-box model (BB) and the manual selection 
model (MS) showed similar relations between RWI and weather events (Fig. 4). The remarkable 
common negative relations were with GPP in the early phase of a growing period, with global 
radiation during the growing period and snow depth in the previous spring (y-1). Common posi-
tive relations rose with global radiation in previous spring. Both models showed mixed relations 
with precipitation in winter. In addition, BB model indicated negative relation with water vapour 
concentration in the previous summer (y-1) and UVA in the winter, positive ones with UVA in the 
spring	and	reflected	radiation	during	the	growth.	On	the	other	hand,	only	MS	indicated	negative	
relations with RH in summer and positive ones in winter. The traditional model (TR) with two 
variables showed mainly positive relation with precipitation in the winter and negative with air 
temperature in early spring but during the actual growing period all relations were very weak.

BB and MS models showed some similar relations between HII and weather events as well 
(Fig. 4). The common positive relations were with RH during growth and GPP during previous 
summer. Common negative relations were NEE during previous summer and early year, and PAR 
in	previous	winter	and	summer.	In	addition,	BB	showed	negative	relations	with	reflected	PAR	in	
winter, air pressure in late winter and VPD during the growing period. Positive relations only by 
BB were UVB in previous spring (y-1) and snow presence in the early phase of growing season. 
On the other hand, only MS showed negative relations with temperature during previous summer 
and global radiation in the winter. The relations between HII and air temperature during previous 
summer and during the timing of actual growth were negative with TR model.

4 Discussion

4.1 Performance of data-driven models

We investigated which environmental variables sampled at which time periods of the years had 
the strongest relation to the annual radial and height increment indices. The task setting was non-
trivial because there were only a small number of observations of the dependent variables (15–16) 
for the time when SMEAR data was available, while there were a large number of independent 
variables	from	different	time	periods	within	the	study	years.	Selected	greedy	models	with	fixed	
time periods demonstrated the best performance whereas several single variables gave positive R2 
test values, but their overall performance was not up to scale to predict annual growth variation.

Since annual tree growth is a complex process, consisting of cumulative responses to 
several	simultaneous	and	fluctuating	internal	and	external	factors,	it	is	challenging	to	model	the	
annual growth variation using a temporally averaged period in a single or in a few environmental 
factors. This approach may yield more consistent results if longer time series were available, but 
even	the	exploration	over	16	years	is	an	interesting	step	forward,	as	this	is	the	first	time	when	so	
wide a variety of measurements at so high a resolution have been related to tree growth using data 
mining techniques.

Modelling using the traditional combination of air temperature and precipitation was not 
sufficient	to	predict	the	tree	growth	since	the	used	periods,	selected	only	by	the	correlation	analy-
sis, may be not the most effective ones for growth. Combining one to four of any single variables 
on their best times resulted in better test performances but most of the combinations were not 
consistent	with	respect	to	earlier	findings	and	knowledge	of	the	growth	process.	The	Black	Box	
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models	were	clearly	too	flexible	and	resulted	in	overfitting	i.e.	they	achieved	in	a	good	model	fit	
but the generalization performance was poor. Even the decrease in the number of variables did 
not increase the predictive accuracy. The introduced models may have captured some essential 
factors, but they would require more evaluation and iterative validation to achieve credibility for 
example	as	a	mixture	of	data-driven	and	first	principle	modeling	approaches.	Removing	the	effects	
of known affecting factors by traditional methods and mining the residuals, for example, could 
be one step forward.

Nevertheless, the visual examination of the consistent correlations (Fig. 2) over the high-
frequency dataset provided new insights even when the build models were not very powerful. The 
analysis revealed numerous and, in some cases, lagged correlations with both height and diameter 
growth of trees. Some of the correlations likely result from the short time series in combination 
with high dimensional dataset, but there also seems to be a consistent pattern in them. Height and 
diameter growth correlated partially to different factors with very different delays and often respond 
in an opposite manner to the same factors.

4.2 Height increment

The buds of Scots pine are formed in July–August, whereas the actual elongation takes place in 
the	following	year.	Therefore,	the	conditions	during	the	bud	formation	are	influential	for	the	height	
increment (Salminen and Jalkanen 2007; Schiestl-Aalto et al. 2013). The consistent correlations 
found in this study suggest that high GPP together with high soil water content and low water 
demand for transpiration (high RH, low VPD, and low air temperature) during the bud forming 
period are favourable for height increment during the following summer. High water content in air 
and soil maintains tree water potential and turgor pressure needed in forming new cells (Pantin et 
al. 2012). GPP on the other hand promotes material for new cells but also for turgor maintenance 
(Pantin et al. 2012).

Against	earlier	findings	from	Northern	latitudes	(Salminen	and	Jalkanen	2007),	this	study	
indicated a negative correlation between air temperature during the bud forming period and height 
increment. This could indicate that high temperature increases transpirational demand which reduces 
the water potential of the tree and also may decrease the net carbon uptake and the capability to 
invest in buds. In addition, a decrease in soil water potential may lead apart from low shoot turgor 
pressure, also to decreased shoot:root ratio (Brunner et al. 2016), causing a competing sink for 
the assimilates.

During the period when the actual growth takes place, circumstances supporting the high 
water potential of the tree (soil moisture, RH, precipitation, water vapour concentration) are 
beneficial	 for	 the	height	 increment,	whereas	 circumstances	 lowering	 the	water	potential	 (high	
air temperature and VPD) effect negatively. Also the positive correlations with springtime RH 
and negative correlations with radiation, VPD and air temperature indicate that circumstances 
accompanied with low transpirational demand favouring high turgor pressure in the early spring 
are	beneficial	for	the	height	growth.

UVB radiation in the preceding spring (y-1) unexpectedly showed a strong positive correla-
tion with the height increment in all analyses. Ren et al. (2006) studied Populus species and found 
that	UVB	radiation	significantly	decreased	height	growth.	High	UVB	may	point	to	high	radiation	
in general that in combination with low temperatures are harmful for needles in spring (Öquist 
and Huner 2003; Ensminger et al. 2004; Porcar-Castell et al. 2008) and thus, cause growth losses 
to be compensated in the following year.

The	individual	correlations	and	coefficients,	such	as	the	positive	correlations	or	coefficients	
between the height increment and temperatures, water vapour concentration, evapotranspiration 
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and	carbon	fluxes	accompanied	with	negative	correlations	with	snow	and	radiation	during	 the	
dormant	period	more	than	one	year	earlier	(y-1)	are	difficult	to	explain.	They	could	result	from	the	
whole	tree	level	structural	changes	reflecting	changes	in	allocation	or	alterations,	e.g.,	in	hormonal	
control or some other, unknown reason. It cannot be ruled out that some of the correlations are due 
to coincidences in a relatively short time series. The low overall predictive power of individual 
explanatory variables and the models by the greedy approach indicates that not all found correla-
tions	are	meaningful.	For	example,	the	sensible	heat	flux	that	is	roughly	the	incoming	radiation	
minus evapotranspiration appears as predictor in the regression models for height and diameter 
growth.	The	sensible	heat	flux	depends	on	radiation,	moisture	conditions,	biological	activity	etc.	
hardly having by its own a causal relation to growth.

4.3 Ring width

There were no consistent correlations between the meteorological conditions and ring width during 
the supposed cambial growth period. Only air humidity and atmospheric water vapour concen-
tration showed slightly negative correlations and VPD slightly positive correlation to ring width 
indicating, that unlike with height growth, diameter growth was favoured by dry weather during 
the	growing	period.	This	could	reflect	the	fact	that	growth	at	the	lower	part	of	a	stem	is	not	criti-
cally limited by air humidity conditions and the level of water potential, which is always higher at 
the lower part of a stem than at shoots (Zimmermann 1983). Also this combination of conditions 
is normally favourable for photosynthetic production (Chan et al. 2015).

Summer	temperature	often	correlates	with	ring	width	(Mäkinen	et	al.	2001;	Korpela	et	al.	
2011; Grudd 2008; Seo et al. 2011), but our results do not support this indicating again that air 
temperature during the growing period does not limit the growth in the studied site. Our results are, 
however, similar with those of Hordo et al. (2011) who found that the temperature in current year 
March–April correlated positively with Scots pine radial growth in southern Finland and Estonia. 
Warm spring may also favour the recovery of xylem and phloem transport capacity after winter 
(Vanhatalo	et	al.	2015)	and	for	certain	extend	the	growing	season	that	reflects	as	larger	accumulated	
growth	at	certain	fixed	time	points.

Our analyses also indicate that high GPP at the beginning of the growing season promotes 
radial	growth	supporting	the	findings	of	Schiestl-Aalto	et	al.	(2015),	Chan	et	al.	(2015)	and	Babst	
et al. (2014). The role of early carbon gain can be seen also in the negative correlation with NEE, 
whose negative values indicate carbon uptake as opposed to GPP. In the spring, high GPP may act 
as a trigger for the onset of cell division or give compensation for the off-season respiratory losses 
and thus positively affect tree carbon balance. Alternatively, high GPP in the early spring may 
indicate earlier onset for the growing season. Rossi et al. (2006) suggested that in cold environ-
ments, conifers synchronize the maximum growth rate of tree-ring formation with day length. If 
the growth were culminated by day length, the early onset would simply increase the annual ring 
width. On the other hand, Chan et al. (2015) showed that a large amount of recently photosynthe-
sized carbon increased daily growth in spring, so perhaps GPP in the early season stands out in the 
correlations since sugars have an important role both as a growth resource for cell differentiation 
and	as	a	factor	behind	sufficient	cell	turgor	together	with	water	availability.

5 Conclusion

The	models	produced	by	the	data-driven	approaches	lacked	predictive	power	to	firmly	identify	
strong drivers for growth variation at our study site in southern Finland. The accuracy of the 
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prediction did not increase even if the number of candidate explanatory variables was manually 
decreased in the massive dataset. However, the approach highlighted several interesting aspects on 
the annual variation in the height and diameter growth of Scots pine: the growth of the Scots pine 
trees was not promoted by high temperatures during the growing or bud forming periods. Instead, 
height growth was favoured by a weather that supported high water potential and carbon gain 
during the bud forming period, and by circumstances maintaining high water potential during the 
elongation period. A winter with high precipitation and a long-lasting snow cover and a spring with 
high photosynthetic production indicated promoted diameter growth during the oncoming summer.
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