Toimittaja: Viljo Nylund.

Julkaisusarjassa sovelletaan Suomen Biologian Seuran Vanamon käsikirjoitusten laadintaohjeita.

Julkaisua koskevat tiedustelut osoitetaan Riista- ja kalatalouden tutkimuslaitoksen kalantutkimusosaston kirjastolle, PL 193, 00131 Helsinkki 13.

Monistettuja julkaisuja on jatkoa sarjalle: ”Maataloushallituksen kalataloudellinen tutkimustoimisto. Monistettuja julkaisuja”. Kalantutkimusosaston muut julkaisusarjat ovat ”Finnish Fisheries Research”, ”Suomen kalatalous”, ”Tiedonantoja” ja ”Meddelanden”.

Redaktör: Viljo Nylund.

Vid uppgörande av manuskript bör Suomen Biologian Seura Vanamos direktiv tillämpas.

Förfrågningar angående tidskriften riktas till bibliotekarien, Vilte- och fiskeriforskningsinstitutet, fiskeriforskningsavdelningen, PB 193, 00131 Helsingfors 13.

Tidskriften är fortsättning på ”Maataloushallituksen kalataloudellinen tutkimustoimisto. Monistettuja julkaisuja”. Övriga publikationsserier från fiskeriforskningsavdelningen är ”Finnish Fisheries Research”, ”Suomen kalatalous”, ”Tiedonantoja” och ”Meddelanden”.
HARJUKSEN (Thymallys thymallus L.) LEVINNEISYYS, BIOLOGIA, KALASTUS JA HOITOTOIMET SUOMESSA
(Summary: Distribution, biology, fishery and management of the grayling (Thymallys thymallus L.) in Finland)

OSSI SEPPOVAARA
HARJUKSEN (Thymallus thymallus L.) LEVINNEISYYS, BIOLOGIA, KALASTUS JA HOITOTOIMET SUOMESSA

OSSI SEPPÖVAARA

<table>
<thead>
<tr>
<th>Sisältö</th>
<th>Sivu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Johdanto.</td>
<td>2</td>
</tr>
<tr>
<td>2. Harjus ja sen taksonomia.</td>
<td>2</td>
</tr>
<tr>
<td>2.1 Ulkonäkö.</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Tärkeimpää tuntomerkkejä.</td>
<td>6</td>
</tr>
<tr>
<td>3. Harjuksen levinneisyys.</td>
<td>7</td>
</tr>
<tr>
<td>3.1 Esiintymisen maamme rajojen ulkopuolella.</td>
<td>7</td>
</tr>
<tr>
<td>3.2 Suomen harjusvedet.</td>
<td>9</td>
</tr>
<tr>
<td>4. Harjuksen levinneisyteen vaikuttavat tekijät.</td>
<td>14</td>
</tr>
<tr>
<td>4.1 Luontaiset levinneisyyttä rajoittavat tekijät.</td>
<td>14</td>
</tr>
<tr>
<td>4.2 Ihmisen toimien vaikutukset.</td>
<td>16</td>
</tr>
<tr>
<td>5. Tyypillisiä harjuksen suosimia vesin.</td>
<td>21</td>
</tr>
<tr>
<td>6. Harjuskantojen tilaan vaikuttavat tekijät.</td>
<td>25</td>
</tr>
<tr>
<td>6.1 Lisääntyminen.</td>
<td>25</td>
</tr>
<tr>
<td>6.2 Kasvu ja koko.</td>
<td>33</td>
</tr>
<tr>
<td>6.3 Vaellukset.</td>
<td>39</td>
</tr>
<tr>
<td>6.4 Ravinto.</td>
<td>41</td>
</tr>
<tr>
<td>6.5 Loisit.</td>
<td>52</td>
</tr>
<tr>
<td>7. Harjuksen kalastus Suomessa.</td>
<td>53</td>
</tr>
<tr>
<td>7.1 Järvikalastus.</td>
<td>53</td>
</tr>
<tr>
<td>7.2 Meri- ja siihen liittyvä jokisuukalastus.</td>
<td>56</td>
</tr>
<tr>
<td>7.3 Jokikalastus.</td>
<td>58</td>
</tr>
<tr>
<td>8. Harjuksaaliit.</td>
<td>61</td>
</tr>
<tr>
<td>9. Harjuksen viljely ja harjusvesien hoito.</td>
<td>65</td>
</tr>
<tr>
<td>9.1 Harjuksen istutukset Suomessa.</td>
<td>65</td>
</tr>
<tr>
<td>9.2 Haudontatoiminta.</td>
<td>67</td>
</tr>
<tr>
<td>9.3 Lammikkokasvatus.</td>
<td>69</td>
</tr>
<tr>
<td>9.4 Hoidon onnistuminen ja kannattavuus.</td>
<td>71</td>
</tr>
</tbody>
</table>

Kiitokset. 76
Tiivistelmä. 77
Summary. 79
Kirjallisuus. 81

1) Helsingin yliopisto, limnologian laitos
Viikki, 00710 Helsinki 71
1. Johdanto

Vielä muutamia vuosikymmeniä sitten harjuksella oli Suomessa koh-
talainen kalataloudellinen merkitys. Sen levinneisyysalue oli nykyis-
tä huomattavasti laajempi ja maan kokonaissaalis suurempi. Tietoja
harjuksen levinneisyystä, biologiasta ja kalastuksesta ovat Suomes-
sa julkaisuissa erikoisesti RADOFF (1795), MELA (1883), SIRELIUS
(1906, 1907), JÄÄSKELÄINEN (1913, 1917), JÄRVI (1932, 1935a, 1935b),
LUMME (1976), SEPPÖVAARA (1976a, 1976b), TUUNAINE (1976) ja KERÄNEN
(1978). Harjuksen hoitotoimiin liittyvää tietoutta ovat puolestaan
julkaisuissa mm. HELLEVAARA (1927), JÄÄSKELÄINEN (1930, 1939, 1940,
1943), WALLENIUS (1936), SEGERSTRÅLE (1947), HALME (1961, 1962) ja
HURME (1967).

Vesiemme luonnontilaa muuntavat toimet, harjuksen riittämätön ja
osaksi taitamaton hoito sekä liian voimakas kalastus ovat olennaises-
ti karsineet ja heikentäneet kantoja. Erällä alueilla voidaan harjuks-
ken katsoa kuuluval uhanalaisten kalalajien joukkoon. Osasyynä kan-
tojen nykytilaan ja puutteelliseen hoitoon voidaan pitää edelleenkin
liian niukkaa tutkimus- ja koetoimintaa.

Eri puolilla maata on esiintynyt kasvavaa tarvetta harjuskantojen
hoitoon ja uusien luomiseen, mutta perustietojen niukkuus ja sopivien
istuikkaiden vaikea saanti ovat jarruttaneet toimintaa ja johtaneet
valitettavan usein hoitotoimien epäonnistumisiin.

Tämä tutkimus pyrkii selvittämällä harjuksen entistä ja nykyistä le-
vinneisyyttä sekä sen biologiaa, kalastusta ja hoitoa luomaan paremmat
edellytykset tämän arvokalan taloudellisen merkityksen kohtamiselle.
Päämääränä on kaikkiin tärkeimpiin lähteisiin ja täydentäviin tutkimuk-
siin tukeutuen saada harjuksesta ja sen hoidosta kiinnostuneiden hen-
kilöiden käyttöön mahdollisimman monipuolinen erikoistutkimus
(monografia).

2. Harjus ja sen taksonomia

Harjuksen tieteellinen nimi Thymallus thymallus (L.) johtuu lajille
tyypillisestä ajuruohon (Thymus) lievästä hajusta. Pääasiassa Etelä-
ja Keski-Suomessa käytetyn harjus- nimen lisäksi Mela (1882) mainitsee
nimet harri (Lappi, Kuusamo, Kajaani ja Oulu) sekä harjukainen (Pie-
linen) ja LEVANDER (1907) nimitykset harri, harrikainen ja harjustin.
Paikoitellen Lapissa ja Kuusamossa kutsutaan loppukesästä levä- ja
vesisammalpohjalla viihtyvä harjusta "liivakalaksi" eli "liivakoksi".
Vieraskielisistä nimistä mainittakoon englantilainen grayling, ruotsalainen harr, venäläinen harius (хариус) ja lappalainen soavil.

2.1 Ulkonäkö

Harjuksen oleskelupaikasta, kutukypsyysasteesta ja läästä johtuva väri- ja muotomuuntelu ei ole niin voimakasta kuin esim. taimenellä ja nieräryhmän kaloilla (vrt. SEPPÖVAARA 1969a, b). Useiden tutkimoiden (esim. VALLE 1934', BERG 1962) mukaan sekä tämän tutkimuksen aineiston perusteella voidaan kotimainen sukukypsä harjus kuvata seuraavalla tavalla:

Kuva 1. Muodoltaan vaihtelevia kotimaisia harjuksia.
Fig. 1. Morphological variation in Finnish grayling.

Fig. 2. Early developmental stages of grayling: A. embryonic stage, age 1 h. after hatching, B: larval stage, age 16 days, C: larval stage, age 25 days and D: juvenile stage, age 55 days.
Harjusten ulkonäkö, varsinkin värisävyt vaihtelevat paitsi sukukypsyyden ja iän myötä oleskelupaikojen mukaan. Kivikkopohja ja ruskea vesi tehostavat tummia värisävyjä, sitä vastoin ovat esim. vaalean savipohjaisten ja kirkasvetisen joen nuoret yksilöt hyvin vaaleita ja isokokoistenkin harjusten selkäpuoli yllättävän vaalean ruskean.

2.2. Tärkeimiä tuntomerkkejä

Harjuksen kromosomien analysointi on alkioiden nopean kehityksen vuoksi vaikeata. SVÄRDSON (1945) totesi kromosomien lukumääräksi alkiosoluissa 102. Vastaava lukumäärä Euroopan taimenella ja nieriselälä on 80 ja kromosomien morfologia suuresti toisiaan muistuttava (PROKOFIEVA 1934, SVÄRDSON 1945).

On mahdollista, että tuhansia vuosia erillään eläneiden kotimaistenkin harjuskantojen joissakin lukumäärä-, mitta- ja muototuntomerkeissä on eroja. Lähinnä tarkistusmielellä määritettiin eräiden tutkimusvesien 3-4 vuotiaiden harjusten ensimmäisen kiduskaaren kookkaampien silvillähampaiden ja vatsalaukun umpilisäkkeiden lukumäärät. Etelä-Suomen ja Lapin kannoilla ilmeni eroja, kuten seuraavat esimerkkeinä
esitetyt luvut osoittavat:
Saimaa (Liittokiven selkä), (n=62), siivilähampaita 24,3 (21-27)
Inari (Hietasaaren selkä), (n=20), " 21,0 (19-25)
Isojoki (Vanhakylä), (n=25), umpilisäkkeitä 17,9 (16-22)
Kemijoki (Kemihaara), (n=22) " 21,2 (19-25)

Myös pään koossa ja ruumiin muodossa on usein selviä eroja. Inarin harjuket ovat esim. pienipäisempiä ja solakampia kuin Saimaan harjuket (kuva 1).

3. Harjuksen levinneisyys

3.1 Esiintyminen maamme rajojen ulkopuolella

Kuva 3. Harjusten levinneisyys.
Fig. 3. Distribution of the grayling.

jassa hajanaista varsinaisesti neljälle alueelle keskittynytä levinneisyyttä ovat rajoittaneet korkeat tunturiseudut.

Ruotsissa harjuksen levinneisyysalue on laajempi ja yhtenäisempi, käsittäen koko Dalelvin pohjoisenpuoleisen alueen, jossa se puuttuu vain eräistä Norjan rajan läheisyydessä sijaitsevien korkeimpien vuoristolänteenä järviä. Etelämpänä on erillisiä kantoja Klajoessa, Väternissä ja siitä laskevaa Motalajoessa sekä Laganjoessa. Daljoen suistosta pohjoiseen harjusta on meren sääristoisissa paikallisina ja jokseen kulkevaa nousevina kantoina.

Tanskassa harju on luonnonvaraisena neljässä Länsi-Juutinmaan joesa ja on lisäksi kotiutettu kolmeen muuhun jokeen.

3.2 Suomen harjusvedet

Harjuksen luonnollista ja nykyistä levinneisyyttä maassamme on selvitetty käytettävissä olevan lähdeaineiston ja sen täydennyksiksi hankittujen haastattelujen ja kyselytietojen perusteella.

Vanhimman yksityiskohtaisen kuvaoksen harjuksen esiintymisestä Suomessa on esittänyt MELA (1882, s. 346):

"Löytyy Saimaan vesistössä (esim. Saimaassa, Puumalassa, Puruvedessä, Savonlinnan seudussa, Pielsijärvesä, Suvasvedessä); saadaan Kalkistin koskista Heinolan seudussa ja Kymijossa; mainitaan Ahvenan saaristosta; löytyy Porin seudussa meressä ja Koke­mäen joessa, samoin etelä-Pohjanmaan rannoilla ja on yleinen Pohjan­lahden pohjoisosassa sekä pohjois-Suomen ja Lapin virroissa ja järvi­ssä ja nousee Lapissa pensasvyöhykkeen vestiin asti. Kitka­järvenkin vesistössä yleinen".

Näihin tietoihin ovat useat tutkimat esittäneet lisääksiä ja korjauksia. TOLVASEN (1915) mukaan harjusta esiintyi Oulujärven jokisuissa ja ainakin paikoitellen rantavesissä, VALLEN (1934) mukaan harjuksen päälevinneisyys on Itä- ja Pohjois-Suomen suurissa vesistöissä; Vuoksessa, Saimaan vesistössä Lappeenrannan ja Savonlinnan itäpuolella, Oulujoen vesistössä, Porämeren suurissa joissa sekä Perä-Lapissa, Inarinjärvesä, Paatsjoessa ja Tenojoessa asti. Esiintymistä Suomenlahden itäosissa, Ahvenanmaan ympäristössä, Merenkurkussa ja Pohjanlahden

Seuraavassa harjuksen nykyistä levinneisyyttä koskevista tietoja, jotka osaltaan valottavat tämän kalan viihtyisemädellytyksiä.

Harjusta tavataan Vuoksen vesistössä etenkin Saimaan laajojen selkävesien kivikkorannoilla, karikoilla ja särkällä. Se karttaa sivu-lahtia ja reunaselkiä, varsinkin vesialaa, joissa esiintyy vesistön perusluonteesta poiketen tavallista runsaampi vesikasvillisuus ja viljelytjä rantoja. Harjus puuttuu alueilta missään pohja on savea, liejua ja mutta tai se veden likaantumisen vuoksi on muuttunut epäedulliseksi.

Järviemme luontaiseen kehitykseen liittyvät muutokset ovat Vuoksen vesistönkin alueella aikojen kulessa supistaneet harjuksen levinneisyyttä muuttaen sitä yhä epähyönteisemmäksi. Hyviä harjusalueita ovat yhä edelleenkin varsinkin harju- ja kalliovöyöhykkeen vedet varsinaisen Saimaan, Puumalan kaapekkovesien, Sääminen saaristovesien, Puruvodan, Oriveden, Pyhäselän ja Pielisen alueella.

Vielä nykyisin vähäpäätöisinä kantoina Ylä-Vuoksessa ja Pielisjoessa esiintyvän harjuksen vuosisatamme alun levinneisyystä on säilynyt tietoja. Ylä-Vuoksen harjuksesta kirjoittaa BROFELDT (1930, s. 113):

BROFELDT ei mainitse, että useat sivuoetkin, kuten Lampisenoja, olivat verratonta harjusvesiä.

JÄRVI (1915, s. 104) puolestaan kuvaa harjuksen esiintymistä Pie- lisjöessä seuraavasti:

Koitajoki ja koko Lieksanjoen vesistö olivat aikoinaan tunnetusti hyvät harjusvesiä.

Tukeutumalla HURMEEN edellä mainittuihin selvityksiin ja tekstissä mainittuihin julkaisuihin sekä vesiviranomaisilta, kalastajajärjestöiltä ja yksityisiltä kalastajilta saatuihin tietoihin, esitetään seuraavassa harjuksen levinnelyys edellä mainituilla alueilla.

Suupohjan rannikolla harjuskannat ovat saariston vähäisyyden ja jokisuiden heikon kutukelpoisuuden vuoksi olleet pienempiä kuin edellä mainitulla alueella. Aikoinaan harjus lienee nousnut Teu-vanjokeen vielä 8 km matkan jokisuulta matalaan, kiviseen ja yli kilometrin pituiselle koskeen saakka. Isojoen keski- ja yläjokuksilla on edelleen paikallisia harjuskantoja, jotka istutuksin ja suoja- toimin ovat säilyneet ja voimistuneet. Lapvärtinjoen suuopuolella saatii aikoinaan hyvin harjusta, välillä se katosi, mutta on nyt todennäköisesti istutuksien ansiosta palaamassa.

todennäköistä on, että Hailuodon heikohkot kannat muodostuisivat vaellusharjuksista.

Kuusamon, Pohjois-Pohjanmaan ja Lapin joki- ja purovesissä sekä osassa järivistä harjus on yleinen ja runsaslukuinen.

Fig. 4. Distribution of the grayling in Finland, earlier and in 1970.

4. Harjuksen levenneisyteen vaikuttavat tekijät

Meidänkin aikamme eräät luontaiset tekijät ja niiden ohella moninaiset ihmisen toimet vaikuttavat harjuksien levenneisyteen.

4.1 Luontaiset levenneisyttä rajoittavat tekijät

Harjus puuttuu Etelä-Suomen järvialueen matalista järvistä ja järvi-Alpeen osiin, vaikka veden ja pohjan laatua eivät estäisi viihtymistä. Syynä tällöin on tavallisesti ajoittain liian korkea lämpötila ja rehevöityminen. HUITFELT-KAAS (1923) mainitsee harjuksen lähes hävinneen matalista ja lämpimistä Öiernistä ja Storsjöstä
(Odalen), kun taas syvien ja kylmien Mjösenin ja Storsjön (Rendalen) kannat ovat säilyneet merkittävinä.

Sedimentoituminen sekä siihen kytkeytyvä samennus ja veden mataloi-

Sedimentoitumisen ohella maan kohoamisen aiheuttama rantojen madal-
tuminen on varsinkin Perämeren rannikolla supistanut harjuksen elin-
tilaa.

HEUSALAN (1954) mukaan rantavedet ovat muutaman kymmenen vuoden ai-
kana suuresti muuttuneet entisten harjuskarikoiden ja -kivikoiden madal-
tuessa tai peitnyessä hiekan alle. Näin on käynyt monien Pohjanlahteen laskevien jokien sualueilla, jossa sedimentoituminen on varsin voima-
kasta. Sitävästoin lienee epätoistoläksistä, että mainitut muutokset muualla rannikon ja karikkojen harjusalueilla olisivat aiheuttaneet kovinkaan suurta haittaa. Mikälä muita tekijöitä ei ole vaikuttamassa, meri huhteelee rantojen madalluttuakin ainakin tyrrskyrannoilla kivikot ja karikot paljaaksi. Harjukselle sopivien kutu- ja kasvu-
alueiden pinta-alat eivät näinollan ole kaikkialla olennaisesti muut-
tuneet.

Harjus ei nouse korkealle sijaitseviin kylmiin vesiiin. BAUCHIN (1953) mukaan harjus on Alppien alueella levinnyt vesiiin, joiden kor-
keus merenpinnasta on 1 500 m. Kylmemmässä ilmanalassa Norjassa korkeusraja on jo 610-660 m. Suomessa korkeuden merkitys tulee par-
haitten esille Enontekiössä Käsivarren alueella. Siellä yleensä yli 700 m merenpintaa korkeammalla sijaitsevissa järviissä viihtyvät nierä, mutta ei harjus (SEPPÖVAARA 1969a).

On esitetty veden suolapitoisuuden rajoittavan Pohjanlahdella har-
juksen leviämistä etelään pääin. ENHOLM (1937) mainitsee harjuksen sietorajan olevan 4 °/oo, Ruotsin rannikolla harjusta esiintyy eteläm-
pänä kuin Suomen puolella. Eteläisin esiintymä on Dahljoen suisto-
alueella, joka sijaitsee samalla leveysasteella kuin Ahvenanmaan poh-
joisranta. Tämä esiintymä selitynee sillä, että mainitun joen kul-
jettamat suuret vesimassat alentavat muutovesialueen suolapitoisuutta.

4.2 Ihmisen toimien vaikutukset

Harjukselle sopivat alueet ovat huomattavasti supistuneet. Suurimpana syynä ovat olleet ihmisen toimet. Monet kalamiehet ovat todennettu harjuksen reagoivat varsin voimakkaasti ympäristön muutoksiin. On tunnettua, että biotoopin muuttuminen jossakin suhteessa epäedulliseksi
heikentää lajin toleranssia myös muihin ympäristömuutoksiin. Erilais-
ten muutosten vuoksi harjus on joutunut väistymään laajoilta alueilta.

Monet kalastajat ja kalatalousmiehet ovat jo varhain kiinnittäneet
huomioita liian voimaperäisen kalastuksen, varsinkin kutupyynnin hai-
tallisiin vaikutuksiin. SAVOLAINEN (1937) totesi aikoina tuottoi-

Vuoksestakin, varsinkin sen sivujoista, harjus hävitettiä liian
voimaperäisellä ja osaksi laittomalla kalastuksella. Saamani tiedon
mukaan tuhottiin esim. harjusrikkaan Lampisenojan kannat tarpomalla
verkoja ja nuottia käyttämällä. Varsinkin tehokas perho- ja harjus- lautakalastus vähensivät Pielisjoen harjuskantoja jo vuosisatamme alus-
sa huolta herättävällä tavalla. Tästä kirjoitaa JÄRVI (1915, s. 102)
seuraavaa:

"Aikoinaan on hyvästä harjusvedestä, Hällähkoskesta, sopivalla
säällä, s.o. ukkosilman jälkeen, voitu onkimalla saada 30:kin kapp-
leta tunnelissa. Nyttemin sanotaan samassa paikassa, jossa jokai-
nen poikanenkin perholla yrittää, saatavan viikkokauden ongiskella
samanlaisen saaliin saadakseen".

Merenrannikolla harjoitettu kalastus on myös merkittävästi vähentä-
nyt harjusta. HEUSALAn (1954) mukaan kantojen pienenemisen aiheutti
kuturuhoituksen puuttuminen, varsinkin tehokas lippokalastus jokisuissa
ja merellä "tuhopyydyksen", harjuslaudan käyttö. Heusala uskoi, että
harjuksen kuturuhoitus joissa vahvistaisi kantoja siinä määrin, että
pyyntirajoitetut meressä kävisivät tarpeettomiksi. Tämä ei kuiten-
kaan auttanut, sillä jatkuva salakalastus ja muut tuonnempana esitet-
tävät syyt ovat vielä tuntuvammin plenentäneet harjuskantoja.

Liian intensiivisen kalastuksen haitallista vaikutusta on selvimmin
esiintynyt Järvi-Suomen rajallisilla alueilla ja merenrannikolla sekä
sen jokien alajuoksilla. Myös Kuusamon ja Lapin parhailla harjus-
alueilla on jo ilmennyt haittaa. Turismin lisääntyessä ja kalastajien
ilmakuljetusten yleistyessä on kalastuspaineen kasvaminen saattanut ar-
vokkaat lajit, niiden joukossa myös harjuksen laajenevilla alueilla
vaaravyöhykkeeseen. Jo vuosisadan alussa JÄÄSKELÄINEN (1913) valitti
Kemijoen täysikasvuisen harjuksen käyneen yhä harvinaisemmaksi, koska
kevätharjukset pyydystettiin verkoilla ja alamittaiset inoilla.
Kuvassa 5 esitetään kalastajien haastatteluihin ja kirjoittajan pitkäaikaisiin havaintoihin perustuva tyyppillinen esimerkki liian voimaperäisen kalastuksen vaikutuksesta harjuksen levinneisyteen Saimaan luonnontilaisilla Ie- ja Liittokivenselän vesillä. Karttaan on otettu vain kalastuksen kannalta arvokkaat harjusalueet.

Fig. 5. Grayling areas in Lake Saimaa.
Harjuskantojen tila on tällä samoin kuin monilla muillakin Ison-Saimaan alueilla muuttunut seuraavalla tavalla (SEPPÖVÄÄRA 1976a, s.24):

Harjuskantojen uusiutumiskykyä haitallisesti alentaneen liiallisena kalastuksen lisäksi monet muutkin ihmisen toimet ovat heikentäneet tai tuhonneet harjuskantoja.

Teollisuuden jättevesien toksiset ja happae kuluttavat komponentit sekä asutuksen ja maanviljelyksen rehevöittävät järve- ja valumavedet ovat pilanneet paikallisesti harjusvesiä. Lisäksi ovat vaikuttaneet voimalaitokset patoineen, Metsä- ja suo-ojitukset, pengerrykset, tekojärvet sekä tehostuva turvetuotanto. Nämä toimenpiteet ovat yhdessä jättevesien kanssa rehevöittäneet jokisuita ja rannikkovesiä sekä lisänneet sedimentoitumista ja vesien happamuutta. Erikoisesti ojitukset
ja turpeennosto ovat monien mielestä olleet perimmäisenä syynnä harjuskantojen tuhoutumisiin. Tällöin huomattavia aloja kelvollista kutupohjaa on liitettynyt pilalle, ja muinaismerien kuiville jäähneiden pohjakerrosten alumiini- ja rautasulfidien tunnetut prosessit ovat lisänneet vesien happamuutta runsaasti alle kalojen sietorajan (esim. BLOMBERG 1971).

Eräissä tapauksissa on järven lasku lämpöloudellisine ja muine muutoksineen aiheuttanut harjuskantojen taantumisen tai häviämisen. Tästä tarjoaa hyvän esimerkin Höytiäisen lasku v. 1859, jolloin järven pinta aleni äkillä 9,5 m. Tällöin harjus hävisi kokonaan, mutta nykyisin kannat ovat jonkin verran erpineet istutusten ja todennäköisesti myös lajien välisen tasapainon muuttumisen seurauksena.

JÄÄSKELÄISEN (1913) ja BROFELDTin (1930) mukaan uittotoiminta ei estä kokonaan harjusten viihtymistä. He havaitisivat kookkaiden yksilöiden ja poikasten hakeutuneen tukkusumien, -nippujen ja -lautojen alle ja välillä etsimään ravintoa, jota runsaasti kehitetty tukkien pinealle ja alapuolella olevalle pohjalle. Useissa tapauksissa olen todennut uloton toisaalta haittaavan harjukseen lisääntymistä ja häiritsevän sen kalastusta. Kutua tapahtuu tavallisesti parhaaseen uittoaikaan, jolloin pahimmassa tapauksessa tukit auraavat kutupohjan pilalle.

Kuusamon-Lapin alueella kalastuksen lisääntymisen ohella metsäojitukset sekä teiden ja siltojen rakentaminen ovat siellä täällä haitanneet harjuskantojen viihtymistä.
Yleiskuvan saamiseksi harjuksen elintilan supistumisesta maassamme on kuvaan 4 piirretty alkuperäisen levinneisyyden rinnalle nykyinen levinneisyys. On kuitenkin jo tässä vaiheessa syytä todeta, että monissa tapauksissa harjuksen elintilaa on pystytty myös laajentamaan viljelyllä ja kalavesien järkiperäisellä hoidolla.

5. Tyypillisiä harjuksen suosimia vesia

Jo aikaisemmin on luonnehdittu harjuksen suosimien vesien ja poh- jan ominaisuuksia. Lisäksi mainittakoon, että harjuksen lisääntymis- alueelta puuttuu yleensä keväällä ja alkukesällä vesikasvillisuus. Myöhemmin kesällä saattaa rantavesissä esiintyä harvaa pääasiassa järviruoön (Phragmites communis), järvikortteen (Equisetum fluviatile), nuottaruohon (Obelia dortmannna) ja lahnaruohon (Isötes) muodostamia kasvustoja. Syvemmällä luotojen ja karikkojen välissä esiintyy usein laikkuinä järvisäkintä (Ranunculus peltatus), ruskoarviää (Myriophyllum alterniflorum), heinäpalpakkoa (Sparganium affine) ja heinäviitä (Potamogeton gramineus). Useat näistä lajeista ovat ylei- siä jokivesissäkin, ja lisäksi esiintyy vääristä runsaasti esim. näkin- ruoho (Najas) ja vesisammalta (Fontinalis). Kemioella harjustajat etsivät "kalapesiä" virrassa 1-2 m:n syvyydessä pyörätelevien uposkasvien joukosta.

Edeltävän tiedustelun perusteella valittiin biologisen tutkimuksen kohteeksi tyypiltään ja sijainniltaan vaihtelevia harjuvesiä, joista läheemmän tarkastelun kohteeksi on otettu sopiva kutu- ja syönnösalue.

Kuvaan 4 merkitty tutkimuskoheet esitetään seuraavassa:

Table 1. Data on physico-chemical properties of grayling biotopes.

<table>
<thead>
<tr>
<th>N:o</th>
<th>Harjusvesi Waters</th>
<th>pH</th>
<th>Alkalisuus mval/l</th>
<th>Väri mgPt/l</th>
<th>Johtavuus mS/m</th>
<th>KHT COD mgO₂/l</th>
<th>Cl Chlorid mg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Järvet-Lakes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Iso-Saimaa</td>
<td>6.8</td>
<td>0.16</td>
<td>20</td>
<td>3.9</td>
<td>26</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>Pielinen</td>
<td>6.5</td>
<td>0.07</td>
<td>68</td>
<td>2.2</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>Vuolajärvi</td>
<td>6.8</td>
<td>0.24</td>
<td>23</td>
<td>3.6</td>
<td>16</td>
<td>3.2</td>
</tr>
<tr>
<td>4.</td>
<td>Inari</td>
<td>7.2</td>
<td>0.21</td>
<td>10</td>
<td>2.9</td>
<td>14</td>
<td>0.8</td>
</tr>
<tr>
<td>5.</td>
<td>Harrijärvi</td>
<td>6.3</td>
<td>0.10</td>
<td>13</td>
<td>1.2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>Joet-Streams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Isojoki</td>
<td>6.3</td>
<td>0.10</td>
<td>284</td>
<td>4.9</td>
<td>90</td>
<td>6</td>
</tr>
<tr>
<td>7.</td>
<td>Kemihara</td>
<td>6.7</td>
<td>0.14</td>
<td>167</td>
<td>2.3</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>8.</td>
<td>Nukkumajoki</td>
<td>7.2</td>
<td>0.21</td>
<td>5</td>
<td>3.2</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>Lätäseno</td>
<td>6.7</td>
<td>0.13</td>
<td>10</td>
<td>2.4</td>
<td>7</td>
<td>2.8</td>
</tr>
<tr>
<td>10.</td>
<td>Meri-Sea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Ulkokrunni</td>
<td>7.5</td>
<td>0.51</td>
<td>12</td>
<td>296.5</td>
<td>25</td>
<td>1773</td>
</tr>
</tbody>
</table>

Taulukossa 1 esitetään näiden tyypillisten harjusvesien fysiikalis-kemiallisia ominaisuuksia. Esitettyt muuttujat osoittavat veden laadun suppeilla harjuksen kutu- ja kasvualueilla.

Lapin harjusvesien veden happipitoisuksia ei ole määritelty. Muiden tutkimusvesien happipitoisuus on poikkeuksetta hyvää vaihdellen 1 - 10 m:n syvyydessä kesällä 11,8 - 14,0 ja loppupilvella 8,4 - 10,4 mg/l.

Näiden harjusvesien pääominaisuudet ovat seuraavat:

Varsinkin alkuvuori- ja harjuaalueilla, mutta myös muuallakin tutkitten harjusvedet ovat kirkkaita tai heikosti humuspitoisia. Merivettä lukuunottamatta pH pysyy JÄRNEFELTIN (1963) esittämien vähäravinteis-

Inarinjärven laskevat vesistöt ovat maamme parhaimat harjusvesiä. Lapin vesipirin suorittamien analyysien mukaan niiden veden pH on 6,7 - 7,4, alkalisuus 0,15 - 0,63 mval/1, väri 5 - 48 mg Pt/l, johtavuus 2,2 - 7,6 mS/m ja KHT 0,7 - 8,3 mg/l. Vesien vähäravinteisuutta osoittaa myös se, että kokonaisfosforin määrä oli 1-10 µg/l. Myös rautaa oli näissä jokivesissä vähän, 18-270 µg/l (TUUNAINEN et al. 1979). Huonoimpina harjusvesinä pidetään Pohjanlahteen laskevia pieniä jokia. LAAKSOSEN (1970) mukaan niiden vedenlaatu on keskimääräistä selvästi huonompaa.

Ilmeisesti varsinkin keväät ja syysitulojen aikana esiintyvät happamuusmaksimit, jolloin pH vaihtelee 5,3 - 5,9 estävät myös harjuksen kotiutumisen Kärjenjokeen. Tulvivan Kärjenjoen veden laatu oli Vaasan vesipirin vesitiimiston 14.5.1974 ottamissa näytteissä:

pH 5,6, väri 250 mg Pt/l, johtavuus 14,4 mS/m, KHT 25 mg/l O₂,
Kok N 1200 µg/l, Kok P 80 µg/l ja Fe 3,9 mg/l. Arvot poikkeavat selvästi negatiiviseen suuntaan tämän tutkimuksen harjusvesien analyysiä.

ja 2-kesäiset lopettiivat syömisen. Kesänvanhojen kuolleisuus kohosi 18.8. mennessä 90 %:iin ja 2-kesäisiä kuoli myös huomattava määrä. Syynä kalojen tuhotumiseen pidettiin veden äkkinäistä emäksiskyden kohoaamista (pH 9,2 - 11,0) ja sementin aiheuttamia toksisia vaikutuksia (ILMARINEN & SEVOLA 1976). Merkittävää on, että harjuket kestivät laitoksen veden huononemisen. Isojoen Kärkifuluossa n. 8 km mainitun laitoksen yläpuolella pääsi kalanviljelylaitoksen henkilöstön mukaan sikalan lietelantaa jokeen. Tällöin nuoret taimenet kuolivat ja isompien kunto oli heikko, mutta harjuket kestivät muutokset. Metsäojitusalueilla veden happamuus oli tuhonnut Isojoen taimenia, mutta eräissä tapauksissa harjuket ovat säilyneet.

Vertailun vuoksi esitetään kahden tyypillisen ranskalaisen harjusjoen oloja. Toinen on pohjoisella granitiillalueella ja toinen Juravuoriston kalkkialueella. PERSATIN (1977) mukaan harjukselle optimaisen veden lämpötilan tulee olla 15-18 °C, eikä lämpötila saa kohota yli 24 °C. Veden happamuuden tulee vaihdella välillä pH 6,6 ja 8,4, johtavuiden 16-400 mS/m ja kalsiumpitoisuuden 1 - 100 mg/l. Lisäksi harjusvedessä ei saa esiintyä edes lievää pitkääikaista likaantumista. PERSATIN mukaan todettiin myös kalanviljelylaitoksen ilmastetun veden lämpötilan kohoaamisen 23 °C aiheuttaneen huomat-tavia polkastappioita. Samoin tapahtui vedessä, jonka lämpötila oli 18 - 20 °C ja happipitoisuus 5 mg/l. Edellä mainitutten arvojen ollessa 25 °C ja 4 mg/l kuolivat kaikki harjuket nopeasti.

6. Harjuskantojen tilaan vaikuttavat tekijät

Harjuskantojen hyvän viihtymisen edellytyksenä on, että niiden elinympäristön abioottiset tekijät ovat mahdollisimman edulliset. Niillä on suoranainen vaikutus bioottisiin tekijöihin esim. lisääntymisen onnistumiseen, kasvunopeuteen, ravinnon runsauteen ja sen käyttöön sekä lois- ja sairaustuntaan.

6.1 Lisääntyminen

FABRICIUS & GUSTAFSON (1955) totesivat harjuksen kudun tapahtumasarjan käsittävän useita peräkkäisiä vaistotoimintoja, joista osa on muillekin lohikaloille tyypillisiä. Kulturerellä oli rauhallisessa virrassa muutamasta 16 m²:iin laaja sorapenkere, jossa oli kivien ja juurien muodostamia suojaapikoja. Uros liikkui ree-riissään väristen sekä vatsaevät levitettyinä sekä pyrstöosa hieman ylöspäin tai vetettuna. Näin se houkuttelee luokseen suojaapikoissa lymyäviä naaraata, joista ei kutuvalmiit karkoitetin. Pariutuvat kalat uivat rinnakkain siten, että uroksen pyrstö-

Sama harjusurosa saattaa muutaman tunnin aikana kutea useiden naaraiden kanssa. Tästä poiketen Salmo-suvin kalat muodostavat pareja kunnes naaras on laskenut kaiken madden.

Kalavesien hoidon ja kalastuksen järjestämisen kannalta on tarpeellista tietää sukukypsyyden saavuttaneiden kalojen ikä ja koko. Harjuksen sukukypsyyteen vaikuttaa veden lämpötila, kasvukauden pituus sekä ravinnon laatu ja määrä. Lisäksi on todennäköistä, että veden happamuudella, loisilla, sairausilla ja perinnöllisillä tekijöillä on vaikutusta (SOMME 1948).

Vaasan saaristossa kutuaikana kerätyn suurehkon materiaalin perusteella ENHOLM (1937) totesi, että nuorimmat kutuun osallistuvat urokset olivat 4-vuotiaita ja naaraat viidennellä kasvukaudellaan. Edellisiin kuuluvien pienimpien yksilöiden pituus oli 29 cm ja jälkimäisten 33 cm. SEGERSTRÅLEN (1947) mukaan Maksamaan saariston harjuksista ensimmäisen kerran kutuun osallistuvat 5-vuotiaat urokset ja naaraat painoivat 300 - 450 g pituuden ollessa 35 - 39 cm. KERÄSEN (1978) mukaan Käylänkosken 5-kesäiset urokset olisivat kuteneet seuraavana keväänä ensimmäisen kerran. TUUNAINEN (1976) totea Näästämonjoen latvavesien 43:sta harjuksesta kaikkien 6-vuotiaiden olleen sukukypsiä ja 5-vuotiaista yhtä lukuunnottamatta kaikki.

Taulukko 2 on koottu tietoja sukukypsyydestä. Vain sellaiset tapaukset ovat mukana, joissa myöhäissyksyllä ja kudun aikana on voitu tehdä selvät havainnot gonadien tilasta.
Taulukko 2. Eräiden harjuskantojen ikää ja koko ensimmäisellä kudulla.
Table 2. Age and size of some grayling populations at first spawning.

<table>
<thead>
<tr>
<th>Pyyntialue</th>
<th>Ikää ensimmäisellä kudulla</th>
<th>Pituus cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iso-Saimaa</td>
<td>3</td>
<td>28 - 31</td>
</tr>
<tr>
<td>Pielisjärvi</td>
<td>3</td>
<td>27 - 33</td>
</tr>
<tr>
<td>Inarinjärvi</td>
<td>4</td>
<td>27 - 31</td>
</tr>
<tr>
<td>Harrijärvi</td>
<td>5</td>
<td>27 - 32</td>
</tr>
<tr>
<td>Isojoki</td>
<td>3</td>
<td>27 - 30</td>
</tr>
<tr>
<td>Lätäseno</td>
<td>6</td>
<td>32 - 26</td>
</tr>
<tr>
<td>Nukkumajoki</td>
<td>5</td>
<td>29 - 32</td>
</tr>
<tr>
<td>Vaasan saaristo</td>
<td>5</td>
<td>29 - 39</td>
</tr>
</tbody>
</table>

Määräykseen ilmoitti EHNHOLM (1937) 0,5 kg painavalla naaraalla n. 4 000 kpl. SEGERSTRÄLE (1947) laski 1 125 g painavan kalan mäissä olleen 17 000 munaa ja toisen 1 025 g:n yksilön 14 000 kpl. Laitoskalojen kilokohtainen määrä on ollut keskimäärin 5 000 - 6 000 kpl (WALLENIUS 1936). Iljoella litrassa harjuksen mätiä laskettiin olevan 13 000 munaa (SIMOLA et al. 1982).

Kutupaikan päävaatimuksiin kuuluu houkutella kalat kututoimintaan, vastaanottaa ja suojata mäti mahdollisimman korkean kuoriutumisprosentin saavuttamiseksi sekä tarjota vastakuoriutuneille poikasille piilopaikkoja. Kuvassa 6 esitetään kolme tyyppistä erinomaiseksi tunnettua harjuksen kutiluetta. Kutuaika on sidoksissa lämpötilaan, vaikka

Fig. 6. Typical spawning areas of grayling: A: Lake Saimaa, B: Lake Inari and C: the river Kemijoki.
ärmykekkynys ei aina esim. jyrkkien säävaihtelujen vuoksi ole vakio. Tämän vuoksi kutuaika vaihtelee usein vuosittain. ENHOLM (1937) esittää siihen vaikuttavan veden maantieteellisen sijainnin, lämpötilan, syvyyden ja suolapitoisuuden sekä Merenkurkussa lisäksi merivirtojen ja ajojäiden sijainnin.

Eriilaisissa ympäristöissä elävien harjusten kutupaikkojen valinnassa ja kutuaijassa esiintyy yhteisiä piirteitä. Lisääntyminen tapahtuu tunnetusti meillä keväisin jäiden lähöön jälkeen 0,5 - 1,0 m:n syvyisessä vedessä. Kutualustan tulee olla puhdasta sekä tavallisesti myös kasvillisuudesta vapaata hiekka-, sora- ja kivipohjaa.

Laatokan harjus kuti touko- kesäkuussa puhtailla kivikkorannoilla ja ulkokareilla. Kudun alkaessa 12.5.1910 Impilahdella Töysän ulkosaarien rannoilla veden lämpötila oli 5,5 °C (JÄÄSKELÄINEN 1917). Varsinaisesta lisääntymisestä SAVOLAINEN (1937, s. 126) kirjoittaa seuraavan:

"Kudun merkitään alkavan kohta välittömästi särenkudun jälkeen, eli kun koivun lehti on hyvästi puhjennut ja ilma lämmennyt... Harjusen kutua voidaan katsoa jatkuvan Laatokassa yli kuukauden ajan. Aikaisemmin se kutee siellä, missä vesi on lämpimintä, siirryen myöhemmin aina ulompien saarten ympäriille. Viimeksi se on Mökerikössä, jossa kutu loppuu juhannuksen tienoissa. Kutualustaksi näyttää harjus hakevan karkeaa kivipohjaa, kananmunan kokoisesta kivistä miehempänä kokoisin".

Isoilla Saimaalla harjus kutee havaintojen ja keräämien tietojen perusteella seuraavasti (SEPPOVAARA 1976a s. 24-25):

Vilkkainta rantautuminen on yleensä kello 18.00 - 24.00, jolloin kalat liikkehtivät matalassa, jopa 0,5 m:n syvyisessä vedessä, selkäevien halkoessa pintaa. Kutuaika on tavallisesti 2.5. - 5.6. ja "häämnen" alkavat, kun veden lämpötila on n. +5 °C.

ENHOLM (1937 s. 457-460) on Vaasan saariston harjuksen kudusta antanut seuraavia tietoja:

"Kuten useilla muilla paikoilla kutee harjus Vaasan saaristossa he- ti jäänlähöön jälkeen. Kutu tapahtuu korkeintaan 1 m syvyydessä, usein kutupaikat ovat matalampia. Paikan muodostavat vedenalaiset karikot ja kivikkorannat. Erikoisen suosittuja ovat saarien ja karikkojen väliset matalat salmet, joissa voimakas virta vallitsee."
Märasaaren ulkopuolella tapahtui kutu 27.5.1928 vedenalaisella karikolla, joka oli 20 m pitkä ja 10 m leveä. Suurin syvyys oli 1/2 m. Vallitsi tyyri ilma. Veden lämpötila oli 5 ja 6 asteen väliillä. Kello 22.00 oli kutu täydessä käynnissä. Karikon vesi oli kuin kiehuvassa liikkeessä ja kutevien harjusten lukumäärä oli huomattava. Koska kalat tunkeutuivat hyvin matalaan veteen olivat selkäevät ajoittain näkyvissä.

Jääskeläinen (1917) mainitsee Laatokan harjusten nousseen kudulle suurehkolihin jokiin, kuten Tulema- ja Syskyjokeen.

Taulukko 3. Suomalaisten harjuskantojen kutuaikojia.
Table 3. Spawning times of Finnish grayling stocks.

<table>
<thead>
<tr>
<th>Kutuvesi</th>
<th>Huhtikuu</th>
<th>Toukokuu</th>
<th>Kesäkuu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spawning waters</td>
<td>April</td>
<td>May</td>
<td>June</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>Järvet-Lakes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laatokka</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saimaa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pielinen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vuolajärvi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inari</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harrijärvi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joet-Streams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isojoki</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kemihaara</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nukkumajoki</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lätäseno</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meri-Sea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaasan saaristo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulkokrunni</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Monet teki jät aiheuttavat luonnonkudussakin mätitappioita. KRUSE (1959) esittää kolme USA:ssa suoritettua koetta, joissa padotulle alueelle päästettiin yhtä monta mäti- ja maitikalaa. Mädin kuolleisuudeksi todettiin 95,8 - 98,0 %. Todennäköisä syiny olivat huono hedelmöityminen, predatio ja mädin kulkeutuminen virran mukana sekä myöhempien kutijoiden kuoppien kalvaminen aiemmin käytössä olleissa reviireissä. Samanlaiset tapiot ovat meidänkin oloissamme varsin todennäköisiä.

Taulukko 4. Muita kalalajeja harjuksen kutupaikoilla.

Table 4. Other fish species at the grayling spawning places.

<table>
<thead>
<tr>
<th>Kutupaikka Spawning place</th>
<th>Pain Date</th>
<th>Saalis kpl/a</th>
<th>Catch no./are</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mätä</td>
<td>Kalajako</td>
<td>Tammikko</td>
<td>Pökkönenniitty</td>
</tr>
<tr>
<td>1</td>
<td>9.8.</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>9.8.</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>14.8.</td>
<td>5</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>20.8.</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>20.8.</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>20.8.</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>8.9.</td>
<td>1</td>
<td>34</td>
</tr>
<tr>
<td>8</td>
<td>10.9.</td>
<td>13</td>
<td>5</td>
</tr>
</tbody>
</table>

Kutupaikat 1 - 3. Harvapuustoisen kallioluoden apajapaikoilla tasainen mukulakivipohja viettää 20 min matkalla lähene 2,5 min syvyteen.

Kutupaikat 4 - 6. Apajat sijaitsevat niemekkeessä, jonka kapas tyvi on enimmäksessä soraa ja leveys kärkimä herkkä kasvava joki sannalla kivikkoen kumporo. Paikassa 4 on tasainen kivikkopohja, joka 20 min matkalla saavuttaa 1,5 min syvyyden, paikan 5 karkea sorapohja viettää 1,5 min syvyteen ja paikan 6 kooltaan tasainen mukulakivikko jyrkkästi 4 min syvyteen.

Kutupaikka 7. Apaja sijaitsee mäntyjen ja lepikkien kasvavassa niemekkeessä. Sora-hiekapohja viettää vajaan 1 min syvyteen.

6.2 Kasvu ja koko

Kalojen kasvuun vaikuttaa ravinnon määrä ja laatu, ravintokilpailu, loiset, sairaudet sekä veden fysiikkaalis-kemialliset ominaisuudet. Tavallisesti esiintyy ainakin joku kasvua rajoittava tekijä. Edellisten lisäksi on otettava huomioon myös perinnölliset kasvuerot.

Seuraavassa esitetään muutamia etupäässä suomujen perusteella tehnyjä kotimaisia harjuksen kasvumäärityksiä (JÄÄSKELÄINEN 1917; JÄRVI 1935a, b, 1938, SEGERSTRÅLE 1947, TUUNAINEN 1976).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laatokka</td>
<td>6</td>
<td>9,1</td>
<td>20,5</td>
<td>34,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purvesi</td>
<td>1</td>
<td>7,1</td>
<td>18,9</td>
<td>27,2</td>
<td>34,5</td>
<td>38,8</td>
<td>42,1</td>
<td>44,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaasan saaristo</td>
<td>56</td>
<td>7,3</td>
<td>15,6</td>
<td>23,4</td>
<td>29,4</td>
<td>36,1</td>
<td>41,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kokemäenjoki</td>
<td>2</td>
<td>12,5</td>
<td>27,8</td>
<td>35,6</td>
<td>40,5</td>
<td>43,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kääkälöjoki</td>
<td>22</td>
<td>4,1</td>
<td>9,4</td>
<td>13,5</td>
<td>17,5</td>
<td>22,3</td>
<td>27,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaijoki 1)</td>
<td>15</td>
<td>23,4</td>
<td>34,8</td>
<td>30,9</td>
<td>33,2</td>
<td>37,8</td>
<td>41,3</td>
<td>42,9</td>
<td>41,7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Mitatut keskipituudet
Jo näiden lukujen perusteella voidaan todeta eri vesien harjusten kasvunopeuden vaihtelevan melko voimakkaasti. Hämmästyttävän suuria eroja esiintyy Kääkkölöjen ja Kokemäenjoen harjusten kasvunopeudessa. JÄRVJ (1938) mainitsekin Ounasjoen (Kääkkölöjoki) harjuksen tarvitsevan kaksinkertaisen ajan saavuttaakseen Kokemäenjoen Tyrväänkosken harjuksen koon. Edellisessä on ilmeisesti veden heikko laatu, lähinnä happamuus ja korkeahko rautapitoisuus rajoittanut ravintotuotantoa, mikä puolestaan on vaikuttanut kasvun hidastumiseen. Kääkkölöjen tulvaveden analyysit (pH 5,9, alkalisuus 0,29 mval/l, väri 140 mg Pt/l, johtavuus 18 mS/m, KHT 14,7 mg/l ja CL 0,65 mg/l sekä Fe 0,64 mg/l) osoittavat veden olevan harjusten viihtymisen kannalta heikkolaatuista (vrt. tauluks 1, s. 23).

Saman veden eri biotoopeissa eläviin kantojen mahdollisten kasvunerojen vuoksi tämän tutkimuksen harjukset on pyydytettä eri puolilla maata mahdollisimman suppea-alaisista biotoopeista (kts. karttaa kuva 4). Kasvumääritykset on tehty DAHL-LEA-menetelmällä, jossa kalan vuosikasvu ja suomun kasvualojen leveys ovat lineaarisesti verrannolliset.

Iänmäärityksissä varten kalojen pituus on mitattu kuonon kärjestä supistetun pyrstön uloinaan kohtaan. Suomunäyte on otettu kylkiläisen ylätuolelta selkäevän takareunan tasalta. Iän ja kasvun määrittys on tapahtunut oraalisen alueen sääteeltä, joka sijaitsee aivan antero-lateralisen akselin takapuolella (kuva 7).

Kuva 7. Harjuksen (♂, 6+, pituus 50,9 cm, paino 950 g) suomun kaista sääteeltä, jolta ikä on määritetty (suurennus 50 x). Fig. 7. Strip of grayling (♂, 6+) scale used for ageing. (A = Antero-lateralinen akseli)

Menetelmän puutteista huolimatta voidaan populaatioiden kasvu määrittää riittävästi tarkkuudella. On myös mahdollista verrata aikaisempiin kasvumäärityksiin, jotka harjuksen osalta meillä lähes poikkeukselliset perustuvat samaan menetelmään. Taulukossa 5 ja kuvassa 8 esitetään tutkittujen populaatioiden kasvunopeudet.
Table 5. Growth of investigated grayling stocks.

<table>
<thead>
<tr>
<th>N:o</th>
<th>Harjusvesi Waters</th>
<th>Pituuscm</th>
<th>Vuodet Years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Iso-Saimaa n=48</td>
<td>11,6 22,7 31,8 36,9 42,5 46,7 49,8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Pielinen n=30</td>
<td>11,1 22,1 28,8 30,7 34,4 39,3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Vuolajärvi n=21</td>
<td>9,0 20,2 27,8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Inari n=31</td>
<td>6,0 13,5 20,8 28,1 33,9 38,9 41,9 45,6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Harrijärvi n=20</td>
<td>5,9 12,9 19,5 25,5 30,4 34,8 38,6 41,3 42,8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Isojoki n=46</td>
<td>9,9 19,4 26,6 32,1 33,8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Kemihaara n=21</td>
<td>5,6 12,6 18,9 24,7 29,6 33,7 37,2 40,9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Nukkumajoki n=20</td>
<td>6,7 15,2 23,2 28,9 31,6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Lätäseno n=32</td>
<td>5,0 11,4 17,9 24,2 29,6 36,4 41,1 44,3 45,4 48,8</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Ulkokrunni n=19</td>
<td>10,3 22,6 30,0 35,6 41,1 44,4 51,6</td>
<td></td>
</tr>
</tbody>
</table>
Kuva 8. Tutkittujen harjuskantojen kasvu.
Fig. 8. Growth of investigated grayling stocks.

Tulokset osoittavat kasvun hidastuvan järvissä pohjoiseen siirryttäessä. Tämä ilmenee jo Saimaan vesistön eteläosan (Liittokivenselkä 1) ja pohjoisosan (Pielinen 2) populaatioiden kasvua verrattaessa. Suurissa järvissä kasvu on nopeinta. Siten pohjoisesta sijainnista huolimatta Inarinjärven 5-6 vuotoaisten harjuutenv kasvu ei jää paljonkaan jälkeen Pielisjärven harjusten kasvusta.

Jokipopulaatioista Isojoen (6) nuorten yksilöiden kasvu on nopein. Sitävastoin kasvavat kahden muun suuren joen Kemijoen Kemiharakan (7) ja Läätäsenon Munnikurkkion (9) harjukset viiden vuoden ikäisiksi lähes
Eräänä erikoisuutena mainittakoon kuvassa 9 näkyvä varsin karulla
Enontekion tunturialueella sijaitseva Siedjonjärvi, jonka toisena pää-
kalana on harjus. Lyhyestä kasvukaudesta huolimatta se saavuttaa il-
meisesti runsaan erikoisesti lehtijalkaisäyriäisten (Lepidurus sp.)
muodostaman ravinnon turvin 5-vuotiaana yli 30 cm pituuden, vaikka
alkakasvu on huomattavan heikko. Samalla alueella Jabmajärvessä on
kantoja, joiden kookkaimat yksilöt saavuttavat yli 10 vuoden iän ja
kilon painon. Inarijärven koillispuolen Rovi- ja Kyneljärven har-
justen kasvu oli tundra-alueelle tyypillinen, mutta Harrijärvessä
kalat olivat 3-vuotiaina jo 17,6 cm pituisia.

Aineistoa on rajoittanut varsinkin Vuolajärvellä ja Isojoella kook-
kaiden yksilöiden vähälukuisuus. Useissa muissakin hyvin tuntemissani
harjusvesissä kookkaat kalat ovat todennäköisesti liian voimaperäisen
kalastuksen seurauksena vähentyneet jo vuosia sitten.

Aikoinaan vesistöissä olivat runsaasti kookkaita yksilöitä sisäl-
tävällä harjuskantoja. JÄRVEN (1938) mukaan esim. Kokemäenjoen
Tyrvääkosken kaksi hänen tutkimansa harjusta oli jo viidenenä
kesänä saavuttanut 800 - 900 g:n painon (kts. s. 33). Oulun-
joen Vaalasta v. 1907 saatu silloinen ennätysharjus oli 58 cm
pitkä ja painoi 2 850 kg (SUOMALAINEN 1923).

LIEDES (1961) mainitsee maanviljelijä Aarne Stoltin saaneen
5.11.1956 Konnevedestä 6,7 kiloa painaneen ennätysharjuksen.
Pielisjärvestä saatii hänen mukaansa v. 1891 4,675 kiloa paina-
va yksilö. MELA (1883) ilmoitti harjuksen saavuttaneen Lapin
koivuvöhykkeen vesissä 3 - 4 kilon painon.

Edellä mainitut ovat harvinaisia ennätysharjuksia, joita tavalli-
sesti esiintyy suurissa vesissä. Yli kolme vuosikymmentä sitten
saatii Isoosta-Saimaasta melko yleisesti yli 2 kg painavia harjuk-
sia suurimpia saavuttavaan 3,5 kg ylittävän painoon. Vertailun
vuoksi mainittakoon, että toisen suuren harjusjärven, Inarin kook-
kaimmat yksilöt ovat vanhoinen kalastajien mukaan yleensä vain
0,8 - 1,0 kg:n painoisia. Harvoin Lapin suurimmista joistakaan
saaan yli 1-kiloisuus harjuksia. Tällaisia on esim. Vaskojessa,
Lätäsenossa sekä Kemi- ja Tornionjoessa, varsinkin niiden väl-
jemmisse osissa.
Fig. 9. Lake Siedjonjärvi in the fjeld area where grayling still thrive.

Varsinaisia kääpiökantoja ei meillä ole toistaiseksi todettu. Tämä johtuneen siitä, että harjus ei yleensä hyväksy elinpiirikseen pieniä vesiä. Toisaalta näyttää se kuten tuonnempana esitetään pitävän hyvin puolensa ravintokilpailussa. Lapin tyyppiltään vaihtelevissa vesissä ja niistä huonolaatuisimmissakin kutuharjukset ovat yleensä vähintään 300 g painavia. Huonoimpia kasvualueilta näyttävät olevan kuten jo todettiin rauta- ja humuspitoiset sivujoet, joiden pH pysyttelee selvästi 6:n alapuolella.

Kirjallisuudessa on tapauksia, joissa normaalikasvuisen harjuksen rinnalla elää siitä kokonsa ja mitatuntomerkkien puolesta eroava kääpiömuoto. KALASHNIKOVIN (1978) mukaan Baikaljärveen etelävä laskevassa Vitim-joessa elää harjuksen kääpiömuoto. Tapauksen ilmeisen mielenkiinnon vuoksi esitetään seuraavassa tämän joen
kummankin harjuskannan kasvu.

<table>
<thead>
<tr>
<th></th>
<th>1+</th>
<th>2+</th>
<th>3+</th>
<th>4+</th>
<th>5+</th>
<th>6+</th>
<th>7+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jokiharjus</td>
<td>15,6</td>
<td>19,2</td>
<td>23,5</td>
<td>25,6</td>
<td>28,6</td>
<td>30,2</td>
<td></td>
</tr>
<tr>
<td>Kääpiöharjus</td>
<td>5,2</td>
<td>13,2</td>
<td>15,1</td>
<td>16,3</td>
<td>17,2</td>
<td>18,7</td>
<td></td>
</tr>
</tbody>
</table>

Molempia muotoja pidetään pohjanharjuksen (T. arcticus) ekologisina rotuin.

Isojoessa pitäisi ainakin ravinnon ja elintilan väljyyden puolesta olla hyvä edellytyskset nopekasvuisille ja kookkaille harjuskannoille. Aikaisemmin sieltä saatiinkin runsaasti yli kiloisia ja välistä kolmatta kiloakin painavia yksilöitä. Nykyisin näyttää siltä, että joki on pääasiassa pienikokoisten alle 0,3 kg:n kalojen tiheiden kan- tojen asuttama. Tällaisissa suurissa kannoissa saattaa ravintokil- pailu ja kannibalismi rajoittaa kasvua.

6.3 Vaellukset

Lisääntymistä käsittevää luvussa on esitetty joitakin hajatietoja
harjustemme kuvaukuksista. Monet ulkomaiset tutkijat (esim.
ROSEN 1920, LAIRD 1928, SCHEURING 1929/1930, ALM 1942, MULLER 1961,
SVÄRDSON 1962) ovat myös esittäneet eräiden harjuskantojen vaeltavan
lisääntymispaikoilleen. Useat tutkijoista huomauttavat, että tällaiset
vaellukset eivät tavallisesti ulottu etäälle kalojen vakituisilta
oleskelupaikoilta. Seuraavat tiedot antavat oivallisen kuvan erään
ruotsalaisen harjuspopulaation kuvaukuksista (GUSTAFSON 1948).

Storsjön harjukset kutevät jäänlähön aikoinin järveessä tai siihen
laskevissa joissa ja puoissa. Ne nousevat myös 5 km:n pituiseen
Svartbäcken kolmen kilometrin matkan kohtaan, jossa puron leveys
on n. 2 m. Kutunousun kontrolloimiseksi puro padottiin 21.4. -
4.6. väliseksi ajaksi. Vaellushuippu oli 23. - 27.4., jolloin lähes
50 % kutukaloista nousi puroon. Vaellus loppui 18.5. ja laskeutumista
todettiin tapahtuneen 2.5. - 3.6. Muutamia harjuksia jää
puroon koko kesäksi. Vaellukset tapahtuivat päätässä ltaahamørän
ja keskiyön aikana. Kutioista 80 % vilipö kiloutueella vähemmän
kuin 20 vrk. Kesäkuun alussa virrattiin pyydys laskeutuviin poikasten
määrän toteamiseksi. Laskun todettiin alkaneneen elokuussa,
saavuttaneen maksimin lokakuussa ja jatkuneen 29.12. saakka, jolloin
puro oli kaualtaan jääessä. Kesällä saatiiin takaisin lähes
25 % laskuvaelluksen aikana merkitystä harjusista. Enin osa pala-
tuksista tapahtui 4 km:n sateellä merkitsemispaikasta. Kakki
urosta oli siirtynyt n. 12 km:n päähän.

Myöhemminkin suoritettujen merkintöjen yhteydessä suljettiin puroja
(GUSTAFSON 1952). Tällöin todettiin, että harjus ei ole sidoksissa
samaan kiloutuksiin, vaan saatetaan vaeltaa muihin kutupuroihin
aina 10 km:n etäisyyteen merkintäpaikasta. PETTERSON (1968) merkitsi
Indaljoessa kuteneita harjuksia, jotka levittäytyivät pitkin
rannikkoa, eräät jopa 100 km:n päähän kutuojoesta. Tämä osoittaa
osan vaelluksista saatavan olla yllättävän pitkiä. NILSSON &
PETTERSON (1964) puolestaan merkitsivät muutamia kilometreijä Indal-
joen suusta ylöspäin pyydystettyjä harjuksia, joista osa siirrettiin
90 km ylemmäksi jokeen. Merkintöä tehtiin myös harjusten
vakituisilla kesäkeskelupaikoilla 60 - 90 km jokisuultta ylöspäin.
Palauntuksia saatiiin joesta ja rannikolta. Eräs kaloista laskeutui
9 päivässä 100 km alas joka meren. Kesäkeskelupaikoilla merkitystä ei ainoataakaan tavattu rannikolla. Siirrytyistä kaloista
osa tarttui pyydysteen siirtpaikalle, mikä osoittaa niiden hyväksi
syynen uuden biotoopin. NILSSON ja PETTERSON päätelivät yhtäpitävistä
västät DÝKIN (1959) ja GUSTAFSONIN (1948) kanssa, että tulva antaa
syysyksen harjusten nousuun ja kylmä ilma laskuun.

LAPPEAN (1966) mukaan harjuksilla on perinnöllinen vaisto pyrikkä
kudulle myötä-tai vastaavirtaan. Osa puolestaan viettää koko ikän-
sä virtaavissa vesissä. Hautomossa havaittiin osan vastakuoriutuneista
poikaisista kulkeutuvan veden mukana, kun taas toiset uivat
aktivisesti vastaavasta. Vuonna 1964 istutettiin 15 000 kpl
jäikimmäisiä kahden järven väliseen jokseen, jossa ei ollut harjusta.
Järvien rotenonikäsittely paljasti ylemmässä järvesissä olleen run-
saasti n. 20 cm:n pituisia harjuksia, mutta alemmassa ei ainuttakaan.
ANDERSEN (1968) merkitsi vv. 1960 - 1967 Norjassa yhteensä 1 481 kpl
Trysilvesistön 10-43 cm:n pituista harjusta. Vesistöstä tavattiin
myöhemmmin useampia populaatioita, jotka voitiin jakaa kahteen rh-

6.4 Ravinto

Meren ja suurten järven litoraalin alaosan ns. simpukkavyöhykkeellä harjukset löytävät tavallisesti runsaasti ravintoa.

Edellisen perusteella on helppo ymmärtää, että harjustibiotoopissa käytettävissä olevan ravinnon määrän tarkka arviointi vaatii paljon aikaa. Vaikeuksia tuottaa myös selvittää ravintoeläinbiomassan sen osuuden ravintoarvo, jonka harjukset elinalueellaan käyttävät pitkän ajanjakson kuluessa.

Ennen kuin siirrymme selvittämään tutkimusalueiden harjusten ravinnon koostumuksesta, suoritetaan lyhyt harjusten yleistä ravinnonköytyttöä koskeva katsaus. Aluksi on todettava, että siihen kohdistuvat selvitykset ovat usein metoodisten erojen sekä vaihtelevien biotooppien, säiden ja vuodenaikojen vuoksi tuloksiltaan kirjavia.

DAHLin (1962) laajat tutkimukset valottavat melko seikkaperäisesti viiden tanskalaisen jokialueen harjusten ravinnonköytyttöä. Tärkeimmät, osin eräiden muiden selvitysten kanssa yhtenäiset havainnot esitettävät seuraavassa:

1. Harjuksien syövät pääasiassa pohjafauanna.
2. Ravinnon vuodenaikaiset vaihtelut johtuvat pääasiassa ravinto- organismin populatiovaihteluiasta.
3. Harjuksen ravinnonköytyttö ei ole erikoisemmin valikoivaa, joten ravinto-organismin lajivaihtelu on suuri.
4. Tärkeimpään ravinto-organismeja näyttävät olevan: katkat, kotiolot, päiväkorennon nymfit sekä vesiperhosten, surviaissääskien ja määräisten toukat.

Vuodenaikeisen ravinnonkäytön selvittämiseksi ZINOV'EV (1969b) tutki Kamajoen vesistöalueen 15 harjubiotoopissa yhteensä 616 mahan. Kevät-, kesä- ja syksyryvinnossa oli vallitsevaa 2 - 4 eli 6 8 yöä. Viisen-joessa esiintyi muodostuvat hyönteisten toukat, joita keväällä esiintyi 69,2%, kesällä 39,9% ja syksyllä 44 painoprosentia koko ravinnosta. Toukkaaravinnossa oli keväällä ja syksyllä runsaasti päiväkörennon toukkia, 31,1% ja 12,0%, mutta kesällä vain 0,3%. Vesiperhosien toukkia tavattiin mainittuina vuodenaikeina melko runsaasti: 20,4%, 36,2% ja 29,0% painoprosentilla. Aikuisten hyönteisten eli imagojen osuus vuodenajoittain oli 24,9%, 23,3% ja 18,4% painoprosentilla.

Mainitut ravintokomponentit olivat myös kuudessa pienessä joesapa vallitsevina. Hyönteistoukkien osuus oli 72 - 92 painoprosentilla, mutta imagojen merkitys oli kasvanut. Purojen 9,5 - 19,6 cm:n pituisten harjusten kesäravinnossa toukkien osuus oli vähentynyt ja ilmaravinto esiintyi vallitsevasta, jolloin maahyönteisten määrä saattoi kohota 90akin painoprosenttiin.

Monet tutkijat pitävät harjasta kaikkea sopivan kokoista vedessä ajelehtivaa tai liikkuvaa sieppaavana "ahmattina". Niinpä JÄÄSKELÄINEN (1917) mainitsi harvoin tavattavan harjuksi, joilla on tyhjä maha. Se on tavallisesti täynnä ravintonoa, jonka tärkeimmän osan muodostavat varsinkin tuulisella sääällä joukoittain veden pinnalla ajelehtivat siivekkää hyönteiset.

SCHUMANN (1958) mainitsee, että boreaalisten ja arktisten alueiden kuukausia kestää aina ja sen jälkeisen jäänlähön aikana ravintovarat ovat niukat. Tällöin saattaa tavata harjuksi, joiden maha on tyhjä tai sellaisia, jotka ovat turvautuneet harvinaisempaan mäti- ja kalaravintoon. Tätä ravintonaa tavataan harvoin muina aikoina harjusten suolistosta.

Harjusten on kutuaikana todettu syövän joskus omaa mätiään (esim. RAWSON 1950). Yleensä katsotaan mädiin osuuden ravinnosta olevan vähäinen, esim. Kanadassa 0,01%. Poikkeuksellisissa oloissa se saattaa olla huomattavasti suurempiin. EKMAN (1906) mainitsee Alvkarlebysäkkoalassa todetun, että yli 32 cm pitkät ja osa pienemmistä harjuksista oli syönyt lohen ja taimenen mätiä. Erällä 33,5 cm pitkällä yksilöllä oli mahassa 150 mätimuuna ja suolassa vielä 25 eläintä saalinnut. SVÄRDSON (1954) pitää harjusta Ruotsin jokien vakavasti huomioon otettavana mätisvona. TRYBOM (1908) esittää, että 257 harjasta oli syönyt no. 3000 lohen ja mahtaneen mätimuunaa. Kuuden ruotsalaisten joen 67:n harjukseen ravinnosta oli 0,75% mätiä. Koska Kamajoen vesistöalueen harjusten mahasta on löydetty vähän mätiä, eli yleensä 0,1 - 1% painoprosentia, ZINOV'EV (1960a, b) katsoo, että harjuksen merkitystä mäkin tuhoajana on liitetty. Suomenasak tehtyjen havaintojen mukaan (JÄÄSKELÄINEN 1913) näyttää harjus syöksyisin saavan tuhoa aikana syömällä lohen ja taimenen mätiä. Kemijoen Juujärven harjusten mahana kerrotaan olleen täynnä lohen mätiä. JÄRKVI (1935) kiinnittää huomiota siihen, että lohen mäti myös kutu-
Ajan jälkeen, pitkän talven ja kevään aikana "saattaa joutua harjusten ruokahalun uhriksi, arvatenkin mikäli sopivia tilaisuuksia sattuu". Kemijoen Kaivuhaan vesiltä lopputilvella pyydystetyn harjuksen mahassa oli n. 50 lohen mäetimunaa, joista ainakin 7 oli selvästi silmäpisteasteella.

Vaikea harjus silloin tällöin, varsinkin sen vakioravinnon niukkuuden vuoksi, sieppaakin pienen kalan, ei sitä yleisen mielipiteen mukaan pidetä petokalana. Sen verrattain pieni suu ja heikko hammastus puoltavat tätä käsitystä. Sitä tukee myös se tosiasia, että harjusen ei tiedetä koskaan tarttuneen kalatäkyyyn. Tutkijat ovat kuitenkin silloin tällöin löytäneet kaleja tai niiden jätteitä harjusten maatusta ja pohjanharjuksissa on kalaravintoen erikoistuneita kantoja.

Harjuksen kahden elämänvaiheen, nimittäin poikaskehityksen ja kudun aikana, ravinnon otossa ja käyttössä esiintyy erikoisia piirteitä.

JÄÄSKELÄISEN (1940a) mukaan yhdeksäntenä päivänä kuoriutumisesta ruskaispussi on kulumut pieneksi jätteeksi, ja harjuksen poikaset sieppaavat innokkaasti planktoneläimiä, varsinkin vesikirppuja ja niden naupliioustoukkia, jotka ovat poikasten pääraavintoa.

TUGARINAN (1958) mukaan Baikaljärven "mustan harjuksen" ravinnon käyttö oli kutuaikana vähäistä. Tutkituista ma hoista 72,2 % oli tyhjä.

ZABOLOCKIJ (1959) mainitsee harjuksen käyttävän kolme kertaa enemmän ravintoa kuin samanikäinen lohenpoikanen ja sen painon olevan 2 - 3 kertaa suurempi. Samalta alueelta pyydystettyjen kookkaidenkin harjusten ravinnon määrä oli erään tutkimuksen mukaan jonkin verran suurempi kuin taimenilla (SÖMME 1935).

Tässä tutkimuksessa määritettiin koko ravintomassan paino, sekä erikseen tunnistettujen ravintokomponenttien ja epäorganisoidun osan paino. Jälkimääristä osittaa hehkusjäännös, johon sisältyy mahanlaukuin sulamatta jäävää aines. Laajan materiaalin perusteellisesta käsitteystä on tässä yhteydessä luovuttava. Nyt kohdistetaan huomio seuraaviin seikkoihin:

- pienten, 0+ ikääisten poikasten ravintoon,
- kutuharjusten ravintoon,
- talvisen ravintoja ja
- varsinaisen kavukauden ravintoon.
Seuraavien ryhmien edustajia tavoittaa:

Jouhimadot, Nematomorpha
Juotikkaat, Hirundinea
Äyriäiset, Crustacea
Vesikirput, Cladocera
Hankajalkaisäyriäiset, Copepoda
Ylemmät Äyriäiset, Malacostraca
Koskikorennot, Plecoptera
Päiväkorennot, Ephemerida
Sudenkorennot, Odonata
Suorasiipiset, Orthoptera
Verkkosiipiset, Neuroptera
Pistiläiset, Hymenoptera
Nivelkäräsäiset, Hemiptera
Vesiperhoset, Trichoptera

Perhoset, Lepidoptera
Kovakuoriaiset, Coleoptera
Kaksisiipiset, Diptera
Vesipunkit, Hydracarina
Hämähäkit, Araneida
Simpukat, Lamellibranchiata
Kotilot, Gastropoda
Kalat, Pisces ja mätä

Poikasnuottausten saaliisiin sisältyi ainoastaan neljä 0+ poikasta, joiden ikä oli n. 8 viikkoa. Poikaset olivat jo luopuneet planktonravinnosta ja erikoistuneet varsin pienikokoiseen ajelehtivaan ravintoon, joka koostui pistiäisistä, kaksisiipisistä, vesiperhosista ja kovakuoriaisista. Mahan sisällön keskimääräinen paino oli 0,13 (0,06-0,25) g ja tunnistetun osan paino 0,02 (0,01-0,04) g. Epäorganista materiaalia ei ravinnon joukossa ollut.

Harrijärvestä (5) pyydystettiin 20 harjasta talven loppupuolella, eli ajankohtana, joka ravintotilanteen kannalta lienee kaikkein heikoin.

<table>
<thead>
<tr>
<th>Ravinto</th>
<th>Kpl</th>
<th>Ravintoa syöneiden kalojen osuus %</th>
<th>Huomautuksia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food</td>
<td>No.</td>
<td>Frequency of food in fish (%)</td>
<td>Comments</td>
</tr>
<tr>
<td>Asellus aquaticus</td>
<td>56</td>
<td>20</td>
<td>5 tyhjää maha-laukkua 5 empty stomachs</td>
</tr>
<tr>
<td>Plecoptera</td>
<td>52</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Odonata</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Tricoptera</td>
<td>77</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Neuroptera</td>
<td>47</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Diptera</td>
<td>139</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Coleoptera imag.</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Hydracarina</td>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Gastropoda</td>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Mätiä- Roe</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Mahan sisällön keskimääräinen paino 0,65 (0,00-1,58) g
Average weight of stomach contents
Tunnistettu osa - Analysed part 0,13 (0,06-0,25) g
Epäorganinen osa - Inorganic part 0,13 (0,00-0,47) g

Jäänalaisen harjuksen pääravintona (taulukko 7) ovat olleet kookkaat, koppineen n. tulitikun mittaiset vesiperhosen toukat, todennäköisesti Phryganea sparsus. Harjuksista kaksi oli syönyt myös kaloa, ahvenia ja simppuja. Täysin tyhjä vatsalaukkuja oli neljä, ja yhtä momessa oli hyvin niukasti ravinnontähteitä. Lähdes kaikki kalat olivat heisi- madon plerocercoidien saastuttamia. Talvisista oloista johtuu, että kaskimääräinen ravintobiomassa (0,39 g) oli pienempi kuin Nukkumajoen kutuharjuksilla (0,65 g).
Table 7. Food of grayling during winter in the lake Harrijärvi 14.2. and 2.5.1979.

<table>
<thead>
<tr>
<th>Ravinto</th>
<th>Kpl</th>
<th>Ravintoa syöneiden kalojen osuus %</th>
<th>Huomautuksia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food</td>
<td>No.</td>
<td>Frequency of food in fish (%)</td>
<td>Comments</td>
</tr>
<tr>
<td>Tricoptera</td>
<td>101</td>
<td>60</td>
<td>4 tyhjää maha-laukkua</td>
</tr>
<tr>
<td>Diptera</td>
<td>4</td>
<td>15</td>
<td>4 empty stomachs</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>19</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Malacostrata</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Gastropoda</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Kala- Fish</td>
<td>2</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Mahan sisällön keskimääräinen paino 0,39 (0,0-1,1) g
Average weight of stomach contents
Tunnistettu osa - Analysed part 0,29 (0,0-0,8) g
Epäorganinen osa - Inorganic part 0,04 (0,0-0,05) g

Table 8.

Percentage composition of the stomach contents of 2+ and 3+ grayling in Lake Saimaa and the river Isojoki.

<table>
<thead>
<tr>
<th>Harjusvesi - Waters</th>
<th>Saimaa</th>
<th>Isojoki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kuukausi - Month</td>
<td>VI</td>
<td>VII</td>
</tr>
<tr>
<td>Porjacläimet-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bontos animals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plecoptera toukat-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>larvae</td>
<td>7,2</td>
<td>3,0</td>
</tr>
<tr>
<td>Ephemerida</td>
<td>2,2</td>
<td>0,3</td>
</tr>
<tr>
<td>Trichoptera</td>
<td>69,6</td>
<td>45,6</td>
</tr>
<tr>
<td>Diptera</td>
<td>11,6</td>
<td>4,5</td>
</tr>
<tr>
<td>Hirundinea</td>
<td>0,7</td>
<td>1,8</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>0,7</td>
<td>1,8</td>
</tr>
<tr>
<td>Laccophilbranchiata</td>
<td>0,2</td>
<td>0,3</td>
</tr>
<tr>
<td>Uivat eläimet</td>
<td>81,9</td>
<td>52,5</td>
</tr>
<tr>
<td>- Swimming animals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nematomorpha</td>
<td>1,3</td>
<td>3,8</td>
</tr>
<tr>
<td>Hemiptera</td>
<td>0,5</td>
<td>1,4</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>4,1</td>
<td>0,9</td>
</tr>
<tr>
<td>Hydracarina</td>
<td>0,2</td>
<td>0,4</td>
</tr>
<tr>
<td>Cladocera</td>
<td>0,3</td>
<td>0,6</td>
</tr>
<tr>
<td>Araneida</td>
<td>4,0</td>
<td>4,0</td>
</tr>
<tr>
<td>Ajelehtivat akvaatti-</td>
<td>4,0</td>
<td>4,0</td>
</tr>
<tr>
<td>set ja semiakvaatti-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>set organismit -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aquatic and semi-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aquatic drift organisms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td>1,4</td>
<td>2,3</td>
</tr>
<tr>
<td>Diptera</td>
<td>4,8</td>
<td>29,6</td>
</tr>
<tr>
<td>Ephemerida</td>
<td>10,5</td>
<td>0,8</td>
</tr>
<tr>
<td>Plecoptera</td>
<td>6,2</td>
<td>4,2</td>
</tr>
<tr>
<td>Machyönteiset -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terrestrial insects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orthoptera</td>
<td>0,4</td>
<td>0,3</td>
</tr>
<tr>
<td>Hemiptera</td>
<td>0,4</td>
<td>0,3</td>
</tr>
<tr>
<td>Pseudococcidae</td>
<td>6,7</td>
<td>0,8</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>12,0</td>
<td>1,5</td>
</tr>
<tr>
<td>Lepidoptera</td>
<td>0,4</td>
<td>0,4</td>
</tr>
<tr>
<td></td>
<td>7,1</td>
<td>1,1</td>
</tr>
<tr>
<td></td>
<td>36,0</td>
<td>50,0</td>
</tr>
</tbody>
</table>

1) Mahan sisällön keskimääräinen paino - Average weight of stomach contents
2) Tunnistettu osa - Analysed part
3) Epäorgaaninen osa - Inorganic part

Kutu- ja talviaikaa lukuunottamatta harjusten mahalaukut ovat yleensä täynnä ravintoa. Ulkokrunnilla oli heinääkuussa 1979 ja 1980 harjuksia, joiden verestävistä, päältä heisimadon plerocercoidien peittämistä ja sisältä runsaan loiskannan Cyathocephalus truncatus saastuttamista mahalaukusta löytyi vain kookkaita kiviä, joista suurin painoi 4.5 g. Saman alueen terveet kalat olivat syöneet runsaasti ravintoa, esim. 900 g painava kala 21,60 g, josta epäoroganista 5,88 g. Ravintomassa sisälsi 549 valkokatkaa, 72 vesiperhosien toukkaa, 61 kotiloa, 2 kilkkiä, päiväkorennon toukan ja kalajätettä.

Edulliset biotiset tekijät luovat edellytykset hyväkuntoisten kookkaiden, emokaloiksi sopivien harjusten muodostamien kantojen syntymiselle. Ratkaiseva merkitys on tällöin runsaalla ravinnolla. Loiset ja sairaudet saattavat puolestaan heikentää kalojen kuntoa.

Kuvan 10 diagrammit esittävät tutkittujen harjuskantojen kuntokerroimia, jotka on laskettu NIKOLSKYN (1963) kaavalla \(Q = 100 \times W : l^3 \) (\(W \) = paino g ja \(l = \) pituus cm). Yllättävää on Saimaan ja Isojoen alhainen kuntokerroin. Edellisessä on ilmeisesti vaikuttamassa se, että kalat ovat selkäluotojen karujen vesien kantaa. Isojoella puolestaan on ollut ilmeisesti vaikuttamassa ravintokilpailu liian tiheissä kannoissa.
Kuva 10. Tutkittujen harjustakuntojen kuntokerroin Q (11 Rautalamminreitin Yläistenkosken harjukseen kunto).

Fig. 10. Condition coefficient Q of investigated grayling stocks (11 condition of grayling in the Yläinen rapids in the watercourse Rautalamminreitti).

Vertailun vuoksi esitetään kuvassa 10 Päijänteen vesistön Korholan koskireitin Yläisenkosken (11) istutasperäisen kannan hyväkuntoisten harjusten kerroin 1,2. Muualtakin Keiteleen-Konneveden alueelta on tavattu kookkaita ja nopeakasvuisia harjuksia.

Kuvassa 10 on myös tyyppilisenä esimerkkinä Isojoen harjusten kasvukauden aikainen kunnan vaihtelu. Kunto kohtuutuu alkukesällä saavuttaen huippunsa elokuussa, jonka jälkeen ilmenee selvä laskua.
6.5 Loiset

Harjuksissa on joskus niin runsaasti loisia, että ne alentavat kalan kuntoa ja estävät sen käytön ravintona ja emokaloina. Esimerkkinä voitadaan mainita, että tapasin v. 1958 Inarinjärvestä tavattoman laihoja harjuksia, joiden selkähiaksistossa esiintyi erittäin runsaasti heismadon *Triacendophorus crassus* toukkia.

Aikaisemmin JÄÄSKELÄINEN (1913 ja 1917) on tutkinut muutamien harjuksen loisia. Tarkastettuaan kymmenen Kemijoen harjusta, hän löysi neljästä loisista. Eräällä kaloista oli erittäin runsaasti *Spiroptera ochracea* (v. Linst) loista, jota Suomesta silloin ei aikaisemmin oltu tavan. Samassa yksilössä olivat myös meillä siihen asti tuntematon nematodi, *Dacnitis sphaerocephala* (Duj.). Muista loisista mainitaan: *Ichthyotaenia longicollis* (Rud) yleisenä esiintyen sekä *Acanthocephalus anguilla* (Müll.) ja *Echinorhynchus salmonis* (Müll.), kumpakin vain yksi kappale. Laatokan harjuksista JÄÄSKELÄINEN tapasi lohikaloille tyypillisinä loisina vääkääsääkästä *Echinorhynchus salmonis*, heismatoja *Ichthyotaenia longicollis* ja *Cyatholoecephalus truncatus* (Pall.) sekä toukia *Bothriocephalus* ja *Corynosoma stumosum* (Rud.).

Tämän tutkimuksen harjusatentä on mahdolasta on otettu talteen loisia, jotka asentonti Viljo Nylund tutki Riista- ja kalatalouden tutkimuslaitoksen kalantutkimusosastossa. Seuraavat loiset tavattiin:

<table>
<thead>
<tr>
<th>Harjusvesi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6 7 8 9 10</td>
</tr>
<tr>
<td>Nematoda sp.</td>
</tr>
<tr>
<td>Acanthocephala sp.</td>
</tr>
<tr>
<td>Diphyllobothrium dendriticum</td>
</tr>
<tr>
<td>Cyatholoecephalus truncatus</td>
</tr>
</tbody>
</table>

+ = esiintyy vähän ja harvoissa yksilöissä
++ = esiintyy runsaasti ja useissa yksilöissä
+++ = esiintyy erittäin runsaasti

Näytteiden pitkääikainen säiliöntä on osaksi vaikeuttanut lajinmääritystä.

Heismadon *Diphyllobothrium dendriticum* plerocercoidia näyttää esiintyvän melko yleisesti 5–8 mm:n rakukoillina varsin monien Lapin harjusvesien iäkkäiden yksilöiden mahalaukun pinnalla. Olen tavannut sitä mm. Enontekiön Jäboa- ja Siedjonjärven harjuksilta.
Useiden runsaan loiskannan saastuttamien Lätäsenon ja Ulkokrunnin harjusten kuntokerroin pysytylleen selvästi keskiarvon alapuolella. Tämä ei ole kuitenkaan sääntö, sillä tällaisten kalojen joukossa on myös varsin hyväkuntoisia yksilöitä. Lievä loistartunta ei vaikuta näkyvästi kalojen kuntoon.

7. Harjuksen kalastus Suomessa

7.1 Järvikalastus

Seuraavassa käsitetään myös Laatokan kalastusta, koska tämän järven kalastajat aikoinaan hajaannuttuaan ympäri maata veivät pyyntitapaansa ja kokemuksensa mukaan.

JÄÄSKELÄISEN (1917) mukaan Laatokalla pyydystettiin "poreharjusta" heti jäiden lähdettyä ja kalastusta jatkettiin myöhemmin kutupyyntinä verkoilla ja kurenuotilla. Seuraavat otteet kuvaavat sikäläistä harjuksen kalastusta (SAVOLAINEN 1937 s. 126-127):

"Sen pyynti on nykyisin ollut tuottoisin heti jäiden lähöön ai- koina ulkosuurnen rantavesiltä ns. poreharjuksen pyyninä. Normaa- lisina vuosina tämä on huhti-toukokuun vaihteessa ja kestäytyi vain lyhyen ajan."...." Verkot tulee kutupyyynnissä asettaa kari- kolle, siten että ne ovat aina puhtaalla kohdalla, mikä pyydyksiä laksiessa on tarkoin huomioitava, ettei verkko mene limaiselle koh- dalle, sillä se ei anna kalaa. Pyynnille on edullisinta tyyni ilma, mutta mikäli niin ei ole tavataan harjus kosteikkorannoilla." "Kudun jälkeen tulee väliaika, jolloin harjusta ei tavata, ennenkuin vesi uloimmillakin rannoilla on lämmennyt, mikä tapahtuu heinäkuun puoli-äiväissä. Tällöin pyydystetään harjusta ulkoluodoilta kure- nuotilla."...."Harjuksen pyynti tapahtuu pääasiassa verkoilla. Yleisemmin käytetään 4 - 6 jalan korkuisia verkkoja 80/6 ja 100/6 pum- pulirihmasta kudottuja 30 - 45 mm kalvoinkerran harvuisia."

Laatokalle tyypillisen kurenuotan (kuva 11, F) käyttöä kuvaa SIRELIUS (1907) mielenkiintoisella tavalla. Tölläisen nuotan reiden pituus oli 30 - 72 syltä (45 - 130 m), liinavuus 5 - 6 kynärää (n. 3 m) ja poven pituus 2 - 7 syltä (1,2 - 4,2 m).

Ison-Saimaan vanhempana ja nykyistä harjuksen kalastusta valottavat seuraavat otteet (SEPPÖVAARA 1976b s. 24-26):

"Kuuluisan nuottamiehen Pentin Paavon tiedotettavat nuotanneen myös tarkoituksella harjusta. Ainahan harjuksia saadaan silloin töllöin nuottamuikkujen joukossa, mutta Penti veti harjusnuottansa Pister- mäniemessä, jossa ei ollut varsinaisia muikkuapajia."...."Kutuaikaa lukuunottamatta harjus jää tuulirannoille laskettuihin verkkoihin yleensä vain pimeinä myrskyisinä öisin."...."Syksyllä erikoisesti tyyninä usva- tai räntäiltoina voidaan tuulastamalla saada kohtalaisia saaliita. Hyväällä sääällä harjuksen voi löytää joksus kiven välästä alle puolen metrin vedestä, mutta useimmin varsinkin muik- kunkudun aikoihin se makailee hiekkapohjalla verraten syvällä,
joskus atraimella tavoittamattomissa.聍 "Harvinaisena pyyntitapa-
na voidaan pitää harjuksen pilkkimistä. Parhaiten se onnistuu vii-
meisillä keväällä rantojen uveavannoista. Silloin syvemmällä
talvehtinut pohjaeläimistö vaeltaa valoisaan rantaveteen houkutellen
harjuksia syönnöstämään. Harjuksen kiihottamiseksi varustetaan
hyvin kiloitetut pilkki lyhyen perukkeeseen kiinnitettylä perhol-
a. "Aikoinaan, kun kannat olivat hyviä ja kalastajia harvassa,
olivat saallit merkittäviä. Olipa joitakin ammattimaisia pyytäjiä,
jotka saivat pääsääntöen toimeentulonsa harjuksista. Tällainen
oli puumalainen Albin Korhonen, joka 1930-luvulla pyydysti suurim-
man osan saallistaan 20 vieheisellä harjuslaudalla. Ottavat perhot
olit valmistettu närhin siipisulista. Varsinkin peilin siniset su-
lat olivat arvokasta perhomeriaalia. Korhonen ulottu asuinansa-
reastaan Lintusalosta pyyntiretkensä tavallisesti Kyläniemen Hieta-
saareen saakka. Matka tehtiin soutupelissä, sopivalla sääällä myös
puheita käyttäen, joten päivittäinen taival saattoi kohota yli
40 kilometrin".

koska kutuharjuksen verkkoypyni yhdessä harjuslautakalastuksen
kanssa on tuntuvasti pientäytynyt Saimaan vesistön harjukantaa, lienee
paikallaan selvittää viimekäsmainittua kalastustapaa lähemmin. Aikoi-
naan käyttivät harjuslaudalla ammatiksen pyytävät kalastajat yksin-
kertaista lautaa (kuva 11, Aa) jonka selkäsiimmassa saattoi olla
50 perhoperuketta 1 m:n välein. Harjuslautaa soutaneet käsittävät,
etta tällaisen pyydoksen käyttö on hankalaa ja suurta taitoa vaativia.
Nykyisin sellaisella kalastaminen ei monestakaan eri syystä onnistui-
si. Muinaisen pyynnin teki mahdolliseksi se, että kookasta harjusta
oli hyvin runsaasti. Soudettiin niin kauan, että useita kaloja oli
tarttunut perhoihin, osan päästä irti väsyivät toiset haavitsemis-
kuntoon. Ei yleensä viitsitty väistää edes kelluslehtisten muodosta-
mia kasvustoja, koska niiden alueella oleskelivat tavoitellut suur-
harjukset. Myöhemmin harjuslaudan soutajat tyytivät käyttämään
10 - 15 viehettä, sekaisin perhoja ja lippoja. Kirjavat kaupasta saa-
tavat perhot olivat ottavia, mutta samanveroisia olivat jo mainitut
kotitekoiset närhen peilisulista sidotut tai sellaiset, jotka oli
valmistettu maataloukuon kirjavista höyhenistä. Punainen väri näytti
kiihottavan harjuksia napaamassa, siksi kouukin varressa käytettiin vä-
listä lakkapisaraa tai villalankatupsua. Muoviset ja kumiset muurahai-
set, päiväkorenon toukat, kovakuoriaiset ja muut hyönteisjaljitelmat
täydensivät viehekokoelmia.

Oulujärveltä käytettiin kutuharjuksen pyynyntä harvinaista, nähtäväs-
ti muualla tuntematonta tapaa. Jokisuihin asetetuista hakomättäistä,
joiden ympärille oli kierretty verkko voitiin yöskussa saada jopa ne-
likollinen harjuksia (TOLVANEN 1915). Todennäköisesti kysymyksessä ei
ollut kutevan harjuksen pyyni, vaan kutuvaelluksellaan järvestä jokeen
pyrkivien kalojen tavoitteleminen. Toistaiseksi ei ole saatu lisätietoja
valottamaan tätä eriskummallista kalastustapaa.
Kuva 11. Harjuspyydyksiä
Fig. 11. Grayling traps

Lisäksi on muistettava yhä kasvava virkistyskalustus, jonka pyydyksiin kuului aikoinaan harjuslauta ja sen kieltämisen jälkeen erilaiset perhot ja lipat.

7.2 Meri- ja siihen liittyvä jokisuukalastus

Ennen oli harjuksen verkkopyynti Pohjanlahdella Porin kaupungissa Tornioon saakka yleistä. Se tapahtui tavallisimmin kutuakana, mutta paikotellen myös syksyllä koukku-, porkka- ja inaverkkoilla.

Syysharjuista pyydyettiin myös tasaisilta pohjilta 35 - 45 syltä (n. 62 - 80 m) pitkäksi jadaksi jamotulla inaverkolla, jonka korkeus oli 1 - 2,5 m ja silmäsuuruus 37,5 mm. Pyydyksessä korvasi nuotille ominaisen pesäverkon korkea laitaverkko. Aitapää kivipaimnolla pohjaan ankkuroituna soudettiin piirroksen esittämällä tavalla pesäverkon päähän kiinnitetystä köydestä hinat siten, että apaja muodosti suljetun ympyrän. Sommalla varustetun inasuvan pääastettiin pesäverkon alapuolain silmukkaan ja painettiin tiukasti pohjaan. Sen sijaan soudettiin inaverkkoirin ulkoreunaa ja kuljetettiin pesäverkkoa sauvoinen kunnes muodostui noin 2 m läpimittainen pesä. Inasuvaa irrotettiin ja sillä porkattui pesään, vene siiрettiin samalla kierteen sisäpuolelle ja suoritettiin nosto molemmanpaist paaloista siten, että havas muodosti pussin. Pyynnin onnistumisen edellytysenä oli, että inaverkko liinasi eli ulottui veden pintaan saakka.
Harjuslautaa vedettiin tiettävästi maassamme ensimmäisen kerran Pohjanlahden merialueella. EKMANin (1910) mukaan "utterbräde" (harjuslauta) nimitys oli Pohjois-Ruotsissa nuori, vain Jämtlannissa hän arveli sen olevan ylimuistoisen ja pitää tätä maakuntaa keskuksena, josta laite ja nimitys ovat myöhemmin levinneet pohjoiseen ja itään. Etelä-Ruotsissa se oli EKMANin aikana tuntematon.

Suomessa harjuslautapyynti aloitettiin vajaat sata vuotta sitten. JÄRVEN (1932) mukaan se lienee Ruotsista päin levinnyt maamme vasta 1800-luvun loppupuolella. Tällöin sen varsinnainen käyttöalue oli Pohjois-Pohjanmaan joet ja merenrannikko Torniosta Raaheen. Ei kestänyt kovin kauan, kun tehokas harjuslautakalastus levisi jokivarsia pitkin Lappiin ja oli jo vuosisadan vaihteessa käytössä Laatokalla ja Vuoksen vesistön harjusalueilla. Lisätietoa harjuslaudan tulemisesta saamme seuraavasta osesta (GRUNDSSTRÖM 1926 s. 71-73):

"Pyynti jäljempänä selostetulla harjuslaudalla eli "kalaharavalla" joksi sitä myös olen kuullut mainittavan, ei ole kovinkaan muinaismuistoisen, ei ainakaan kotiseudullani Rahessaa. Noin neljännes vuosisataa takaperin tuli se tunnetuksi parin innokkaan urheilukalastajan tuomana Ruotsin puolelta...Useamman vuoden pysyikin harjuslauta jotkin hyvin salassa, siitä huolimatta, että tämä pyyntitapa tuli ainoaksi, millä harjusksia saatiin kesän ja syksyn aikana merestä. Esimerkiksi suurryysien aitojen vieruksilta tällä tavalla niitä lautaa vetäen saapi, vaan rysään ne eivät erehdy menemään."

Kudulle jokisuihin nousevan merellisen harjuksen pyynnistä on käytettävissä melko runsaasti tietoja. Harjusta kalastettiin etupäässä onkimalla, mutta aikoinaan myös hyvällä menestyksellä lippoamalla sekä jonkin verran rysillä ja merroilla. Pyhöjien suulla käytytettiin myös inakkoja, jotka poikkesivat hieman rakenteeltaan merellä käytetyistä. Onta eivät harjoittaneet ainoastaan urheilukalastajat, vaan muihin kasvattajaryhmäni kuuluvat hankkivat sillä lisääntiota.

HEUSALA (1935 s. 15) kirjoittaa harjuksen onginnan joessa olleen jo varhaisista ajoista kutuaikoina yleistä. Tällöin käytytettiin täkynä varsinkin muurahaisenpesästä kaivettua toukkaa, joka koukusta lähes metrin päähän kiinnitetyn lyijypainon ankkuroimana heilahteli virrassa. Onkiminen tapahtui juksamalla rannalta, "mestaportalta" tai silloilta. SIRELIUS (1906) mainitsee vanhan torniolaisen harjusongen (kuva 11, J) kahden tai moninkertaisesta hyvin kehätystä riimasta tehdyn siiman olleen 3-4 syltä pitkän. Perokeosa oli varsinaista siimaa ohuempi ja paino 8-särmäinen päihin poratuilla kiinnitysreijillä varustettu tina- tai lyijykappale.
7.3 Jokikalastus

Pohjois-Karjalassa on muitakin suuria jokivesistöjä, kuten Lieksan- ja Koitajoen alueet, joissa jo varhain harjoitettiin harjuksen kalastusta samoin välinein kuin Pielisjoessakin.

Pohjois-Suomen joissa harjuksen kalastus erikoisesti liikkuvilla riimapyydysillä rasitti kantoja. Näin tapahtui varsinkin inakalastuksessa (kierrenuotta), jota yleisesti harjoitettiin mm. Kemijoen vesistössä. SANDMANin (1898) mukaan Ounasjoen ina oli 20 m pitkä ja 1,8 m syvä. Tuohikivekset eli kopat kiinnitettiin alapaulaaan 15 cm välein ja kannattimina käytetty puiseet laudakset 60 cm välein. JÄÄSKELÄINEN (1913) kirjoittaa erään Kemijärven Luusuan inan olleen 28,5 m pitkä ja 2,3 m korkea sekä sen rintaverkon silmäkoon vaille 3 cm. Povellista tai poventontaa inanuottaa vedetään yllä ja päivillä heti kevättulvan laskettua aina talven tuloon saakka. Saaliina oli pääasiassa alamittaista siikaa, harjusta ja lohta sekä väästä haukea ja ahventa. JÄÄSKELÄINEN oli Luusuassa nähnyt 15 kiloisen määrän saaliita, joka koostui lähes kokonaan alamittaisista siiosta ja harjuksista, joukossa jokunen tamnukka.

Harjuksen kalastus tavallisella kohottomalla ongella oli varsin yleistä sekä urheilukalastajien että muiden kalastajaryhmienkin keskuudessa. Se, että viimeksimainitutkin sen hyväksyvät, puhuu tämän pyyntitavun tehokkuuden puolesta.

SIRELIUKSEN (1906) mukaan harjuksen pyyntitä säättävällä (syöttöongella) harjoitettiin Kokemäenjoella pitkin keväällä ja Tornionjoella varsinkin jäiden lähetykään aina kudun päättymiseen saakka. Syöttinä käytettiin perhosia, muurahaispesän toukkia ja mutuja eli rauduksia.

Myös Vuoksella käytettiin jo varsin harhaisia painollisia harjusonkia, jotka olivat kehitetty SIRELIUKSEN (1906) kuvaamista vanhoista pyydyksistä. Eräässä niistä oli painona alta kupera ja päältä litieä tulitikun pituinen lyijykappale, jonka jatkeaksi tai yläpuolelle oli kiinnitettä 25 – 50 cm pitkä varsinaista vahvaa onksisimmaksi ohuempi koukkuperuke. Tehokkuutensa takia ajoittain käyttökiellon uhkaama pohjapeilinnon oli varustettu koverolla lyijypainollon, jonka päälle oli asennettu kalojen houkuttelemiseksi peili (kuva 11, Ja). Inmatralaisen kalamies Toivo Miihin jäämistössä oli 6 cm:n pituisia ja 2 cm levyisiä peilipainoja, jotka olivat valmistettu kuperilevystä ja sen molemmillle puolille kiinnitetystä 4 mm paksuisesta peilistä (kuva 11, Jb). Kovassa virrassa asetettiin perukkeen yläosaan lisänä painon. Peilipainon etuna oli SIRELIUKSEN (1906) mukaan se, että se varsinkin syys-, talvi- ja pilviiäärinä heittävät paremin kalojen huomiot ja toisaalta onkia saastuttaa painon kirkastamisvaihvolta. Jonginnassa ylävirtaan heitettyä painoa nostettiin "nykyttämällä" pohjasta, jolloin täytykset kulkeutuivat vähitellen virran mukana.

MÄKISEN (1978) mukaan sumukorentoja (englanniksi February red) tavattelevien harjusten kalastus onnistuu parhaiten täysikasvuisen naaran jäljitelmällä, joka on tunnettu Englannissa jo lähes 500 vuoden ajan. Vuonna 1496 jäljitelmä Dun Fly kuvattiin kirjallisuudessa ensimmäisen kerran, eikä sen nykinyinen sisod poikke paljonkaan alkuperäisestä.

Koskikorentojen nymfejä tavattelevien harjusten onginta avannosta on harvinaisena tunnettu meillä ja muualla pohjoismaissa. Tätä pyyntitapaa kuvaavat WUorentaus (1940 s. 2) seuraavasti:

Houkutuspyyntiä tarten tehdään sopivana virtapaikkaan avanto ja tämän alapuolelle kädien ulottuman pähän toinen. Ylemmästä avannosta tiputtaa koskikorentoja veteen, missä ne virran painaminen kulkeutuvat jokseenkin yhtämittaisena jonona alaspäin ohi alemmen avannon. Koskessa asustavat kalat, joko harjus tai siika, harvemmin myös ahven ja hauki, kerääntyvät tavoittamaan virran tuomia toukkia ja niitä kilvan nyppien kohoaavat avannon saakka. Tällöin on aika alemmasta avannon tarjota kaloiille onkea, minkä syynä on joko onkimato, lihapala tai samoja toukkia, joita ylemmästä avannon tiputtaan jatkuvasti veteen. Kalaja voidaan saada myös käyttämällä pienikokoista hopeanväristä pilkkää."

Nymfien aikuistumisjakso ovat parhaita syöntiaikoja. Pohjaravintoa etsivät harjukset ovat puolestaan usein haluttomia tavoittelemaan pintavieheitä. Tyypillistä harjuksen käyttäytymiselle ovat rajut ja lyhyet syöntijakso, joita seuraa vaikeasti selittetää pitkät "tylsyysperiodit".

8. Harjussaaliit

Suomen harjussaaliista on niukasti tietoa. Se sisältyy vääristä silaan saaliisiiin tai ilmoitetaan muiden vähemmän tärkeiden kalojen saaliissa. Kuitenkin voidaan keräämällä eri puolilta maata kirjallisenä säilyneitä saalistietoja ja vanhempien kalastajien luotetuksi harkittuja muistitietoja sekä nykytietoja luoda kuva harjuksen kalataloudellisesta merkityksestä ja sen kehittymisestä.

Aikoinaan, kun kannat olivat hyviä ja kalastajia harvassa, olivat Saimaan vesitöön harjussaaliit merkittäviä. Parhaan tuloksen antoi kutukalastus ensin luvallisena ja myöhemmin (vuodesta 1925) luvattomaan pyyntinä:

Tehokkaan pyydyksen ja hyvien harjuskantojen puolesta puhuu se, kuten jo alkaisemmin on mainittu, että ammattikalastajatkin harjoittelivat harjuslautapyyntiä ainakin 1930-luvulle saakka. Täällöin kohosi kalamatkan kertasaalis tavallisesti useampaan kymmenen kiloon.

Merialueemmekin harjussaaliita koskevat tiedot ovat vähäisiä ja sillä syvänä usein muiden kalojen saalisissa. Kuitenkin ne muodostavat lähteen, josta voidaan saada viitteitä rannikkoharjuksen pyynnin merkityksestä. Vuosien 1919 - 1924 tilastoissa esitetään yhteinen siika- ja harjussaalis (HEILLEVAARA 1927):

<table>
<thead>
<tr>
<th>1919</th>
<th>1920</th>
<th>1921</th>
<th>1922</th>
<th>1923</th>
<th>1924</th>
</tr>
</thead>
<tbody>
<tr>
<td>220 896</td>
<td>211 625</td>
<td>260 999</td>
<td>245 711</td>
<td>264 303</td>
<td>282 095 kg</td>
</tr>
</tbody>
</table>

Tämä saalis on keskimäärin 1,6 % rannikon kokonaissaaliista. Harjuslauta voidaan saaliissa arvioida olleen vuosituhann korkeintaan 10 000 kg. Jo 1930-luvulla olivat Vaasan saariston harjuskannat vähentyneet levottomuutta herättävällä tavalla. Kuitenkin kutupyynnillä oli vielä taloudellista merkitystä. Saalistietoja ei ole käytettävissä, mutta se tiedetään, että Vaasan torilla myytiin melkoisia harjusmää-

Harjuksen pyynti on paikoitellen jatkunut meidän päivimmme saakka yhä heikommalla menestyksellä. Österbottens Fiskarförbundin selvityk-sessä (1976) todetaan Etelä-Pohjanmaan alueelta saadun mainittuna vuonna 73 kg harjusta eli vähemmän kuin 0,01 % kokonaisaalista. Meri-kutuinen harjus kuuluu tällä alueella, kuten aikaisemmin on esitetty, uhanalaisten kalalajien joukkoon ja jokikuituisekkin kannatt ovat siinä määrin vähentyneet, että harjuksen pyynnillä ei voida katsoa olevan enää huomionarvoista taloudellista merkitystä.

Varsinainen jokisaalis muodostaa aikoinaan ja muodostaa edelleenkin pääosan maamme harjussaaliista. Pielisjoen patokalastuksen kevätharjussaaliista on säilynyt joitakin tietoja. Saapaskosken padosta saatiin v. 1914 harjusta 40 kg ja Kaltimon kosken Pankosalmen padosta vuosina 1904 – 14 keskimäärin 30 – 40 harjusta (JÄRVI 1915). Vuosisa-
dan alkupuolella Pielisjoen harjuksen virkistyskalastus oli varsin tuottava (kts. s. 17). Hyvin epävarman, perustelemattoman tiedon mukaan saatiin Pielisjoesta ennen rakentamista harjusta 1 300 kg/v (MÄKINEN 1964).

TUUNAISEN et al. (1976) mukaan Lapin pohjoisten kuntien paikallisten kilastajien harjussaalis oli v. 1974 Inarissa 11 672 kg, Utsjoella 3 994 ja Enontekiöllä 2 489 eli yhteensä 18 155 kg. Samasta tutkimuksesta ilmenee, että urheilukalastajat saivat Utsjoen vesistöstä v. 1975 yhteensä 2 550 kg ja Lätäsenon vesistöstä 2 257 kg harjusta. Näiden saaliiden osuus kokonaissaaliista oli 50 ja 33 %.

Harjus on aikoinaan taloudellisesti ollut kohtalaisen merkittävä kala, mitä tukee se edellä esitetty tosiasia, että monet ammattikalastajatkin ovat tiettyinä aikoina keskittyneet sen pyyniin. Erikoinen hyvänä pidetty maku ja lihan verrattain hyvä ravintoarvo ovat lisänneet kiinnostusta harjuksen kalastukseen. JÄRVEN (1937) tutki-

Edellä esitettyjen lukujen perusteella voidaan todeta harjussaaliin pienentyneen levottomuutta herättävällä tavalla erikoisesti Järvi-Suomen ja merenrannikon alueella sekä viimeksi mainittuun laskevissa joissa. Tämä on olennaisesti alentanut tämän arvokalan taloudellista merkitystä, jonka kohtamis seksiä viljely- ja hoitotoimenpiteet ovat käyneet yhä ajankohtaisemmiksi.

9. Harjuksen viljely ja harjusvesien hoito

9.1 Harjuksen istutukset Suomessa

Vuosina 1840-1918 tehtii kansanmiesten toimesta 1524 kalariir-teitä 1093 järven. Tolvinta kohdistui ensisijassa tavallisien kevätkuusien lajejä, jolloin kuljetettiin nuoria ja kutukaloja sekä havuhiin takertunutta mätiä. Mutta myös vaativia kalaja, mm. siikä ja muikkua on siirretty vedestä toiseen (SEGERSTRÅLE 1947). Eräissä tapauksissa siirrettiin harjuksiakin. GOTTBERG (1918) mainitsee Kuusamosta kaksi siirtoistutusta. Tiedosta ei paljastu istutusvuosi ja -paikka eikä toimen onnistunen.

Harrastus istutuksien on kokenut innostuksen vuosia ja lamakasia. Yllä mainituista uranuurtaujaistuksista suurin osa on eri syistä lopettanut toimintansa, ja jotkut ovat luopuneet viljelemästä harjuksista. Viimeisimmä vuosikymmeninä kiinnostus on kasvanut, sillä monet uusista laitoksista ja yksityisistä yrittäjistä ovat omistautuneet myös harjuksen häudontaan ja jatkokasvatuksen.

Vuosina 1958 - 1979 istutettiin kalastusyhistysten ja -seurojen vuosikertomuksista poimittujen tietojen mukaan yhteensä 12 860 000 harjusta, joista jatkokasvatettuja oli noin 280 000. Tämän vuosijaksongistutusluvit saattavat olla suuremmat, koska ainakin kausina, jolloin harjustitutukset ovat olleet suosiossa, ilmeisesti useat harrastajat ovat tehneet istutuksia, jotka eivät ole tuleet julkisuuteen.

Ensimmäisen kymmenen vuoden aikaisilla istutuksilla oli pääasiassa pyrkimyksenä kotiuttaa harjus Päijänneen vesistöön, jossa osittain onnistuttiinkin. Tosin istutukset olivat alueellisesti huomattavasti laajemmattain ne alueet, joihin harjus kotiutui. Useimmat istutuksista pyrkivät vahvistamaan jo olevia kantoja. Istituskohteen joukossa on varsinkin Satakunnan ja Hämeen alueella ja osaksi muuallakin maassa harjukselle sopimattomiakin vesilä.
Ilmeisesti harjuksen biologian riittämätön tuntemus, sekä varsinkin alussa määrä kuljetuksessa ja hoidossa tapahtuva virheet ja laiminlyönnit ovat johtaneet moniin epäonnistumisiin. Jatkokasvatuksessa näyttää ruokinta monissa tapauksissa olevan kompastuskivi. Tiedon ja taidon kasvavassa tulokset ovat parantuneet, vaikka monet yritykset yhä edelleenkin epäonnistuvat.

9.2 Haudontatoiminta

Kymmenen haudonnan suorittaneen laitoksen ilmoitusten perusteella esitetään seuraavia keskimääräisiä haudonnan kulkuun ja oloihin liittyviä tietoja.
Lypsyaika on vaihdellut 2 – 10 vrk keskiarvon ollessa 4,7 vrk.

Haudontaveden lämpötila on vaihdellut Pohjois-Suomessa 3,7 – 12 °C ja muualla maassa 5,2 – 16,4 °C. Vanhakylän laitoksella alin lämpötila vaihteli yhdeksän vuoden aikana 5,2 – 9,0 (keskiarvo 6,6) ja ylin 10,2 – 16,2 °C (keskiarvo 12,2). Vesi on ollut yleensä lievästi hapanista (pH 6,5 – 6,7) ja vähärevinteistä.

Poikaset, joita ei siirretä jatkokasvatukseen, istutetaan 2 – 4 vrk kuoriutumisen jälkeen, eli silloin kun niillä on hieman ruskuispussia jäljellä, ja kun ne ryhtyvät uimaan (B kuvassa 2). Erään haudonnan vaiheet osuivat seuraaviin aikoihin: hedelmöitys 26.5., silmäpisteaste 4.6., kuoriutuminen 12.6. ja istutus 15.6.

Nykyisin harjuksen haudonnasta on jo niin paljon tietoja ja koke muksia, että ympäristötekijöiden ollessa edulliset on onnistuminen varmasti. Hyvien kuljetusmahdollisuksien vuoksi ei määt hankkiminenkaan enää tuota vaikeuksia. Nyt on mahdollista sisällyttää monet Pohjois Suomenkin nopeakasvuiset harjuskannat määt hankinnan piiriin.
9.3 Lammikkokasvatus

harjuslammikon liiallisen rehevyyden ja mataluuden rajoittaneen tuo-
tantoa. Käsitykseni mukaan veden pitkäaikainen +20 °C ylittävä läm-
pötila muodostuu kasvatettaville turmiolliseksi.

Lammikoiden (n 10) pinta-ala on vaihdellut 0,45 - 40,0 ha, keskimää-
rin 5,6 ha ja syvyys 0,8 - 3,0 m, keskimäärin 1,4 m. Veden laatu
näissä lammikoissa on vaihdellut seuraavasti:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>alkalisuus mval/l</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>t°C</td>
<td>18 - 21½</td>
<td>0,05 - 0,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₂ mg/l</td>
<td>7,7 - 9,4</td>
<td>10 - 125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₂% kyll.</td>
<td>84 - 106</td>
<td>mS/m 2,3 - 5,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>6,2 - 7,2</td>
<td>KHT mg/l O₂ 8,5 - 18,3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Eräiden lammikoiden veden ravinnepitoisuus vaihteli seuraavasti: Kok P 5 - 27 µg/l ja Kok N 430 - 710 µg/l sekä raudan pitoisuus 0,10 - 0,17 mg/l.

Lammikko on suositeltavaa istuttaa aluksi 10 000 - 15 000 rus-
kuispussinsa lähelle loppuun kuluttanutta harjuksen poikasta hehtaril-
le. Vasta ensimmäisten vuosien kokemukset paljastavat kulkekin lammik-
kotyyppille sopivan poikastihyden.

Lammikoiden tuotto on vaihdellut yleensä Lapissa 6 - 10 000 kpl/ha. Eräissä Etelä-Suomen kasvatuslammikossa oli "sato" 9 350 harjuksen poik-
ka/ha. Kesänvaihdon harjusten pituus oli mainituissa osissa maa-
ta 7,0 - 11,8 cm ja 10,5 - 12,0 cm. Vuoden 1979 tulos oli kahdessa
eteläisessä yrityksessä olematon. Syy on jäänyt selvittämättä, mutta
olen, että sen on aiheuttanut veden liiallinen lämpöamineen ja reh-
vöityminen. Eräiden kokemusiiksen mukaan viljelylaitosten tappiot
1-kesäisiä harjuksia kasvattaessa ovat vaihdellut 7 - 53 %. Parhaan
tuloksen ovat antaneet sorapohjaiset uomalammikot, joissa virtaama on
vaihdellut 6 - 33 l/sek.

Aloitteenon harjuksenkasvattajien on mukauduttava siihen, että
tappiot saattavat olla huomattavia. BROFELDT (1934) toteaa, että
vaikka lammikossa ei ole muita kaloja, on poikashäviö melkoineen. Syinä
ovat liian korkea veden lämpötila, puutteellinen veden vaihtuminen,
tuhohyönteiset, loiset ja liian niukka ravinto. Viimeksi mainitun vuok-
si on poikastihyden vastattava lammikon ravinnon tuotantokykyä.

Edellisten lisäksi joudutaan usein ottamaan huomioon vesilintujen ja
minkkien aiheuttamat tappiot.

Eräissä tapauksissa muuttaman peräkkäisen kesän kasvatus on saatta-
nut aiheuttaa lammikon "karuuntumisen". Tällöin voi tulla kysymykseen
lannoitus tai lammikon "rauhoittaminen" vuoden ajaksi. Yrityksen alus-
da veden liiallinen happamuu saattaa vaatia kalkitsemista.
9.4 Hoidon onnistuminen ja kannattavuus

Hyvää tarkoittavat hoitotoimet ovat usein jääneet tapaillisiksi, kun harjuksia on istutettu sopimattomiin vesiin, joissa on esim. riittämätön ravintotuotanto tai sopivien kutualueiden puute. Meillä Suomessa on jo runsaasti heikentyneitä harjusvesiä, jotka tavanomaisin hoitotoimin saadaan jälleen tuottaviksi. Tällöin voidaan erikoisesti suositella määräaikaisia rauhoitukoisia ja kalastuksen järkipäristämistä sekä kutumahdollisuksien parantamista (vrt. TUUNAINEN et al. 1979).

Harjuksen viljely annoskalaksi ei Suomessa eikä ulkomailla ole osoittautunut kannattavaksi. Tämä johtuu siitä, että harjuksen liha menettää hyvin säälytettynäkin helposti hienon makunsa (WALLENIUS 1936, KOCH 1960). Sitävastoin sen suuri arvo urheilukalana on lisännyt kiinnostusta harjusten istutuksiin. Seuraavassa esitetään pari esimerkkiä onnistuneista ja ilmeisesti taloudellisesti kannattavista istutuksista:

Kuten aikaisemmin on mainittu suoritti Simunankosken laitos vuonna 1922 alkaen harjuksen istutuksia pyrkimyksenä kotiuttaa tämä kalalaji Päijänneen vesistöön. Näistä istutuksista kirjoittaa HURME (1975):

"Onnistuilla istutuksilla on harju saatu kotiutumaan ainakin Kolima-Keiteleen virtaväylään Viitasaaren reitillä ja Konneveden-Kynsiveden väylään Rautalammen reitillä. Siirtoistutusten onnistumista osoittavat mm. sellaiset seikat, että harjuskannat ovat muodostuneet pyyntivahvuisiksi ja niistä on saatu mätiä ja emokaloja uusia istutuksia varten."

Kolima-Keiteleen 10 kilometriä pitkän virtaväylän harjuskanta oli vielä 1970-luvulla pyyntivahvuisin ja se oli levinnyt myös lähijärviin kuten Keiteleeseen. Suurin väylästä saatu harju painoi 1,8 kg. Sietää vietäin mätiä ja emokaloja Simunankosken kalanviljelylaitokselle.

Konneveden-Kynsiveden koskipitkä Korholankoskien, harjus on nopeakasuvinen, saavuttaen jo kaksivuotiaana neljännestikron painon. Kanta on suurikokoista, sillä joka kesä on saatu parikiloisia ja suuremmat yksilöitä, yleisimmän koon ollessa 0,7 - 1,0 kg. Istutusten kannattavuuden puolesta puhuu se, että harjukset ovat jo kolmevuotisia pyyntikelpoisina. HURMEEN (1967) mukaan Laatokan harjuksen istutus Keski-Suomen vesien on onnistunut ihmeteltävän hyvin edellä mainittuun kahteen koskireittiin.

Keski-Suomessa saatujen kokemusten perusteella pitää Ahonen kuitenkin tarpeellisena istutusten jat kamista edellyttäen, että ennen istutusta selvitetään veden laatu, kalaston koostumus ja kalastusintesiteetti. Keski-Suomen harjusistutusten taloudellista merkitystä on vaikea arvioida, mutta oivallisena saavutuksena on kuitenkin pidettävää sitä, että harjus on saatavissa kantoina kotiutumaan vesini, joissa sitä ei aikaisemmin ole esiintynyt. Nykyinen tilanne, jolle on ominaista kantojen osittainen heikkeneminen, johtuu suurelta osalta liian intensiivisestä kalastuksesta.

Toisena esimerkkinä esitetään Isojoen harjuskannan pelastaminen tuholta, josta KULKEVAINEN (1977) kirjoittaa:

"Oma kalaviljelylaitos saatii Vanhaankylään vuonna 1966. Meri- taimen viljelyn ohella lähti harjuksen kasvatus käyntiin ikään kuin sivutuotteena. Tuolloin oli 1960-luvun alkupuolella joen taimen ja harjuskanta vakavasti tuhon edessä..."

"Parhaina vuosina, kun harjuksen haudonta meillä alkoi, istutimme jopa pari miljoonaa vastakuoriutunutta poikasta latvapuorista meri- alueelle ja paikakunnan järviin."

Isojoen Vanhakylän laitoksen ennakkoluuloton toiminta antoi syys- sen harjusistutusten suosion suureen kasvuun. Erikoisesti kuluneen vuosikymmenen puolivälistä kiinnostus osoitti meillä selvää nousua.

Muuallakin Suomessa on suoritettu onnistuneita täydennys- ja kotiut- tamisistutuksia. Viimeksi mainitutesta esitetäköön vain Särkijärvi Lapissa, Kutu- ja Muhosjoet Oulujoen vesistössä sekä Valkealan ja Räävelin reitin Kymijoen vesistössä, joihin kaikkiin on ilmoitettu kehitteen pyynnökoisa kantoja.

Jo mainittujen lisäksi on Suomessa runsaasti muitakin vesia, joissa harjuksen viihtymiseen vaikuttavat ympäristötekijät ovat luontaisesti suotuisat. Lisäksi on vesia, jotka voidaan taloudellisesti vähin teknisen apuunoin ja mahdollisimman lievästi luonnontilaa muuttamalla
kehittää tuottaviksi harjusvesiksi.

HURME (1964) kiinnittää huomiota siihen, että harjuksen elintilaa olisi laajennettava merialueelle kotiuttamalla sitä Suomenlahden ja Saaristomeren vähäsuolaisiin saaristovesiin ja jokisuulalueille.

Taloudellisesti suositeltavia ovat emokalojen ja poikasten siirtoistutukset, jotka eivät ole koskaan olleet erikoisesti suosittuja. Niitä puoltaa se, että on mahdollista valita siirrettäväksi uusiin vesiihin terveitä, elinvoimaisia ja nopeakasvuisia yksilöitä. Lisäksi jäävät pois laitoshaudonnan ja kasvatuksen kustannukset.

Siirrettäessä täysikasvuisia emokaloja riittää kokemuksien mukaan kymmenkunta kummankin sukupuolen edustajaa. Suurissa vesissä on siroteltava eri puolille sopivaksi katsotuille alueille muutaman kymmenen kalan ryhmä. Tällainen harjuskannan kotiuttaminen on siis verrattain halpa kalavesien hoitokeino, mutta se on samalla perusparannus, joka
kerran onnistuneesti suoritettuna ei myöhemmin vaadi uusimista. Edellytyksenä on, että istutuskanta lisääntyy luonnonvaraisesti uudessa kalavedessä. Lisäksi kantaan on kohdistettava muita tavallisia hoitokeinoja, kuten esim. sopivalla tavalla suoritettavaa kalastuksen säätöystelyä (HURME 1967):

Koska harjus on verrattain arka kala, vaatii se hellävaraisen pyynnin ja käsittelyn. Isojen siirtoharjusten pyynnä tapahtuu kutujokien suilla parhaiten rysällä ja järven sopivilla rannoilla pienikokoisella nuottalla.

Tässä tutkimuksessa esitettyjä tietoja soveltamalla on mahdollista olennaisesti kohottaa Suomenkin harjuksen taloudellista merkitystä. Tämä tavoite saavutetaan entisöimällä harjusvesiä ja kotiuttamalla harjusta uusiin vesiihin. Tukeutumalla LEHTOSEN ja SALOJÄRVEN (1978) esittämiin vuoden 1975 saaliin alueelliseen jakautumiseen ja edellä luvussa 8 esitettyihin saalistetoihin, arvioidaan harjussaalita voitavan lisätä alueesta riippuen 0,5 – 10 kertaisiksi seuraavan laskelman mukaan:

<table>
<thead>
<tr>
<th>Vuoksenn vesistö</th>
<th>10 x</th>
<th>6 000 kg = 60 000 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oulujoen vesistö</td>
<td>5 x</td>
<td>3 000 kg = 15 000 kg</td>
</tr>
<tr>
<td>Kuusamo - Lappi</td>
<td>1,5 x</td>
<td>113 000 kg = 169 500 kg</td>
</tr>
<tr>
<td>Perämeri</td>
<td>5 x</td>
<td>8 000 kg = 40 000 kg</td>
</tr>
<tr>
<td>Muu Suomi</td>
<td>2 x</td>
<td>2 000 kg = 4 000 kg</td>
</tr>
</tbody>
</table>

yhteensä 288 500 kg
Ammattikalastajien saaliistaan saaman hinnan mukaan laskien olisi edellä esitetyn - voitaneen sanoa - entisöldyn saaliin arvo n. 2,8 miljoonaa markkaa. Koska kysymyksessä on kotitarve- ja virkistyskalastus, liittyvä siinähänen aineetomia arvoja, kuten varuste-, matka-, majoitus- ja polttoainekuluja sekä kalastuslupamaksuja, joiden arvon on laskettu olevan 1,5 - kertaisen saaliiseen verrattuna.

Ilman erillistä tutkimusta on mahdotonta arvioida sen hyödyn rahallista arvoa, joka saavutettaisiin harjusta uusiin vesiiin istutamalla. Kotitarve- ja virkistyskalastuksen kasvava merkitys ja edelläkävijämäiden saamat kokemukset huomioon ottaen voidaan näin saatavaa kalataloudellista hyötyä pitää tulevaisuudessa varsin merkittävänä.

Kiitokset

Useat kalatalousmiehet sekä ammatti- ja vapaa-ajankalastajat ovat materiaalilla hankkimalla sekä usein laajaan kokemukseen perustuvilla tiedoillaan ja neuvoillaan osallistuneet ansioikkaalla tavalla tutkimuksiin. Unohtamatta heistä kuitenkin kaikkia lämpimästi. Käsikirjoituksen laatimista varten saamistani arvokasta tiedoista ja avusta olen kiitollinen FK SERGEI POGREBOFFille sekä käsikirjoituksen tehdyistä parannuksesityksistä FT LAURI KOLILLE, FT PEKKA TUUNAISELLE ja FL KAI WESTMANille.

Taloudellista tukea apurahan muodossa olen saanut Suomen Luonnonvarain Tutkimussäätiölta, jolle täten lausun parhaat kiitokseni.
Tiivistelmä

Suurten vesien harjukset ovat kookkaimpia, mutta yleisenä piirteenä on kasvun hidastuminen pohjoiseen siirryttäessä. Huonoja kasvualueita ovat runsaasti rautaa ja humusta sisältävät pienet sivujot ja parhai-ta Etelä-Suomen suuret ravintorikkaat kosket. Tähän mennessä tutkittu-jen kantojen 3+ harjusten pienin keskipituus oli 13,5 cm ja suurin 33,9 cm. Harjusten yleinen kasvunopeus pysytylee näiden ääriarvojen rajoissa.

Kymmenen tutkin harjuuskannan ravinnon pääosan muodostivat pohjal-la elävät toukat. Tiettyinä aikoina runsaana tarjolla olevat lajit leimaavat ravinnon koostumuksen. Tällaisia aikoja ovat esim. maahyönteisten parveilut sekä Trichoptera- ja Ephmeridanychfien aikuistumi-
nen. Harjusten mahalaukut ovat yleensä täynnä ravintoa, jonka keski-määräinen paino eri kantojen 2+ ja 3+ kaloilla vaihteli 1,2 – 5,9 g. Poikkeuksena ovat kutukalat (0,65 g) ja myöhäistalvella jään alta pyydystetyn harjuksen (0,39 g).

Harjussaaliit ovat paikoitellen ehtyneet tai vähentyneet siinä mää-

rin, että viljely- ja hoitotoimet ovat yhä tarpeellisempia. Jo viime

vuosisadalla on maassamme siirretty osaksi onnistuneesti harjuksia ja

niiden mätää uusin vesin. Haudonta ja kasvatus aloitettiin 1920-
luvun alussa. Vuosina 1922 – 1957 istutettiin lähes 4 milj. harjusta,

joista 0,7 % oli jakokasvatettuja sekä vähäinen määrä emokaloja ja
väitä. Myöhemmin vuoteen 1981 mennessä oli istutettujen harjusten määrä 12,9 milj., joista jatkokasvatettuja n. 3 %. Valtaosa jatkokas-
vatetuista on ollut kesänvanoja. Hyvänä saavutuksena voidaan pitää harjuksen kotiuttamista useina kantoina muutamiin Keski-Suomen vesiiin. Maamme parhailla harjusalueilla istutukset ovat toistaiseksi tarpeettol.

Riittävinä hoitotoimina suositellaan pienikokoisten kantojen pyynnin estämistä ja kuturauhoituksesta.
Summary

The distribution of the grayling in Finland was much greater earlier than at present. Factors reducing the distribution have been destruction and filling of lake basins caused by land uplift since the last glaciation, and an increase in sedimentation and eutrophication due to paludification. Other natural limiting factors have been low temperatures in waters located at high altitudes, salinities over 4 °/oo in the sea and competition from such species as the whitefish and brown trout. Later, the waters suitable for the grayling have been further decreased by human activities. These include overfishing, also during the spawning season, discharge of industrial and domestic effluents, construction of dams and water regulation for hydroelectric schemes, ditching of forests and mires, and lowering of lake water levels.

In Finland, the spawning season of the grayling lasts from 1.5. to 25.6., beginning earlier in southern Finland than further north, and being earlier in streams than in other waters. In the south grayling start to spawn when they are 3 years old, in the north at 4 - 6 years.

Bigger grayling are found in large water bodies, but there is a general tendency for the growth rate to decrease towards the north. Grayling grow most slowly in minor iron- and humus-rich streams and best in large nutrient-rich swift-flowing rivers in southern Finland. In the stocks studied so far, the minimum length at 3+ years was 13,5 cm and the maximum length 33,9 cm. The general rate of growth remains within these limits.

In the 10 grayling stocks studied, the greater part of the food consisted of bottom-dwelling larvae. At certain times the food was chiefly composed of the prey species that happened to be particularly abundant, e.g. when terrestrial insects were swarming and when the nymphs of Trichoptera and Ephemera matured. The stomachs of the grayling were generally full. In 2+ and 3+ fish, the average weight of the food in the different stocks varied from 1,2 to 5,9 g. Exceptions were spawning fish (0,65 g) and fish caught below the ice in winter (0,39 g).

Locally, the catches of grayling have ceased or diminished to such an extent that stocking and other measures for its preservation have become increasingly necessary. In the 19th century, grayling and
grayling eggs were transferred, with some success, to new waters in Finland. The early 1920s saw the beginning of grayling hatcheries and farms. In the period 1922 - 1957, almost 4 million grayling were released. Of these, 0.7 % were fingerlings. A small amount of stocking was also done with spawning females and eggs. In the period up to 1981, the number of grayling released was 12.9 million, ca. 3 % of which were fingerlings - generally one summer old. A satisfactory result has been the establishment of new grayling stocks in several water bodies in central Finland. Stocking is not yet necessary in the best grayling waters in Finland. There, it is probably sufficient to impose a minimum catching age and to forbid fishing during the spawning season.
Kirjallisuus.

ANDERSEN, Ch. 1968: Vandring hos Harr, Thymallus thymallus (L.) i Trysilvassdraget belyst ved merkingsforsøk. - (Copie) 106 pp.

EKMAN, Th. 1906: Harren såsom skadedjur. - Svensk Fiskeritidsskr. 15: 159.

GOTTBERG, G. 1918: Kalanistutuksista Suomessa. - Kalastustentarkeas-
tajan julkaisuja n:o 8: 36 s.

GRUNDSTRÖM, J. 1926: Uusimallinen harjuslauta. - Suomen Kalastus-
lehti 32: 71-73.

- 1952: Några erfarenheter från undersökningar av lekvandrande
harr och laxöring. - Sv. flottledsförbundets årsbok 26:4965-4970.

HALME, E. 1961 ja 1962: Kalanistutukset Suomessa vuoteen 1958,
I-V - Maataloushallituksen Kalataloudellinen Tutkimustoimisto.
Monistettuja julkaisuja 14-18.

HEIKKILÄ, L. 1979: Kokemuksia sumukorentokalastuksesta. - Urheilu-
kalastaja 1: 17.

HELLEVAARA, E. 1927: Kalastuselinkeinon kohtenamisesta. Ehdotus niik-
si toimenpiteiksi, joihin valtiovaltain nykyhetkellä olisi ryh-
dyttävä. - Suomen Kalatalous 9: 112 s.

- Suomen Kalastuslehti 42: 15-17.
- 1954: Harjuksen väheneminen meressä. - Suomen Kalastuslehti
61: 110-111.

- 1923: Einwanderung und Verbreitung der Süßwasserfische in
Norwegen mit einem Anhang über der Krebs. - Sonderabdruck aus
"Archiv für Hydrobiologie" Band XIV: 223-314.
- 1925: Sprellfiske. - Særtryk av Norsk Jæger- og Fisker-
forenings Tidsk. hefte 2: 4 pp.

HURME, S. 1961: Pohjanmaan joet vaelluskalavesinä. - Maataloushalli-
tuksen kalataloudellinen tutkimustoimisto. Monistettuja julkai-
suja 13: 85 s.
- 1962: Suomen Itämeren puoleiset vaelluskalajot. - Maatalous-
hallituksen kalataloudellinen tutkimustoimisto. Monistettuja
julkaisuja 24: 198 s.
- 1964: Harjuksen siirtoistutuksia. - Sanomalehti Kymen Keskilaak-
so 13.1.1964.
- 1966: Harju Suomen merenrannikoilla. - Suomen Kalastuslehti
73: 185-188.
- 1967: Harjuksen siirtoistutus. - Riista- ja kalatalouden tutki-

ILMARINEN, P. & SEVOLA, P. 1976: Heikkiäläjen ja Vanhakylän kala-
kuolemat 1975. - Suomen Kalastuslehti 83: 73-76.

JORDAN, D.S. & EVERMANN, B.W. 1896: The Fishes of North and Middle

JÄRNEFELT, H. 1963: Zur Limnologie einiger Gewässer Finnlands. XX.

1935a: Havaintoja harjuksen koosta, läästä ja kasvusta. - Suomen Kalastuslehti 42: 117-123.

1937: Kalalajien ravintoarvoista edelleen. - Suomen Kalastuslehti 44: 89-93.

1925: Katsaus kalastukseen merenrannikolla ja Laatokalla v. 1924: - Suomen kalatalous 8: 35-68.

1940a: Eräitten kalojen poikasten nuoruusasteista. - Suomen Kalastuslehti 47: 87-89.

KULKEVAINEN, J. 1977: Unohdettu urheilukala - harjus. - Urheilukalas-
tus 4: 10-11.

LAAKSONEN, R. 1970: Vesistöjemme veden laatu. Vesiensuoju-
tavirannonaisen vuosina 1962-1968 suorittamaan tarkkailuun perus-
tuva tutkimus. 132 s. Helsink.

LAAKSONEN, V. 1938: Satakunnan rannikolla esiintyvistä kaloista. -
Suomen Kalastuslehti 45: 54-55.

LAIRD, J.A. 1928: Grayling in the east. - Trans. Am. Fish. Soc. 58:
167-169.

LAPPEA, U. 1966: Något om våra norrbottniska fiskars vanor. - Svensk
Fiskeriitidsk. 75: 114-115.

LANGLER, K. F. 1956: Freshwater Fishery Biology. - 421 pp Dubuque
Kowa.

LARSEN, K. 1947: Stallingens Udbredelse og Forekomst i Danmark. (With
english summary: The Occurrence and its Distribution in

LEHTONEN, H. & SALOJARVI, K. 1978: Kotitarve- ja virkistyskalastus
Suomessa vuonna 1975. (Abstract: Amateur fishing in Finland

LEONARD, J.W. 1940: Further observations on the feeding habits of
the Montana grayling (Thymallus thymallus) and the bluegill
69: 244-256.

LEVANDER, K.M. 1907: Luettelo Suomen maavesien kaloista - 12 s.
Kirjapaino-Osakeyhtiö Sana.

- 1925: Vanha tiedonanto määräistä harjuksen ravintona. - Suomen
Kalastuslehti 32: 83.

LIEDEES, L. 1961: Suurista kaloista. - Suomen Kalastuslehti 68:
198-201.

LINDBERG, A. 1920: Urheilukalastus Kemijoella. - Suomen Kalastus-
lehti 27: 53-63.

- Suomen Luonto 36: 181-185.

LUMME, T. 1976: Pohjanlahden harjuksen historiasta, kalataloudellis-
ta merkityksestä ja biologiasta. - LUK-tutkielma, Oulun yliopis-
ton eläintieteellisten laitos: (moniste) 32 s.

LØKENSGARD, T. 1953: Fiskeriforholdene samt virkningen på disse ved
evenyttlig regulering av Klaravassdraget på norsk side fra
Rogen til Trysil. - 20 pp. Oslo.

MC PHAIL, J.D. & LINDSEY, C.C. 1970: Freshwater fishes of north-

MELA, A.J. 1882: Suomen luurankoiset, eli luonnontieteellisen Suomen
luurankois-eläjäntö. - 426 s. Helsink.

MÄKINEN, K. 1964: Pielisjoen ja Koitajoen rakentamisen kalataloudelli-
set vaikutukset ja ehdotukset kompensaatiotoimiksi. - (Moniste)
31 s.

MÄKINEN, T. 1978: Muistiimmerkittyä sumukorennosta. - Urheilukalas-
tus 1: 17.

PROKOPIEVA, A. 1934: On the chromosome morphology of certain Pisces. - Cytologica 5: 395-525.

RAWSON, D.S. 1950: The grayling (Thymallus s/'ingifer) i northern Saskatchewan. - Can.Fish Culturist 6: 3-10.

1971: Kemijokeen rakennetun Isohaaran voimalaitoksen aiheuttamat kalataloudelliset vahingot. - (Moniste) 317 s.

TCHERNAVIN, V.V. 1923: An attempt towards a systematic arrangement of certain Salmonoides, based on osteological characters. - Izvestia Inst. Opytnoi Agronomii: 103-106.

- 1966: Lausunto vedensäännöstelyn vaikutuksesta Inarinjärven kalakantoihin ja kalastukseen. - (Moniste) 72 s.
- 1977: Simojoen uittoväylän entisöinti kalatalouden kannalta. - (Moniste) 2 s.

TUUNAINEN, O., KYRÖ, J., JUMPPANEN, H. & GUTTORM, J. 1979: Lausunto Inarinjärven sivuvesistöjen kalataloudellisista muutoksista ja säännöstelyn osuudesta niihin. - (Moniste) 60 s.

VALLE, K.J. 1934: Suomen kalat. -228 s. Helsink.

WUORENTAUS, Y. 1940: Kevättilaen koskikalastus. - Suomen Kalastus-lehti 47: 2.

Österbottens fiskarförbund. r.f. 1976: Fiskeriutbredning i kustkom- munerna i Syrösterbotten (Nykarleby-Kristinestad) år 1974. (Moniste) 70 s.

Hyväksytty 7.5.1981
Juikaistu 18.6.1982