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Abstract  

In  forestry  modeling  and  analyses,  the evaluation of  the performance  of  the models 

is needed in order  to  analyze  the applicability  of  the models as a part  of  a  large  

modeling system.  In previous  studies,  no systematic  and detailed analyses  of  avail  
able biomass  models to evaluate their applicability  for  the determination of  carbon 

sequestered  by  trees and  for  the assessment  of energy  wood resources  in  a  certain  
area were  usually  made. The  aim of  this  study  was  to analyze  the performance  of  

available biomass  models for  estimation of biomass  of trees in forestry  modeling  

and analyses.  This  study  was  the first  attempt  to systematize  the evaluation of  the 

set  of  biomass  models  describing  the different components  of a  tree. A set  of  Mark  -  

lund's (1988)  and Hakkila's  (1972  a,  1979, 1991) models were  selected from the 

available biomass  models for  the estimation of the total biomass and its  distribution 

into different components  of  Scots  pine  (Finns  sylvestris),  Norway  spruce (Picea  

abies) and birches  (Betula  pendula,  B.  pubescens )  growing  on different sites  

throughout  Finland. 

Typically,  the models are  evaluated using  statistical  analyses.  However,  the sta  
tistical  tests  do not provide  information about the performance of  the models  out  

side  the testing  data. In  this  study,  due to the lack  of  representative  empirical  data,  

the biomass models were evaluated  using  other methods than statistical  tests.  

Available models for the estimation of  biomass  at  tree  level  were  mapped  using  

literature.  The  representativeness  of  the biomass  models was  evaluated by  studying  
the structure of modeling  data,  capability  of  the models to  describe different com  

ponents  of a  tree and capability  of  used independent  variables to  describe the bio  
mass  of  different components  of  a  tree. The outputs of  the selected Marklund's 

(1988)  and Hakkila's  (1972  a,  1979,  1991) models were evaluated in relation to 

each other and compared  with other studies.  The comparisons  were  made  on min  
eral soils  and on  peatlands,  on  fertile and on  infertile  mineral soils  and in Southern,  

and in  Northern Finland both. Furthermore,  in a  case  study,  the models were  incor  

porated  into  the MELA forest  planning  system,  and the applicability  of  the models 
for  the large-scale  calculations  was  analyzed.  In the analyses,  optimization  was 

utilized  to  point  out  differences between the outputs  calculated using  different  sets 

of  models. 

Marklund's (1988)  models proved to  be more applicable  than Hakkila's  (1972  a,  

1979,  1991)  models for  the estimation  of  biomass  of  different components  of  trees. 

The  data behind Marklund's (1988)  models were  the most  representative  compared  

to  other  models available for  biomass  calculations  at  tree level.  Although  the data 

were  collected  from Sweden,  the variability  in  the data covers  well the variability  

of  the site  conditions and structure  of  tree populations  in Finland,  too. Despite  the 

wider  range of  growing  conditions included into Marklund's (1988)  data,  based on  

comparisons  between the outputs  of  Marklund's (1988) and Hakkila's  (1972  a,  

1979, 1991)  models,  Marklund's (1988)  models are  also applicable  in  Finland.  The 

models for  different biomass components  are  derived  from the  same sample  trees 

of  pine  and spruce for most of  the components  except  the  finest  fraction  of  roots. 
Furthermore,  Marklund (1988)  has  formulated models for  different  components  of  

birch  excluding  stump,  roots and leaves.  In addition,  from Marklund's (1988)  mod  



els  for  the  biomass  of  above-ground  components  of pine  and spruce  it  was possible  

to get  full  sets  having  both breast  height  diameter and height  as  independent  vari  
ables. Excluding  the living  branches,  Marklund (1988)  had also  models  having  

both breast  height  diameter and  height  for  the modeled above-ground  components  

of  birch.  Marklund's (1988)  models provided  acceptable  estimates for  the biomass  

of  different components  of  trees  over the whole diameter range irrespective  of  the 

tree species.  
When the total above-ground  biomass  of  trees  is  considered,  Marklund's (1988)  

models produce  logical  estimates  throughout  Finland.  The  models are  at  their best  

in  regularly  managed  stands  dominated by  Scots  pine.  With regard  to single  com  

ponents  of a  tree, the biomass  models are  the most applicable  for  the estimation  of  

the biomass  of the stem wood and  that of  stem bark. The uncertainty  concerning  

the  outputs  of  the models increases,  when the deviation of  the structure of  the data 

used for  the estimation of  biomass  of  trees from the original  modeling  data in  

creases.  Based on  this  study,  the performance  of  the  models in  terms of  the biomass  

of  stem wood and stem bark  is  realistic  as  regards  the location and the fertility  of  

site,  but  much more uncertainty  is  involved in the estimation of biomass  of  other 

components  of  a  tree.  All  these results  about the performance  of Marklund's (1988)  

models must also  be taken into  account, when the outputs  of  the models are  used as  

a  goal  or a  constraint  in the optimization.  

Based on the analyses  made in  this study,  Marklund's (1988)  models are more 

applicable  for the estimation of carbon sequestration  of  the above-ground  compo  

nents  of trees  than for  the  estimation  of  energy wood resources.  Most  of  the  above  

ground  components  of trees consists  of  stem wood,  for  which Marklund's (1988)  
models produced  realistic  outputs.  The energy  wood consists mostly  of  living  

branches,  and the biomass  estimates of  the models  for  living  branches were  more 

unreliable. 

As  a conclusion,  the evaluation of  the models made in  this study  facilitated the  
determination of the model structure. Furthermore,  it  was  possible  to identify  the  

special  feature of  the model  performance,  with an increase in understanding  how 

the set  of  biomass  models were  functioning  at  different  level  of applicability  (tree,  

stand,  forest area). The evaluation produced  information about the realism and 

generality  of the model outputs,  but  the study  of  accuracy would have demanded 

empirical  data. The  lack  of  knowledge  could be identified in order to direct the  
future studies  to  fill  the gaps in the knowledge.  Also  the uncertainties in the model 

calculations  could be identified. 

In this study,  the methods were represented  for  the  systematization  of the  

evaluation  of  the set  of  biomass  models for different components  of  a  tree. The 

evaluation  of  the set  of  models  for  different components  of  a  tree demanded a  ver  

satile  study  of  the  models in relation to each other.  The  methods used in  this  study  

were  based on more efficient  utilization  of  existing  data and research results  than 

usually  have  been  made in the evaluation  of  the models.  Although  the statistical  

tests would not be possible  for  the evaluation of  the models,  this  study  showed that  

useful information about the performance  of  the models could be obtained using  

other evaluation methods. 

Keywords:  biomass,  carbon, energy wood,  evaluation,  forestry  modeling,  MELA, op  

timization, simulation, tree-level model 
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DEFINITIONS 

Above-ground  components  of a  tree Components  of  a tree above the stump  level.  

Basic  density Relation between dry  mass  and green vol  

ume (kg/m
3

).  

Biomass Mass  of  organic  matter (kg).  In this study  
biomass  refers  to dry  mass  of wood  and bark  

(if  not  otherwise specified).  

Calculation period The time period  for  which the analyses  were  

made in the MELA forest  planning  system.  

In this study  the calculation period  of  50 

years was divided into  five  sub-periods  of  

10-years.  

Dry  mass Mass  of  dried organic  matter (kg).  

Green  mass Mass of  both water and dry  matter, which 

organic  matter includes (kg).  

Sub-period The period  for  which the variables are  esti  

mated  in  the MELA forest  planning  system.  

In this study  five sub-periods  of  10-years  

were  used. 

Tapering The difference between the diameter at 

breast  height  (1.3  m) of a  stem and the di  

ameter at  a height  of  6  m (cm).  
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SYMBOLS 

a,  (3,  y,  5, ti,  0  Parameters 

e Error term 

BEF Biomass  expansion  factor:  a  multiplier  used 

to convert stem volume into the biomass  of  

different  components  of  a  tree 

C02 Carbon  dioxide 

cr Crown  ratio:  relation between the length  of  

living  crown and the  tree height  

CT Dummy  variable. CT  = 1, if  a  tree  grows on  

dry  forest sites (Calluna sites  according  to 

forest  type  classification  used in  Finland),  

otherwise  CT = 0 

d Diameter at breast height  (1.3  m) (cm,  if  not  
otherwise  specified)  

d.d.  Degree  days  

FFRI Finnish Forest Research Institute  

h Height  (m,  if  not  otherwise  specified)  

hrel Relative  height  of a  tree,  the height  of a  tree 

in relation to  the dominant height  of  trees 

IR Ombrotrophic  bog  

k Correction  term for knots  and bark 

lc Length  of  living  crown (m) 

lcl The height  of  crown limit, the distance be- 

tween ground  level and the lowest living  
branch (m) 

m Dry mass  (kg,  if  not otherwise specified)  

MK Vaccinium myrtillus  spruce  mire 
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m,i  Biomass  of  living  trees  in the time tl  (Mg)  

mt2 Biomass  of  living  trees  in  the time  t2 (Mg) 

n Number of  sample  trees 

NC Net carbon sequestered  by  trees  (Mg)  

NFI National forest  inventory  

NPV Net  present  value  (€)  

R Multiple  correlation coefficient 

R
2 Coefficient  of determination 

RhNRmu Herb-rich  sedge  pine  mire 

s Standard  deviation (cm,  m) 

Sres  Residual  standard deviation (kg  or  ln(kg))  

t Age  at  breast height  (years)  

tb Biological  age (years)  

V Stem  volume with  bark  (m
3

) 

V
bl Stem volume without  bark  (m

3
) 

VNRmu Ordinary  sedge  pine  mire 

V
0
 Stem  volume with or  without bark  (m

3

) 

X Mean value (cm  or m) 
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1 INTRODUCTION 

1.1  Need  for  biomass  estimation  of  trees  in  forestry  modeling 
and  analyses  

Forests  play  an important  role in fixing  atmospheric  carbon dioxide (CO2) (e.g.  

Hoen and Solberg  1994,  Marttila  et  ai. 2000, Sedjo  2000).  In Finland,  the extent  of  

carbon sink  of  trees has  been  estimated to correspond  to half  of  the CO2 emissions 

of  fossil  fuels (Forsius  et ai.  1996).  The  carbon sink  of  trees  can  be increased and 

thus the emissions of  CO2  to the atmosphere  can  be slowed down by  protecting  and  

increasing  the area of  forests  and the volume of  growing  stock  (Mikkelä  et  ai.  

2000).  The  emissions  of  CO2  can also  be slowed down by  replacing  non-renewable 

energy  resources  with wood and other  renewable biomass  (Mikkelä  et  ai. 2000).  In 

Finland,  the proportion  of  wood-based energy resources  is  ca. 20% of the total  

energy consumption  (Finnish  Statistical  Yearbook of  Forestry  2003).  

For  the determination of  carbon sequestered  by  trees and for  the assessment  of  

energy wood resources  the biomass  estimations  of  trees are  needed. The carbon 

sequestered  by  a tree is usually  expressed  as  a  certain  fraction  of  biomass  of  a tree 

(Karjalainen  et ai.  1994, Nurmi 1997). The amount of  different components  of  

crown, stumps  and roots  can  be estimated most  practically  by using  mass  as  a  

measure  (Hakkila  1989). The  biomass  can  be expressed  as  green mass  or dry  mass.  
Green mass is  the mass  of  water and dry  matter,  and dry  mass  merely  the mass  of  

dry  matter. Usually  the dry  mass  is  determined by drying  green mass  samples at  

105° C  (e.g.  Marklund 1987,  Finer  1991).  The  dry  mass  is  a  more useful  measure  

ment of  biomass  than  green mass, because the  water content of  trees can  vary  con  

siderably.  In this  study  biomass  refers  to the dry  mass,  if  it  is  not otherwise speci  

fied. 

The  amount  of carbon  sequestered  by  trees  and the  biomass  of  trees should be 
taken into  account  in  also  in forestry  modeling and  analyses.  The period  of  time to 

maintain a  high  growth  rate (Schroeder  and Ladd 1991),  the allocation of growth  to 

different components  of  a tree  (Oliver  1992) and the ability  to store carbon 

(Schroeder  and Ladd 1991,  Dixon  et  al.  1994) vary  between tree species.  There  

fore, the decisions  concerning  the selection  of  tree species  have effects  on  the car  

bon sequestration  of  trees  and the amount of  energy wood resources.  In  addition,  

the carbon sequestered  by  trees and the amount of  tree  biomass  in stands as a 

whole can  also  be  affected  e.g.  by  regulating  the rotation length  of  tree stand (Sedjo 

2000,  Liski  et  al.  2001,  Ericsson  2003)  and the intensity  and frequency  of  thinnings  

or  by  ditching  and fertilizing  (Castren  and  Simula  2000).  

In Finland information about carbon sequestration  of  trees  at  the national level  

is currently  collected as  part  of  forestry  statistics  (Finnish  Statistical  Yearbook of  

Forestry  2003).  The carbon balance of  forests  is  taken as  an indicator of  the sus  

tainability  of  forestry  in  Finland (Mikkelä  et  al. 2000).  In addition,  the  carbon se  

questration  of  trees has already  been taken into account  in the formulation of  na  

tional (Maa-  ja metsätalousministeriö 1999) and regional  forest  programs (e.g.  

Lounais-Suomen metsäkeskus  2001).  Furthermore,  information on carbon flows of 
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forest sector is  required  for  the determination of  national level  climate policy  

(Sievänen  2000).  

In the future,  the carbon flows of  trees  should be included  in  the environmental 

impact  assessment  related to  all  planning  and decision-making  processes.  The sell  

ing  of  the spare capacity  of carbon sequestration  may be an alternative  to the  sell  

ing  of  timber (Hilden  et  ai.  1999).  In  the future,  also  the information  about energy 

wood resources  and the use  of  logging residues for energy  needs  can  be docu  

mented in  national forestry  statistics.  The  information about the amount of  logging  

residues can also  be used in order  to  determine the available material  for energy 

production  -  e.g. for  a single power  plant  (Asikainen  et ai.  2001) or  for a single  
household. In addition,  biomass  estimates  are  needed in  the evaluation of  the envi  

ronmental impacts  (e.g.  nutrient losses)  of harvesting  the logging  residues for  en  

ergy  wood. 

1.2 Estimation  of  biomass  using  stand- and  tree-level  models  

In Finland the estimates on the carbon sequestration  of  growing  stock  and on the 

energy wood resources  have been  commonly  made using stand-level  models. The 

estimates  have usually  been based on  average characteristics  of  trees  in a certain  

region  (e.g.  Mattila  and Keskimölö 1994,  Hakkila  et  ai.  1995,  Kauppi  et  ai.  1995, 
Vesterlin  1996, Siren et  ai.  2000,  Asikainen et ai.  2001,  Lounais-Suomen metsäke  

skus  2001,  Finnish Statistical  Yearbook of  Forestry  2003).  For  example,  at the 

national level the carbon balance of  tree stands during  a  certain  period  has  been 

calculated on  the basis  of  national forest  inventory  (NFI)  data as a difference  be  

tween the total amount of  carbon of  growth and that of  removal. The  species  

specific  conversion factors  (Karjalainen  and Kellomäki 1996) have  been used to 

convert  the volume of  stem growth  and that  of  removal  to the biomass  and carbon  

corresponding  the growth and  removal of  all components  of  trees (Marttila  et  ai.  

2000).  Recently,  Lehtonen et ai. (2004)  developed  biomass expansion  factors  

(BEFs)  for the estimation of  carbon stock.  These BEFs were  dependent  on  stand  

age  and dominant tree species.  In order to formulate BEFs,  the biomass of  a  com  

ponent  and the stem volume were  estimated  for each tree using tree-level models. 

Thereafter,  at stand level  the BEFs were  estimated as a  relation between the sum of  

dry  mass  of  a  tree  component  and  that of  stem volume. Finally,  the age-dependent  
BEF for  a  component  was  estimated  as a function of  stand  age using  linear  regres  

sion. 

The stand-level  models,  which are  based on  the BEFs  (or  other conversion fac  

tors)  are  useful where the data includes stem volume estimates (Losi  et  al.  2003)  

and only  very  coarse  biomass estimates  are  needed. A problem  in the use  of  BEFs 

is  that they  describe only  trees  growing  in  certain  stand structures.  The variation of  
a tree biomass  between different stands and inside a  single stand cannot be de  

scribed  properly  by  using BEFs.  In order  to take into  account  the biomass  of  trees 

in various growing  conditions,  the great number of  BEFs would be needed,  and 

therefore their use  would become complicated.  A  problem  in the formulation of 

BEFs is,  that the stem volume and biomass functions should be  derived from the 
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same data and  the formulas of  the functions should be compatible.  The use  of  stem 

volume functions derived from different  data than biomass functions can cause 

compatibility  problems  between the models,  which can  have effects  on the values 

of  BEFs. The estimation of  uncertainties is  also difficult  if  the volume and biomass  

models represents  different  populations  and if  the models cannot be  tested quantita  

tively  in  the population  in which  they  are  applied.  

In  addition  to  stand-level models,  energy wood resources  have been  predicted  

using tree-level models  in Finnish studies  (e.g.  Hynynen  2001,  Malinen et  ai.  

2001).  In these studies  the biomass  was estimated for  sample  trees describing  the 
size  distribution of  trees growing  in a forest  area. The estimation of  biomass  of  

trees using  tree-level models has many advantages  compared  to the estimation of  

biomass of  trees based on  stand-level or forest area level models. When the tree  

level models are used,  the structure of  forests  can be described in  more detail. The 

tree-level models take into  account  competitive  interactions  within a  stand (Cher  

tov et  al.  1999, Porte  and Bartelink  2002).  Therefore,  the effects  of  stand density,  

species  mixture  (Knowe  et  al. 1997, Hasenauer 2001),  various size  classes  (Knowe  

et al.  1997) and age (Hasenauer  2001)  can  be taken into account using  the tree  

level  models.  Also the effect  of site fertility  and site  location on the form of  a  stem 

and a crown, and thus on  the amount  of  energy wood resources  and  carbon seques  
tered by  trees  can  be taken into  account  by  using  tree-level models.  The effects  of  

forest  management  on  the growth  of  trees  (Siitonen  1996,  Hasenauer 2001,  Nuuti  

nen and Kellomäki  2001)  and on the amount of  different timber assortments  can  be 

determined more accurately  using  tree-level models than using  stand-level  models.  

The main problem  in using tree-level models is  that  tree-level data is  not always  

available,  and thus,  the size  distributions of  trees  in a  stand  must  be  regenerated  

based on stand-level variables using  theoretical distributions. This causes  extra  

work  and adds uncertainty  to  the biomass  estimates. 

The  biomass of  an individual tree can  be estimated using  weight  tables  (e.g.  
Hakkila  et  al. 1978,  Baskerville  1965),  expansion  factors  (e.g.  Field measure  

ment... 2002)  or  regression  functions (e.g.  Parresol  1999). In the simplest  species  

specific  weight  tables,  the  biomass  of  different components  of  a  tree can  be deter  

mined according  to  diameter at  breast  height (Baskerville  1965).  In addition to  tree 

species  and diameter  at  breast  height,  tree  height  and taper  class  are used for  the 

estimation  of  stem biomass  in  the weight  tables (e.g.  Hakkila  1979).  The main limi  

tation for  the use of  weight  tables is  the difficulty  of  the use  of  multidimensional 

tables. 

At  tree  level,  expansion  factors  are used to  convert the stem volume into  above  

ground  biomass of a  tree  and into the biomass  of  different components  of  a  tree  

(Harkin  and Bull  2000,  Field  measurement...  2002).  These expansion  factors  are, 

however,  average estimates  for  a  tree  species,  and thus,  they do not take into ac  

count  the characteristics  of an individual tree. Therefore,  the biomass  estimates  

calculated for trees in a stand using  tree-level expansion  factors  have the same 

limitations  as  those produced  using  stand-level  expansion  factors.  

Tree biomass may  also  be estimated using  regression  functions.  The  regression  
functions usually  predict  directly  the dry  mass  of  a  component  of  a  tree (e.g.  Finer  
1989,  Korhonen and Maltamo 1990,  Finer  1991,  Hakkila  1991,  Laiho 1997). How  

ever,  the dry  mass of  a  stem is sometimes  estimated by  multiplying  the average 
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basic  density  of  a  stem calculated using  regression  function  with the green volume 

(e.g.  Hakkila  1979,  Bergstedt  and Olesen 2000,  Stakanov et  al.  1998). In allometric  

regression  functions the mass  of  a  component  is  related to  one or more dimensions 

of  the standing  tree (e.g.  Parresol  1999,  Field  measurement... 2002).  The tree char  

acteristics  related to  the amount  of  biomass  and usually  determined in  forest  inven  

tories  are tree species,  diameter at breast  height,  height,  diameter increment,  height 

increment,  age  at breast  height,  and crown limit.  In forest inventories the stand 

conditions are  often described using stand  density,  stratum,  site  fertility  and site  

location. All these stand characteristics  have  effects  on the allocation of  biomass.  

Of  these variables,  diameter at  breast  height,  height,  age  and crown  limit  are com  

monly  used for the biomass functions (e.g.  Hakkila 1970, 1971, Hakkila et al. 
1978,  Simola 1977,  Mälkönen and Saarsalmi 1982,  Björklund  1984,  Marklund 

1988,  Finer  1989,  Saarsalmi and Mälkönen 1989,  Finer  1991,  Hakkila  1991,  Laiho 

1997).  

The  use  of  the regression  functions  is  common because they  can easily  be ap  

plied  using  computers  (Hakkila  1989).  The regression  functions require  only  a few 

steps  to estimate  biomass  once  a regression  has been prepared  (Losi  et al.  2003).  
The estimation of  uncertainties is easier  than  that of  expansions  factors,  for  exam  

ple. A problem  concerning  the use  of  regression  functions can be that suitable  vari  

ables are not  available in the data. 

1.3 Incorporation  of  tree-level  biomass  models  into  the  for  

estry  modeling  and analyses  

In  Scandinavia,  tree-level biomass  models  have been implemented  in  some forest  

planning  systems.  In Norway,  the CO2  fixation  of  trees  has  been  modeled in a  long  

range forest management  planning  model,  called GAYA-LP,  by a sub-model,  
which is  based on  Marklund's (1988)  biomass models and  a conversion factor,  

which was  used in order  to  calculate the amount of  fixed C02 .  By  using this  sub  

model the potential  for increasing  the net carbon sequestration  related to timber 

production  by  changes  in  the forest  management  over  a  time period  of  30  years  was 

studied (Hoen  and Solberg  1994). In Sweden,  the  Hugin  model was  used to study  

the effects  of  rotation length  on the carbon accumulation in  biomass  and soil  and 

the amount of  harvest residues  that could substitute for fossil fuel. Marklund's 

(1988)  biomass  functions were  used in  the Hugin  model to calculate the dry  mass 

of  different components  of trees  (Ericsson  2003).  

In Finland,  the MELA forest  planning  system  (Siitonen  et al.  1996,  Redsven et  

al. 2004)  is  commonly  used for  estimating  the production  potentials  of  forests  and 

for solving  the optimal  management  of  forest  stands  according  to  specific  goals  and 

constraints  (Siitonen  1993).  It consists  of an automated stand simulator  based on 

individual trees  and the optimization  package  based on linear programming,  JLP 

(Lappi  1992). Mielikäinen et  al.  (1995),  Malinen and Pesonen (1996)  and Malinen 

et  al.  (2001)  used  undocumented tree-level models with the MELA system  to esti  

mate  the fuel wood potential  based on different cutting  scenarios.  Minkkinen et  al. 
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(2001)  used MELA with Marklund's (1988)  models in order to study  tree stand 

development  and carbon sequestration  on  drained peatland  stands  in  Finland. 

Specific  demands are  set  for  the biomass  models that are incorporated  into for  

estry  modeling  and analyses.  These demands depend  on the objective  of  a  user  and 

the purpose  of  the forest  planning  system  used as a  tool for  the analyses.  Typically,  

forest  planning  systems  are  used to generate  estimates  on the current and future 
forest  resources  on  large  forest  areas.  

The  first  demand is that the models incorporated  into  the forestry  modeling  and 

analyses  have to be widely  applicable.  The  biomass  models should be able to  de  

scribe  the biomass  of  different tree  species  and the whole size  range of  trees. They 
should  cover  the trees growing  in  different stories,  different stand densities,  differ  

ent  sites  and different  parts  of  the country.  

The  second demand is  that  the biomass  estimates  must be provided  for  all  com  

ponents  of  a  tree. If  many different  divisions of  biomass  components  are  needed,  

they  must be compatible  with each other and  with other models used in forestry  

modeling  and  analyses.  The functions should be derived for  each component  of a 

tree from the variables describing  the same sample  trees. The combination of  the 

models from  separate  studies  may cause  the distortion in the  relation of  compo  

nents of  a  tree.  In addition to  differences in modeling  data, there may be variation 

in  the definition of  a  component  in  different  studies.  If  the biomass  of  a  whole tree 

is  estimated using  a  separate  function,  the  sum of  different biomass  components  

should  correspond  to that function (Parresol  1999).  However,  in many studies  

equations  for  total above-ground  biomass  have not been formulated,  and thus,  the 

attempts  to estimate total biomass  by  addition of  estimates  of  the components  

might  be biased. For  example,  when the biomass  of  components  are  estimated  us  

ing  log-transformed  allometric  relationships,  the sum  of  the component  biomass  is  

not the same as  when the total biomass is  estimated  directly  by  an  allometric  rela  

tionship  (Snowdon  et  al.  2002).  
Parresol  (1999)  represented  three procedures  for forcing  additivity  of  a  set  of  

linear  tree biomass  functions. In procedure  1, the total biomass regression  function 

is  defined as  the sum of  the separately  calculated best  regression  functions of  the 

biomass  of  its  components.  In procedure  2, the same independent  variables  are  

used in  the least  squares linear regressions  of  the biomass  of each  component  and 
that of  the total, and  thus,  the additivity  of  the components  is  ensured. In procedure  

3, the generalized  least  squares regression  with dummy variables techniques  is  

used. The  total-tree regression  is a  function of  all independent  variables  used in the 

regression  for  each component  of  a  tree. The  additivity  of the functions is  ensured 

by  setting  constraints  on  the regression  coefficients.  Parresol  (2001)  demonstrated 

two  procedures  for  forcing  additivity  of  a  set  of  nonlinear models.  Procedure  1 is  

the  same as the procedure  1 in  the case  of  linear functions.  In  procedure  2,  nonlin  

ear  joint-generalized  least  squares regression  is  used. Otherwise the procedure  is  

the  same as in  procedure  3  in the context of  linear functions. 

In forestry  modeling  and analyses,  it  is not usually  enough  to estimate  just  the 

biomass  of  standing  trees. Thus, the second demand concerns also  the biomass  

estimates  of different components  of  cut trees. For  the determination of  the bio  

mass  of different timber assortments,  it  is  necessary  to  allocate  the biomass  of  the 

stem between the different assortments. In energy  wood harvesting,  some parts  of  
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the branches and  needles -  and even some parts  of  stumps  and roots  -  are  taken 

away  from the forest.  Therefore, it is  also  necessary  to evaluate  the biomass of  

these components.  There is  a need for  models that  can provide  the information 

about the changes  vertical  distribution of  the biomass  of  the different  tree  compo  

nents in lengthwise  direction  of  the tree  can be achieved. There is also  an  increas  

ing  demand for modeling  the biomass  of  dead trees. The mass  loss  of  dead trees  

over  time must be taken into account. It should also be noted that different defini  

tions of  the components  should be applied  for  dead trees than for  living  trees. 

The third demand is  that the independent  variables used in  biomass models 

should be  measured in forest inventories,  or  should be able to be estimated from 

forest  inventory  data easily  and reliably.  The use  of  independent  variables in a 

biomass  model for  a  certain  component  of  a  tree  must be compatible  with that for  

other  components  of  a  tree.  In principle,  the most accurate  estimates  of biomass  of 

a  component  of  a  tree in  relation to other components  can  be achieved,  if  the same  

independent  variables are  used for the modeling  of  all components.  The exclusion 

of  an independent  variable simplifies  the model,  but causes  error  in the relation of 

the outputs  of  the models formulated for  the different components  of  a  tree. 

1.4 Model  evaluation  methods  

Before  the use  of  the models the adequacy  of  the models for  the intended purpose 

and context must be assessed.  Typically,  the outputs  of  the models are  tested only  

against  the empirical testing  data. However,  this  kind  of  testing  does not usually  

cover  all  situations in which the models are intended to  be used. Furthermore,  in 

many cases  the testing  of  outputs  of  models is impossible  due to  lack of  empirical  

data.  Thus,  when the data are  lacking,  the analysis  of  the applicability  of  the mod  

els  for a  certain  purpose has not usually  been made or it  has  been inadequate.  For  

example,  in the previous  studies  (e.g.  Hoen  and Solberg  1994,  Mielikäinen  et ai. 

1995), no  systematic  and  detailed analysis  was  carried out of  existing  tree-level 

biomass  models to evaluate their applicability  in  the assessment  of  carbon  stock of  

trees  and energy  wood resources  in a  certain  area. 

In  the literature,  evaluation of  the models has  commonly  been referred to  using 

such  terms as  verification  and validation (e.g.  Caswell  1976, Mayer  and Butler  

1993,  Power 1993,  Rykiel  1996,  Prisley  and Mortimer  2004).  For  example Rykiel  

(1996)  has  defined verification  as a  demonstration that the modeling formalism is  

correct,  and validation  as  a demonstration that a  model meets  some  specified  per  

formance standards under specified  conditions. However,  some  authors (e.g.  Cale 

et  al.  1983,  Soares et  al. 1995,  Vanclay  and Skovsgaard  1997) have recommended 

that the terms verification  and validation should be avoided because of  the seman  

tic  and philosophical  controversies  associated with them (e.g.  Oreskes  et. al.  1994,  
Soares  et  al.  1995).  Therefore,  in  this  study  the general  term evaluation was  used to 

cover  the acceptability  analysis  of the models for  a  certain  use (compare  Soares et  

al. 1995,  Vanclay  and Skovsgaard  1997).  

The  evaluation should provide  information about the  behavior and predictive  

ability  of  the model (Soares  et al.  1995,  Vanclay  and Skovsgaard  1997).  It is  not  
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possible  to prove the absolute correctness of  a  model (e.g.  Oderwald and Hans 

1993). However,  the credibility  of  a  model,  and thus,  the  user's  confidence about 

the adequacy  of the model  for  its  intended uses, increases  with the rigor  of the tests 

the model passes (e.g.  Caswell  1976,  Oderwald and  Hans 1993, Power 1993,  Van  

clay and Skovsgaard  1997). The analysis  of  models may also indicate where the 

knowledge  is  lacking  (Mankin  et  ai. 1979) and  where  future data collection and 

model revision  efforts  may be most  useful (Soares  et  al.  1995,  Vanclay  and Skovs  

gaard 1997). 
Evaluation procedure  should include quantitative  and  qualitative  examinations 

of  model performance.  The  aim  of  qualitative  evaluation is  to  ensure  that  the model 

and its  components  are necessary,  are biologically  realistic,  agree with existing  

theories,  and provide  sensible responses  to management  actions (Soares  et al. 

1995). In many previous  studies only  quantitative  evaluation of  the models has 

been  made. The quantitative  evaluation informs  about accuracy  of  the model (Rob  

inson and  Ek  2000),  but  does not  guarantee  that the scientific  basis  of the model 

and its internal structure correspond  to actual  processes  or  cause-effect relation  

ships operating  in  the real  system  (Rykiel  1996). It  comprises  commonly  statistical  

tests  and comparisons  of  predictions  with empirical  data that  are  independent  of  the 

data used to fit  the model (Soares  et  al.  1995) and belong  to the population  to  which  

the models are  to be applied  (Robinson  and Ek  2000).  In  addition,  the quantitative  

evaluation should comprise,  for  example,  the determination of  limits  for  the use  of  

a  model on  the basis  of  model  form. 

In some cases,  the quantitative  evaluation of the models using  statistical  tests  is  

impossible  due to lack  of  representative  data. Thus, the model must  be examined at  

least for  reasonableness and completeness  without  reference to empirical data 

(Mankin  et  al.  1979).  The evaluation of  the models should include at  least  the study  
of  the applicability  of  the models for trees  having  different sizes and growing  in 

different  conditions. In the evaluation  of  different  models one of  the  main interests  

is,  how  well a model performs  in relation to other  models  (Buchman  and Shifley  

1983).  Thus,  the comparison  of  the output  of one model  to  that of another model,  if  

comparable  models  exist,  is an important  evaluation method. 

The study  of  modeling  data reveals  preliminary  information about the range of  

applicability  of the models.  The structure  of data used  for the formulation of  the 

models  should correspond  to the one for  which the models are  used. In practice,  

this  requirement  is  difficult to meet. Therefore,  attention should be paid  to the  
evaluation  of  the influence of  the modeling  material  to the results  and to the esti  

mation of  biases  of  the outputs  of  the models in the application  areas  where the 

models  are used. The evaluation should also  take into account  that the structure  of  

forests  will  change  over  time; this  also  applies  to the areas  from  which the models 

are  derived. In many cases  extrapolation  is needed,  and it  adds much uncertainty  to 
the results.  However,  according  to  some  studies (e.g.  Keller  et  al.  2001)  it  may be 

the most cost-effective to resolve uncertainties for the most common diameter 

classes,  because the  improvement  of  the certainty  of,  for  example,  very  large  trees 

might  result  only  in  small  improvements  in  total estimates.  If  all  sizes of  trees  and 

site  conditions are not included to  the modeling  material,  at  least  the behavior of 

the model outside  the range of  data should be  carefully  checked  and the restrictions  

to the use  of models should be clearly  determined. 
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Also the study  of  independent  variables gives  useful  information about the per  

formance of  the model.  The  need for and  the effect  of  different independent  vari  

ables have to be analyzed.  A model including  many independent  variables  is  more 

flexible and can  better  describe the variation  of  dependent  variables (Ranta  et  ai. 

1997). However,  the aim  of  regression  analyses  is  to find out the best independent  

variables,  and  thus,  if  the independent  variables are  strongly  correlated with each 

other,  not all of  them should be included into  the model,  because they explain  the 

same phenomenon  (Ranta  et  ai.  1997).  The analysis  of  the effect  of an independent  

variable should include the study  of  positive  or  negative  effects,  the effect  of  trans  

formation,  and the magnitude  of  the effect on  the biomass.  

The  more detailed evaluation  of  the models is  the comparison  of  output  of one 

model to that of  another model. Models to  be compared should be independent  and 

based on different  underlying  principles  (Rastetter  1996). The inventory  data are  

needed to  derive the real  relationships  between the different independent  variables 

used in the models.  The outputs  of  the  models must  be compared  also  outside  the 

range of  modeling  data. Also the models, which are mathematically  very  different 

may be virtually  indistinguishable  in terms of  their  fit  to the data, but  may give  

very  different  predictions  outside  the range of  the data (Chatfield  1995).  

The  comparison  of  the models reveals  what kind  of  outputs  the models  produce  

in relation to  each other.  Thus,  if  the outputs  disagree,  then neither of  the models 

can  be  falsified  (Rastetter  1996).  If  all  available models give  similar  results,  models 

can  be  considered  to  be structurally  reasonable  (Kangas  2001  a).  If  different  models 

produce  parallel  results,  the comparisons  of  the outputs  of the models give  useful 

information about the magnitudes  of  the studied variable in trees of different sizes.  

By  comparing  the outputs  of  the models on different sites  and in  different  geo  

graphical  regions  it  is  possible  to  get  some kind  of guidelines  about the variability  

of  the studied variable along  the site  fertility  and  geographical  location,  if  the mod  

els  produce  similar  results. 

Although  the available  models  may  produce  similar  outputs,  there is  however,  a  

possibility  that  the models are based on  the same faulty  assumptions,  and therefore,  

several  poor models may  make similar  predictions  (Leary  1997, Kangas  2001  a).  

The realism  of  the models has  to be studied by  comparing  the model outputs  with 

broad expectations  derived from ecological  or physiological  knowledge  (see  Rob  
inson and Ek  2000).  If  the similar  outputs  of  the compared models also  correspond  

to the previous  knowledge,  the selection  between the models  may be based on ex  

tra-evidential considerations,  such as  symmetry,  simplicity  and personal  prefer  

ences  (Oreskes  et  al.  1994).  

When the models are  incorporated  into  a  forest  planning  system,  the evaluation  

of  the models as  a  part  of  such  a  system  is  required.  In a  forest  planning  system  the 

models must produce  reasonable results  in relation to other models,  and  thus,  the 

outputs  of  incorporated  models must be compared  to the outputs  of  other models. 

The models included in  a  forest  planning  system  are  constructed  from several  equa  

tions independently  fitted to data. Often  the models  do not describe exactly  the 

same tree  population.  The  models are  commonly  formulated from the inventory  

data measured from  different  sample  plots.  In cases  where the  sample  plots  are  the 

same, the measurements might  have  been made at  different times.  
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By  incorporating  many  models describing  the same phenomena  into  a forest  

planning  system  the effects  of  differences noticed in  the evaluation made  at  the tree 

level on the differences at  the stand  and forest  area level can be analyzed.  The 

comparison  of  the models  can  be made by  ranking  the outputs  simulated for  differ  

ent forest  structures. The ranking  of the outputs  must not  depend  on artifacts  pro  

duced by  the model (compare  Stage 2003).  If  the ranking  produced  by the various 
models  is the same,  the results  are  probably  correct  in  this  respect.  Thus,  although  

the models may produce totally  different absolute values,  the relative  differences  
between the outputs  of  the models  might  be rather  similar.  

Forest  planning  systems  usually  include  an optimization  part,  which  is  used to  

select  management  schedules of  stands  according  to  specific  goals  and constraints.  

If  the value of  the goal  or  the constraint  is  estimated using  different models de  

scribing  the same phenomena,  the effect  of  the differences  in  the outputs  of  the 

models  on the optimization  results  can  be analyzed.  If  the models produce  biased  

estimates,  a  non-optimal  alternative  may be  chosen or  the true  worth  of  the optimal  

solution may be overestimated.  The solution may also  be infeasible,  if  a  constraint  

is  used in  the optimization.  The overestimation  of  the effect of  a specific  treatment 
will  cause the forest  planning  system  to recommend that the treatment is  carried 

out  more  frequently  (Kangas  and Kangas  1999). 

1.5 Aims of  the  study  

The aim  of  this  study  was  to  analyze,  whether the available tree-level biomass (dry  

mass)  models describing  different components  of  living  trees  can  be  widely  used in 

forestry  modeling  and analyses  in  Finland.  This  was the first  attempt  to systematize  

the evaluation of  the set  of  biomass  models describing  the  different components  of  

a  tree. The specific  objectives  were: 

To map representative  models for  the  different tree components  

of  Scots  pine  (Pinus  sylvestris),  Norway  spruce (Picea  abies),  

and silver  (Betula  pendula)  and downy  birch  (B.  pubescens)  for 

Finnish  conditions;  

To test the applicability  of the most  representative  biomass  

models  for trees having  different  sizes,  growing  on different  

sites and in different parts  of  Finland;  and  

To analyze  the use  of  these  biomass  models in  the forestry  mod  

eling  and  analyses.  

First,  the availability  of  tree-level biomass  models suitable for Finnish  condi  

tions was  explored  using  literature.  The  representativeness  of  the models was  stud  

ied  by analyzing  the modeling  data,  the division of  a tree into different  compo  

nents, and the use  of  independent  variables.  Thereafter,  the applicability  of  the 

most representative  models for  different sites  and in  different parts  in  Finland was  

tested by  comparing  the outputs  of  the models on  fertile  and infertile  mineral soils,  

on  mineral soils  and peatlands,  and in Southern  and Northern Finland. In  addition,  



20 Leena Kärkkäinen 

the use  of the biomass  models in MELA forest  planning  system was  analyzed  by  

implementing a case  study.  The case  study  helped  to outline the effects  of  differ  

ences between the output  of  biomass models  at  the tree  level  on the differences 

between the outputs  at the stand  and forest  area level  in  regard  to  biomass  and net  

carbon sequestration  of  trees.  Furthermore,  if  biomass was  used as  a  constraint,  the  

effects of  differences  between the outputs  of  biomass  models on the optimization  

results,  could be  analyzed.  

2  MATERIAL AND  METHODS 

2.1  Outlines  of  the study  

In the first  part  of  the study  (chapters  3.1  and 3.2)  the applicability  of  the selected 

tree-level biomass models for  incorporation  into forestry modeling  and analyses  
were evaluated. The selection of  the  biomass models was  made in three phases  

(Figure 1). In the first  phase,  the potential  tree-level models  for  the incorporation  
into a forest  planning  system  were selected from the available biomass  models 

applicable  for Finnish  conditions. The models were  chosen for  different compo  

nents of  Scots  pine,  Norway  spruce  and birches.  In the second phase,  the most rep  

resentative models were  selected for the comparisons  from these potential  tree  

level  models.  In the model comparisons  the biomass  was  estimated by  the selected 

sets of the models for the Finnish National Forest Inventory  (NFI)  sample  trees. 
The outputs  of  the models were  compared  by  tree species,  by  size  of  trees,  by  loca  
tion (on  mineral soils and on  peatlands),  and by site  fertility  (only  on  mineral soils).  

In addition,  the outputs  of the models for  trees growing  on mineral soils  were  com  

pared  to  those for  trees  growing  on  peatlands.  In the third phase,  the applicability  

of the models  for  trees  growing  on mineral soils  and on peatlands  in different  parts  

of Finland was  determined (based  on the comparisons  carried out in the second  

phase).  

In  the second part  of  the study  (chapter  3.3)  the case  study  was implemented  

(Figure  2).  In the case  study  the sets of models selected based on  comparisons  

made in  the first  part of  the study  were  incorporated  into  the MELA  forest  planning  

system  (Siitonen  et  ai.  1996,  Redsven et  ai.  2004).  Stand data from  the forests of  

Finnish  Forest  Research Institute  (FFRI)  in Suonenjoki  were  used as input data in 
the MELA simulations.  According  to  given  simulation instructions  the simulator  

part of the MELA produces  different  management  schedules for  each stand. From 

these the  optimization  part  selects the optimal  solution based on  the set  goals  and 

constraints  (Lappi  1992). In the case  study,  in  each task  the goal  was  to maximize 

the net present  value  (NPV)  and,  if  a  constraint  was  used,  the constraint  dealt with 

the biomass of trees. 



Material and methods 21 

Figure  1. Outline of  the first  part  of  the study. The numbers of the chapters  in 
which the different  issues  are  discussed are shown in brackets.  

The results  of  the MELA optimizations  were  analyzed  by  comparing  the se  
lected standwise management  schedules inside  each  optimization  task.  If  the sets of  
biomass  models incorporated  into  the MELA produced  different outputs,  the use  of  

the  biomass  of  trees  estimated  by  different  sets  of  models as constraints in the op  

timization caused  differences in the selection  of  optimal management schedules 
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inside each task.  If  the selection of  optimal  management  schedules was the same  

irrespective  of  the set of  biomass  models  used  for  the estimation  of  the constraint,  

the biomass  estimates  produced  by  the models were compared to each other inside 

the tasks. The comparisons  between the different tasks  were related to the net car  

bon sequestration  of  the trees. The incorporation  of  the biomass  models into  the 

MELA system,  data for  the MELA simulations and the analyses  made using  

MELA are represented  in more detail later  in the context of  the case  study  (see  

chapters  3.3.1 and 3.3.2).  

Figure  2.  Outline of  the second part  of  the study. The numbers  of  the chapters  in 

which the different issues are discussed are shown in brackets.  

2.2  Selection  criteria  for  the comparison  of  tree-level  biomass  

models  

The literature was  reviewed and available tree-level biomass  models applicable  to 

Finnish conditions were identified. From these models the potential  tree-level 

models for  forestry  modeling  and analyses  were  chosen for  a closer  assessment  

based on  four selection criteria  (Figure  1). First,  the models should be  based on  the 
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same data for  many, and preferably  for all, components  of  a tree. The models 

should cover  stem wood,  stem bark,  living  branches,  foliage,  dead branches,  stump  
and roots,  because  they were  the smallest  parts  to be commonly  modeled. If  there  

were not,  however, models for these components  of  a  tree,  the functions for the 
combinations of  several  components  were taken into consideration. Second,  the 

modeling  data should comprise trees having  large  range in size.  Third, the inde  

pendent  variables of  the models should be available from the forest  inventories,  or  

they  should be able to be easily  and fairly accurately  estimated using  models.  

Fourth,  the models for  both mineral soils and peatlands  should be included. 

The selection of  the models  for  further evaluation was  based on more detailed 

study  about the representativeness  of  the data used in  the formulation of the mod  

els,  the capability  of  the  models to describe different components  of  a  tree, and the 

capability  of  the used independent  variables to describe the biomass  of  different 

components  of  a  tree (Figure  1). The evaluation of  the representativeness  of  the 

data covered  the description  of  the study  area (e.g.  areal  coverage, owner  structure 

and  resulting  management  intensity  of  forests  included into  the studies,  number  of  

stands,  site  fertility  of  the stands)  and  number  and size  of  sample  trees. The  analy  
sis  of  capability  of  the models to describe different  components  of  a  tree consisted  
of  the study,  to which  components  the models were  formulated in different studies.  

The  division and the definition of  the  different components  of  a  tree were com  

pared  between the studies.  The  evaluation of  the capability  of  the used independent  

variables  to describe the biomass  of  different components  of  a  tree was  made by  

studying  which  independent  variables were  used,  what kind  of  transformation for 
the variables were  used and what were  the effects  of the use  of  these variables and  

transformations. 

2.3  Data  used  for  biomass  estimations  and  comparisons  of 
selected  tree-level  biomass  models 

The  Finnish  National  Forest Inventory  (NFI)  data were  used in order  to estimate  

biomass  of  different  components  of  a  tree using  selected  models.  The data origin  
from  the 9

th
 (NFI9) and the Bth8

th  inventory  (NFI8) from Southern Finland,  and from 
NFIB from Northern Finland. The NFIB data comprised  the area of  two Forestry  
Centers  in the eastern  part  and NFI9 data the area of  other  parts  of  Southern 

Finland.  Northern Finland was  made up of  the area of  the three most northern For  

estry  Centers  of Finland,  and Southern Finland was  made up  of  the other  Forestry  

Centers.  The used sample  tree data were  composed  of  measurements of 37 382 

pines,  26 100 spruces  and 14 275 birches  with heights  over  1.3 m and with a de  

termined diameters  at  breast  height.  The sample  tree  characteristics  are shown in 

more  detail in  Appendices  1, 2  and  3.  

A preliminary  study  of  the performance  of  the selected models was  carried  out. 

The  sample  tree data were  divided  into  subgroups  and classified  into 1 cm  diameter 

classes.  The subgroups  are  shown in Figure 3.  The biomass  was  estimated for  the 

trees  located on  mineral soils  and on peatlands.  In the NFI data, the mineral soils  

were  determined as  soils  having  no  peat  in  the organic  layer  and the amount of  
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peatland  vegetation  was  less than 75%. On mineral soils  the biomass  was  calcu  

lated for  trees growing  on  fertile  sites  and infertile  sites.  The  fertile sites  were  very  

rich  sites,  rich  sites  and damp sites;  the other  less fertile mineral soils  were  the  

infertile  sites.  The biomass  was  also  estimated for  trees growing on both mineral 

soils  and peatlands  in  Southern Finland and in Northern Finland. By  dividing  the  

data into  these subgroups  it  was  possible  to study  the influence of  forest  structure  

on  the reliability  of  the biomass  estimates. 

Figure  3.  The criteria for the division of the data for different subgroups  (boxes  

with thin  lines)  and  the different subgroups,  for which the biomass  was  estimated 

(boxes  with  bold lines).  

After  the division and  the classification  of the material, the mean values of  bio  

mass  of  different tree components  were  plotted  against  the diameter. Only  every 

second diameter  class was  taken into account  in  the figures in order  to clarify  the 

differences.  The differences of  the outputs  produced  by  selected  models were  com  

pared  with each  other most closely  on  mineral soils  and on peatlands.  On mineral 
soils  and on peatlands  the standard deviations of  biomass  estimates  within the di  

ameter classes  were  determined in  addition to  mean values. In these subgroups  the 

comparisons  were made  between the outputs  of  the models with respect  to  the 

ranking  of  biomass estimates  of  the studied tree species,  and  also  with respect  to 

the biomass  estimates  of  trees representing  single  tree  species  in  various diameter 

classes.  If  the mean biomass  estimated  using  the selected  models differed by  more 

than 20% in diameter classes,  the models were considered to produce  different 
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results.  On fertile and infertile mineral  soils  the results  of  selected biomass  models 

were  compared with each other,  and also  with the results  of  previous  studies  re  

ported  in  the literature.  An analysis  was made of  whether the biomass  estimates  of 

trees  differed along  the site  fertility  in  the same diameter classes.  The comparisons  
about the effects  of  location on the biomass estimates  of  trees were made on both 

mineral soils  and on  peatlands  between Southern and  Northern Finland.  Further  

more, the outputs  of  the models for  trees growing  on peatlands  were  compared  to  

those on mineral soils.  

The allocation of the biomass  to stem wood,  stem bark,  living  branches,  needles 

and dead branches was estimated  using  the selected  sets  of  models that  were  found 

to  be reasonable  based on  the preliminary  study  of  the performance  of  the models.  

The biomass  estimate  of  a  component  was  studied in relation to the  sum of  the 

biomass  estimates  of  above-ground  components.  The calculations  were  made only  
for trees growing  on mineral soils.  The trees were classified into  1 cm diameter 
classes  and the range of  proportions  was  studied separately  for  trees in  three  diame  

ter  classes:  <2O  cm;  21-40  cm;  >4O  cm. 

3  RESULTS AND DISCUSSION 

3.1 Pre-evaluation  and  selection  of  biomass  models  for more 

detailed evaluation  

3.1.1  Potential  tree-level biomass  models  for incorporation  into forestry  

modeling  and analyses  

In Finland tree-level regression  functions  for  the dry  or green mass  of  different 

components  of  Scots  pine  and Norway  spruce were derived by  Hakkila  (1967,  

1969, 1971, 1972  a, 1979), Issakainen  (1988),  Hakkila  (1991),  Finer (1989)  and 
Laiho (1997).  Also Mälkönen (1972),  Hakkila  et ai.  (1978),  Korhonen and Malta  

mo  (1990),  Finer  (1991) and Hakkila  et  ai. (1995)  have formulated some dry  or  

green mass  models for pine.  The models for birch were formulated by  Hakkila  

(1967),  Mälkönen (1977),  Simola (1977),  Hakkila  (1979),  Björklund  and Ferm 

(1982),  Mälkönen and  Saarsalmi  (1982),  Issakainen (1988),  Finer (1989),  Hakkila  

(1991),  Saarsalmi et ai.  (1992)  and Laiho (1997).  Dependent  on the study,  the 

modeling  data for  birches  comprised  silver  birch  or downy  birch  or both of  the 

birches  together.  In Finland the dry  or  green mass  models for  the components  of  

some  other  deciduous trees  have been  made by  Hakkila  (1970),  Simola (1977),  

Björklund  and Ferm (1982),  Björklund  (1984),  Saarsalmi and Mälkönen (1989)  

and Saarsalmi  et al. (1991,  1992). In Sweden Albrektson (1980),  Marklund (1987,  

1988) and Petersson (1999)  have made  the most  extensive studies  about the bio  

mass  of  a  tree. Albrektson (1980)  formulated tree-level regression  functions  for  the 

dry  mass  of  different components  of  Scots  pine,  Marklund (1987)  for  that of  Nor  

way spruce, and Marklund (1988)  and  Petersson  (1999)  for that of  Scots  pine,  

Norway  spruce,  and silver  birch  and  downy  birch  together.  Most of  Marklund's 
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(1988)  functions for  spruce  are  the same as those published  in  a  previous  paper by  

Marklund (1987).  

Marklund's (1988),  Hakkila's  (1991)  and Korhonen and Maltamo's (1990)  re  

gression  functions were chosen for the potential  tree-level dry  mass models for 

trees growing  on  mineral soils to be incorporated  into the forestry  modeling  and 

analyses.  However,  excluded  were  those Marklund (1988)  models having  double 

bark thickness at  breast  height,  relative  bark  thickness,  crown  radius,  form quo  

tient, diameter over  bark  of  the thickest  tree on  a  plot with radius 10 m, site  index,  

north coordinate in the Swedish coordinate system,  altitude or  indicator variables  

about the thickness  of  humus layer,  subsoil  water level  or  surface/sub-surface  water 

flow as independent  variables. These variables are  not commonly  determined in the 

forest inventories,  they  cannot be estimated accurately,  their range is  different in 

Finland than in Sweden, or  they  are  determined differently  in the inventories  in 

Finland than in Marklund's (1988)  study. Hakkila's  (1991)  model for the biomass  

of living  branches of pine  -  which has  diameter at breast  height,  crown  ratio and  

the height  of  living  crown from the ground  level  as  independent  variables  -  pro  

duced unrealistic  estimates according  to preliminary  calculations,  and therefore it  

was  excluded. In addition  to Hakkila's  (1991)  models for  the biomass  of  different 

components  of  a crown, Hakkila's (1979)  functions for  the wood density  of  stem  

over  bark  and that of  stem wood and Hakkila's  (1972  a)  models for  the biomass  of  

stump  and roots  were  used in  order  to  cover  all  components  of  a  tree.  The biomass 
of a  stem could be  estimated  by  multiplying  the basic  density  with green volume of  

a stem. Hakkila's  (1972  a) models for  the average stump  and root  biomass  of  a tree 

in the stands located  in Southern and Northern Finland were  selected  for  this  study. 

Later  in  this  text  Marklund's (1988),  Hakkila's (1972  a,  1979,  1991) and Korhonen 

and Maltamo's (1990)  models are referred to mineral soil  models,  although  the 

modeling  data might  also  include trees  growing  on peatlands.  The mineral soil 

models selected for  further evaluation are  presented  in  Appendices  4,  5  and 6.  

Compared  to other available tree-level models  the selected  mineral soil  models 

were derived from trees having  wide range in  size.  In addition,  the selected  models  

were based on the same data for many components  of a tree. Although  also  

Albrektson's (1980)  and Petersson's (1999)  models fulfilled these demands,  they  

were excluded from this  study.  Albrektson's  (1980)  models were  derived only  from  

pines growing  in central  Sweden. In  addition,  Albrektson  (1980)  had used variables 

(such  as  double bark  thickness or  current  (3  years)  volume growth), which  were  not 

commonly included in  a  forest  planning  system  as  independent  variables. Some of  

Petersson's  (1999)  models contained north coordinate,  east  coordinate or  altitude 

as  independent  variables. Therefore, these models cannot be used outside  the  area,  

for which the  models  were derived. In addition,  one model had a variable describ  

ing  the mineral soils and peatlands,  and the classification  of  these sites  differed 

from that used in Finland.  Besides,  Petersson  (1999)  used the same data for  the 

formulation of  the biomass  models as Marklund (1988).  Thus,  the outputs  of  Pe  
tersson's (1999)  and Marklund's (1988)  models  are  not independent  and  the com  

parisons  of  the outputs  of  these models would  not reveal  reliable results  about the 

variability  of  the biomass  of  a  tree in the conditions  outside  the modeling  data. 

In  Finland,  Finer  (1989, 1991)  and  Laiho (1997)  have made the most  extensive  

studies  about the biomass  of  trees on  peatlands.  The  dry  mass  models represented  
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in their studies  were  selected as  potential  models presenting  trees growing  on  peat  
lands. Finer  (1989)  has models both for  unfertilized  peatlands  and fertilized peat  

lands;  the models for  the unfertilized  sites  were  chosen. Laiho (1997)  has separate  
models for  pines growing  on undrained and drained peatlands,  but  only  the models 
formulated for drained sites were  selected. The  models for fertilized and undrained 

peatland  stands  were  excluded  because most of  the peatlands  in  Finland  are  unfer  

tilized and drained (see  Finnish Statistical  Yearbook of Forestry  2003).  Although  
Finer' s  (1989)  models for  dead branches of pine  and a  model for  dead branches of 

spruce having  only tree age as  an independent  variable would have fulfilled the 

selection criteria  set for  the biomass  models,  they were  excluded from  this study  
because tree age alone was  not considered to reliably  explain  the variation of  the 

biomass.  Finer  (1989)  used the  models for  stump  and roots earlier  formulated by  
Issakainen (1988).  These models were  also  used in  this  study.  The peatland  models 

chosen  for  further  evaluation are  presented  in  Appendices  7  and 8. 

3.1.2  Representativeness  of  the data used  for  the  formulation  of  biomass 
models 

The data for  the selected mineral soil  models  were  collected  at  the end  of  the 1960 s  

and the beginning  of  the 19705,  and in the 1980 s.  Excluding  Korhonen and  Mal  

tamo's (1990)  models the sampling  comprised  stands from wide range of  latitudes. 

The data were  collected mainly  from the forests  owned by  state,  Finnish  Forest  

Research  Institute,  forest  companies  and  communities.  Some studies  were  based on 

NFI data. The sampling  comprised  many stands (or  sample  plots) from different 

site  fertilities.  The data consisted  of  many sample  trees  with wide size  ranges. 

The data for  the selected peatland  models were  collected  in  the 1980  s and  at  the 

beginning  of the 19905. The sample  consisted  of  single  peatland  stands from a  very  

small area. The number of  sample  trees  was  small and the size  range of  sample  

trees did not cover  the  whole  size  range of  trees  growing  on  peatlands.  The  descrip  

tion of  the modeling  data of  the  mineral soil  models is  presented  in  detail in  Table 

1,  and that  of the peatland  models in  Table 2.  
Marklund's (1988)  biomass  functions are commonly  used for  the biomass  cal  

culations in Scandinavia (e.g.  Hoen and Solberg  1994,  Mäkipää  et ai.  1999,  Mink  

kinen et ai.  2001),  but their applicability  for  different  conditions has  not  been dis  

cussed  much. The  detailed evaluation of the representativeness  of  the data used for 

the formulation of  the  biomass models revealed some  defects,  which have to be 

taken  into account when the models are  applied.  The functions were  valid in the 

range 0-45 cm in  pine,  0-50 cm  in spruce  and 0-35 cm in  birch,  and they  behaved 

logically  up to 100 cm in breast  height  diameter (Marklund  1988). Although the 
data of  Marklund's (1988)  models covered  a  wide diameter range of trees  growing  
in Sweden,  there are  certain  factors  that might  affect  the results  when applying  the 

models  in  Finland.  In  Marklund's (1988)  material  the fertility  of  sites  and  the struc  

ture  of  stands were not the same as  in Finland.  In  the southern part  of  Sweden 



28 Leena Kärkkäinen 

Table

 
1.

 
Description
 of the data used for formulation of 
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mineral

 
soil

 
models.

 

Korhonen 
and
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The

 most southern 
Finland
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and
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 one time 
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sample
 plots of 
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8

lh

 
National
 Forest 
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 documented Different site 
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 Felled 
trees

 

Hakkila 
(1991)  1984-1986 Whole 

Finland  Mainly
 from stands 
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 forest companies,  
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cutting
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 site 
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Scots 
pine

 Norway 
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 and downy 
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 of the 5lh 
National
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 Research 
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O 
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pine  Norway 
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Marklund 
(1988)

 

Study

 period 
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Study
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trees 
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Table 2.  Description  of  the data used for  formulation of  the peatland  models.  

the sites  are  more fertile  and the growing  period  is  much longer,  and in  the northern 

part  of  Sweden trees grow at  higher  altitudes than in Finland.  In addition to  this,  

the sample  trees  were  selected  from forests  owned by  the Swedish Forest  Service,  

whose  way to manage forests  may be different than that of  forest  owners  in 
Finland. According  to Marklund (1988)  the conditions,  which were  poorly  repre  

Issakainen  (1988) Finer  (1989) Finer  (1991) Laiho  (1997) 

Study period Measurements  in 1986 Measurements  in  1985 1984 and 1987  1991-1992  

Study area Eastern Finland Eastern Finland  Eastern Finland South-west  

Finland  

Sampling Experiments in  same 

drainage area each  at 

different  site 

Experiments  in  same 
drainage area each  at 

different  site 

One  drainage area Sites  having 

varying drain-  

age ages 

Number  of 

stands  

3 3 I  4 

Site  fertility  An ordinary sedge 

pine mire  (VNRmu) 
A herb-rich  sedge pine 

mire  (RhNRmu) 

A Vaccinium  myrtillus 

spruce  mire  (MKmu) 

An ordinary sedge 

pine mire  (VNRmu)  

A herb-rich sedge pine 

mire  (RhNRmu) 

A Vaccinium myrtillus 

spruce  mire  (MKmu) 

An  ombrotrophic 

bog (IR)  

Tall-sedge pine 

fens 

Tree  species Scots  pine (VNRmu,  

RhNRmu) 

Norway spruce  

(MKmu) 

Silver  and  downy 

birch  (RhNRmu) 

Scots  pine (VNRmu, 

RhNRmu) 

Norway spruce  

(MKmu) 

Silver  and  downy 

birch  (RhNRmu) 

Scots pine Scots pine 

Norway spruce  

Downy  birch  

Type of 

sample trees  

Felled trees Felled  trees Felled  trees Felled  trees 

Number of 

sample trees  

Pine:  16 

Spruce: 8 

Birches:  8 

Pine: 8 in  both  sites 

Spruce: 9 

Birches: 7 

Pine: 27 Pine: 33 

Spruce: 8  

Birch: 17 

Size  of sam- 

ple trees 

Range of breast  

height diameters: 

Pine:  5-25 cm  

Spruce: 7-30  cm 

Birches: 6-23  cm 

Range of breast  

height diameters:  

Pine: 6-22  cm 

(VNRmu),  

9-24  cm (RhNRmu) 

Spruce: 6-37  cm 

Birches: 8-21 cm 

Range of breast  

height diameters:  

Pine:  5-22 cm 

Mean breast  

height diame-  

ters:  

Pine: 15 cm 

Spruce: 6  cm 

Birch: 7 cm 

Modeled 

components  

used  in the 

current  

study 

Stump and  roots Stem wood  

Stem bark  

Living branches  

Needles,  leaves  

Dead  branches  

Stem wood  

Stem bark  

Living  branches  
Needles 

Dead  branches  

Stump and  roots  

Pine  and birch: 

Stem wood 

Stem bark  

Living branches  

Needles,  leaves  

Dead branches  

Spruce: 
Stem over bark  
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sented in the material,  were  coastal  areas,  forests  at  high  altitudes,  forests under 

extreme management  regimes,  and seriously  damaged  trees (Table  3).  

Another set  of  models,  which  has often been used for  the estimation  of  the bio  

mass  of  trees in  Finland (e.g.  Mielikäinen et  ai.  1995,  Hynynen  2001, Malinen et 

ai.  2001),  is  Hakkila's  (1979  and 1991)  models.  In Hakkila's  (1979)  study  models 
for  the wood density  of  stems were formulated separately  for  the trees  having  

heights  2.5-7.4 m and for  the trees  having  heights  more than 7.4  m. In  this study, 

the data for determining  the wood density  of stem at  breast  height  were  collected  as  

part  of  the sth5
th
 Finnish  National Forest  Inventory  (NFIS).  The  same data were  used 

as  a  part of the data, from which Laasasenaho's (1982)  volume functions  were 
derived. The largest  defects  of  Hakkila's  (1979)  data are that  the number of birches  

growing  in Northern Finland is  small, and the average size  of  pines  used  for  wood 

density  determination in Northern Finland is large. The NFIS  data were  supple  

mented with material collected from the forest  of  the Forest  Service  and the Fin  

nish Forest  Research Institute.  This  supplementary  data collected from felled sam  

ple  trees were  used for  the  construction  of  equations  that predict  the average stem 

wood density  of  standing  trees from the wood density  of  increment core  bored  at 

breast  height  (1.3  m). The characteristics  of  these sample  trees  are  not well docu  

mented,  but  according  to Hakkila  (1979)  the data corresponded  relatively  well to 
the  NFIS data in its  average  measurements. The  change  of  the structure of  forests 

since  the NFIS  may have  effects  on  the current  form  of  the stems and  the crowns.  

Hakkila (1991)  has presented  models for different components  of  crown. In 
Hakkila's  (1991)  study  the sample  tree data consisted of  trees  having  a  diameter at  

breast  height  of  at  least  4 cm and at most 43 cm.  Therefore,  the whole diameter 

range of  trees  growing  in  Finland is not covered.  The data represent  the trees felled  

in thinnings and  in final  fellings.  The trees  cut in thinnings  are  often more sup  

pressed  than the trees left in the stand,  and therefore,  the  data were  biased. Hak  
kila's  (1991)  material  was collected mainly  from  the forests  owned by  companies  

and thus,  the structure of  the material  was  biased also  in  this  respect.  The sampling  

was  deficient in the coastal  areas in Western Finland and in  the forests  in the most 

northern part  of  the country.  In  Northern Finland especially,  there was  a  poor rep  

resentation  of spruce  stands  in  the first  thinning  phase,  and  birch  stands  in  the first  

thinning  and subsequent  thinning  phases  (Table  3).  

In Hakkila's  (1972  a) study  the  dry  mass  of  50 stumps  was  determined only  in 

seven  sample  stands in Southern Finland and in  three sample  stands in Northern 

Finland (Table  3). The stands were  in clear-cutting  areas  and the material  com  

prised  the stumps  of  pines  and spruces,  whose range of  stump  diameter was  15-70 

cm. However,  according  to Hakkila  (1972  a) only 15-50 cm could be accepted  as  
the  range of application  of  the results.  In  order  to determine the correlation between 

stump  height  diameter and breast  height  diameter, 50-100 trees were measured 

from  corresponding  stands in the immediate vicinity  of  each sample  stand. The 

regression  functions were  derived for  the stump height  diameter from the breast 

height  diameter. 

In Finland Korhonen and Maltamo (1990)  formulated models for stem wood,  

stem bark  and living  branches of  pines.  The sample  plots  were  selected  NFIB sam  

ple  plots  located in  the forests owned by  state  or  communities in the most southern 
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Table 3.  Summary of  advantages and disadvantages of  the modeling data. 

part  of Finland.  The material  of  the models comprised  only  sample  trees of  pines.  

The infertile  sites  were  stressed  in  this  material,  and the smallest trees  were  not  

included  in  the study  (Table  3).  

The  modeling  data for  Finer's  (1989,  1991) and Issakainen's (1988)  studies  

were  collected from single  peatlands  stands  located in  Eastern  Finland. In  Laiho's 

(1997)  study  the study  areas  were  located in South-west Finland. In  all  these stud  

Advantages Disadvantages 

Marklund (1988) 
- Data  covers wide  diameter  range  - Data  from Sweden  

- Regional representativeness rather  good -  Data only  from forest  owned  by  Swedish  Forest  
- Data covers trees growing on different site Service  

fertilities -  Coastal  areas,  forests at high altitudes, forest 
under  extreme management regimes and  seri-  
ously  damaged trees  poorly  represented 

Hakkila (1972a, 1979, 1991) 

Stem  wood  and  crown: Stem wood:  

- Regional representativeness rather  good -  Size  range  of  sample  trees  not  documented 
- Data covers trees growing on different site - Number of birches  growing in  Northern  Finland  

fertilities  small 

Average size  of  pines large  in  Northern  Finland  

Crown : Crown: 

— Data covers rather  wide  diameter  range - Data do not cover the thinnest  and the thickest 

trees  

-  Data  represent  only trees felled  in  cuttings  
-  Data  only  from forests  owned by  forest  compa- 

- Sampling defective  in the coastal areas in 

Western Finland and in the forests in the  most  

northern part  of Finland  

Stump and  roots: Stump and  roots:  
- Data from Southern  and Northern Finland  — Data  only  from single regions 

-  Data  from single clear cutting areas 
- Data emphasized to upper diameter  classes  
- Most fertile  sites not included  

-  Data  only  from forests  owned by  forest  compa- 
nies  and Finnish  Forest  Research  Institute  

Korhonen and Maltamo (1990) 
-  Data  covers rather  wide  diameter  range  - Smallest  trees  not represented in  the data 
- Data  covers trees  growing on different  site -  Material  only  for  pine 

fertilities  -  Data  covers only  the  most  southern  part  of  
Finland  

-
 Infertile  sites are over-represented 

-  Data  only from forests owned by state and  
communities  

Finer (1989, 1991), Issakainen  (1988) 
- Data collected from peatlands - Data only  from Eastern  Finland  

-  Data  from single  peatlands 
-  Number  of sample trees  small 
-  Data  covers only  a narrow range  of  diameter  

Laiho (1997) 
— Data collected  from peatlands - Data  only from  South-west Finland  

-
 Data  from single  peatlands 

-  Number  of  sample trees  small 
- Mean  diameter  of sample trees  small 
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ies,  the number of  sample trees was  small  and  the sample trees covered only  a  very 
narrow  range of  diameters  (Table  3).  

3.1.3  Capability  of  the models to describe  different components  of  a tree  

Only  a  few of  studies  considered the biomass of  all  components  of  a  tree  (Tables  1 

and 2).  Neither Marklund's (1988)  nor  Hakkila's  (1972  a,  1979,  1991) studies  in  

cluded biomass  models for  birch  leaves. Korhonen and Maltamo (1990)  had de  

rived models only  for  stem wood, stem bark  and living  crown  of  pine.  Generally,  
for  the  biomass  of  the stump  and the roots  of  birch  there were no representative  

tree-level models that could be used for  the large-scale  calculations.  Also  the mod  

els  for  fine  roots  and inflorescences  were  lacking.  Moreover,  only  Finer  (1989,  

1991) had separate  models for cones, but the models were excluded from this  

study,  because they  were  derived from a  very  small amount of  sample  trees and it  

was  not possible  to  compare them with other  considered studies.  

Even if  the models were  available for  all  the components  of a  tree,  the compari  

son  of  the models  would not be easy,  because the division  or  the definition of  the 

components  vary  in  different studies.  Especially,  the comparison  of  the  biomass  of 
the stump  estimated by  different  models is  problematic,  because the height  of  the 

stump  and the separation  of  the stump  from  the  roots  vary  from one study  to  an  

other.  When  the determination of  the stump  varies,  it  also  affects  the biomass  of  

stem wood,  stem bark  and roots.  In Marklund's (1988)  study  the cutting  heights  of  

sample  trees  were  determined as  1% of the tree height  measured from the ground 
level.  In  Hakkila's  (1972  a),  Hakkila's  (1979),  Korhonen and Maltamo's (1990)  and 

Finer's  (1989,  1991) works  it  could be supposed  that the trees  were cut as  close to 
the ground  as possible.  Issakainen (1988) and Laiho (1997)  had not described the 

point  of  cutting  properly.  Each model for  roots describes  a different proportion  of  

the whole biomass  of  the roots  because the diameters of  roots taken to the formula  

tion of  the model differs  from one  study  to another. Marklund (1988)  had formu  
lated separate functions for  roots  having  a  diameter of  <5  cm, and roots  having  a 

diameter of >5  cm. The  roots,  which had diameter  <5 cm, consisted  only  of  those 

roots that remained attached when the stump-root  system  was  lifted from the 

ground.  The functions for  roots  >5  cm consisted only of  the trees that had such  big 

roots. In Hakkila's  (1972  a)  study,  an attempt  was made to  extract  all the roots hav  

ing  a  minimum diameter of  5  cm; however,  some thicker  roots  were  left  in the 

ground.  Hakkila  (1972  a)  presented  joint  functions  for the biomass  of  stump  and 

roots. Moreover,  Issakainen's (1988)  and Finer's  (1991)  functions were  based on 

roots  with diameters of  >1 cm. 

The division of  stem  was not consistent  in the considered studies. Marklund 

(1988),  Finer (1989,  1991) and Korhonen and Maltamo (1990)  presented  biomass  

models for  both stem wood and stem bark.  Laiho (1997)  presented  models for  both 

stem wood and stem bark  of  pine  and birch,  but  only  a  model for  stem over  bark  of  

spruce.  Hakkila  (1979)  formulated models for  the basic  density  of  stem wood and 

stem over  bark,  but  had  no  models for stem bark  (Table  4). 
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Table 4.  Summary  of advantages  and disadvantages  of  the models concerning  the 

division of  a  tree into  different components.   

The  division of  the biomass  of  living  branches also  differed between studies.  
Korhonen's and Maltamo's (1990)  models were  derived only  for living  branches 

including  needles. In Marklund's (1988)  and Hakkila's  (1991)  models,  biomass  of  

living  branches including  needles and biomass  of  needles have been modeled sepa  

rately.  There is  no  separate  model for  living  branches excluding  needles. As a 

comparison,  Finer  (1989,  1991) and Laiho (1997)  have separate  biomass  models  

for  foliage  and living  branches  excluding  foliage  (Table  4).  Marklund (1987)  de  

scribes  the sampling  used in Marklund (1988).  Marklund (1987)  had defined living  
branches as lignified  branches longer  than 10 cm including  attached  dead parts. In  
other  studies the term living  branches was  not clearly  defined,  and thus,  the segre  

gation  of  living  branches from  dead branches was  not clear.  

The  modeling  of  biomass  of  dead branches was  also  problematic.  Marklund's  

(1988)  functions  for  dead branches had been derived  from the trees  that had dead 

branches. In other studies  it  was  not documented whether all  sample tree  had dead 
branches. The definition of  dead branches was  unclear  in all  considered studies.  

Advantages Disadvantages 

Marklund (1988) 
- Pine  and  spruce : models  for all  components  of  -  Pine  and  spruce:  no separate models  for  living 

a tree (excluding the  thinnest roots)  branches  excluding needles, no separate  models  
-  Pine, spruce  and  birch:  separate  models  for for cones, no models  for  the  thinnest  roots 

stem  wood  and stem bark -
 Birch :  no  models  for  leaves,  stump and  roots  

- Pine, spruce  and  birch : no separate  models  for 

inflorescences  

Hakkila  (1972a, 1979, 1991) 
— Pine  and  spruce :  models  for  all  components of  - Pine,  spruce  and  birch:  no  models  for all  com-  

a tree  (excluding  the thinnest  roots)  ponents of a tree  derived  from the  same mate- 

rial,  no separate models  for stem  bark,  no sepa-  
rate  models  for inflorescences  

-  Pine  and  spruce :  no separate models  for  stump  
and roots, no models  for the thinnest  roots, no 

separate  models  for  living branches  excluding  
needles, no models for  cones 

-  Birch :  no models  for  leaves, stump and  roots  
Korhonen  and Maltamo (1990)  
- Pine: separate  models  for  stem wood  and  stem - Pine: no separate  models  for needles, for cones 

bark and for inflorescences, no models  for  dead  

branches,  for  stump and  for  roots  
— Spruce and  birch',  no models  

Finer (1989, 1991), Issakainen  (1988) 
— Pine,  spruce  and  birch : models  for all  compo- 

-
 Pine, spruce  and  birch', no separate models for 

nents (excluding the thinnest  roots),  separate stump and roots, no models  for the  thinnest  

models  for stem wood  and  stem  bark,  separate roots and for  inflorescences  

models  for  foliage and  living  branches  exclud-  

ing foliage 
— Pine  and spruce',  separate  models  for  cones 

Laiho  (1997) 
— Pine and  birch:  models  for  all  above-ground — Spruce:  model only for  stem  over  bark  

components, separate  models  for stem wood -  Pine and  birch',  no  models  for  stump  and  roots,  
and stem bark,  separate models  for foliage and no models for inflorescences  

living branches  excluding foliage Pine: no models  for cones 
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3.1.4 Capability  of  used independent  variables  to describe the biomass 

of  different components  of  a tree 

In all  selected  biomass  models the diameter at  breast  height  was  used as  an inde  

pendent  variable. The breast  height  diameter explained  most of  the variation in the 

biomass  of  different components  of  a  tree (Appendices  4-8).  Tree height  was  also  

commonly  used as  an independent  variable in  the models (Table  7).  The reliability  
of  the biomass  functions increased when the tree height  was  taken  as an  independ  

ent variable in  addition to breast  height  diameter. In addition,  crown  length,  crown  

ratio or  height  of  living  crown  limit  was  used in some  models to describe the bio  

mass  of living  branches,  dead branches  or foliage. In single  models,  biological  age, 

age at  breast  height and variables describing  the growing  conditions  (climatic  zone, 
site  fertility,  relative  height  of  a  tree) were  used. The relations between the inde  

pendent  variables have been used in order to describe,  for  example,  diameter 

growth,  height  growth  and stem form.  All  these variables increased the value of  the 

multiple  correlation coefficient,  but their significance  was  much lower  than  that  of 

breast  height  diameter. The use  of  independent  variables for  different components  

of a  tree in  the mineral soil  models is presented  in  Table  5,  and that in  the peatland  
models in Table 6. 

Marklund's (1988)  models can  be  presented  in  the general  formula 

where m = Dry  mass  of  a  component  (kg) 

a,  P,  y,  8,  C, = Parameters 

8 = Error  term 

d = Diameter  at  breast  height  (1.3  m) (cm) 

h = Height  (m)  

l
c
 = Length  of  living  crown  (m) 

All  Marklund's (1988)  functions have  a  logarithmically  transformed dependent  

variable (base  e)  (Appendix  4).  Because of  this  transformation,  the functions only  

produce  positive  values.  The expression  d/(d+P)  (where  d =  breast  height  diameter,  

(3 =  constant)  is  used in  all  Marklund's functions.  This  expression  restricts  the rise  

of the curves  and yields  reasonable estimates  also  for  the thickest trees (Marklund  

1987). There were  models that included tree height  as  an independent  variable (in  

addition to diameter at  breast  height)  for  all  the above-ground  components  except  
for  the living  branches of  birch  (Table  7).  The tree height  is  used as an independent  

variable either without any  transformation or with logarithmic transformation. 

Crown length  has  been  used as  an independent  variable in some functions of  bio  

mass  of  needles and dead branches of  spruce.  In  these functions the crown  length  

has  been transformed logarithmically.  

ln(m)  = a  *  (d/(d  +  (3))  + y*h  +  8  * ln(h)  +£ *  ln(l c)  +  e (1) 
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Table 5.  Components  and independent  variables  of  mineral soil  models.   

According  to Marklund's (1988)  functions  the biomass  of  tree components  in  

creases  with diameter at breast  height  for all  tree species.  The biomass  of  stem 
wood and  that of  stem bark  for  all  tree species  increases  with  the tree height,  when 

the diameter at  breast  height  is constant. According  to  the functions,  the biomass  of  

living  branches is  larger in  short  than  in tall  pines  and spruces,  when the trees  hav  

ing same diameters are considered. A  function for  the biomass of needles of  

Tree species Components of  tree Independent variables  

Marklund (1988) 
Scots  pine,  Norway 

spruce 

Stem wood, stem bark,  living  branches  

(including needles), needles, dead  branches,  

stump, roots 
Stem wood, stem bark,  living  branches  

(including needles),  needles, dead  branches  

Diameter  at  breast  height 

Diameter  at  breast  height, height of  a  

tree 

Norway spruce  Needles, dead  branches  Diameter  at  breast  height, height of  a  
tree,  crown length 

Silver  and  downy 
birch  

Stem  wood, stem bark,  living  branches  

(excluding leaves), dead  branches  
Stem wood, stem bark,  dead  branches  

Diameter  at  breast  height 

Diameter  at  breast  height, height of  a  
tree 

Hakkila  (1972a, 

1979,1991) 

Scots  pine,  Norway 

spruce 

Living branches  (including needles), needles, 

dead branches  

Living branches  (including needles) 

Diameter  at  breast  height 

Diameter  at  breast  height, height of  a  
tree 

Diameter  at  breast  height, crown ratio  
Diameter  at  breast  height, height of  a  
tree,  age at  breast  height, (volume of a 

stem over bark  or without  bark),  cli-  

matic zone 

Stump diameter  over  bark  base  (con- 

verted  to diameter  at  breast  height) 

Needles  

Stem over bark,  stem wood  (separate  models 

for the  basic  density of small  and  tall trees) 

Stump and  roots 

Norway spruce  Living  branches  (including needles)  Diameter  at  breast  height, height of  a  
tree, crown ratio  

Silver  and  downy 
birches  

Living  branches  (excluding  foliage), dead 
branches  

Living branches  (excluding foliage) 

Stem over bark,  stem wood (separate models 

for  the density of small  and  tall  trees) 

Diameter  at  breast  height 

Diameter  at  breast  height, height of a  

tree, crown ratio  

Diameter  at  breast  height, age, (volume 
of a stem over bark  or without  bark)  

Korhonen  and 

Maltamo (1990) 
Scots pine  Stem wood, stem bark  Diameter  at  breast  height, height of a 

Living  branches  (including  needles)  

Stem wood 

Stem bark  

tree 

Diameter  at  breast  height, height of 

tree,  length of  living  crown 
Diameter  at  breast  height, height of a 

tree, biological age  

Diameter  at  breast  height, height of  a 
tree,  site fertility 
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Table 6.  Components  and independent  variables of peatland  models.  RhNßmu = 

herb-rich sedge  pine  mire, VNRmu = ordinary  sedge  pine  mire, IR  = ombrotrophic  

bog,  MKmu = Vaccinium myrtillus  spruce  mire.   

pine  has  both height  and logarithmic  height  as  independent  variables.  The effect  of  

the logarithmic  height  is  larger  on the value of  the function,  and thus,  for  trees in  

the same diameter  class  the shortest  pines  have the largest  biomass of  needles. The  
biomass  of  needles  is  also  larger  in  short than  in tall  spruces,  when  the trees  having  

Tree  species Components of tree Independent variables  

Finer (1989) (RhNRmu) 

Scots  pine Stem  wood, stem bark,  living branches  
(excluding needles), needles, dead  

branches  

Diameter  at breast  height 

Silver  and  downy birch  Stem  wood, stem  bark,  living branches  

(excluding foliage), leaves  

Dead  branches  

Diameter  at  breast  height 

Diameter  at breast  height, crown ratio  

Finer (1989) (VNRmu) 

Scots  pine Stem  bark,  living  branches  (excluding 
needles), needles, dead  branches  

Stem wood  

Diameter  at breast  height 

Diameter  at breast  height, height of  a 

tree 

Finer  (1991) (IR) 

Scots  pine Stump  and  roots,  dead  branches  
Stem wood, stem bark  

Living  branches  (excluding needles), 
needles  

Diameter  at  breast  height 
Diameter  at breast  height, height of  a 

tree 

Diameter  at breast  height, crown ratio  

Finer (1989) (MKmu) 

Norway spruce  Stem bark, dead branches  

Stem wood  

Living  branches  (excluding needles), 

needles  

Diameter  at breast  height 

Diameter  at  breast  height,  height of  a 

tree 

Diameter at breast  height, crown ratio 

Issakainen  (1988) 

Scots  pine,  Norway  spruce,  
silver  and  downy birch  

Stump  and roots Diameter  at  breast  height 

Laiho  (1997) 

Scots  pine  Stem wood, stem bark  

Living  branches  (excluding needles), 
needles  

Dead  branches  

Diameter  at breast  height, height of  a 

tree 

Diameter  at breast  height, height of  

crown  limit  

Diameter  at breast  height, relative  

height of  a tree 

Norway spruce  Stem over bark  Diameter  at breast  height, height of  a 

tree 

Silver  and  downy birches  Leaves  

Stem wood, stem  bark,  dead  branches  

Living branches  (excluding foliage) 

Diameter  at breast  height 

Diameter  at breast  height, height of  a 

tree 

Diameter  at  breast  height, relative  

height of  a tree 



38 Leena Kärkkäinen 

the same  diameters at  breast  height  and the same lengths  of  crowns  are  studied. 

The increase  in  the logarithmic  transformed crown  length  results  in  an increase  in 
the biomass of  needles of  spruce when the height  and  diameter are considered as  

constants. In the function for dead branches of  pine  and birch,  the influence of  

height  and logarithmic  height  is contradictory.  The height  has only  a small  effect  

on  the biomass  of  dead branches of  pine  in a certain  diameter class.  When the 

breast  height  diameter is  constant  and the tree height  is  less  than 10 m, the tall  

birches  have larger  biomass of  dead branches than short  birhces.  For  birches  equal  
to or  taller than 10 m, the function for  dead branches  produces  larger  biomass  in 
short  than in tall trees  in the same diameter class.  A function for the biomass of 

dead branches of  spruce  has  height,  logarithmically  transformed height  and loga  

rithmically  transformed crown  length as  independent  variables. The function pro  

duces the largest  biomass  of  dead branches for  the tallest  spruces, when the spruces  
have  the  same breast  height  diameters and the same crown  lenghts.  When spruces  
have  the same diameters and heights,  the biomass  of  dead branches is larger  in 

trees having shorter  crowns.  
The  general  formulas of  Hakkila's  (1972  a,  1979,  1991) models are for  stem,  

for  different components  of  crown  

and for  stump  and roots (Hakkila's  (1972  a)  function is  converted into  the formula, 

in which breast  height  diameter is used instead of  stump  diameter (see  Hakkila  

1972  a)) 

where m = Dry  mass  of a  component  (kg)  

a,  p,  y,  8, r| = Parameters 

e = Error term 

cr = Crown ratio 

d = Diameter at breast  height  (1.3  m)  (cm  or  mm) 
h = Height  (m  or dm) 

k = Correction term for  knots  and bark  

t = Age at  breast  height  (years)  

V 0 = Stem  volume with  or  without  bark  (m
3
) 

z =  Correction term for  climatic  zone 

In most of  the models presented  in Hakkila  (1991)  and in  all  of  the  models pre  

sented in Hakkila  (1972  a,  1979), the dependent variables have not  been trans  
formed  (Appendix  5).  The logarithmic  transformation (base  e) has been used in 

some functions for  the biomass  of living  branches and needles. In Hakkila's  (1979,  

1991) models the independent  variables and the transformation varies considerably  

m=(a *  (d/t)
2
 +P  *  ln(h/d)  +y  *  ln(h/t)  +5  *  h ... +e)*k*  z *  V 0 (2) 

ln(m)  =a  *  ln(d)  +p  * ln(h)  +y*cr  + 8 *  (d/h
2
)  +  £  /h

2
 +  e (3)  

m  = a*d +  p*d
2 +  y*d

3 +s* (d
3
/h) +C,*d*cr3  + r|  *  d * cr

2  +  e (4)  

m  = a *  (d/p)
2
 +  e (5)  
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among  tree species  (Table  7).  When the basic  density  of  stem  wood is  considered,  

they  also  vary  between short  and tall trees. Hakkila  (1979)  formulated multiple  

regression  equations  for the density  of  stem wood separately  for trees having  

heights  of  2.5-7.4 m,  and  for  trees having heights  >7.4 m. The independent  vari  
ables used in  the equations  are  age at  breast  height,  diameter at  breast  height,  tree 

height,  diameter growth,  height  growth,  volume,  and the relations between height  

and diameter, age and height,  and age and  diameter. 
In  the results  reported  below about the variation of  basic density  of  stem accord  

ing  to Hakkila's  (1979)  functions,  it  is  assumed that  the independent  variables 
other  than the considered ones  are constants. According  to Hakkila's  (1979)  func  

tions, the basic  density  of  stem of  pine  is  small  in  trees having  large  height  growth 
rate,  when other  variables represented  in the functions are  constant.  The tall  and  

thin pines  have high  basic  density  of  stem. In the functions  for  short  pines  (2.5-7.4  

m) large  diameter  growth  means  low basic  density  of  stem wood. According  to  the  

functions for  short  pines,  the tallest  trees  have the greatest  basic  density  of  stem.  In 

the functions for tall pines  (>7.4  m),  large  value of  the relation between age  at 
breast  height  and tree height  means  large  basic  density.  The basic  density  of  stem 

wood of  spruce is  larger  in tall  than in short  trees,  when the age at breast  height,  

diameter growth  and volume of  stem are constant. When other  variables are  con  

stant,  the basic  density  of  stem wood of  spruce is the smallest  in  the oldest  trees. 

Furthermore,  the basic  density  is the largest  in  spruces  having  the smallest  diameter 

growth.  According  to Hakkila's (1979)  functions,  the  old  birches  have a larger  

basic  density  of  stem wood than the young  birches  in the same diameter class.  

Hakkila  (1991)  has presented  models having  only  breast  height  diameter as  an 

independent  variable for  the biomass  of  living  branches,  and that of  dead branches 

of  all  considered tree species  and  for  the biomass  of  needles of  pine  and spruce. 

Hakkila  (1972  a)  also  has  models having  breast  height  diameter as  an independent  
variable for  the biomass  of  stump and roots  of  pine  and spruce.  In  all  these models 

the breast  height diameter is  positively  correlated with the biomass.  In some of  

Hakkila's  (1991)  functions for  living  branches of  birch  and spruce, height and 

crown  ratio  has also  been used. According  to the functions,  the biomass  of  living  
branches of  birch  and spruce is  smaller  in tall  than in short  trees  when the trees 

have the same diameters at breast  heights  and the same crown  ratios.  When the 

height  and diameter are  constant,  the biomass  of  living  branches is  the largest  in  

trees having  the largest  crown  ratio. According  to  a  Hakkila's  (1991)  function,  for 

trees  in  the same diameter class,  the biomass  of living  branches of pine  depends  on 

the tree height  and the relation between breast  height  diameter and  height.  Accord  

ing  to some of  Hakkila's  (1991)  functions for  needles  of  pine  and spruce,  in the 

same  diameter class  the biomass  of  needles is  the largest  in trees having  the  largest  

crown ratio. 

The formulation of  some Hakkila's  (1972  a,  1991) functions  set  limitations  for 

the use  of  the models for  the smallest  trees.  The  functions having dependent  vari  

ables,  which are  not transformed logarithmically  and having  only breast  height  

diameter as  an  independent  variable produce  negative  values for  the biomass of  the 
thinnest trees.  

The general  formula of  Korhonen and Maltamo's (1990)  biomass  models for 

pine  is  
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where m = Dry  mass  of  a  component  (kg)  

a,  p,  y,  8, r|,  9 = Parameters  

e = Error term 

CT = Dummy variable. CT =  1, if  a tree grows on  CT 

sites, otherwise CT = 0 

d = Diameter at  breast  height  (1.3  m)  (cm)  

h = Height  (m) 

l
c
 = Length  of  living  crown (m) 

t
b = Biological  age (years)  

All  dependent variables  and most of  the  independent  variables  of Korhonen and 

Maltamo's (1990)  models are  logarithmically  transformed  (Appendix  6). Korhonen 
and Maltamo (1990)  used diameter at  breast  height  and height  as  independent  vari  

ables in  all  functions. In addition,  biological  age is  used in  a function for  biomass  

of  stem wood,  and crown  length  in the biomass  function for living  branches. A 

dummy variable describing  the site fertility  is  included into  a function for the bio  

mass of stem bark. 

According  to Korhonen and Maltamo's (1990)  models,  the biomass  of  stem 
wood and  that  of stem bark are larger in tall  than in  short  trees  in the same diameter 

classes.  When the diameter  at  breast  height  and tree height  are  constant, the bio  

mass of  stem wood is  also  larger  in old than in young trees in the same diameter 

class.  According  to Korhonen and Maltamo's (1990)  function,  the biomass  of liv  

ing branches is  smaller in tall  than in short  trees,  when the trees have  the same 

diameters and the same crown  lengths.  The  long  living crown  produces  higher  

biomass  of  living  branches than the short  living  crown,  when the trees having  same 

sizes  are considered. 

Finer's  (1989,  1991)  and  Issakainen's  (1988)  models follow the  formula  

where m = Dry  mass  of  a  component  (kg  or  g) 

a,  (3,  y,  8 = Parameters 

e = Error term 

cr = Crown  ratio 

d = Diameter at  breast  height  (1.3  m) (cm) 

h = Height  (m  or  dm) 

In Finer's  (1989,  1991) equations  a logarithmic  transformation was  used for  the 

calculations  of  all  dependent  variables and almost  all  the independent  variables 

(Appendix  7).  Finer  (1989,  1991) used breast  height  diameter  or  logarithmic  breast  

height  diameter with or  without logarithmic  height  as  an independent  variable in  

the regression  equations.  Logarithmically  transformed crown  ratio was  also  in  

cluded in  some of the functions describing  the biomass  of  different  components  of  

crown.  

ln(m)  =a *  ln(d
2
)  +P  *  ln(d)  +y *  ln(h)  +8  * ln(tb ) +£*d2  +  r|  *  l

c
+  O*CT  + 8  (6)  

ln(m) = a  * ln(d)  +  (3 *  d +  y  * ln(h)  +  8 * ln(cr)  +  s (7) 
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Table 7.  Summary  of  advantages  and  disadvantages  of  the models concerning  the 

use  of  independent  variables and the estimation of  dependent variables. 

Advantages Disadvantages  

Marklund (1988)  

Independent variables Independent variables 
- Diameter,  stem wood  and stem bark,  all com-  — Diameter:  no models  for stump and roots of 

ponents  of crown of all studied  tree  species, birch  

stump  and  roots  of pine and spruce  - Diameter  and height: no model  for living 
-  Diameter  and  height: stem  wood and stem  bark,  branches  of birch 

all  components  of  crown of pine and spruce,  
-
 Diameter,  height and  crown ratio: models  only 

stem wood, stem  bark and dead branches  of for needles  and  dead  branches  of  spruce  
birch  

-  Expression  (D/(D+p))  restricts  the  rise  of the  
curve and yields reasonable  estimates also  for 

the thickest trees 

Dependent variables  
- Can  only get positive values  

Hakkila  (1972a.  1979. 1991) 

Independent variables  Independent variables  
- Diameter,  all modeled  components  of a crown -  The use of independent variables  of basic  

of all  studied  tree species,  stump  and  roots  of density of stem varies  between  tree  species  and  
pine and  spruce between  different sizes of trees 

- Diameter,  height and  crown ratio: use of  these  

variables  varies between  different  crown com- 

ponents  

Dependent variables Dependent variables 
— The  models  for living branches  and needles  — Dependent variable  not logarithmically trans-  

have  logarithmically transformed dependent formed and  only breast  height diameter as an 

variables  (see  Appendix 5):  they can only  have  independent variable:  negative values  for  the  

positive values  thinnest  trees  

Korhonen  and Maltamo (1990)  

Independent variables  Independent variables  
— Diameter and  height: stem wood  and  stem bark  -  Not  same independent variables  for  all  modeled  

of pine components  

Dependent variables 
- Can  only have positive values  

Finer (1989.  1991). Issakainen  (1988) 

Independent variables Independent variables 
-  Diameter: stem wood  and  stem bark,  stump and  -  Diameter:  not models  for all  components  of a 

roots of  all  studied  tree species,  all  components crown of  spruce  and birch  

of a crown of  pine, dead  branches  of  spruce,  liv-  — Diameter,  height, crown ratio: use  varies  be-  

ing branches  and  leaves  of birch tween different  components 
- Diameter  and  height: stem wood  and  stem bark  

of pine, stem wood  of  spruce  

Dependent variables  
— Can  only have  positive values  

Laiho (1997)  

Independent variables  Independent variables  
- Diameter  and  height: stem wood  and  stem bark  -  Not  possible to get models  having same inde-  

of pine  and birch, stem  over bark  of spruce,  pendent variables  for  all  components of a tree 

dead branches  of  birch  

Dependent variables 
- Can  only have  positive values  
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In Finer's  (1989,  1991) functions the  biomass  of  all  components  increases  with 

breast  height  diameter, when other variables used in the functions are constant.  

According  to  functions for  the stem wood of  pine  and spruce, in  the same diameter 

class  the biomass is  larger  in  tall  than in short  trees.  In a function for biomass  of  

stem bark  of  pine,  logarithmic  tree height  has been  used as an independent  vari  

able. The  effect  of  logarithmic  height  is  that the biomass  of  stem bark  is  the small  

est  in the tallest pines in the same diameter class.  According  to functions for  the 
biomass  of  living  branches and those for  needles,  in the same diameter class  the 

biomass  is the largest  in  pines  and spruces  having the largest  crown  ratio.  The bio  

mass  of  dead branches of  birch  trees in the same diameter class  increases as the 

crown  ratio decreases.  

The  general  formula of Laiho's (1997)  models is  

where m = Dry  mass  of  a  component  (kg) 

a,  p,  y,  5,  £ = Parameters  
d = Diameter at  breast  height  (1.3  m) (cm)  

h = Height  (m) 

h
re | = Relative  height  of  a tree, the height  of  a  tree  in  rela  

tion  to the dominant height  of a  trees 

l
ci = Crown limit  (m) 

Laiho (1997)  has not used any transformations for  the dependent  variables (Ap  

pendix  8).  Laiho's (1997)  regression  functions can only  produce  positive  values,  

because all  independent  variables  are  raised  to a power and multiplied  by  positive  
numbers. In all  functions,  diameter at breast  height  is used  as  an  independent  vari  

able. Tree height  is  used in  the equations  describing  the biomass  of  stem wood, 
biomass of stem bark  of  pine  and birch,  biomass  of  stem over  bark  of spruce,  and 
biomass  of dead branches of  birch.  In addition to  diameter at  breast  height,  either 
crown limit  or  relative height  of  a  tree is used as  an  independent  variable in all  of  

the models for  biomass  of  different  crown components  of  pine  and in a  model for  

the biomass of  living  branches of  birch.  

3.1.5 Models  selected  for the further evaluation 

Marklund's (1988)  and Hakkila's  (1972  a,  1979, 1991) models were selected for  

closer  consideration on the basis  of  data used for the formulation of  the biomass 

models, the existence of  models for  different components  of  a  tree, and  the use  of  

independent  variables  (see  Tables 3,  4 and 7).  In addition  to the  breast  height  di  
ameter,  at least  tree height  has to be included as  an independent  variable for  the 
biomass  models in  order  to  take into account  the  effects  of  growing  conditions  on 
the biomass of  different components  of  a tree. Thus,  Marklund's  (1988)  models 

having  both  breast  height  diameter and tree height  as  independent  variables were  

chosen for  the further study  for  all  other above-ground  components of  a  tree, ex  

m  =  a  * dp  * hY *  !</  *  h
re
 (8) 



Results and discussion  43 

cept  for  living  branches of  birch.  For  this case  the model having  only breast  height  

diameter as  an independent  variable was  selected (Table  8).  Also  the models for  the 
biomass  of  stump  and biomass  of  roots  have only  breast  height  diameter  as  an in  

dependent  variable. 

Table 8.  The selected  Marklund's (1988)  models for  the biomass  (kg)  of  trees  on 

mineral soils.  The explanations  of  the symbols  for  independent  variables are  repre- 

From Hakkila's  (1972  a,  1979, 1991) biomass  models  it  was  not possible  to get  a 

full  set having  the same independent  variables.  The combination of  Flakkila's  

(1991)  models describing  the biomass  of crown components  and having  diameter 

at breast height,  height  or  crown ratio as  independent  variables were  selected for  
more detailed study  (Table  9).  Comparability  with selected Marklund's (1988)  

models was  applied  as  a  criterion  in  the  selection  of  Hakkila's  (1972  a,  1979,  1991) 

models. 

Finer's  (1989,  1991) and Laiho's (1997)  models for the biomass  of different  

components  of  a  tree are  based on the variables determined from small  numbers of  

trees growing  on  individual peatland  stands,  and therefore their applicability  is  very 

limited.  However,  the analysis  of  these models  gives  valuable information about 

the application  of mineral soil  models on  peatlands.  Although  the models cannot  
describe all  the  ecosystem  behavior,  they  may be useful for  parts  of  the problem  

(Mankin  et  ai.  1979). In order to  identify  the general  trend in  allocation of  biomass  

to the different components of  the trees  growing  on  peatlands,  comparisons  were  

sented  on the pages 9-10. 

Dependent variable  Model 

Scots  pine 

ln(stem wood) 7.6066*(d/(d+ 1 4))+0.02*h+0.8658*ln(h)-2.6864 

ln(stem bark)  7.2482*(d/(d+16))+0.4487*ln(h)-3.2765 

ln(living branches  incl.  needles) 13.3955*(d/(d+10)-1.1955*ln(h)-2.54l3 

In(needles) 12.1 095*(d/(d+7))+0.04 13 *h- 1 ,565*ln(h)-3.4781 

ln(dead branches) 7.1 270*(d/(d+ 1 0))-0.0465*h+ 1.1 060*ln(h)-5.8926 

ln(stump) 1 1.0481*(d/(d+15))-3.9657 

ln(roots  >  5 cm) 1 3.2902*(d/(d+9))-6.3413 

ln(roots  < 5 cm) 8.8795*(d/(d+10))-3.8375 

Norway spruce  

ln(stem wood) 7.2309*(d/(d+ 1 4))+0.0355*h+0.703*ln(h)-2.3032 

ln(stem bark)  8.3089*(d/(d+15))+0.0147*h+0.2295*ln(h)-3.402 

ln(living branches  incl.  needles) 1 0.9708*(d/(d+ 1 3))-0.0 1 24*h-0.4923*ln(h)- 1.2063 

In(needles) 9.7809*(d/(d+12))-0.4873*ln(h)-l .8551 

ln(dead branches) 3.651 8*(d/(d+18))+0.0493*h+ 1.01 29*ln(h)-4.635 1) 

In(stump) 1 0.6686*(d/(d+ 1 7))-3.3645 

ln(roots  > 5 cm) 13.3703*(d/(d+8))-6.3851 

ln(roots  < 5 cm) 7.6283*(d/(d+12))-2.5706 

Silver  and downy birch  

In(stem wood) 8.1 184*(d/(d+l l))+0.9783*ln(h)-3.3045 

ln(stem bark)  8.301 9*(d/(d+14))+0.7433*ln(h)-4.0778 

ln(living branches  excl. leaves) 10.2806*(d/(d+i 0))-3.3633 

ln(dead branches) 11 .2872*(d/(d+30))-0.308 1 *h+2.682 1 *ln(h)-6.6237 
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Table 9.  The  selected  Hakkila's  (1972  a,  1979, 1991) models for  the biomass  (kg)  
of  trees on  mineral soils.  In  Hakkila's  (1991)  original  functions for  the biomass  of  

different components  of  the crown,  the breast height  diameter  is expressed  in  mm, 

and the tree height  in dm. Therefore,  the variables d and h are  multiplied by  10.  

Hakkila's  (1972  a) functions  for stump  and roots were  converted  into  formula, in 

which  breast  height  diameter was  used as an independent  variable instead of  stump  
diameter (see  Hakkila  (1972  a)).  The explanations  of  the symbols  for  the independ  
ent variables are represented  on  the pages 9-10.   

Dependent variable  Model 

Scots pine 

Stem wood  

2.5-7.4 m  (-27.43*(d/t)
2

+62.44*ln(h/d)-26.88*ln(h/t)+0.526*h+381.63)* 1.01  *Vb , 
> 7.4 m (92.930*(h/d)- 1 93.00*(h/t)

2
+l .832*  (t/h)+341.77)* 1.01 *V

bl  

Stem bark  

2.5-7.4 m  ((-27.43*(d/t)
2

+62.44*ln(h/d)-26.88*ln(h/t)+0.526*h+381.63) *0.99*V)-  
((-27.43*(d/t)

2

+62.44*ln(h/d)-26.88*ln(h/t)+ 0.526*h+381.63)* 1.01*V
bl )  

> 7.4  m ((92.930* (h/d)- 193 .00*(h/t)
2
+ 1.832*  (t/h)+341.77)*0.99*V)- 

((92.930*(h/d)- 193.00*  (h/t)
2
+ 1.832*  (t/h)+341.77)* 1.01 *Vb,)  

ln(living branches  

incl.  needles) 3.491 4*ln(d* 1 0)-l  ,9498*ln(h* 1 0)-47.454*((d*  1 0)/(h*  10)
2

)-5.2678 
In(needles) 1 ,8485*ln(d*10)+0.0155*cr-9.01 

Dead  branches  0.01 94*(d* 1 0)-0.84 

Stump and  roots  0.044*(d/0.7604)
2
-4.9  

Norway spruce  
Stem wood  

2.5-7.4 m (-67.35*ln(d/t)-0.270*t+0.001 679*h
3
+  1 67.7/t-9.837*  V

2
+  17.79*(d/t)

3
+307.2 1 )*  

1.01*V
bl  

> 7.4 m  (-67.95*ln(d/t)-0.2795*t+0.61 9*h+ 19.13* (d/t)
3

+303.37)* 1.01 *Vbl  
Stem bark  

2.5 
-
 7.4 m ((-67.35*ln(d/t)-0.270*t+0.001679*h

3
+  167.7/t-9.837*V

2

+17.79*(d/t)
3

+307.21)* 
1.01 *  V)-((-67.35*ln(d/t)-0.270*t+0.001 679*h 3

+  1 67.7/t-9.837*  V2
+ 1 7.79*(d/t)

3
+ 

307.2 1)*1.01 *V
bl)  

> 7.4 m ((-67.95*ln(d/t)-0.2795*t+0.619*h+19.1 3*(d/t)
5

+303.37)* 1.01  *  V)-  
((-67.95*ln(d/t)-0.2795*t+0.619*h+19.13*(d/t)

3

+303.37)* 1.01 *Vb i) 

Living branches  
incl.  needles  0.00026724*(d* 1 0)

2
+ 1.41  *  1 0"

6

*(d*  1 0)
3
+0.00043562*  ((d*  1 0)

3

/(h*  1 0))+0.4 112  
Needles  1.592*  1 0"**(d*  1 0)

3
*cr+4.73*  1 0'

6

*(d*  1 0)*cr+0.37 

Dead branches  0.01 34*(d* 1 0)+3 .9*  1 0"**(d*  1 0)
3-0.62  

Stump and  roots  0.060*(d/0.7411)
2-7.1  

Silver and  downy 
birch 

Stem wood 

2.5-7.4 m (22.84*ln(t)+2.771 *(t/d)+379.99)* 1.01  *Vbi  

> 7.4 m  (34.1 56*ln(t)+ 1 38.5/d+335.64)* 1.01 *Vbl  

Stem bark  

2.5-7.4 m ((22.84*ln(t)+2.77 1 *(t/d)+379.99)* 1.01 5*V)-  

((22.84*ln(t)+2.771 *(t/d)+379.99)* 1.01 * Vb,)  

> 7.4 m  ((34.1 56*ln(t)+138.5/d+335.64)* 1.01 5*V)-(34. 1 56*ln(t)+l  38.5/d+335.64)* 1.01  *Vbl )  
ln(living branches  

excl.  leaves) 2.73067*ln(d* 10)+1 788.90/(h* 10)
2
+0.0 1 664*cr- 12.4606  

Dead  branches  0.0040*(d* 1 0)-0.07 
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made for all  other peatland models introduced in  the Appendices  7  and 8  except  

Laiho's (1997)  model for  stem over  bark  of  spruce.  Laiho's (1997)  model for  stem 

over  bark  of spruce was  excluded from the further comparisons,  because the 

comparisons  were  made separately  for  the outputs  of  the models for  stem wood and 
for  the outputs  of  the models for  stem bark.  

The  number  of  trees,  for  which the biomass  of  the stem wood and stem  bark  

were  calculated using  Hakkila's  (1979)  models for  the basic density  of  wood and 

Laasasenaho's (1982)  volume functions,  was  smaller  than the  number of trees  for 

which the biomass  of  other  components  of  trees were  estimated (see  Appendix  1,  2 
and 3).  The thickness  of  bark  was  not measured for  all  sample  trees in  NFI data,  
and thus,  the biomass  of  stem without bark was  not able to be estimated  for all  

trees using  Hakkila's  (1979)  and Laasasenaho's (1982)  models.  When the compari  

sons  were  made between the outputs of  Marklund's  (1988)  and Hakkila's  (1979)  

models for stem wood and stem bark,  also  this  smaller  number  of  trees  was  used 

for  estimation  of  the biomass  by  Marklund's (1988)  models. For  other  components,  
the biomass  was  calculated for  larger  numbers of  trees in  order to  take a  wider di  

ameter range into  account,  and  produce  more general  results. 

In order  to calculate  biomass  of  different  components  of a tree, certain  correc  

tions and adjustments  were  made to  some models. The error  that occurs  in  the re  

transformation of  logarithmically  transformed dependent  variable is  not taken into 

account  in Hakkila's  (1991)  and Finer' s  (1989,  1991) functions.  In these functions 

the correction  was  made by  adding  expression  sres

2
/2  (where s

res  =  Residual  stan  
dard deviation)  to  the constant  (see Finer  1989,  Kangas  2001b).  

Separate  Hakkila's  (1979)  models were used to estimate  the densities of  stem 

wood for  trees having  height  2.5-7.4 m and for  trees  >7.4 m. The stem densities of 

trees having  heights  <2.5 m was  extrapolated  using  models for  trees  having  heights  

2.5-7.4 m. Because Hakkila's  (1979)  functions  illustrate the basic  density  of  knot  

free and bark-free  stem,  the corrections  introduced by  Hakkila  (1979)  were  taken 
into account  in the  calculations of  this  study. For pine  and spruce,  the effect  of  

climatic  zone on the density  of  wood was  also  taken into account.  Based on Hak  
kila's (1979)  study  the  density  of  pine  stems was  decreased by  7% when the tem  

perature  sum was  500-749 d.d.  (degree  days),  and by  3% when it  was  750-869 d.d.  

In spruce  the increase  of  wood density  of  stem was  5% when the temperature  sum 

was  750-999 d.d.. 

Because Hakkila  (1972  a, 1979, 1991) has no model for  the biomass  of  stem 

bark, the usability  of  the difference between biomass  of  stem over  bark  and that of  

stem wood was  investigated.  The wood densities (with  and without bark)  are  esti  

mated using Hakkila's  (1979)  models.  The biomass  of  stem over  bark  and stem 
wood were  estimated  by  multiplying  the wood densities by  the stem volumes. The 
volumes of  the stems  over  the bark  and those of  stem  wood are  produced  using 

Laasasenaho's (1982)  functions based on  diameter at  the  breast  height and tree 

height,  if  the heights  of  pines  and spruces  are >3 m, and >4 m for  birches.  In NFI 

data the volumes of shorter  trees  are  calculated using  equations  not documented 

(Kari  T. Korhonen,  Finnish  Forest  Research Institute,  2004, personal  communica  

tion).  

Marklund's  (1988)  and Hakkila's (1991)  functions for living  branches of  pine  

and spruce  also  include  needles,  for  which  the mass  of  needles estimated by  using  
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separate  functions was  subtracted from those functions of  living  branches. For  

birch  the biomass  of  leaves could not be included into the calculations  because of  a 

lack of  models,  and therefore the proportions  of  different components  of  birch  are  

not fully  comparable  with  those of  conifers.  Hakkila  (1991)  and Finer  (1989,  1991) 

used crown  ratio  as  one of  the independent  variable in some models.  It  was  calcu  

lated as  relation  of  height  of  living  crown  and  the height  of  a  tree. Laiho (1997)  

used the relative  height of  a  tree as one  independent  variable  in  models  for living  

branches of  birch  and  dead branches of  pine.  The relative  height  of  a  tree  means the 
relation between height  of a  tree and the dominant height  of  the trees growing  in a  

stand. When these  functions were  applied  in  this  study,  it  was  assumed,  that  heights  

of considered trees correspond  to the dominant height,  for  which the value of  the 

relation was  1. 

The biomass  estimates  of  the total above-ground  components  of  a tree was  de  
fined as  a sum of separately  calculated biomass regression  functions of  the single  

components.  Marklund (1988)  and Hakkila  (1972  a,  1979,  1991) have not formu  

lated functions for  the total above-ground  components  of  a tree.  Thus,  the sums  

could not be compared  with  the outputs  of  the biomass  function for  the total above  

ground biomass  of  a  tree. 

According  to  Marklund's (1988)  recommendations,  his  functions for  roots  hav  

ing  diameter <5 cm were  used for pines  and spruces,  whose diameters at breast  

height were  <lO  cm. The root biomass  of  thicker  trees  was calculated as a  sum of  
function for  roots having  a diameter <5 cm and that for thicker  roots. Hakkila's 

(1972  a)  biomass  functions for  stump and roots  of  pine  and spruce  have  stump  di  

ameter as the only  independent  variable. In this  study,  the stump  diameters were  

estimated using  Hakkila's (1972  a)  functions, in which breast  height  diameter was  

an independent  variable. 

The studied biomass  models did not include seedlings  having  heights  <1.3 m. 

For  the formulation of  biomass functions of  seedlings  <1.3 m tall, diameter at 

breast  height  cannot be used as  one  of  the independent  variables.  The biomass  of  

small seedlings  should be modeled separately.  However,  the problem  in using  

separate functions is  the compatibility  of  the functions. In this  study,  the  biomass  
of seedlings  <1.3 m tall  was  excluded. 

The standard deviations of  the outputs  of  Marklund's (1988)  and Hakkila's  

(1979, 1991) models in  the different  diameter classes  were  compared  only  for  stem 

wood and the sum of  above-ground  components  of  pine,  spruce and birch, and 

living  branches and needles of  pine  and  spruce.  This  was  because for these compo  

nents and tree species,  both Marklund (1988)  and Hakkila  (1979,  1991) had models 

that have other independent  variables in addition to breast  height  diameter. The 

standard deviations were  also  compared  for  stem bark,  if  the outputs  for  biomass  of  

stem bark  were  reasonable. 
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3.2  Tree-level  evaluation  with  selected  models  

3.2.1 Results on  mineral soils  

tree  species  

On mineral soils  Marklund's (1988)  functions for  the  biomass  of  stem wood re  
sulted in  the largest  absolute values  for  birch, then for  spruce,  and the smallest  ones  

for pine  in diameter classes  <4O cm (Figure  4).  In most of  the larger  diameter  

classes,  spruce  had a  bigger  biomass than birch.  Hakkila's  (1979)  model gave the  

largest  absolute values for  the stem wood biomass  for  birch.  The biomass  estimates  

of  pine and spruce stem wood did not differ  much until the diameter  at  breast  

height  is  30  cm, but  for  thicker  trees  the estimates  for  pine  were  larger.  

The variation of  the stem wood biomass estimates  between the different tree 

species  was  partly  a  consequence of  differences  in  heights  within the same diame  

ter classes.  In the NFI data used,  birches  were  taller than conifers  in most of  the 

diameter classes  (Appendix  9).  Among  the thinnest  trees (<7  cm),  pines  were taller 
than spruces,  but  otherwise pines  were  shortest  trees. This corresponds  well with 

other studies.  For  example,  according  to Hakkila  et ai.  (1972)  spruces  are  a  little  

taller  than pines  in  the same diameter classes.  Laasasenaho's (1982)  functions gave 

the largest  volumes for  stem wood of  birches  and spruces excluding  the trees in  the 

larger  diameter classes  (Appendix  9).  In  larger  diameter classes,  the highest  values 

were for  spruce, then pine,  and the lowest  values  were  for  birch.  

According  to  the outputs  of  Hakkila's  (1979)  models, the basic  stem wood den  

sity  is  highest  in  birches,  and the basic  density  of Scots  pine  is  higher  than that of  

Norway spruce (Appendix  9).  This is supported  by  Hakkila's  (1966)  study.  The 

calculations of  wood density  using  Marklund's (1988) biomass models and 

Laasasenaho's (1982)  volume functions produced the highest  wood density  for 
stem wood of  birch,  but  the order  of wood densities of  pine  and spruce  varied be  

tween diameter classes.  This variation was  caused by  compatibility  problems  be  

tween  Marklund's (1988)  biomass  functions and Laasasenaho's (1982)  volume 
functions (see  the section  ' By  site fertility

'

 in this  chapter).  In  some studies  where 

there was  a  rather  narrow  diameter range, the dry  mass  of pine  stem wood has  been 

reported  to be higher  than that of  spruce  (Hakkila  1971), and green mass  has  been 

lower in pine  than in birch  (Hakkila  et  ai.  1975) in the same diameter class.  Be  

cause the order of  average green density  of  stem wood of  the studied tree  species  is 
the same as  that of basic density  (Hakkila  2002), the lower green mass  in pine  than 

in  birch  also  means  lower dry  mass in  pine  than in  birch.  

In  summary, on  average the biomass of  stem wood could be assumed to  be  lar  

ger at  least  in small- and medium-sized birches  than in conifers  of  the same size.  

The outputs  of  both Marklund's (1988)  and Hakkila's  (1979)  models corresponded  

with this  conclusion.  Even if  the  models produced  small differences  in  the ranking  

of  spruces  and pines  in the same diameter classes,  no conclusions  about the rela  

tions of  the biomass  of  stem wood of  these tree species  cannot confidently  be 

made. 
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The estimation of  the biomass  of  stem  bark  proved  to be unreasonable when 

calculated  from the difference between biomass  of  stem over  bark and the biomass 

of  stem wood (see  the section  
'

By size  of  tree
'

 in  this  chapter).  Thus,  the ranking  of 
tree species  concerning  the biomass  of  stem bark was  compared  only  using the 

outputs  of  Marklund's (1988)  models. The  outputs  of Marklund's  (1988)  models 
for  the biomass  of  stem bark (Figure  4) corresponded  with Hakkila's  (1967)  previ  

ous  study.  According  to Hakkila's  (1967)  study  the biomass  of  stem bark  is  the 

biggest  for  birch,  then  spruce,  and the lowest  for  pine,  when the stems  having  same 

volumes were  considered. Olsson  (1978)  reported  similar  results.  Based on these 

studies,  the biomass  of  stem bark  in the same diameter classes  is  the highest  in 
birch  and the lowest  in pine.  

The ranking  of  the biomass  estimates  for  living  branches and for  the needles of 

pine  and  spruce  (Figure  4) were  coincident with the previous  studies  -  i.e.  the esti  

mates for  spruce  were  bigger  than those for  pine  (Hakkila  1969,  1971, 1989). The 

estimates  produced  by  Marklund's (1988)  models  for  living  branches of  birch  were  

higher  than those of spruce.  Excluding  the thickest  trees (>35 cm), Hakkila's  

(1991)  models gave a larger  biomass of  living  branches for  spruce  than for  birch.  

In the largest  diameter classes  the results  were the opposite.  The comparison  of  the 

biomass  of  living  branches between conifers  and birch  was problematic  because of 

a lack of  studies  reporting  results  for this  variable.  In the used NFI  data,  the birch  

crowns  were  longer  than the crowns  of pines  and spruces  in  the smallest  diameter 

classes  (<7  cm),  but in other  diameter classes  spruce  crowns  were  the longest  and 

pine  crowns  were  the shortest  (Appendix  9).  The  crown  ratio of  spruce was  the 

largest  in  all  diameter  classes.  Excluding  the smallest  diameter classes,  the crown  
ratio  of  birch  was also  generally  higher  than  that of  pine  for  the NFI data. Accord  

ing  to a study  by  Hakkila  et  ai.  (1972),  on average crown  ratio was  largest  in 

spruce, and the crown  ratio of  birch was  a little larger  than that of  pine.  The 

branches of  spruce  were  thinnest and on average  the branches of  birch  were  a  little  

thicker  than those of  pine  (Hakkila  et ai. 1972).  Due to the lack of  representative  

studies,  the comparisons  between the conifers  and birch  about the amount, length,  

and basic  density  of  branches were  impossible  to  make. 

According  to Hakkila  (1989),  pine  has more biomass in dead branches than 

spruce, and because of  poor durability  and  dead material quickly  breaking  off,  

standing  birch has  a  relatively  small  mass  of  dead branches compared  with the two  
conifers  species.  Excluding  the thickest  trees  these results  corresponded  with the 

outputs  of the studied models  (Figure  4).  In the largest  diameter classes  Marklund's  

(1988)  and Hakkila's  (1991)  models gave higher  values for spruce  than for pine.  
Hakkila  (1969)  reports,  especially  in these  largest  diameter  classes,  that the bio  

mass  of  dead branches of  pine  was  larger  than that of  spruce.  

Because the biomass of  stem bark  cannot  be estimated as  a difference between 

the biomass  of  stem over  bark  and stem wood (see  the section  
'

By  size  of  tree
'

 in 

this  chapter),  the biomass of  stem over  bark (Appendix  5)  was  used,  when the total 
biomass  of  above-ground  components  were  estimated  using  Hakkila's  (1979,  1991) 
models. The summing  up of  the outputs  of  the models resulted the smallest  bio  

mass  estimates for  the above-ground  components  for  pine  (Figure  4).  The  biomass 

estimates  of  above-ground  components  of  birch  were a little  higher  than that  of  

spruce,  but  the variation between the larger  diameter  classes  was  considerable. The 
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Figure  4.  The biomass  of  single  above-ground  components  of trees and the bio  

mass  of  the sum of  all  above-ground  components  of  trees  by  tree species  estimated  

using  Marklund's (1988)  and Hakkila's  (1979,  1991)  models in different diameter 

classes  on mineral soils.  
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results  corresponded  with the studies  of  Hakkila et  ai. (1978)  and Simola (1977),  

when the green mass  of  small-sized  pines and birches  were  compared.  When the  

above-ground  biomass  of  trees  were estimated using coefficients  obtained from  

Kauppi's  et  al.  (1995)  study,  and the differences  in the volumes and mean basic  

densities of the stems in different tree species  (Hakkila  1966) were  taken  into ac  

count,  in most  of  the diameter classes  the biomass of  birch  was about the same or  a  

little  larger than the biomass  of  spruce,  which  were  larger than those of pine  (Ap  

pendix  11). 

The  evaluated Hakkila's  (1972  a) functions  gave  larger  biomass  for the stump  

and the roots  for  spruce  than for  pine  (Figure  5). Excluding  the trees in the diame  

ter classes  >3O cm, Marklund's (1988)  models  gave nearly  parallel  results  of  the 

biomass  of  stump  for  pine  and  for  spruce.  In  the larger  diameter classes,  spruce  had 

a  larger  biomass  than pine.  For  the biomass  of  roots,  Marklund's (1988)  models  

produced  larger  estimates  for  spruce than for  pine. In Hakkila's  (1976)  study  the  
biomass of  stump-root  system  was larger  for  spruce than for pine  in diameter 

classes  >22  cm, but in  smaller  diameter  classes  the  situation was  the opposite.  

Figure  5.  The  biomass  of  stump  and roots  of pines  and spruces  estimated  using  
Marklund's (1988)  and Hakkila's  (1972  a) models in different  diameter classes  on 

mineral soils.  

The allocation of  biomass  to  the different  above-ground  components  of  a  tree 

was  examined using only  Marklund's (1988)  models (see  the section  l

ßy  size  of  

tree' in this  chapter).  On mineral soils  Marklund's (1988)  functions produced  the 

highest  proportions  of  stem wood for  birch  in the smaller  and some  of  larger  di  

ameter classes,  but  otherwise the proportions  were  highest  for  pine  and smallest  for  

spruce  (compare  Table 10). When the relations between the outputs  of  Marklund's 

(1988)  models  were  considered,  the percentage  of  stem bark  from the biomass  of  

above-ground  components  of  a  tree was  highest  for  birch. In the smaller  diameter 
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classes  the percentage  was  larger  in  pine  than in spruce. For  the larger diameter 
classes  the percentage  was  larger in  spruce  than in  pine.  When the biomass  of  liv  

ing  branches was  estimated using  Marklund's (1988)  models,  the relative shares  of  

living  branches of  pine  were  generally  smaller  than those of  spruce  and birch.  The 

proportions  of living  branches were  the biggest  in spruce in the smaller  diameter 

classes  and  some larger  diameter classes,  but  in  most  of  the classes  the percentages  

were highest  in birch.  The proportion  of  needles from  the  above-ground  biomass  

was  bigger  in spruce than in pine.  When the results  of  Marklund's (1988)  models 

were considered,  the percentage  of  dead branches was  the largest in pine  and the 

smallest  in  birch.  When the different tree species  were studied,  it  was  difficult  to 

compare the relative shares calculated  based on  outputs of  Marklund's  (1988)  

models with previous  studies.  The information collected from literature about the 

percentages  of  different components  was  very  restricted  (see  the section 
'

By  size  of  
tree

'

 in  this  chapter).  

size  of  tree  

Marklund's  (1988)  functions  behaved logically  for most of  the diameter classes.  

Due to their formula they  did  not produce  negative  values  of  biomass  for  any  tree 

components.  Most  of  Hakkila's  (1972  a,  1979, 1991)  models produced  reasonable 

results  within the range of  the material  used for  formulating  the models;  however,  

extrapolation  was  not  possible  using most of  the models.  In a  few diameter classes  

(e.g.  52 cm and 70 cm in pine,  62 cm in spruce, and 54 cm  and 58 cm in birch)  

some Marklund's (1988)  and Hakkila's  (1979,  1991) models gave exceptionally  

high  or  exceptionally  low estimates  (Figure  4)  because of  larger  or  smaller  average 

heights  than  in  neighboring  diameter classes  (Appendix  9).  The  unusual combina  

tions of mean breast  height  diameter and tree  height  were  caused  by  small  amount  
of  sample  trees in  these diameter classes.  The study  of  biomass  estimated  for  single  

trees in the used NFI data revealed similar  results  about the exceptional  biomass  

estimates  as the study  of  mean biomass  in  different diameter classes.  

The  largest  differences  between the outputs  of Marklund's  (1988)  and Hakkila's  

(1979)  models for  the biomass  of  stem wood could be seen outside the range of  

sample  tree data used for  the construction  of  Hakkila's  (1979)  models.  Excluding  

the smallest  and largest  diameter classes,  the differences  between the outputs  of  the 

models in the biomass  of  stem wood of all  studied tree species  were  smaller than 
20% (Figure  6).  Excluding  only  a few of  the smallest  and  largest  diameter classes,  
the differences in  the standard deviations of  the biomass  of  stem wood of  pine  were  

also  less  than 20% within  the diameter classes  (Figure  7).  For spruce the differ  

ences  in the standard deviations within the  diameter classes  were rather small  

within  a  wide range of  diameter classes,  but in birch  this  was  only  the case  for  a 

narrow  range of  middle-sized  diameter classes  (4-22  cm). 

The difference  between Laasasenaho's (1982)  volume functions for  stem  over  

bark and stem wood could not be used for  the estimation of  the volume of  stem 

bark,  because the volume  functions produced  unrealistic  values in relation to each 

other in many diameter classes,  especially  in  the smallest  and  some  of  the larger  
diameter classes.  Thus,  it  was not  possible  to  estimate  the biomass of  stem bark  as  
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a difference between the biomass  of  stem over  bark  and  that of  stem wood,  when 

the volume was estimated  using  Laasasenaho's (1982)  functions and the basic  den  

sity  was  determined using  Hakkila's  (1979)  functions. 

The  outputs  of Marklund's (1988)  biomass  models for  living  branches and those 

for  needles of  pine  and  spruce  differed by  more  than 20% from Hakkila's  (1991)  

models for  the smaller  and the larger  diameter classes  (Figure  6).  However,  exclud  

ing  the living  branches of  spruce,  the differences in the standard deviations were  

high  within  most  of  the diameter classes  (Figure  7).  The differences in the standard 

deviations of  the biomass estimates  of living  branches of  spruce were  less  than 

20% in diameter classes  representing  middle-sized trees (13-44  cm). Hakkila's 

(1991)  models  for  living  branches of  all  studied  tree species  and  the model for  nee  

dles of  spruce  resulted in an  unreasonably  high  biomass  estimates  for  the thickest  

trees (Figure  4).  Using  Hakkila's  (1991)  models,  subtractions  of  the biomass  esti  

mates  of  needles from the biomass  estimates  of  living  branches including  needles 

produced negative  values  for  some pines  and  spruces in many diameter  classes.  
The difference became negative  if  short  or thin  trees were  considered. For  the liv  

ing  branches of  small- and medium-sized birches  Marklund's (1988)  model gave 

larger  biomass  estimates than Hakkila's  (1991)  model. When the thickest  trees 

were  considered,  the  situation was  vice versa  (Figure  6).  Hakkila's  (1991)  model 

for  the biomass of  living  branches of  birch  could not  be used for  the shortest trees  

(<2  m),  because the estimates  it  produced  for  these trees  were  unreasonable high.  

For  pine  and spruce the differences  between Marklund's (1988)  and Hakkila's  

(1991)  models in biomass estimates  of  living  branches could  be linked with the 

structure  of  the modeling  material.  Therefore,  Hakkila's  (1991)  model,  derived 
from more suppressed  trees,  produced  a  smaller  biomass  for  the living branches of  

thin trees. For birch  the number of sample  trees that  had  been used for  the formula  

tion of  the functions is much smaller  than the number of  sample  trees  for  spruce 

and pine in  both studies  (Table  1), and they  did not necessarily  represent  the whole 
birch  population.  

Hakkila's  (1991)  models resulted in negative estimates  for dead branches of  

pine  having  a  breast  height  diameter of  <4.3 cm, and for  dead branches of  spruce 

having a diameter  <4.5 cm. Also  the biomass of  dead branches of  the thinnest 

birches  (0-1.7  cm)  were  negative.  The differences  in the outputs  of Marklund's 

(1988)  and Hakkila's  (1991)  models for  the biomass  of  dead branches of  pine  were  
less than 20% in diameter classes  16-32 cm (Figure  6).  Only  in  a very  narrow  di  

ameter range did the biomass  of  dead branches of  spruce estimated  with Mark  

lund's (1988)  model  differ  less  than 20% from the outputs  of  Hakkila's  (1991)  
model. Both of  the examined models for the biomass of  dead branches of  birch  

resulted in very  low biomass in all  diameter classes (Figure  4).  Excluding  the 

smallest  diameter classes,  the estimates  for  the biomass  of  dead branches of  birch  

produced  by  Marklund's (1988)  models were  generally  more than 20% larger  than 

the results  of  Hakkila's  (1991)  models. For  thin pines  and spruces  the larger  bio  

mass  of  dead branches estimated  by  Hakkila's  (1991)  models could be caused by  
the biased data. Another explanation  is  that the prediction  of  biomass of  dead 

branches is  difficult  using conventional tree-  and  stand-level  variables (e.g.  Hakkila 

1991,  Petersson  1999).  This explanation  is  indicated by  the lower values of  multi  
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Figure  6.  The relative differences in the biomass  of  single  above-ground  compo  

nents of  trees and in the biomass  of  the sum of  all  above-ground  components  of  

trees estimated using  Marklund's (1988)  and  Hakkila's  (1979,  1991) models on 

mineral soils.  The positive  values mean that Marklund's  (1988)  models produced  

higher  values than Hakkila's  (1979,  1991) models,  and the negative values mean 

that Marklund's (1988)  models produced  lower values than  Hakkila's (1979,  1991) 

models. In the charts  the differences  were  limited to  ±lOO%. 
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Figure  7.  The relative  differences  between the standard deviations of  the outputs  of  

Marklund's (1988)  and Hakkila's  (1979,  1991) models  in  different diameter classes  

on mineral soils.  The  positive  values  mean that  the standard deviations of  the out  

puts  of  Marklund's (1988)  models were higher  than those of  Hakkila's  (1979,  

1991) models,  and the negative values mean  that the standard deviations of  the 

outputs  of  Marklund's (1988)  models were  lower than those of  Hakkila's  (1979,  

1991) models. In the charts  the differences were limited  to ±lOO%.  

pie  correlation  coefficient  (R),  coefficient  of  determination (R
2
)  and the high  values 

of  residual standard deviation (sres ) concerning  the  biomass models for  dead 
branches compared  to  the models  for  other  components  of a  tree (Appendices  4 and 
5). 

The sum of  different above-ground  components  estimated using Marklund's  

(1988)  models  corresponded  well  with the sum of  Hakkila's  (1979,  1991) models  

for  a  wide diameter range (Figure  6). For  pine,  there  were  large differences  in  the  
standard deviations of  the biomass  estimates  of  the above-ground  components  of  a  

tree within  most of  the diameter classes.  Excluding  some small and the largest  di  

ameter classes  of  spruce  and excluding  the large  diameter class  of  birch,  there were  

small differences in the standard deviations of  the biomass of  the above-ground  
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components  of  a  tree between  the outputs  of  the models (Figure  7).  The biomass  of 

stem wood has  the largest  effect  on  the total biomass  of the above-ground  compo  

nents,  and thus,  the correspondence  of  the models in  estimating  the total biomass  of 

above-ground  components  depends  considerably  on their correspondence  in esti  

mating  the biomass  of  stem wood. 

The  dry  mass  of  stumps and roots of  pine  and spruce  was  bigger  when they 

were calculated using  Marklund's (1988)  models (Figure  5).  This was  because 

Hakkila  (1972  a)  included only  the roots  thicker  than 5  cm in  his  data (see  chapter  

3.1.3).  Hakkila's  (1972  a)  model for  the biomass  of  stump  and roots produced  nega  

tive  values  for  pines  and spruces  having  a  diameter  at  breast  height  <B.O cm. 

Because the biomass  of  bark  could not be estimated  using  Hakkila's  (1979)  and 

Laasasenaho's (1982)  models and because  Hakkila's  (1972  a,  1979,  1991) models 

produced  unreasonable values for  some diameter classes,  the proportion  of  the 

biomass  of  the different  components  of  a  tree were  only  calculated using  Mark  

lund's (1988)  models. In other studies the proportion  of  stem wood of  pine  in 

small-sized  trees and  in trees in the thinning  phase  was  30-70%,  that of  bark  10- 

15% (Paavilainen  1980, Voipio  and Laakso 1992,  Vanninen et ai.  1996), that of 

living  branches excluding  needles 10-35% and that of  needles 5-30% (Paavilainen  
1980,  Voipio  and Laakso 1992, Vanninen et ai.  1996, Mäkelä and Vanninen 1998). 

In Hakkila's (1972  b) study  the percentage  of  the biomass  of  stem over  bark  for  

middle-sized trees was  60-85% and that of  living  branches including  needles 15- 

40%. Nylinder  (1980)  presented  very  similar  results  to Hakkila's  (1972b)  study.  

The percentages  for small- and middle-sized trees  obtained using  Marklund's 

(1988)  models corresponded  with these studies  (Table  10). When larger  pines  were 
considered,  the proportions  given  by  Marklund's (1988) models were also  rather  
similar  to  other  studies.  According  to Vanninen et  ai.  (1996)  the percentages  for  the 
biomass  of  stem wood of  large  pines  were 60-80% and for  stem bark  5-15%. In 

large  pines  the proportions  of  living  branches excluding  needles were  5-20% and 
those of needles 1-10% according  to  Vanninen et ai.  (1996)  and Mäkelä  and Van  

ninen (1998).  In Nylinder  (1980)  the proportions  of  stem over bark varied from 
75% to 80%,  and those of living  branches including  needles  from 20% to  25%. 

Table 10. The range of proportions  (%)  of  different components  of  trees  growing  

on mineral soils  from the total biomass of  above-ground  components  in  diameter 

classes  1-20 cm, 21-40 cm  and >4O cm. The biomass of  the components  was  esti  

mated using Marklund's  (1988) models. 

Scots pine Norway spruce  Silver and downy  birch  
1-20 21-40 >40  1-20 21-40  >40  1-20 21-40  >40 

cm  cm cm cm cm cm cm cm cm 

Stem w ood 51-70 71-78  56-86 30-60 61-68  59-77 53-68 68-70  62-73  

Stem bark  6-18  5-6 4-5 6-8  6 5-6 11-17 11-12 12-13 

Living 14-17 13-15 7-33 20-29 16-20  11-24 20-27 18-20  14-23 

branches  (excl.  

foliage) 

Foliage 6-15  3-6  2-6  12-31 8-12 5-10 

Dead branches  2-4 2-3 1-2 2-3 1-2 1-2 1-4 0-1 0-2 
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According  to Voipio  and  Laakso (1992)  the proportion  of  stem wood is  about 

45%,  and that  of  bark  10% of  the above-ground  biomass  of  small-sized  spfuces.  

The proportion  of  branches excluding  needles is about 35%,  and  that of  needles 

about 10%. The  proportions  obtained from  Hakkila's  (1972b)  study  for  the biomass  

of  the stem over bark were  50-70%, and  for  branches including  needles 30-50%. 
When the biomass of  stem wood,  bark  and needles were  considered,  the estimated  

proportions  obtained using  Marklund's (1988)  models were  rather similar  to these 

studies;  however,  the percentages  of  living  branches calculated with Marklund's  

(1988)  models  were  smaller  (Table  10) than the percentage  obtained  by  Voipio  and 

Laakso (1992).  Nylinder's  (1980)  comparisons  of  different biomass  studies  gave  
values of  about 50-75% for  the biomass  of  stems over  bark  for trees  having  a di  

ameter  <2O  cm  and about 70-75% for  the stems  of  larger  trees. Correspondingly,  

the percentages  of branches including  needles were  25-50% in the smaller  diameter 

classes,  and 25-30% in the  larger  ones. Marklund's (1988)  models gave  similar  

results.  

For  birch  the percentages  of  the outputs  of  evaluated models were also  generally  
similar  to  the values  reported  in  other  studies.  One exception  was  the proportion  of 

stem wood in small  birches,  for  which Marklund's (1988)  models  gave slightly  

smaller  values (Table  10).  The  proportions  of  stem  wood in small-sized birches  

were about 60-85%,  and  that of  stem bark  about  10-15% (Björklund  and Ferm 

1982, Mälkönen and Saarsalmi 1982, Voipio  and Laakso 1992). Ferm and 
Kaunisto (1983)  and Ferm (1990)  reported  that  for  small  birches  the proportions  of 
the biomass of  stem over  bark were about 75-85%. The  percentages  of  living  

branches without leaves are 10-25% (Simola  1977, Björklund  and Ferm 1982,  

Mälkönen and Saarsalmi 1982,  Ferm  and Kaunisto 1983, Ferm  1990, Voipio  and 
Laakso 1992) and that of  leaves 5-10% (Simola  1977,  Mälkönen and Saarsalmi 

1982). In a 40-year-old  birch  stand the proportions  of  stem wood were  65-75%,  

those of  bark  10-15%, those of  branches excluding  foliage  10-20%,  and  those of 

foliage  5% of  the above-ground  biomass  of  the trees  (Mälkönen  1977,  Mälkönen 
and Saarsalmi 1982).  In Mälkönen (1977)  and  Mälkönen and Saarsalmi  (1982)  the 

proportions  of dead branches were  1% at the most. In a  dense stand Björklund  and 

Ferm (1982)  reported  a  value of  6% for  the biomass of  dead branches.  

site  fertility  

When the biomass of  stem wood of  pines,  spruces and birches  growing  on various 
sites  was studied,  the models generally  produced higher  values for  trees growing  

on  fertile  than on  infertile  sites (Figure  8).  In the NFI data used,  trees  in  the same 

diameter class  were taller on the  fertile than on  the infertile  sites  (Appendix  10) 

(see  also  Ilvessalo  1969, Koivisto  1972,  Vuokila and Väliaho 1980), and therefore,  
the biomass  of  a  stem could be assumed to be larger  on  fertile sites.  According  to 

Päivinen (1978) the pines  and spruces growing  on  fertile sites  taper  more than 

those growing  on infertile  sites.  This is  supported  by  Hocker  (1979),  who states 

that the stems  of  trees with long  spreading  crowns  taper  more than  those with nar  

row  crowns.  For  birch  the site  has  proved  to  have  no  significant  effect on  the taper  

ing  of  the stem (Päivinen  1978). In the NFI data used in  this  study,  in  the same 
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diameter classes  volumes of stem wood of all  studied  tree species  were  larger  on  
fertile  than on  infertile  sites  when they  were  estimated by  Laasasenaho's (1982)  
models (Appendix  10). Thus,  for all  examined tree species  height  had a greater  
effect  on  stem volume, than taper  had on stem  volume. 

The increase  in the tree growth rate decreases the basic  density  of  the wood of  

pine  and spruce  (Hakkila  1966, Kärkkäinen 1985);  therefore,  on  the fertile  mineral 
soils  the density  of  wood is  less  than on infertile  sites.  For birch,  the effect  of  

growth  rate on the wood density  is  generally  considered to be insignificant  (Hak  

kila 1966,  Kärkkäinen 1985). Trees of a particular  diameter  are older  on infertile  
sites,  than  trees of  the same  diameter growing  on  fertile  sites.  Due to  -  among  other 

things  -  the changes  in the composition  and the proportion  of  heartwood (Kärk  
käinen 1985), the density  of  stem wood increases  as  trees get older (Hakkila  and 
Uusvaara 1968, Björklund  and Ferm 1982, Kärkkäinen 1985, Vanninen et ai.  

1996). The  direction of the change  in  the basic  densities of  stems estimated by  
Hakkila's (1979)  functions  for  trees growing  on different site  fertilities  (Appendix  

10) corresponded  with results  reported  in  the literature.  The relationships  between 

Marklund's (1988)  biomass  functions and Laasasenaho's (1982)  volume functions 

gave lower basic  densities for trees growing  on infertile  sites  in many diameter 

classes  (Appendix  10). This result  indicated the poor compatibility  of these func  
tions.  However,  according  to preliminary  comparisons  made in  this  study  the effect  
of  lower wood density  was  not as great  as  the influence of  larger  volume on the 

biomass  of  stem wood on fertile  sites.  Based on  these analyses,  the biomass of  stem 

wood is  larger  on  fertile than on  infertile  sites.  
Marklund's (1988)  models for  the biomass  of stem bark  produced  higher  esti  

mates on fertile  than on infertile  mineral soils (Figure  8).  According  to previous  
studies  the  thickness  of stem bark  of  all  considered tree species  (Östlin  1963b,  
Päivinen  1978) and the percentages  of  bark  volume of  pine  and spruce  (Östlin  
1963b,  Ilvessalo  1969, Heiskanen  and  Rikkonen 1976) were  larger  on  infertile  than 

on fertile sites.  However,  according  to  Hakkila  (1967)  the volume of  stem over  

bark  explained  most of  the variation in the biomass of  stem bark.  In Hakkila's  

(1967)  study  the correlation between the volume of  stem over  bark  and the biomass  

of  stem bark  was  positive.  In that study,  the correlation between the  biomass of  

stem bark and growth  rate  was  negative  for  pine,  but the explained  variance did not 

increase much when the growth  rate was  added into  a  regression  function in  addi  

tion to volume of  stem over  bark.  Age was positively  correlated with  the biomass  

of  stem bark  of spruce,  and height  growth  rate was  negatively  correlated  with the 
biomass  of  stem bark  of  birch.  However,  age of  spruce  and height  growth  rate  of  

birch  had  only  minor effects  on the biomass  of  stem bark  of  these tree species  in 

comparison  to the effect  of  stem volume on the biomass of  stem  bark.  Because in 

the NFI  data the volume estimates  of trees was  larger  in the same diameter classes  

on fertile  sites  (Appendix  10), the biomass  of  stem bark  could be assumed to be 

larger  on  the fertile  than on  infertile  sites,  which corresponded  with studied Mark  
lund's  (1988)  models.  

The  outputs  of  the models for  the biomass  of  living  branches and needles of  

pine  and spruce were  contradictory  to the results  reported  in other  studies.  Mark  

lund's (1988)  and Hakkila's  (1991) functions produced larger  values for biomass  

of  living branches and biomass of  needles on infertile than on fertile mineral soils  
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(Figure  8).  The considered Marklund's (1988)  model for living branches of  birch  

produced  the same result  on  different sites  because it  only  has  breast  height  diame  

ter  as  an independent  variable. In most of  the diameter classes  Hakkila's  (1991)  

biomass  model for the living  branches of  birch  produced only  slight differences 

between the sites.  It generally  produced  higher  values for biomass of living  
branches of  birch  on infertile  than on fertile sites.  

The branches of pine  have been studied  more extensively  than  those of  spruce 

and  birch.  In  a  study  concerning  pine,  the first  whorl of  branches from the ground  

were  higher  on  infertile  than on fertile sites (Uusvaara  1983).  Based  on the results  

of  that study  and  because in the NFI data the trees were  taller on  fertile sites,  the 

length  of  crown  can be supposed  to be larger  on fertile sites (Appendix  10). In 

some  studies  the crowns  of  pines were  found to be relatively  longer  on infertile  

than on fertile sites  (Lämsä  et ai.  1990,  Kellomäki et  ai.  1992). The results  about 

longer  crowns  on  fertile  than on infertile  sites  were  supported  by  the NFI data (Ap  

pendix  10).  Generally,  in  the  same diameter  classes  the crowns  of  all  tree  species  

were  longer  and the crown  ratios  were  higher  on fertile than on infertile  sites.  In 

Mäkelä et  ai.  (2000)  the biomass  of  living  branches and needles of  pine  increased 

exponentially,  when the length  of  crown  increases.  In that study,  the amount  of  

needles and  branches was  greater  for  thick-butted trees than for  slender  trees irre  

spective  of the length  of  crown.  

When pine is  considered,  the  number of  branches in a  whorl (Lämsä et ai.  1990,  

Kellomäki et  ai. 1992), the thickness  (Hakkila  1971, Turkia and Kellomäki 1987,  

Kellomäki  et  ai.  1992) and the length  of  branches are  larger  on  a  fertile site  than on 

an infertile  site  (Hakkila  1971). In contrast to  the results  for pine,  in Heiskanen 

(1957)  there  were  no large  differences in the thickness  of  branches of  birch  be  

tween different sites  on mineral soils. The  results  for  differences in the length of 
branches of  pine  were  also  supported  by  Valinger  (1993),  in which fertilization  

with nitrogen  caused greater  elongation  of branches of  pine  compared  to unfertil  
ized control trees. According  to Kellomäki et ai.  (1992)  the total amount of 
branches of  pine  is greater  on  infertile  sites.  In Hakkila's  (1969,  1971) studies,  in  a  
certain  diameter class, pines  and  spruces  having  sharply  tapering  stems are  found 

to be branchy,  and  thus,  pines and spruces  growing  on fertile sites  have  more  

branches,  which  is a contradictory  conclusion to  Kellomäki  et ai.  (1992).  Accord  

ing  to Kellomäki et ai.  (1992)  the branch biomass  of  pine  is larger  on fertile sites  

than on infertile  sites  when the stand density  is considered as  constant.  The bio  

mass of  branches of  birch  has  been observed to  increase,  when,  for  example,  the 

amount of  nitrogen  (Ferm  and  Kaunisto 1983,  Saarsalmi  et  al.  1992) and  the pH  

value of  the soil  increased (Ferm  and Kaunisto 1983). According  to Kärkkäinen  

(1985)  the biomass  of  branches and foliage are large  in fast-growing  trees because 

the branchiness  of  the tree is  one of  the requirements  of  its  good growth. 

In Niinemets et al.  (2001)  the length,  thickness  and width of  pine  needles  were 

generally  lower on  an infertile  than  on a  fertile  site.  The needle litterfall  of  pine  has 

found to be larger  on  fertile than on infertile  sites  (Albrektson  1988), which was  

due to the fact,  that a fertile site  produces  more  needles than an infertile  one  (Bray  

and Gorham 1964).  According  to Vanninen et  al.  (1996)  the main difference be  

tween an infertile  and a  fertile site is that the trees  on the less fertile  site  can  sup  

port  more  foliage  per  unit  sapwood area. 
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The outputs of  Hakkila's  (1991)  models for  biomass of  dead branches did not 

differ  in the same  diameter classes  on  different  sites, because  the models had only  

breast  height  diameter as an independent  variable (Figure  8).  Marklund's (1988)  

model for  dead branches of pine  produced  also  biomass  estimates  of same magni  

tude for all  sites,  although  it  had both breast  height  diameter  and tree height  as  

independent  variables. For dead branches of spruce Marklund's  (1988)  function 

resulted  larger  values  on fertile than on infertile  sites  and for dead branches of  

birch  they  produced  higher  values on  infertile  than on fertile  mineral soils. Accord  

ing  to literature,  there are  differences in  time of  formation,  amount, dimensions and 

self-pruning  of  dead branches  on  different sites.  For  example,  dead branches of  

pine  are  formed earlier  (Lämsä  et  ai.  1990) and their amount is greater  on  fertile 

than  on infertile sites (Kellomäki  et  ai.  1992). In pine,  the diameter of  the thickest  

dead branch of  a  tree  increases as  site  fertility  increases (Lämsä  et  ai.  1990).  The 

growing  conditions for  fungi,  bacteria  and other micro-organisms  have effects on 

the biomass  of  dead branches (Petersson  1999).  Thus, on  fertile  sites the self-  prun  

ing  of  pines  is  faster  than on infertile  sites  (Lämsä  et  ai.  1990). Based on a  survey  

of  the literature,  no  conclusions can  be  made about the performance  of the studied 

biomass  models  for dead branches on different site  fertilities. 

The sums  of  the biomass  for all  above-ground  components  for  the evaluated 

models  produced  larger  biomass  estimates  for  all  considered tree species  on  fertile 

than on infertile sites.  This result  was  supported  by  the outputs  of  Korhonen and 
Maltamo's (1990)  biomass  function for  the above-ground  components  of  pine (Ap  

pendix  11). The main factor  affecting  above-ground  biomass  was  the biomass  of 

stem wood,  and the biomass  of  stem wood was  greater  on fertile than on infertile  

sites.  

The outputs  of  examined models for  the biomass  of  stump  and roots  were  the 

same irrespective  of  site  fertility,  because the models only  had breast height  diame  

ter  as  an independent  variable. According  to the literature there are, however,  dif  
ferences in the biomass  of  roots depending  on the site  fertility.  The differences in 

root  biomass  between site  fertilities  depended  on the classification  of  the roots,  and  

thus,  the  results  of  previous  studies  differ from  each other.  According  to Vanninen 

et ai.  (1996),  the relative  amount  of  below-ground  section  of  pines  (ages  18-212 

years)  does not differ  much between site  types, and  therefore,  the absolute biomass 
of  roots  can  be assumed to  be larger  on  fertile sites.  In Pietikäinen  et ai.  (1999)  the 
amount  of  total root  biomass  did not differ across  the moisture  gradient  on  mature 

(about  100-year-old)  conifer stands.  In that study  the root biomass  included living  

root (tree roots  <2  mm, tree roots  >2 mm, and  dwarf shrub roots)  and dead root 

biomass.  According  to Hynynen  (1987)  the size  of  the root system  increases as  site  

fertility  decreases and as  the mechanical hindrances  in the soil  become less.  In 

Mäkelä et ai.  (2000)  the density  of  fine  roots (<2  mm) of  pine  was  greater  in  infer  
tile than in fertile sites.  There are only  a very  few studies about the biomass of  

roots  of  spruce (e.g.  Hakkila  1972  a, 1976) and  no representative  studies could be 
found concerning  the effect  of  site  fertility  on  the root  biomass  of  birch.  

According  to the outputs  of  the studied  Marklund's (1988)  functions,  the per  

centage  of stem wood was  generally  greater  on fertile than on infertile  mineral 
soils  for  all tree  species.  The percentage  of  living  branches of  all species  was  
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Figure  8.  The relative  differences in  the biomass  of  single above-ground  compo  

nents  of  trees  and in the biomass  of  the sum of  all  above-ground  components  of  

trees estimated using  Marklund's (1988)  and  Hakkila's  (1979,  1991) models on  
fertile and on infertile  sites.  The  positive  values mean that  the biomass  estimates  

were  higher  on fertile sites,  and the negative  values mean that biomass  estimates  

were  higher  on  infertile  sites.  In  the charts the differences were  limited  to  ±lOO%. 
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greater  on infertile  than on fertile  mineral soils,  and for pine  and spruce the per  

centage  of  needles was  greater  on  infertile  than on fertile mineral soils.  The site  did 

not have much effect  on  the relative shares of  stem bark and dead branches. Be  

cause  of  the lack of  existing  studies,  the results  about the relative  proportions  of  

different  above-ground  components  could be compared  only  with single  studies.  

According  to Hakkila  (1969),  in short trees  the relative branch mass is  high,  and 

therefore,  on infertile  sites  the proportion  of branch  mass is  higher  than on  fertile  

sites.  However,  according  to Kellomäki and Väisänen (1986),  the percentage  of  
branch  mass  of  pine  is  smaller  on an infertile than on a fertile site,  which  is the 

opposite  result  to that  obtained  with the Marklund (1988)  models.  

location 

Marklund's  (1988)  and Hakkila's (1979)  models produced  lower estimates  for  trees 

in Northern  Finland than in Southern Finland (Figure  9).  According  to Hakkila  

(1971)  and Hakkila  et  ai.  (1972)  the trees of  a  certain  diameter class growing  in the 
North were shorter  than trees of  the same diameter class growing in the South. 

These kinds  of  differences  in  the heights  of  the trees  having  same diameters were  
also  noticed in the NFI data (Appendix  12).  With  regard  to  the tapering  of  a  stem,  

there were contradictory  results.  According  to Päivinen (1978)  the stem tapering  

for  pine  is  greater  in Southern than in Northern  Finland,  but according  to Hakkila  

(1971,  1972  a)  and Hakkila  et  ai. (1972)  northern pines  taper more than southern 

ones. According  to Päivinen (1978)  there  are  little  differences in  tapering  of  spruce 

in different parts  of  the country. In Hakkila  et  ai. (1972)  the tapering  of  stems of 

spruces  and birches  was  observed to  be greater  in the North.  For  birch, Päivinen 

(1978)  reports  that  tapering  is  greater  in  the South. Generally,  in  the same diameter  

classes  the volumes of stem wood estimated by  Laasasenaho's (1982)  functions 
were  larger  in  Southern than in Northern Finland in  the NFI  data (Appendix  12). 

Also, the wood density  depends  on the location. According  to Hakkila  (1968),  

in  Finland the basic  density  of,  for  example,  pine and spruce  pulpwood  is  highest  in 

the area between 64°N and 66°  N.  In that study,  pine  pulpwood was  exceptionally  

low in  density  in  Northern  Finland. In spruce  the variation of  basic  density  of  wood 

from the North to  the South was  relatively  small.  Hakkila's  (1979)  models resulted 

in slightly  higher  stem wood density  estimates  for  trees growing  in Northern  than 

in Southern  Finland (Appendix  12). The relations between the outputs  of  Mark  

lund's (1988)  biomass  models and those of Laasasenaho's (1982)  volume functions 

produced  higher  stem wood density  estimates  for  pine in the South than in the 

North.  The stem wood density  estimates  for  spruce  and for  birch  produced  by  those 

relations were  rather similar  in  different locations.  In  summary, the biomass of  

stem wood of  all  tree species  could be assumed to be larger  in Southern than in 
Northern Finland,  because the stem volumes were larger  in the South  than 

in  the North,  and there were  rather  small differences in  basic  densities in  different  

parts  of  Finland. 

The  outputs  of  Marklund's (1988)  models describing  the biomass  of  stem bark  

were  coincident with other  studies.  Marklund's (1988)  models gave smaller  esti  

mates in  Northern than in Southern Finland (Figure 9).  For  pine,  the thickness  of  
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stem bark  (Östlin  1963 a  and  1963  b,  Ilvessalo  1965)  and the dry  mass  of  stem bark  

per  stem volume over  bark  (kg/m
3

)  (Olsson  1978)  were  smaller  in  the North  than in 
the South. For spruce,  the results  concerning  the variation of  thickness of  stem bark  

(Östlin  1963  a,  Ilvessalo  1965,  Päivinen 1978) in  different parts  of Sweden and 

Finland,  and  concerning  the biomass  of  stem bark  per  tree volume (Olsson  1978) in 

different parts  of  Sweden were  contradictory  to  those of  pine.  According  to  Östlin  

(1963  a) the bark of  birch  is  thicker  in  Southern than in Northern Sweden;  this is  
affected  by  the occurrence  of  different birch  species  in the different  parts  of  the 

country.  Because,  according  to  the NFI  data, the volumes of  stems of  all  considered 

tree species  were  smaller  (Appendix  12), and because,  according  to  Östlin  (1963b),  
the volume percentage  of  stem bark  of  pine  and birch  was  on  the average smaller  in 

the North than in  the South,  at  least  the volume of  stem bark  of  pine  and birch  is  

larger  in  Southern than in  Northern Finland.  In Östlin  (1963b)  the mean volume 

percentage  of  stem bark  of  spruce from the volume of  stem over  bark  was  only  a  

little larger  in  Northern  than  in  Southern Sweden,  and thus,  also  the volume  of  stem 

bark  of  spruce  could be  assumed to  be  larger  in  Southern than  in  Northern Finland. 

For  living  branches of pine  and  spruce  the considered models resulted in larger  
biomass estimates  in Northern  than in Southern Finland (Figure  9).  For  living 

branches of  birch,  Hakkila's  (1991)  model resulted in  smaller  biomass estimates  on 

mineral soils  in  Northern than in Southern  Finland,  and Marklund's (1988)  model 

resulted in similar  biomass  estimates  in the different parts  of  Finland,  because it  
has only  breast  height  diameter as  an independent  variable. In the NFI data, the 

crowns  of  all  tree species  were  longer  in Southern than in  Northern Finland,  when 

same diameter classes  were  compared  (Appendix  12). According  to previous  stud  

ies the crown  ratios  of  pine and  spruce are  larger in Northern than in Southern 

Finland (Hakkila  et ai.  1972),  the crown  of  pine  is long  (Valtanen  1994) and 
branches of  pine  and spruce  appear in the low part  of  the stem (Salemaa  et  al. 1995,  

Salemaa and  Lindgren  1998) in Northern Finland. The  larger  crown  ratios  are at  

least partly  due  to a  lower density  of  forests in the Northern Finland (Hakkila  1971,  

Hakkila  1989,  Salemaa and Lindgren  1998). Although  the crowns  are  longer  in 
Southern than in Northern  Finland,  trees are  also  taller in the South than in the 

North (Appendix  12), and  therefore,  the crown  ratio  of pine  and spruce  in the same 

diameter class  is  smaller  in Southern Finland. For  birch  the results  concerning  the 

variability  of  the crown  ratio  were  contradictory  to pine  and spruce.  The proportion  

of  downy  birch  is  greater  compared  to silver  birch  in Northern than in Southern 

Finland (Valtanen  1994).  Although  the branchless  proportion  of  the stem is  greater  

in silver  birch  than in downy  birch  (Heiskanen  1957), in the NFI data used the 

crown ratio of  birch  in a certain  diameter class was,  however,  generally  larger  on 

mineral soils  in Southern than in Northern Finland. 

Because of  the slower  growth rate,  the amount of  whorls  can  be supposed  to be 

greater  in Northern Finland. According  to  Salemaa et al.  (1995)  the branches of  

pine  are  usually  thick,  but  according  to  Valtanen (1994)  they  are  thin in  Northern 

Finland. The branches of pine  are  short  in Northern Finland (Salemaa  et  al.  1995,  

Valtanen 1994).  The shortness  of the branches is an adaptation  of  the trees to  the 

northern conditions  (Salemaa  et  al. 1995, Salemaa and Lindgren  1998),  in which 

the amount of  snow cover  is large.  According  to  Kuuluvainen (1988) narrow  
crowned spruces  possesses  more  needle and branch mass  per  unit  of  crown  volume 
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Figure  9. The relative  differences in the biomass  of  single  above-ground  compo  

nents  of trees  and  in  biomass  of the sum of  all  above-ground  components  of  trees  

estimated using  Marklund's (1988)  and Hakkila's  (1979,  1991) models in Southern 

and in  Northern Finland. The positive  values mean that the biomass  was  higher  in 

Southern Finland,  and the negative  values mean that the biomass  was  higher  in 

Northern Finland. In the charts  the differences were limited to ±lOO%. 
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than broad-crowned trees. However,  pine  had been observed  to have more foliage  

per  unit branch  cross-sectional  area, and also  more branch cross-sectional  area 

compared  to stem cross-sectional  area in the South than  in the North (Nikinmaa  et  

al. 1996).  Based on  these facts  the biomass  of  branches can  be  assumed to  be larger  

in the South than in  the  North.  This  is a  contradictory  conclusion to the  outputs  of  

Marklund's (1988)  and  Hakkila's  (1991)  models for  pine  and spruce.  

Also for needles the estimates  produced  by  the selected  biomass  models were  

bigger  in  Northern than  in Southern Finland in most of  the diameter  classes  (Figure  

9).  This result  did not  correspond  to the previous  studies.  According  to previous  

studies,  the needles are  short in Northern Finland  (Salemaa et  al.  1995), but  the 

number of  age classes  of  living  needles is  greater  at  high  latitudes (Albrektson  

1988,  Salemaa et  al. 1995,  Reich  et  al.  1996, Petersson  1999).  The amount  of nee  
dles in  one  age  class  can  be assumed to  be,  however,  smaller  in  the North,  because 

the annual shoots  are  shorter.  Although  e.g.  Norway  spruce  carries  its  needles for  a  

longer  time in  the North (Reich  et  al. 1996),  the  dry  mass  of  needles  of  pine  and 

spruce  in  the North is  smaller  than in  the South (Hakkila  1972b).  

Hakkila's (1991)  biomass  models  for dead branches resulted in similar  values 
for  trees  growing  in  different parts  of  Finland because they  had only  breast  height 

diameter as  an independent variable (Figure  9). When the biomass of  dead 

branches of  pine  were  estimated using  Marklund's (1988)  model,  the differences 
between trees  growing  in Northern and in Southern Finland were small.  Mark  

lund's (1988)  model  produced  lower  estimates  for biomass  of  dead branches of  

spruce in the North than in the South. Marklund's (1988)  function for  dead 

branches of  birch  gave larger  estimates in Northern  Finland than in Southern 
Finland. According  to Hakkila  et al. (1972),  the length  of  stem appearing  dead 

branches is larger  in  the same diameter class  in  Southern Finland than in  Northern 

Finland. Spruces  growing  in Northern Finland have more dead branches within  the 

living  crown  than those growing  in Southern Finland (Hakkila  1971).  Based on 

these studies,  no  conclusions  about the biomass  of  dead branches in different  parts 

of  Finland could be made. 

In most of the diameter classes  the sums  of  the outputs  of  the models used in 

this study  produce  higher  estimates  for  the biomass of  the above-ground  compo  

nents in  Southern than  in  Northern Finland (Figure  9).  This  result  was supported  by  
calculations  made using  Korhonen and  Maltamo's (1990)  model for the above  

ground  components  of  pine  (Appendix  11). 

Marklund's (1988)  biomass model for  stump  and the model for  roots,  and Hak  
kila's  (1972  a) model for stump  and roots had only  breast  height  diameter as  an 

independent  variable, and thus,  they  produced  no  differences for  trees  growing  in 

different parts  of Finland.  However,  based on  literature  there are  certain  differences 

in  the biomass  of  stump  and roots in different  locations.  In  Northern Finland pines  

have weak taproots  or they  have  no taproots  at all  (Hakkila  1972 a and  1976).  Ac  

cording  to  Hakkila's  (1972  a) study,  the differences in  the biomass  of  stump-root  

system  of  pine were  relatively  small  between Southern and Northern Finland. The 

stump-root  system of spruce appeared  to be larger  in  Northern Finland. There are  

no studies  concerning  the variation of  the biomass  of  stump  and roots  of  birch  in 
different  parts  of Finland.  
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The proportions  of stem wood of  pine  and spruce estimated by  Marklund's 

(1988)  models were  greater  in Southern than in  Northern Finland,  and the propor  

tion  of  living  branches and needles was  greater  in Northern than in Southern Fin  

land. Also for  birch, the variations of  the proportions  of  stem wood and  living  

branches were  similar  to those of  pine and spruce.  The  differences in  the percent  

ages of  stem bark  and dead branches were  not big  for  any  tree species  in  different 

parts  of  the country.  Because of  the lack  of  representative  studies,  these results  

about the proportions  of  different  above-ground  components  of a  tree  from the total 

above-ground  biomass  could not  be  compared  with  other  studies.  

3.2.2  Results  on peatlands  

tree species  

When the  biomass  of  stem wood was  estimated  by  Marklund's  (1988)  models,  the  

ranking  of  tree species  was  rather  similar  on peatlands  than on mineral soils  (Fig  

ures  4 and 10). The main difference was,  that on peatlands  Marklund's (1988)  

model generally  gave larger  biomass  values for  spruce stem wood than for birch  

stem wood already  in  the diameter  classes  >3O cm. On mineral soils,  the biomass  

estimates  were  greater  for  spruces  than birches  in  diameter classes  >39 cm. Also 

the stem wood estimates  of  Hakkila's  (1979)  biomass  models for  trees growing  on 

peatlands  correspond  well  to  those for trees  growing  on mineral soils,  when the  

ranking  on tree species  was  considered. However,  the biomass  estimates  of  pines  

were larger  than that of  spruce in diameter classes  >35  cm; the corresponding  

classes  on mineral soil  were  >3O  cm. According  to NFI data the rankings  of  tree  

height,  stem wood volume and stem wood density  of  different tree species  were 

rather similar  on  peatlands  and on mineral soils (Appendices  9 and 13). The small  

differences  in  the ranking  of  stem wood biomass  could,  however,  be explained  in 

small differences in  the ranking  of  tree heights  on  peatlands  and on  mineral soils.  

Like  on mineral soils,  the outputs  of  Marklund's (1988)  and Hakkila's  (1991)  

models for  living  branches were  the smallest  for  pine.  The ranking  of  the estimates  

of  Marklund's (1988)  models concerning  spruce and birch  corresponded  to the 

ranking  on mineral soils.  Also the ranking  of  outputs  of Hakkila's  (1991)  models 

concerning  spruce  and birch  corresponded  to  the ranking  on  mineral soils.  On  peat  
lands the rankings  of  the biomass  of  needles and dead branches estimated by  Mark  

lund's (1988)  and Hakkila's (1979,  1991) models,  according  to tree  species,  corre  

sponded  well  to  the rankings  on  mineral soils.  In the NFI data the crown  lengths  of  

trees growing  peatlands  did  not  differ  much from  those of trees  growing  on  mineral 

soils in  the same diameter classes  (Appendices  9  and  13). 
When the ranking  of  the tree  species  were  considered,  the outputs  of  Mark  

lund's (1988)  and Hakkila's  (1979,  1991) models for the different above-ground  

components  generally  corresponded  rather well with the outputs  of  the peatland  

models in the diameter range of the modeling  data of  the peatland  models (Figures  

10 and 11). Marklund (1988)  and Hakkila  (1979,  1991) did not  have models  for  the 
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Figure  10. The biomass of  single  above-ground  components  of  trees  and the bio  
mass  of  the sum of  all  above-ground  components  of  trees  by  tree species  estimated 

using  Marklund's (1988)  and Hakkila's  (1979,  1991) models in different diameter 

classes on peatlands.  
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Figure 11.  The biomass of  single above-ground  components  of trees and the bio  

mass  of  the sum of  all above-ground  components  of  trees  by  tree species  estimated  

using  Finer's  (1989,  1991) and  Laiho's (1997)  models in different diameter classes  

on  peatlands.  
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biomass  of leaves  of  birch.  According  to estimates produced  by  Finer's  (1989)  and 
Laiho's (1997)  models,  the biomass  of  leaves of  birch  were about the same or 

lower than the biomass  of  pine needles. The ranking  of  the outputs of Marklund's 

(1988)  and Hakkila's  (1972  a) models for  biomass  of  stump  and roots  between pine  
and spruce was  coincident  with the outputs  of  the studied peatland  models (Figures  
5  and 12).  Marklund (1988)  and Hakkila (1972  a)  did not have  models for  stump  
and  roots  of  birch. Issakainen's (1988)  models produced  similar  estimates  for  the 
biomass of  stump  and  roots for  pine and birch  in the diameter range of  the data 
used for  the formulation  of  the models  (Figure  12). 

Figure  12. The  biomass  of  stump  and roots  of  pines,  spruces  and  birches  estimated 

using  Issakainen's  (1988)  and Finer's  (1991)  models in different diameter classes  

on peatlands.  

size  of tree  

The  comparisons  between the outputs  (Figures  6 and 13) and the standard devia  

tions of  the outputs  (Figures  7  and 14) of  Marklund's (1988)  and those of  Hakkila's  

(1979,  1991) models in different  diameter classes  on  peatlands  corresponded  rather 

well  with those made on mineral  soils.  One exception  was  the biomass  of  pine  

needles. On mineral soils the  outputs  of  the models for  biomass  of  pine  needles 
differed less than 20% for  a  very  wide diameter  range,  but  on peatlands  this  was  

only  the case  in  the larger diameter  classes.  

The comparison  between the outputs  of  the  mineral soil  models and those of  

peatland models showed that the  magnitudes  of  the biomass of  components  of  trees 
were  about the same in  the range of  the modeling  data of  the peatland  models  (Fig  
ures 10 and  11). Outside the range of the  data of  the peatland  models most  of  the 

peatland  models produced  unreasonable estimates. When different models from 
Finer  (1989,  1991) were studied,  there  were  large  differences  in  the biomass  they  

produced.  It  was,  however,  possible  to identify  a  set  of  Finer's  (1989,  1991) mod  
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Figure  13. The  relative  differences in  the biomass  of single  above-ground  compo  

nents of  trees and in  the biomass  of  the sum of  all  above-ground  components  of  
trees estimated using Marklund's  (1988)  and Hakkila's  (1979,  1991) models on 

peatlands.  The positive  values mean that Marklund's (1988) models produced  

higher  values than Hakkila's  (1979,  1991) models,  and  the negative  values mean  

that Marklund's (1988)  models produced  lower values than Hakkila's (1979,  1991) 

models. In the charts  the differences  were  limited to  ±lOO%. 
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Figure  14. The relative  differences between the standard deviations of the outputs  

of  Marklund's (1988) and Hakkila's  (1979,  1991)  models in different diameter 

classes  on peatlands.  The positive  values mean that the standard deviations of  the 

outputs  of  Marklund's (1988)  models were  higher  than those of  Hakkila's  (1979,  

1991) models,  and the negative  values  mean that the standard deviations of  the 

outputs  of  Marklund's (1988)  models  were  lower than those of Hakkila's  (1979,  

1991)  models. In the charts  the differences were limited to ±lOO%. 

els  for stem wood,  living  branches and needles of  pine  and  spruce, which corre  

sponded  rather well  with either  Marklund's  (1988)  or  Hakkila's  (1979,  1991) mod  

els.  For  birch  the variation between the outputs  of  mineral soil  models and peatland  

models was  larger.  For  pine  and birch  the outputs  of  Laiho's (1997)  biomass mod  

els  for  stem wood, living  branches and needles corresponded  moderately  well to 

those of  Marklund's (1988)  or Hakkila's (1979, 1991) models in  the  range, and 

even  outside  this range, of  Laiho's (1997)  modeling  data.  The differences be  

tween  the outputs  of  peatland  models and  those of  Marklund's (1988)  and Hak  

kila's  (1979,  1991) models were the largest  when the biomass  of  dead branches 

was  studied. Generally,  there was no divergent  trend in  the biomass  estimates  of 
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components  of  trees growing  on  the peatlands  when compared  to  trees growing  on 

the mineral soils.  

location 

In all  studied tree species  Marklund's  (1988)  and Hakkila's  (1979)  functions pro  

duced higher  estimates  for  the biomass  of  stem wood for  peatlands  in Southern 

than in Northern Finland. Marklund's (1988)  model produced  higher  estimates  for 
bark  biomass  on  peatlands  in  Southern than in  Northern Finland (Figure  15). Mark  

lund's (1988)  models for  pine  and spruce,  and Hakkila's  (1991)  models  for  all  spe  

cies  generally  resulted in larger  biomass  of  living  branches and biomass  of  needles 

in Northern than in the Southern Finland. Thus,  on peatlands  the differences  in  

outputs  of  Hakkila's  (1991)  model  for  living  branches of  birch  in Southern and in 
Northern Finland were in contrast to those on mineral soils.  The  reason for  these 

differences  was  that,  according  to NFI  data used,  on mineral soils  the crown  ratios  

(which  was  used as  an independent  variable in Hakkila's  (1991)  model for  living  

branches  of  birch)  were  generally  larger  in  a  certain  diameter class  in  trees growing  

in Southern  than in Northern Finland,  but  on  peatlands  the crown ratios  were larger  

in Northern Finland. Marklund's (1988)  model for  biomass  of  living branches of  

birch  and Hakkila's  (1991)  models for  dead branches of  all  studied tree species  had 

only  diameter at  breast  height  as an  independent  variable,  and  thus,  they  produced  

similar  estimates  irrespective  of  the location. Marklund's (1988)  models for the 

biomass  of  dead branches  of  pine  and spruce  resulted in  larger  estimates  in South  

ern  than in Northern Finland. For the biomass of  dead branches of  the thinnest 

birches,  Marklund's (1988)  model produced  larger  values in Southern than in 

Northern Finland.  For  the larger  diameter trees (>8  cm)  the model produced  larger  

values for  Northern  Finland. The biomass estimates  of  the above-ground  compo  

nents of  trees  as a  whole were  commonly  larger  in  Southern than in Northern Fin  

land. Generally,  these results  agreed  well  with the results  for  trees  growing  on  min  

eral soils. Also the estimates  about the differences in tree height,  crown length,  

stem volume and stem wood density  between Southern and  Northern Finland cor  

responded  with  those for  trees growing  on  mineral soils  (Appendix  15). 

For  the peatland  models that  also  have  other independent  variables in addition 

to breast  height  diameter,  the stem wood biomass  estimates  were  larger  in  Southern 

than in Northern Finland (Figure  16). When the biomass  of  stem bark  of  pine  and 

birch were  considered,  Laiho's (1997)  models gave results,  which were in accor  

dance to the results  of  the mineral soil  models. Finer's  (1991)  function for  the bio  

mass of  stem bark  of  pine  resulted in higher  values in  Northern than in Southern 

Finland;  this  was  the opposite  result  to the results  of  Laiho's (1997)  model and the 

mineral soils  models.  

According  to the  mineral soil  models,  the biomass of  living  branches and nee  

dles were  larger  in northern than in southern pines  and  spruces;  this  corresponded  
well with the peatland  models (Figures 15 and 16). When the biomass of  dead 
branches of  pine  was estimated using  Marklund's (1988)  model,  the biomass  esti  

mates were  larger  in the Southern Finland. For  the biomass  of  dead branches of  

pine,  Finer's  (1989,  1991) and Laiho's (1997)  models did not produce  large  differ  
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Figure  15. The  relative differences  in the biomass  of  single  above-ground  compo  

nents  of  trees  and in the biomass  of  the  sum of  all  above-ground  components  of  

trees estimated using  Marklund's (1988)  and Hakkila's  (1979,  1991) models on 

peatlands  in Southern and in  Northern  Finland. The positive  values  mean that the 

biomass  is  higher  in Southern than in Northern Finland,  and  the negative  values 

mean that the biomass is  lower in Southern than in Northern  Finland. In  the charts 

the differences were  limited to ±lOO%. 
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Figure  16. The relative  differences in  the biomass  of  single  above-ground  compo  

nents  of  trees and in  the biomass  of  the sum of all  above-ground  components  of  

trees  estimated using  Finer's  (1989,  1991) and Laiho's (1997)  models having  in 

addition to  breast height  diameter  also  other independent  variables on  peatlands  in 

Southern and Northern Finland. The positive  values mean that the biomass  was  

higher in  Southern than in Northern Finland,  and the negative values mean that the 

biomass  was  lower in Southern than in Northern Finland. In the charts  the differ  

ences were  limited  to  ±lOO%. 
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ences in different  parts  of  Finland. Finer's  (1989,  1991) models only  had breast  

height  diameter as  an independent  variable.  Laiho's (1997)  model had relative  tree 

height  in addition to breast  height diameter as an independent  variable,  but in this  

study, relative tree height  had  no effect  on the biomass  estimates  (see the chapter  

3.1.5).  On peatlands,  Marklund's (1988)  function for  biomass of  dead branches of  

spruce produced  larger  values in Southern than in Northern Finland. For  the bio  
mass  of  dead branches of  birch,  Laiho's (1997) function gave larger  values in 

Northern  than in  Southern Finland;  this  was a  similar  result  to the results  of Mark  

lund's (1988)  model. Finer's  (1989)  model for  biomass  of  dead branches of  birch  

produced  larger  estimates  in Southern than in Northern Finland. The outputs  of  
Finer's  (1989)  models  for the biomass  of  dead branches of  birch  were, however,  

not reasonable in  many diameter classes.  Generally,  the estimates  of  both mineral 

soil  models and peatlands  models  for  the total  above-ground  biomass  of  a  tree were  

higher  in  the  South than in the North.  

Peatlands v.v.  mineral soils  

Both Marklund's (1988)  and  Hakkila's  (1979)  models produced generally  larger  

estimates for  stem wood of  all  considered tree species  on  mineral soils  than on 

peatlands  (Figure  17). For  the stem bark  of  pine  and birch, Marklund's  (1988)  

models produced slightly  lower  estimates on  peatlands  than on mineral soils.  In 

spruce, Marklund's (1988) function gave rather  similar  values  for  the biomass  of  
bark  on  both peatlands  and mineral soils.  For  the NFI data, the mean heights  and 

mean volumes of  trees were  larger  in the same diameter classes  on mineral soils  
than on peatlands.  The  stem wood densities estimated as  a  relation between Mark  

lund's (1988)  biomass models and  Laasasenaho's (1982)  volume functions and 

Hakkila's  (1979)  density  models did not differ on mineral soils  and on  peatlands  

(Appendix  14). 

The  biomass  of  living  branches  of  pine  and spruce  were slightly  larger  on  peat  

lands when they  were  calculated using  either  of  the mineral soil  models  (Figure  

17).  Excluding  the thinnest and  the thickest  trees,  Hakkila's (1991)  function for 

living  branches of birch  did not give  large  differences between peatlands  and min  

eral  soils.  Marklund's (1988)  model for  pine  needles gave larger  estimates  on  peat  

lands  than on mineral soils.  Hakkila's  (1991)  function produced  the opposite  re  

sults.  However,  both of  the models  produced small  differences  between peatlands  

and mineral soils.  When biomass  of  needles of  spruce estimated using considered  
models were  studied,  the differences  on  mineral soils  and peatlands  were generally  

quite  low. In the used NFI data,  the  crowns  were longer  on  mineral soils  than on 

peatlands  (Appendix  14). Otherwise these  results  were  not able to be evaluated 
because of  the lack of  representative  studies. Marklund's (1988)  models for  dead 
branches produced  higher  values for pines  and spruces  growing  on mineral soils  
than  on  peatlands.  For  dead branches of  birch,  Marklund's (1988)  model resulted in  

higher  values on peatlands  than  on mineral soils.  Hakkila's  (1991)  models  did not 

produce  differences in  different sites,  because they  had only  breast  height  diameter 

as  an independent  variable. The  differences  in the biomass  of  single  components  of  

a tree  were usually  low between the trees  in the same diameter classes  on  mineral 
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Figure  17. The  relative  differences in  the biomass of  single  above-ground  compo  

nents of  trees and in  the biomass  of  the sum of all  above-ground  components  of  

trees  estimated using  Marklund's (1988)  and Hakkila's  (1979,  1991) models on 

mineral soils  and on peatlands.  The  positive  values mean  that the biomass  esti  

mates  were  higher  on  mineral soils  than on peatlands,  and the negative  values mean 

that  the biomass  estimates  were  lower on mineral soils  than on  peatlands.  In the 

charts the differences were  limited to ±lOO%. 
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soils  and on  peatlands,  and therefore,  also  the differences in the biomass  of  the 

above-ground  components  as  a  whole were  small  between these sites.  In most of  

the diameter classes,  the biomass  of  the above-ground  components  was  a  little  lar  

ger on  mineral soils  than  on  peatlands.  

3.2.3 Applicability  of  the biomass models for trees growing  on different 
sites  and in different locations 

On  both mineral soils  and on peatlands  Marklund's (1988)  and Hakkila's  (1979,  

1991) models produced similar  outputs for  many tree  components.  On peatlands,  

there  were  no consistent  differences  between the outputs  of  Finer's  (1989,  1991) 

and  Laiho's (1997)  models when compared to those of  Marklund's (1988)  and 

Hakkila's  (1979,  1991) models. Thus, based on  this  result,  Marklund's (1988)  and 

Hakkila's  (1979,  1991) models can  be applied  for  the estimation  of  the biomass  of  
trees  growing  on peatlands.  However,  Finer's  (1989,  1991) and Laiho's  (1997)  

models cannot be considered representative  for more specific  evaluation of  the 

variability  of  the biomass along e.g. location. 

When only  the  ranking  of  the biomass  of  different tree species  was  considered,  

Marklund's (1988)  and Hakkila's  (1979,  1991) models were  the most  applicable  

for  the estimation  of  different  components  of  pines  and birches  both on mineral 

soils and on peatlands  (Table  11). The models also  produced  reasonable results  for 

biomass  of  living branches,  needles and above-ground  components  of  spruces  in  

relation to  pines  both on mineral soils  and on peatlands.  Thus,  these models seem 

applicable  in  this  respect.  When the ranking  of  different  tree species  was  studied,  

the most  uncertainty  was  included  for  the estimation  of  stem  wood biomass  of pine  

and spruce  on  mineral soils,  and  living  branches of  spruce  and birch  on both min  

eral soils  and on  peatlands.  

According  to the comparisons  between the outputs  of  Marklund's (1988)  and 

Hakkila's  (1979,  1991) models  in  different diameter  classes,  the models  were  the 

most  applicable  for  the estimation of  biomass of  stem wood and above-ground  

components  of  a tree  (Table  12).  For pine  and spruce the models for living 

branches can also  be applied  for the estimation of  the biomass of  middle-sized 

trees. On mineral soils  the biomass  of  foliage  of  pine  and spruce,  and on  peatlands  
the biomass  of  foliage  of  spruce  can  be estimated  by  the studied models. Based on 

the comparisons  of  the models much uncertainty  was  included for  the  estimation  of  

foliage  of  pine  on peatlands,  and for the estimation of  dead branches of  all  tree 

species  both on  mineral soils  and  on  peatlands.  

Generally,  Marklund's (1988)  models can be used for the  estimation of  the 

biomass of  different  components  of  trees  having  different  sizes  because they  do  not 

produce  negative  values or unrealistically  high  or  low estimates. When Hakkila's 

(1972  a,  1979,  1991) models are  applied,  some limitations  have  to be taken into 

account.  The subtraction  between Hakkila's  (1991)  models for living  branches and 

needles of  pine  and spruce  produced  negative  values,  and thus,  they  cannot be  used 

for  the smallest  trees.  Hakkila's  (1991)  models for  dead branches of  all  tree species  

and Hakkila's  (1972  a) models for  stump and roots  of  pine  and birch  cannot be ap  
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plied for  the smallest  trees for  the  same  reason.  The unrealistically  high  values for 

the trees in the larger  diameter  classes  was  given  by  Hakkila's  (1991)  models for 

living  branches of  all  tree species,  and the model for  spruce needles. Therefore,  
these models are  not applicable  for  the largest  diameter trees. 

Table 11. Comparisons  of  Marklund's (1988)  and Hakkila's  (1972  a,  1979,  1991) 
biomass  models by  ranking  of  tree species  on  mineral soils  and on  peatlands.  Other 
studies  refer  to the studies mentioned in chapter  3.2.1 (section  'By tree species')  

concerning  mineral soils. On peatlands  separate  comparisons  with the other  studies  

were not  made  because of  the lack of  studies.  Explanations  of  the colors:  blue  = 

outputs correspond  in >75% of  diameter classes  (outputs  correspond  with other 

studies);  yellow = outputs  correspond  in  51-75% of diameter classes  (outputs  partly  

correspond  with other  studies);  red = outputs  correspond  in <51% of  diameter 

classes (outputs  do not correspond  with other  studies);  light  blue = outputs  of  
Marklund's (1988)  models correspond  with other studies;  orange  = outputs  of  

Marklund's (1988)  models do not correspond  with other studies;  white = outputs 

cannot be compared because of  lack  of  models (outputs  cannot be compared  be  

cause of  lack  of  other studies).   

Table 12. Diameter  classes of  trees growing  on  mineral soils  and on  peatlands,  in 

which Marklund's (1988)  models differed less  than 20% from Hakkila's  (1979,  

1991) models. 
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The  results  concerning  proportion  of  the components  estimated using Mark  

lund's (1988)  models could not be properly  compared  with the other  studies,  be  

cause  of  the lack  of  studies.  However,  the outputs  of  Marklund's  (1988)  models  

corresponded  rather well  with single  studies  (see  chapter  3.2.1,  section  
'

By  size  of 

tree '), when the trees of  different sizes  were  considered. 

The  reactions of  Marklund's  (1988)  and Hakkila's  (1979)  models for the bio  

mass  of  stem wood on the  changes  in site (fertile  or  infertile)  and  in location  

(Southern  or  Northern Finland)  are  in  accordance with conclusions  made  in  other  

studies  and the NFI data  (Tables  13 and 14,  see  also  chapter  3.2.1,  sections 
'

By  site 

fertility''  and 'By  location'').  

Table  13. Comparisons  of  the outputs  of  Marklund's  (1988)  and Hakkila's  (1972  a,  

1979,  1991) biomass  models  by tree  species  on  different sites.  Other studies  refer  

to the literature mentioned and  the analysis  made using the NFI data in chapter  

3.2.1  (section  'By site  fertility ')  concerning  the reaction to site  fertility.  See the 

explanations of  the colors  from Table 11. 

Also  the estimates  of  stem bark  produced  by  Marklund's (1988)  models are rea  

sonable for  trees  growing  on  different  sites  and locations.  Based on comparisons  

between the outputs  of  Marklund's (1988)  and Hakkila's  (1979,  1991) models,  the 

biomass  of  above-ground  components  of  pines  and birches  can also  be estimated 

on different sites  and locations  using these models.  More uncertainty  is  included in 

the estimates  of  the biomass  of above-ground  components  of  spruces.  The exam  

ined Marklund's (1988)  and Hakkila's  (1991)  functions for living  branches and 

needles of  pine  and spruce  produce  contradictory  results  on  different site fertilities  

and in  different parts  of  Finland when compared  to conclusions  from other  studies 

and the NFI data. Hakkila's  (1991)  model  for  living  branches of  birch  produced  in 

many diameter classes  higher  estimates  in Southern than  in  Northern  Finland;  this  

may correspond  to  the  real  situation,  but no conclusions  could be made based on 

reference material  about the variability  of  the biomass  of  living  branches of  birch.  
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The  comparison  of  the differences  in  the biomass  of  needles on  peatlands  and  on 

mineral soils  estimated  by  Marklund's  (1988)  and Hakkila's  (1991)  models  gave  

contradictory  results.  Marklund's  (1988)  models for  the  biomass  of  living  branches 

of  birch  and  for the biomass  of  stump  and that for  roots  of  pine  and spruce, and 
Hakkila's (1991)  models for  the biomass  of  dead branches of all  tree species  and 

that  of  stump  and roots  of  pine  and spruce  have only  breast  height  diameter as an  

independent  variable,  and thus,  they  cannot take into  account  the variability  of  tree  

biomass  according  to site  and location. In summary, much uncertainty  is  included 

in the estimation  of  the biomass  of  foliage,  living  branches,  dead branches,  stump  

and roots.  

Table 14. Comparisons  of  the  outputs  of  Marklund's  (1988)  and Hakkila's  (1972  a,  

1979, 1991) biomass  models by  tree  species  in different locations.  Other  studies  

refer  to  the literature mentioned and  the  analysis  made using  the NFI  data in chap  

ter  3.2.1  (section  'By  location')  concerning  the reaction  to location  (in  Northern or  

Southern Finland)  on mineral soils. See the explanation  of  the colors  from Table 

11. 

3.3  Applicability  of  the  biomass  models for the forestry  mod  

eling  and  analyses:  Case study  

3.3.1 Incorporation  of  selected biomass models into the MELA system 

In  the case study, Marklund's (1988)  and Hakkila's (1979,  1991) biomass  models 

for  the different above-ground  components  of  a  tree represented  in Tables  8  and 9  

were  incorporated  into the MELA forest  planning  system  (Siitonen  et  ai.  1996, 

Hynynen  et  ai.  2002,  Redsven et  ai. 2004).  The objective  was  to determine if  the  

choice  of  the outputs of  Marklund's (1988)  and Hakkila's (1979,  1991)  models as a 
constraint  in  optimizations  affects  the selection  of  optimal  management  schedules 

in the MELA system.  In addition,  the differences between the  outputs  of Mark  

lund's (1988) and Hakkila's  (1979,  1991) models were studied at the forest  area  
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level.  Furthermore,  the influences  of  different  biomass  constraints on the net car  

bon sequestration  of  the trees  were  analyzed.  

Only the biomass  models for  the different above-ground  components  of  a  tree 

were incorporated  into the MELA because Marklund's  (1988)  and Hakkila's  

(1972  a) models for  stump  and roots take into  account different proportions  of  these 

components  (see  chapter  3.1.3).  Due to  the lack of  models some adjustments  had  to 

be made when the  biomass  models were incorporated  into the MELA. Because 

neither  Marklund (1988)  nor  Hakkila (1991)  have models  for  the biomass  of  foli  

age for  birch,  the models for  needles  of  pine  were  used instead.  Based on  compari  

sons  with the previous  studies  (Mälkönen  1977,  Kubin 1982,  Mälkönen and Saar  

salmi  1982,  Finer  1989,  Kauppi  et  ai. 1995,  Laiho 1997),  the biomass  of  leaves of  

birch  can  be assumed to correspond  rather  well with the biomass  of  pine needles 

(Appendix  16). Other  deciduous trees in  addition to  birch were  treated as birch,  and 

other conifers  in addition to  pine and spruce,  were treated as pine  in  the biomass  

estimations. Hakkila's  (1979)  model for  the biomass  of  stem over  bark  was  used 
instead of  separate  models for  stem wood and for  stem bark,  because the calcula  

tion of  the biomass of  stem bark  was  unreasonable as  a difference between stem 

over bark and stem wood (see  section  
'

By  size  of  tree' in  chapter  3.2.1).  

Based  on the analyses  about the range of  applicability  of  the models  made in 

chapter  3.2.1 (section  'By  size  of  tree')  some limitations  were implemented  for 

Hakkila's  (1979,  1991) biomass  models.  If  a  biomass  model of  a component  gave a 

value <0  kg,  the biomass  of  a component  was  supposed  to  be 0  kg.  The biomass  of  

living  branches of  birches  having  height  <2 m was  supposed  to be 0  kg.  Hakkila's  

(1991)  models for  the living  branches of all  considered tree species  and  for  needles 

of  spruce produced  unreasonably  high  biomass  estimates  for  the  thickest  trees,  but 

no limits  were  set for  the biomass.  

3.3.2  Data for  the MELA analyses  

The data used in  the MELA simulations  were  chosen to  closely  represent  the forest  

structure in Southern Finland (see  Finnish  Statistical  Yearbook of  Forestry  2003).  
The data were  comprised  of  185  stands  from the research forests  of  the Finnish 

Forest  Research  Institute  in  Suonenjoki  (62°39'N,  27°03'E)  in  the  area  of the prov  

ince Northern Savo in  central  Finland. The total area was  205.5 ha,  of  which  79% 

was  mineral soils  and 21% peatlands.  The proportion  of  area of  peatlands  was  a 

little  smaller  in  the data from Suonenjoki  than in Southern Finland. According  to  

the dominant tree species,  pine  stands accounted for  50% of  the area, spruce  stands 

38%,  and birch  stands 12% of  the total area. Pine,  spruce  and birch  accounted  for 

39%,  39% and 22% of  the total  volume,  respectively.  The  percentage  of  the  area  of  

spruce-dominated  stands was  a little  greater  in  the data than in Southern Finland. 

The  proportion  of  volume of  different  tree  species  was  almost  the same in  the study  

data as  for  Southern Finland  (Figure  18). 

In the study  data,  on mineral soils  all  the spruce-  and birch-dominated stands 

were  located on  fertile sites.  Most  of pine-dominated  stands  were  on fertile mineral 

soils  (45%  of  area,  50% of  volume).  Over half  of  the area  of  peatlands  was  domi  
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Figure  18. The  structure  of  the data  used  in  MELA simulations compared  to that  
estimated in  Southern Finland (Finnish  Statistical  Yearbook of  Forestry  2003).  

nated by pine,  and the proportions  of  the area  of  both spruce-  and birch-dominated 

stands were  a  little  over  20%. On  peatlands,  the proportions  of  pine-,  spruce-  and  

birch-dominated stands were  about one-third of  the total volume.  

The  proportion  of  the area of  young thinning  stands  was  greater, and the  area  of  
advanced thinning  stands  was  smaller,  for  the study  data than in Southern Finland 

(Figure  18). In the study  data,  especially  the area  of  pine-dominated  young thinning  
stands  was  large. The  proportions  of advanced thinning  stands  of spruce  and that  of  

mature  stands of  spruce  and pine  from the total  volume were  high  (Figure  19). 

There were  no  mature stands  of  birch  on  the  mineral soils,  and only  one on  peat  

lands. The  area of  seedling  stands of  birch  was  also  small. In the study  data, the 

division  of  stands  to  the different development  classes  was  based on the diameter 

limits  of  recommendations of  Forestry  Center Tapio in 2001 (Metsätalouden  kehit  

tämiskeskus  Tapio  2001).  However,  the  young seedling  stands  and advanced seed  
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ling  stands were treated together.  In order to decrease the amount of  different  

classes,  the treeless  regeneration  area was  incorporated  into  seedling  stands.  Based  

on diameter,  stands  in  seed-tree position  and shelterwood stands  were  classified  as  

mature stands.  The classification of hold-over seedling  stands  was  made  according  
to the breast  height  diameter  of  hold-overs.  The other determinations for  develop  

ment classes  used in the recommendations in addition to breast  height  diameter 

(mean age, dominant height)  were not  taken into  account in  the classification.  

Figure  19. The area and the volume of  different  development  classes  by  dominant 

tree species  in  the study  data. 

In MELA simulations  the calculation  period  of  50 years  was  divided into five  
sub-periods  of  ten  years each. The inventories had been  made during  the years  

1998 and 1999, and therefore, the data were  first  updated  to the year 1999. Thus,  

the calculation  period lasted until  the  end of  the year 2049. In the simulations,  the  

built-in  assumptions  based on the recommendations of  Forestry  Center Tapio  in  

2001 for  forest  management  practices  were  used (see  EVENT parameter  in Reds  

ven et al.  2004).  

In the simulations,  the biomass  of  trees was  estimated using  both Marklund's  

(1988)  and Hakkila's  (1979,  1991) models. When the biomass  of  trees was applied  

as  a constraint  for  the optimization  task,  the optimization  was  made twice,  so  that 

both sets of  models were  used for the calculation of  the constraints.  

Four different optimization  tasks were  designed  (Table  15).  In task  1,  the net  

present  value (NPV) was  maximized using an interest  rate  of  4%. This  task  repre  

sented  a  typical  MELA optimization  (e.g.  Nuutinen and Hirvelä 2000,  2003),  with 

which the other tasks could be compared.  The effect  of  interest  rate  was  analyzed  

by  using  also  interest  rates  of  3% and  5%.  These three interest  rates  are commonly  
used for  the determination of  the value of  the forests  in  Finland  (Oksanen-Peltola  

1994,  Nuutinen and  Hirvelä 2000,  2003).  In task 1, the selected management  
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schedules were  the same irrespective  of  the set  of  biomass  models,  because bio  

mass was  not used as  a  goal  or  as a  constraint.  Based on  the  tree-level comparisons  

(see  chapter  3.2.1,  section 
'

By  size  of  tree') the largest  differences between the 

outputs  of  Marklund's (1988)  and Hakkila's  (1979,  1991) models were  expected  on 

seedling  stands  and  on  mature stands.  

The purpose of  the rest  of  the tasks  was  to analyze  how the different values  of  

the  biomass  constraint  produced  by  Marklund's (1988)  and  Hakkila's  (1979,  1991) 

models affect  the selection  of the management  schedule in  the optimization.  In task  

2,  the  NPV was  maximized  using  an interest  rate  of  4%  and  the biomass  of  cutting  

drain had to be set  at  a  higher  level  than during  the preceding  sub-period.  In  task  2,  
the  cutting  drain was  used instead  of  cutting  removal,  because the objective  was  to 

compare the effects  of the use  of  different biomass  models for  the calculation of  the 

biomass  constraint,  and the division of  stem biomass  into different timber assort  

ments related  to cutting  removal would have caused  difficulties.  In addition,  the 

use  of  the cutting  drain as the constraint corresponded  better  to  the situation  in 

which  trees are  used for energy production.  In task  2,  the objective  also  was  to 

study  the influence of  demand about increased cutting  drain on  the carbon seques  

tration  of  trees.  

In task  3,  the NPV was  maximized,  so that the biomass  of  the above-ground  

components  of  living  trees  at  the end of  each sub-period  had to  be more  than at  the 

end of  the preceding  sub-period.  By  means  of  the problem  definition  used in  task  3,  

the effect  of carbon sequestration  of  trees on  the forest  management  could be con  

sidered. The size  distributions  of  living  and cut  trees  are  different,  and  thus,  the 

relative  differences  of the constraints  estimated using  different biomass models 

might  also  differ  in  tasks  2 and 3.  

In  task  4, the goal was  the same  as  in  the aforementioned tasks,  but the biomass  

of  above-ground  components  of  living  trees  at  the end  of  each sub-period  had to  be 

more than at the end of  the preceding  sub-period  and  biomass  of  cutting  drain had 
to  be more than during  the preceding  sub-period.  The aim of  task  4 was  to study  

what kind of  effect  the combination of  the constraints  used in tasks 2 and 3 had  on 

the selection  of the management  schedule. Furthermore,  the objective  was  to study  

how the combination of  the simultaneous demand about increasing  cutting  drain 

and increasing  biomass  of  trees  influences the net  carbon sequestration  of  the trees.  

Table 15. Optimization  tasks. In each task  the biomass  of  trees was  estimated  us  

ing  Marklund's (1988)  and Hakkila's  (1979,  1991) sets  of  biomass  models. In tasks  

2,  3  and 4 the optimization  was  made twice  using  both sets of  models for the calcu  

lation of biomass  constraints.  

GOAL CONSTRAINTS 

Max NPV Biomass  of cutting drain Biomass  of  living trees at 

more than during the  the end of each sub-  

preceding sub-period period more than at the 
end of the preceding sub-  

period 

Ta s k 1 X 

Ta s k 2 X X 

Ta s k  3 X X 

Ta s  k 4 X X X 
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The  solutions of  the optimizations  were  analyzed  for  each optimization  task.  

First,  the effect  of  different values  of  the same biomass  constraint  produced  by  the 

chosen sets  of  models was  studied by  considering  the total cutting  area for each of 
the  optimization  tasks (Figure  20).  The total cutting  removal  was  also  compared  at 
the  forest  area level during  the calculation period.  In order  to find out the signifi  

cance  of  the differences,  the comparisons  of  cutting  area and cutting  removal  were  

made  by  using  the relative differences.  In addition,  the uniformity  of  cutting  times 

was  checked  at  the stand level.  The  management  of  forest  was  the  same, if  the cut  

ting  times  were also  the same. 

Second,  the management  schedules were  compared  during  the sub-periods  for 
each task  (Figure  20).  The optimal  solution for a task  may be different because of 
different  value of  the constraint  estimated  by  the Marklund's (1988)  and Hakkila's  

(1979,  1991) biomass  models.  The  effects  of  differences in cutting  times, number 

of  cuttings,  cutting  area and  volume of  cutting  removal  were  studied for  different 

cutting  methods during  each sub-period.  The studied cutting  methods were  clear  

cutting,  seeding  felling  and overstory  removal. In this classification the shelter  
wood felling  in spruce was  included within seeding  felling.  Other tending opera  

tions included thinning,  tending of young stand and clearing  of  the regeneration  

area. 

Third, the differences  in the biomass  of  trees  estimated  using  both  sets of  mod  

els were studied in various development  classes  at the beginning  of  each sub  

period. The comparisons  between the outputs  of  the biomass  models were  made if  
the optimization  produced  exactly  the same solution irrespective  of  the model  used 
for determination of  the constraint  (Figure  20).  The relative  differences between 

the outputs  of  the models  in the biomass  of  single  components  of trees,  and in  the 

biomass of the sum of  all  above-ground  components  of  trees were  studied by  de  

velopment  classes  at  forest  area level.  The  classification  of  simulation data to  dif  
ferent development  classes  by dominant tree  species  follows the same guidelines  as  

that  of  the study  data (see  pages 81-82).  

Finally,  the differences in the  net carbon sequestration  were  analyzed  for  each 

task  at  the forest  area level.  In addition,  an  attempt  was  made to identify  the gen  

eral  trend concerning  the development  of  the amount of net carbon sequestered  by  

trees  at  the forest  area level  during  the calculation  period  using  both selected  sets  of 

biomass  models.  The amount  of  net carbon (NC)  sequestered  by  the above-ground  

components  of the trees  was  estimated  by  subtracting  the biomass  of  living  trees  in  

the time tl (m,i)  from the biomass of living  trees  in  the time t2 (mt2 ). The amount 

of  carbon  was  assumed to  be 50% of  the biomass  of  the component  (Eq.  9)  (see  

Karjalainen  et  ai.  1994,  Nurmi 1997).  
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Figure  20. Study of  differences in  the management  schedules caused by  different 
values  of  constraints  estimated  by  Marklund's (1988)  and Hakkila's  (1979,  1991) 

biomass  models inside each task.  
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The  carbon was  assumed to be released  immediately  to the atmosphere  when a 

tree  died.  Thus,  the slow decay  of  dead wood was  not taken into  account.  The  cut 

trees were  assumed to  be taken away from the forest  immediately  after cutting.  The 

reasons  for  the differences  in  carbon balance of  trees  during  the calculation  period  

were  studied  by  comparing  the volume of increment and that of total removal  in 

tasks  2, 3  and 4 to  those in task 1. 

3.3.3 Results  from the selection  of  management  schedules 

The use  of Marklund's  (1988)  or  Hakkila's  (1979,  1991) functions for  the calcula  

tion of  biomass  constraints  in the tasks  2-4  caused small  differences  in the net pre  

sent  values (Table  16). The  differences  were  the largest  in  task  4. 

Table 16. Net  present  values (interest  rate  4%)  (€)  in  different optimization  tasks in 

In task  1,  a  rise  in interest rate increased the  total cutting  removal during  the 

calculation period.  The increase  in cutting  removal  was  very  strong when the inter  

est rate was  increased from 3% to  4%, and it  was  more moderate when the rate  was 

raised from 4%  to 5%.  The  rise  of  interest rate  increased cuttings  in  the first  sub  

period.  The increase  of  interest  rate  reduces the profitability  of  forestry,  and there  

fore, the  optimal  rotation period  is  decreased and  the forests  are  thinned earlier 

(Pukkala  1994).  Because biomass  of trees was  not  determined as  an objective  or 

constraints  in the optimization  in  task  1, the  management  of  the stands  was  exactly  

the same independent  of  the  used set  of biomass  models. 

For task 2, the use  of  different biomass models for the estimation of  values of 

constraints  in  optimization  caused only  minimal differences  in cutting  area (differ  

ence was  so  small, that it  cannot be seen in Figure  21), and also  in cutting  removal 

(Figure  22).  In this  task,  as in all  other tasks  having  biomass as a  constraint,  the 

cutting  removal was  a little  larger  during  the calculation period,  when the con  
straint  was estimated  using Hakkila's  (1979,  1991) biomass  models. The manage  

ment of  the stands  was  similar  excluding  one stand (1.17  ha),  in  which the area  was  

divided slightly  differently  between two  management  schedules. 

NC = (m,2  -  mtl) 
* 0.5 (9)  

1999-2049. 

1999 2009 2019  2029 2039 2049  

Task  1 699 030 700 362 846  719  987 627 1 064 040  917213  

Task  2 

-  Marklund  (1988) 699 000 701 985 836  559 991  920 1 062 924 916 575 

-Hakkila (1979, 1991) 698 999 702 020  836 556  991  916 1 062 917 916  575 

Task  3  

-  Marklund  (1988) 698 432 700  629  845 834  984 077 1 032 354 1  093  574  

-Hakkila  (1979, 1991) 698 472 700  689  845 922 984 208 1 026 908  1  084 339  

Task 4  

-Marklund  (1988) 698 199 702 304 840 733  979 152 1 064 792  1  124  251  

-  Hakkila  (1979, 1991) 698 280 702 293 840 936 982 376 1 062 188  1  119  428 
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Figure  21.  Absolute  differences  in the cutting  area by  cutting  method in  each op  
timization task  during  the sub-periods.  The positive  values mean that  the optimiza  

tions having  the constraint  estimated using  Marklund's (1988)  biomass  models 

produced  larger  cutting  areas than those having  the constraint  estimated using  

Hakkila's  (1979,  1991)  models.  The negative  values mean that the use of  Hakkila's  

(1979,  1991) models  as  the constraint  resulted  in  larger  cutting  areas.  

Figure  22. Absolute differences in the cutting  removal by  cutting  method in  each 

optimization  task  during  the sub-periods.  The positive  values  mean that the optimi  

zations  having  the constraint  estimated  using  Marklund's  (1988)  biomass  models 

produced  larger  cutting  removals than  those having  the constraint estimated using  

Hakkila's  (1979,  1991) models.  The negative  values mean that  the use  of  Hakkila's 

(1979,  1991) models as  the constraint resulted  in  larger cutting  removals. 
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Although  both the number and timing  of  commercial  cuttings  were  the same ir  

respective  of  the models used for  the calculations  of  the constraint for  task  3,  there 

were  small  differences  in cutting  areas and  cutting  removal of  three stands (total  
7.4  ha).  Both the cutting  area and the cutting  removal differed  by  less  than 1% 

during  the calculation period.  The use  of  the outputs  of  Hakkila's (1979,  1991)  

models as  a constraint  produced  larger  thinning  and clear-cutting  areas  and larger  

cutting  removals  both from thinnings  and clear  cuttings  than Marklund's (1988)  

models.  On two  stands the reason  for  differences was the same as  in task  1; the  

area  of  both stands was  divided differently  between two management  schedules in 
the optimization.  In  addition,  on  one  stand the different  value of  the constraint  had 

an  effect  on  the regeneration  felling  method at  one point  of  time. When the con  

straint was  calculated using  Hakkila's  (1979,  1991)  models, one clear  cutting  was  

replaced  by  a  seeding  felling  of  pine  during  the fifth  sub-period.  

Within task  3,  the biggest  differences in  the forest management  could be seen 

during  the last  two  sub-periods  (Figures  21 and 22).  The differences in thinning  

area  and in  the volume of  cutting  removal  from thinnings  were,  however,  less  than 

2% during  both of  these periods  (Table  17). During  the  fourth sub-period,  the use  

of  Marklund's (1988)  models for  the estimation  of  the constraint  produced  larger  

thinning  area and  larger  volume of  cutting  removal  from thinnings  than the use  of 
Hakkila's  (1979,  1991) models. During  the fifth  sub-period  the results  were  the 

opposite.  The differences in the volume of cutting  removal  from thinnings  were  

due  to  the differences  in  cutting  area. 

For  task  3,  both  the  clear  cutting  area and the volume of  cutting  removal  from 

clear  cuttings  differed by  7%  at  the highest  during  the two last  sub-periods  because 
of  different  values of  the constraint  in the optimization.  During  the fourth sub  

period  the clear  cutting  area was  larger  and  the volume of  cutting  removal was  

larger,  when the constraint was  calculated using  Hakkila's  (1979,  1991) models 

(Figures  21 and 22).  During the fifth  sub-period  the use  of  the outputs  of  Mark  
lund's  (1988)  models as  the constraint  gave a larger  clear  cutting  area and larger  

cutting  removal  (Table  17). During  the fourth sub-period  the reason  for  differences 

was  the differences in  the cutting  area. During  the  fifth  sub-period  the cutting  re  
moval  per  hectare  was also  higher  when Marklund's (1988)  models were  applied  in 

the  optimization.  The reason  for this  was  that seeding  felling  was  made on  one 
stand instead of clear  cutting,  when the constraint  was  estimated  using  Hakkila's  

(1979,  1991) models.  

Also within task  4  the difference  was  less  than 1% between the biomass  models 

with respect  to cutting  area and to cutting  removal during  the calculation period. 

The management  of  stands  differed on eight  stands (total  9.63 ha).  As  was  the case  

for  other tasks,  for  task  4 Hakkila's  (1979,  1991)  models produced  larger  thinning  

and clear-cutting  areas  and larger cutting  removals  from thinnings  and from clear  

cuttings  during  the calculation  period.  

For  task  4 the number  of  thinnings  was  greater  and on  average thinnings  were 

made a little  earlier  when the constraint  was  estimated  using  Hakkila's  (1979,  

1991) models.  The  area of  thinnings  and the volume of  cutting  removal from  thin  

nings  were  larger  during  the second,  third and fourth periods  when the constraint 

was  determined using  Hakkila's  (1979,  1991)  models (Figures  21 and 22).  During  

the first  and  the fifth  sub-periods  the use  of  Marklund's (1988)  models gave a  lar  
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ger cutting  removal and during  the first  sub-period  larger  cutting  area  from  thin  

nings.  The  differences were  less  than 3% both in  thinning  area and the  volume of  

cutting  removal from thinnings during each of  these sub-periods  (Table 17). The 
differences in cutting  removal from thinnings  were  mainly  due to differences in 

cutting  area, although  also  the mean  intensity  of  cuttings  (m
3
/ha)  varied during  the 

sub-periods.  

Table 17. Relative differences in number of  cuttings,  cutting areas and cutting  

removals  during  the sub-periods.  The differences were  classified  as  follows:  white 

<l%; light  blue 1-5%; yellow  6-10%;  orange  11-15%;  red >15%. M = Markund's  

(1988)  models produced  larger  values,  H  = Hakkila's (1979,  1991)  models pro  

duced larger  values. 
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The number  of  regeneration  felling  was  the  same within  task  4 during  the calcu  

lation  period,  but  they  were made at  different times. The average regeneration  fell  

ing  time was,  however,  the same. The  area of  clear  cuttings  differed most during  

the second,  the third and the fourth sub-periods  for  task  4  (Figure  21).  The optimi  

zation,  in which the constraint  was  estimated using  Marklund's (1988)  models gave  

13-14% larger  area of  clear  cuttings  during  the second and the third sub-periods  

(Table  17). During  the fourth sub-period  the optimization,  in  which  the constraint  

was  estimated  by  Hakkila's  (1979,  1991) models produced  5% larger  area of  clear  

cuttings.  During  the third sub-period  the cutting removal from clear  cuttings  was  

10% greater,  and during  the fourth and the fifth sub-periods  6-7% smaller,  when 

the constraint  was  estimated  using  Marklund's (1988)  models.  Within this  task, the 

main reasons  for  the different  volume of  cutting  removal  from clear  cuttings  during  

the sub-periods  were  the different cutting  areas  and intensities of  cuttings,  which  

were  due to  different timings  of  cuttings.  

In summary,  the estimates of  the constraints  produced  by  Marklund's (1988)  or  

Hakkila's  (1979,  1991) biomass  models caused some small  differences for the se  

lection  of  the management  schedules inside the same optimization  task.  Generally,  

in  the studied area  the constraint  estimated  by  Marklund's (1988)  models restricted  

the size  of  cutting  area  and the  amount of  cutting  removal  more  than the constraint  

estimated by  Hakkila's  (1979,  1991) models during  the calculation period.  The 
differences in  the forest  management  were  greatest  for  task  4;  this  was  because task  

4 had the strictest  constraint  concerning  the biomass.  In task  4 the constraint  was  

the combination of  task  2  and task  3.  The differences were  larger  for  task  3  than for 
task  2.  The different  size-distribution  of  cut and living  trees had an effect  on  the 

difference in  the optimization  results  between and  within these tasks. It  might  have  

been expected  that there would be larger  differences in the forest  management  

within  task  2,  because  the biomass  estimates  for  cut trees were  supposed  to differ 

considerably  from each other.  The reason  for  this  was  assumed  to be the smaller  

amount  of  cut trees, which would have increased the relative amount  of  random 

error  in the biomass  estimates of cut trees. 

In this  case  study,  the structure of  data had a great effect  on  the optimization  re  
sults.  It  was  not needed to  restrict  the cutting  removal  very  much,  because the for  

est  area was dominated by  young thinning  stands at  the initial  stage,  and thus,  the 

cuttings  were postponed  to the future. If  the initial  data had been  more dominated 

by  the mature stands,  the selection of  the management  schedules would  have  been 

expected  to  differ  more. In addition,  the sum of  the biomass  of  the above-ground  

components  was  used for  the calculation  of  the constraint,  and therefore,  the values 

of  constraint  do not differ much from each other. If  the constraint  would have been 

determined using only  different components  of  crown, the differences might  have 

been more considerable. 

The  amount of  difference in  the selection  of  the management  schedules caused 

by  the use  of  the different  set of  biomass  models for  the estimation  of  a  constraint  

depends  also  on  the determination of  the optimization  task.  When the constraint  

was  determined as  the difference between the sequential  sub-periods,  the manage  

ment schedules were  rather similar  because the models gave  rather consistent  re  

sults  for  the differences  between diameter  classes.  If the biomass  constraint would 
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be given as  the certain  target  level,  the management  schedules could differ much 

more from each  other. 

3.3.4 Results  from biomass and net carbon sequestration  of  trees during  

the calculation  period  

The comparisons  of  the biomass  of  the  above-ground  components  of the trees  esti  

mated by  Marklund's  (1988)  and Hakkila's  (1979,  1991) models in the different 

development  classes  were  made only for  task  1  because for  other tasks  the results 

of  optimization  differed  due to the different value  of  the biomass  constraint.  In  task 

1 the biomass  of  living  trees  estimated using Marklund's (1988)  models were  gen  

erally  larger  than those calculated by  Hakkila's  (1979,  1991) models  in  all devel  

opment  classes  (Figure  23).  However,  at  the end of  the fifth sub-period  (year 

Figure  23. The  differences in the biomass of  the sum of  the above-ground  compo  

nents of  trees  estimated by  Marklund's  (1988)  and Hakkila's  (1979,  1991) models 

in different development  classes  in task  1. The  positive  differences mean that 

Marklund's (1988)  models produced  larger  values  for  biomass.  The negative  dif  

ferences mean  that Hakkila's  (1979,  1991) models produced  larger  values for  bio  

mass.  
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2049)  the biomass of  trees in pine-dominated  young thinning  stands was larger,  

and at  the end of  the third sub-period  (year  2029)  the biomass  of  trees in  birch  
dominated seedling  stands was  larger,  when Hakkila's  (1979,  1991) models were  

used for  the biomass  estimations. Excluding  seedling  stands the differences be  

tween the sum of  the outputs  of  the models for the above-ground  components  of 

the  trees were  less  than or  equal  to 5% in  pine  stands  and less  than 10% in  spruce 

stands.  In  birch  stands  the differences  were  larger,  but  less  than 17% in  all  devel  

opment  classes  apart  from seedling  stands.  

For  single  components  of  trees,  Marklund's (1988)  models produced  larger  es  

timates  than  Hakkila's  (1979,  1991) models  at the end of most of  the sub-periods.  

The  differences between the outputs  of  the models for  stem wood,  living  branches 

and foliage  of  all  tree  species  and  dead branches of  pine and spruce  were  more than 

20% in seedling  stands at  the end of  several  sub-periods.  The difference between 

the  outputs  of the models  for  living  branches was  also  large in young thinning  and 
advanced thinning  stands of  spruce  and birch,  and mature stands  of  birch  at  the end 

of  some  sub-periods.  The outputs  for  foliage  differed between Marklund's (1988)  

and Hakkila's  (1991)  models mostly,  in addition to seedling  stands,  in young thin  

ning  stands and mature stands of  spruce.  The differences  in the biomass  of  dead 

branches were  more than 20% in  seedling,  young  thinning  and mature stands  of  all  

tree  species  and in advanced thinning  stands of  birch.  Otherwise the differences 
between the outputs  of  Marklund's  (1988)  and Hakkila's  (1979)  models for  single  

components  of  a  tree  were  less  than  20%. 

The results  corresponded  to the studies  made at  tree  level (see  Table 12). The 

correspondence  between the outputs  of  Marklund's (1988)  and Hakkila's  (1979,  

1991) models at stand level  depends  on  the proportional  distribution of tree species  

and  on diameter and height  distributions of  trees. The differences between the 

models were  the largest  for  birch  at  tree level,  and thus,  the biomass estimates  may  

differ  most in  birch-dominated stands.  The wide diameter range, in which the  mod  

els  correspond  to each other  at  tree level, means  that  the stand-level  considerations 

of  biomass  of  trees are also  probably  close to each other. The differences in the 

estimates  of  Marklund's (1988)  and Hakkila's  (1979,  1991) biomass  models for 

single  components  of  trees  appear easily  in young thinning  stands and in mature 
stands.  In young thinning  stands the relative amount  of  small trees,  for  which the 

models produce  the largest  differences,  is usually  great  compared  to other  devel  

opment  classes.  Although  in mature stands  Hakkila's  (1979,  1991) models resulted 
in unrealistically  high  estimates  for  some components  (see  Figure  4),  Marklund's 

(1988)  models  produced  larger  values for  the biomass  of  above-ground  compo  

nents in mature  stands.  Generally,  the number of  very  thick  trees  is  small  in mature  

stands,  and thus,  they  have  not very  large  effect  on  the total biomass.  In this  study  

the problem  was that on seedling  stands it  was  not possible  to estimate  biomass  for 
all  small  trees,  or  at least  for  all  components  of  a  tree, using the considered  models.  

The trees or  components  of  trees having  zero  value for  biomass  vary  depending  on 

the model,  and this partly  explained  the large  differences between Marklund's 

(1988)  and Hakkila's  (1979,  1991) models for  seedling  stands.  

In task  1 the absolute differences in  the biomass estimates  of  trees  were the 

highest  at  the end of the second sub-period.  They  were  the largest  in advanced 

thinning  stands dominated by  spruce,  where Marklund's (1988)  models gave  much 
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larger  estimates  than Hakkila's  (1979,  1991) models.  The situation was  also  the 

same in  advanced thinning  stands  of  birch  at  the end  of  the second sub-period.  The 

reason  for  these differences was  that compared  to  other  points  of  time,  the volume 

of  trees  in advanced thinning  stands dominated by  spruce  or  birches  was large  at  

the end of  the second sub-period.  Thus,  at  the forest area  level the differences be  

tween the outputs  of  the models depend  greatly  on  stand structure. 

In each task,  the differences between the outputs of  Marklund's (1988)  and 

Hakkila's  (1979,  1991) models in  the net  carbon sequestered  by  the trees  were  the  

largest  at the  end of  the second sub-period  (year  2019)  (Figure  24).  The  net carbon 

sequestered  by  the trees was  186-206 Mg  larger  when the net  carbon was  estimated  

using  Marklund's (1988)  models.  The  relative  differences were  22-25% at the end 

of  that sub-period  (Table 18). The main reason  for  the differences was  the large  

amount of  the tree biomass  in  the advanced thinning  stands,  especially  in the ad  

vanced thinning  stands  of  spruce,  which  caused  large  absolute differences.  Mainly,  

for  the same reason  the absolute differences were high also  at the end of  the  next 

sub-period.  At the end of  the third  sub-period,  the  outputs  of  Hakkila's (1979,  

1991) models for  the net carbon sequestered  by  the trees were  90-127 Mg larger  
than  those of  Marklund's (1988)  models.  The relative difference varied from 9%  to 

16%. The relative  differences were  12-15% at  the end  of  the fourth sub-period,  and 
the absolute difference was  rather  high  at  the  end  of  the fifth  sub-period  in  tasks 1 

and 2.  In these two tasks  the net  carbon sequestration  of  the trees was  larger  at the 

end of  the fifth  sub-period,  when Hakkila's  (1979,  1991) models were  used  for  the 
estimation of  the  biomass.  The absolute differences were mainly  due to the large  
amount of  the biomass  in  advanced thinning  and mature stands  of  spruce.  Although  

the amount  of  biomass  was  also  larger  in  the pine-dominated  thinning  stands,  it did 

not have a great  effect  on  the absolute differences between the models in  the  net 

carbon sequestered  by trees in  tasks  1  and 2 at  the end of  the fifth sub-period.  In 
task  4 the relative difference was  high  at  the end of  the fifth sub-period,  but the 

absolute difference was  small.  

Table 18. The  relative  differences in the net carbon sequestered  by  trees in each 
task  during  the sub-periods.  The differences were classified  as  follows:  white <l%; 

light blue 1-5%; yellow  6-10%;  orange 11-15%; red >15%. M = Marklund's 

(1988)  models produced  larger values,  H = Hakkila's  (1979,  1991) models  pro  
duced larger values.  
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The  general  trend in  the net  carbon sequestered  by  the trees was  derived  using  

the outputs  of  both Marklund's (1988)  and Hakkila's  (1979,  1991) models.  In task 

1 the net carbon  sequestration  of trees  excluding  stumps  and  roots was  positive  and 

amounted to 740-950 Mg  at the end of  the first  three sub-periods  (years 2009- 

2029)  on the studied forest  area (Figure 24).  The amount of  net carbon was  also 

positive  at  the end of  the fourth sub-period  (year  2039),  but not as  much as at  the 

end  of  the former periods.  At  the end of  the last  sub-period  (year  2049)  there was  a  

net release  of  carbon which  amounted to more 1600 Mg. In task  1 the increment 

increased during  the calculation  period  until the end of  the fourth sub-period.  Dur  

ing  the fifth sub-period  increment decreased due to intensive  cuttings.  The cutting  

Figure  24. Net carbon sequestered  by  trees  in each  optimization  task  during  the 

calculation  period.  
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removal  was  smaller  during  the second sub-period  than  during  the first  sub-period,  

and after  that it  increased strongly.  The cutting  removal from thinnings  was the  

largest  during  three last  sub-periods  and that from regeneration  felling  during  the  

first  and the last  sub-period.  The  cutting  removal  exceeded the increment only  dur  

ing  the last  sub-period.  

In task  2 the net carbon sequestered  by  trees was  smaller  at  the end of  the sec  

ond sub-period  (year  2019)  and larger  at  the  end of  the third sub-period  (year  2029)  

than the net carbon sequestration  of  trees in  task  1 (Figure  24).  The main reasons  

for these differences were the larger  cutting  removal from thinnings  during  the  

second sub-period,  and the smaller  cutting  removal during  the  third sub-period  in  

task  2.  The total cutting  removal  was  a  little smaller in  task  2 than in  task  1 during  

the whole calculation period.  

When the net carbon sequestered  by  trees in task  3  was  compared to that se  

questered  by  trees  in  task 1, there were  only  small  differences  at the end  of  three 

first  sub-periods  (years  2009-2029)  (Figure  24).  In task  3 the total cutting  removal 

was  almost  as  big as  the increment during  the fourth and  the fifth  sub-periods,  for 

which the amount of  net carbon  was  very  close  to  zero.  

In  task  4 the net carbon sequestered  by  trees  was  much smaller  than in  task  1 at  

the end of  the second sub-period  (year  2019)  (Figure  24);  the main reason  for  this  

was  the larger  cutting  removal from thinnings  in  task  4. In task  4 the amount of  net 

carbon was  about zero  at the end of  the last  sub-period,  which was  due to larger  

increment and smaller  cutting  removal  compared to  task  1. 

4 CONCLUSIONS  

In this  study, the applicability  of available biomass  models for  the use  in the for  

estry  modeling  and analyses  was  evaluated. The models were  aimed at  estimating  

the total biomass  of above-ground  components,  and the biomass  of  different com  

ponents  of  Scots  pine  ( Pinus sylvestris ),  Norway  spruce  (Picea abies),  silver  birch  

( Betula pendula)  and downy  birch (B . pubescens ) growing  on different  sites  

throughout  Finland. The evaluation was  carried out  in  the context of  the planning  

system  MELA,  which is widely  used in Finland  for  supporting  the decision making  

in  forestry.  However,  the results  of  this  study  are  also  applicable  in the context of  

other forest planning  systems  in which the tree-level models can  be used for  the 

estimation of  the biomass.  

In this  study,  statistical  tests cannot be used for  the evaluation of  biomass  mod  

els  because of  the lack  of representative  empirical  data. Therefore,  the  performance  

of  the most  representative  biomass  models was  assessed  by  analyzing  the structure 
of  modeling  data,  the capability  of  models  to describe different components  of  a  

tree, and the capability  of  used independent  variables to describe different  compo  

nents of a  tree.  This evaluation showed that the models  developed by  Marklund 

(1988)  for  Sweden,  and  Hakkila  (1979,  1991) for  Finland were  the most  promising  

from the candidate models (Appendices  4-8)  for  the biomass calculation  in  forestry  

modeling  and  analyses.  In the more detailed evaluation,  the outputs  of  selected 

Marklund's (1988)  models were compared  to those of  selected Hakkila's  (1979)  
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models on different sites  (fertile  or  infertile,  and mineral soils  or  peatlands)  and 

geographical  locations  (Northern or  Southern Finland).  The  evaluation also  in  

cluded the study  of  these functions as regards  the input  and output of  the models in 

the context of  the  MELA planning  system.  The  evaluation  as  a  whole made it  pos  

sible  to identify  the special  features of  the model performance,  with an  increase  in 

understanding  of  how the models  functioned at  different levels  of  application  (tree, 

stand,  forest  area). Based on  the evaluation,  the gaps in knowledge  were  identified 

in  order  to  direct  future studies.  It  was  also  possible  to  identify  the uncertainties in 

model calculations  that were  due to  the poorly  identified model structure  and ex  

clusion  of  important  processes.  

Marklund's (1988)  models proved  to  be more applicable  than Hakkila's  (1979,  

1991) models  for  the estimation of biomass  of  different components  of  trees. The  

data behind Marklund's (1988) models  were the most representative  compared  

with other  models available for  biomass calculations at the tree level. The data 

were  collected from Sweden,  where the range of  growing  conditions is  wider  than 

in Finland. Therefore,  the variability  in  the data also  covered the  variation of  the 

site  conditions and structure of tree populations  in Finland. In spite of  the wider 

range of  growing  conditions included into Marklund's (1988)  data,  based on  com  

parisons  between the outputs of  Marklund's  (1988)  and Hakkila's  (1979,  1991),  

Marklund's (1988)  models are  applicable  also  in  Finland. The  models for  the dif  

ferent biomass  components  were  mostly  derived from the same set  of  sample  trees  

of  pine  and spruce, except  for  the finest  fraction of  roots. Furthermore,  Marklund 

(1988)  formulated models for  different components  of  birch  excluding  stump,  roots  

and leaves.  From Marklund's  (1988)  models  for  the biomass of  above-ground  

components  of pine  and spruce,  it  was  possible  to obtain full sets having  both 

breast  height  diameter and height  as  independent  variables.  For  the living  branches  

of  birch,  Marklund (1988)  did not present  models  having  both breast  height  diame  

ter and height  as  independent  variables.  However,  for  other above-ground  compo  

nents of  birch,  Marklund (1988)  had models having  both  of  these  variables as  inde  

pendent  variables.  
Marklund's (1988)  models provided  acceptable  estimates  for  the biomass of  dif  

ferent components  of  trees over  the  whole  diameter range regardless  of  the species;  

i.e.  the  functions do  not produce  negative values  for the smallest trees  and  the bio  

mass  of the largest  diameter trees are  reasonable. When the biomass  is estimated 

for  an individual component  of  a  tree, the models are  the most applicable  for  the 

estimation of  the biomass of  the stem wood and the biomass of  stem bark.  When 

the total above-ground  biomass  in  trees is  considered,  the models are  the most ap  

plicable  for  regularly  managed  stands  dominated by  Scots  pine. The modeling  data 

and the input  data used in  this  study  were  collected mostly  from regularly  managed  

stands.  Furthermore,  the sums of the outputs  of  Marklund's (1988)  models for  

above-ground  components  of  pines  corresponded  well with the outputs  of  Hak  

kila's  (1979,  1991) models. The most extensive  comparisons  with other  studies  

were  possible  for  pine.  The  sum of  the outputs  for  above-ground  components  of  

pine  were also  in line with these  previous  studies.  The analysis  done in  this  study  

showed that Marklund's (1988)  models  produce  logical  outputs  for  the total above  

ground  biomass  of  trees all  over  Finland. 
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When Marklund's (1988)  models are  used for the estimation of  biomass at 

smaller  than  the country  level,  attention has  to  be  paid  to the location and the struc  

ture of  forest  area (e.g.  site  fertilities,  proportion  of  different development  classes).  

When the biomass  is  used as  a  goal  or  a constraint  in  the optimization  in  a forest  

planning  system,  the location and the structure of  forest  area also  affects  the reli  

ability  of  the optimization  result.  The  models produce  the more uncertain outputs,  

the more the structure of input  data deviate from the data used for  the formulation 

of  the models.  For example,  the estimation of  biomass  for  trees growing  in North  

ern  Finland (or  in Southern Finland)  produces  more biased estimates  than  the esti  

mation of tree  biomass  over the whole  country.  Based on this  study,  no conclusions 
about the amount of  biases  in  different forest  areas  can  be drawn. However,  it  can  

be concluded,  that the  performance  of  models  in terms of  the biomass of  stem 

wood and stem bark  is realistic  as  regards  the location and the fertility  of site.  

As  a conclusion,  Marklund's  (1988)  models are  not  directly  applicable  for  the 

estimation of  energy wood resources.  Energy  wood consists  mostly  of  living  

branches. The reliability  of  biomass  estimates  for living  branches depend  greatly  

on the structure of  forests.  Thus,  at the regional  level the estimates  can be very  
unreliable. In Finland,  at the country  level  only very  coarse  estimates  about energy 

wood resources  can  be made using  Marklund's (1988)  models.  Marklund's (1988)  

models are  more applicable  for  the estimation  of  carbon sequestration  of  the above  

ground  components  of  trees  than for  the estimation  of  energy wood resources.  The 

proportion  of  stem wood is the largest  in the biomass  of  above-ground  components  

of  a  tree. Therefore,  the outputs  of  Marklund's (1988)  models for  the  total biomass  

of  above-ground  components  are  more reliable than those for  single  components  of  

a  crown.  In  addition to country  level,  Marklund's (1988)  models produce  realistic  
estimates  for the biomass of  above-ground  components  of  trees at the regional  

level.  

In  the future more attention should be paid  to the development  of  more  realistic  

biomass  models. The models should be able to account  for  the characteristics  of  the 

variability  of the input  data. In  a  forest  planning  system  used for  the  estimation  of  

forest  resources  at different  regional  levels,  the models should be able to describe 

the special  features of  trees  at  all  levels.  For  resolutions smaller  than the country  

level,  this  demand requires  the formulation of  different  models (or  calibration  of  

the models)  for  different sites in  different parts of  the country.  When the  trees hav  

ing  different sizes  are  considered,  the main interest  in the modeling  should be to  

increase  the accuracy  of  the most  common diameter classes;  however,  the models 

should also  produce  reasonable outputs  for  the smaller  and larger  diameter classes.  

In order  to guarantee  the compatibility  of different models (e.g.  volume and bio  

mass)  in  a  forest  planning  system,  they  should  be  derived from  the same data. 

In this study, the methods were represented  for the systematization  of  the 

evaluation of  the set  of  biomass  models for  different  components  of  a  tree. The 
evaluation of  the set  of  models for  different components  of  a  tree  demanded a ver  

satile  study  of  the models in relation to  each other.  The methods used in  this  study  

were based on more efficient  utilization  of  existing  data and research  results  than 

usually  have been made in the evaluation of  the models.  Although the statistical  

tests  would not  be  possible  for  the evaluation of  the  models,  this  study  showed that 
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useful information  about the performance  of  the models could be obtained using  

other evaluation  methods. 
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Appendix  1. The  sample  tree characteristics  of pine  in  the NFI  data. In brackets  the 

sample  tree characteristics,  when the biomass  of  stem wood and stem bark  was  

estimated using Hakkila's  (1979) models. 

Appendix  2.  The sample  tree characteristics  of  spruce  in the NFI data. In brackets  

the sample  tree  characteristics,  when the biomass  of  stem wood and stem bark  was  

estimated  using  Hakkila's (1979)  models.   

SCOTS PINE n DIAMETER (cm) HEIGHT (m) 

min max 
X 

s min max 
X  

s 

WHOLE 

FINLAND 

Mineral  soils 27106 0.3 70.0 20.7 9.4 1.4 35.2 14.7 5.9 

(17379) (1.0) (66.6) (21.4) (9.4) (3.1) (34.2) (15.6) (6.0) 

Peatlands  10276 0.7 52.6 15.5  7.3 1.5 28.4 11.0  4.7 

(6025) (1.6) (52.6) (16.5) (7.3) (3.1) (27.4) (12.0) (4.7) 

Fertile  mineral  soils  15662  0.4 66.6 22.2  9.6 1.4 35.2 16.0  6.1 

(10716) (1.8) (66.6) (22.8) (9.6) (3.1) (34.2) (16.8) (6.1) 

Infertile  mineral  11444 0.3 70.0 18.7  8.7 1.4 31.6 12.9 5.1 

soils  (6663) (1.0) (58.0) (19.1) (8.5) (3.1) (31.6) (13.7) (5.2) 

SOUTHERN 

FINLAND  

Mineral  soils  19511 0.3 66.6 21.4 9.5 1.4 35.2 15.7 6.1 

(16328) (1.0) (66.6) (21.6) (9.4) (3.1) (34.2) (15.8) (6.0) 

Peatlands  6772  0.7 52.6 16.6  7.5 1.5 28.4 12.2 4.9 

(5590) (1.6) (52.6) (16.7) (7.4) (3.1) (27.4) (12.3) (4.7) 

NORTHERN 

FINLAND 

Mineral  soils  7595  0.6 70.0 18.9  8.8 1.4 26.4 12.3 4.7 

(1051) (2.6) (57.5) (18.7) (8.9) (3.1) (25.3) (12.1) (4.6) 

Peatlands  3504  0.7 43.3 13.3  6.3 1.5 24.0 8.7 3.5 

(435) (2.0) (33.1) (13.8) (6.3) (3.1) (19.2) (8.8) (3.4) 

NORWAY 

SPRUCE  

n 

min 

DIAMETER (cm)  

max 
-

 s min  

HEIGHT (m) 

max 
-

 s 

WHOLE 

FINLAND  

Mineral  soils  21410  0.5 63.1  21.0 9.7 1.4  35.4 16.2 6.4 

(15425) (2.3) (62.4) (21.6) (9.6) (3.1) (35.4) (16.9) (6.3) 

Peatlands  4690  0.8 52.6 17.7  8.9 1.5 32.6 13.6  6.2 

(3091) (2.7) (52.6) (18.8) (8.8) (3.1) (31.6) (14.7) (6.0) 

Fertile  mineral soils  20192  0.5 63.1  21.3  9.6 1.4 35.4 16.5 6.4 

(14764) (2.3) (62.4) (21.9) (9.6) (3.1) (35.4) (17.2) (6.2) 

Infertile  mineral  1218  1.2 49.2 15.5  8.4 1.8 29.1 11.0  5.0 

soils (661) (3.0) (49.2) (15.1) (7.9) (3.1) (29.1) (11.5) (5.1) 

SOUTHERN 

FINLAND  

Mineral  soils  18071 0.5 63.1  21.5  9.8 1.4 35.4 16.9  6.4 

(15018) (2.3) (62.4) (21.7) (9.6) (3.1) (35.4) (17.0) (6.3) 

Peatlands  3601  0.8 52.6 18.6  9.1 1.5 32.6 14.7  6.2 

(2955) (2.7) (52.6) (19.0) (8.9) (3.1) (31.6) (14.9) (6.0) 

NORTHERN  

FINLAND 

Mineral  soils 3339  1.1 53.5 18.3 8.6  1.5  27.0 12.3  4.9 

(407) (3.6) (42.6) (18.8) (7.7) (3.1) (23.7) (12.7) (4.6) 

Peatlands  1089 1.3 45.6 14.6 7.5 1.7  27.5 10.0 4.7 

(136) (3.4) (45.6) (14.7)  (7.1) (3.1) (20.8) (9.9) (4.2) 
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Appendix  3.  The  sample  tree characteristics  of  birches  in  the  NFI  data. In brackets  

the sample  tree characteristics,  when the biomass  of  stem wood and stem bark  was  

estimated using Hakkila's  (1979) models. 

SILVER AND 

DOWNY BIRCH 

n 

min 

DIAMETER (cm) 

max 
-

 s min 

HEIGHT  (m) 

X 
s 

WHOLE 

FINLAND 

Mineral soils  8927 0.2  62.8 15.7 9.4 1.4 36.5  14.0 6.5  

(5970) (0.4) (62.8) (16.7) (9.8) (1.4) (36.5) (15.1) (6.6) 

Peatlands  5348 0.3  48.9 11.8 6.7  1.6 27.5  11.1 4.9 

(3208) (0.3) (48.9) (12.6) (7.1) (1.6) (27.5) (12.0) (5.1) 

Fertile  mineral soils  7820  0.2  62.8 16.4 9.5 1.4 36.5 14.6 6.5  

(5377) (0.4) (62.8) (17.3) (9.8) (1.4) (36.5) (15.6) (6.5) 

Infertile  mineral 1107 0.3  45.5 11.2  7.4  1.4 28.5 9.4 4.9 

soils  (593) (0.7) (45.5) (11.7) (8.3) (1.7) (28.5) (10.4) (5.4) 

SOUTHERN 

FINLAND 

Mineral  soils  6711  0.2  62.8 17.0 9.8 1.4 36.5  15.4 6.5  

(5663) (0.4) (62.8) (17.1) (9.8) (1.4) (36.5) (15.5) (6.5) 

Peatlands  3544 0.3  48.9 12.6 7.1 1.6 27.5  12.3 5.1 

(2972) (0.3) (48.9) (12.8) (7.1) (1.6) (27.5) (12.3) (5.1) 

NORTHERN 

FINLAND 

Mineral  soils  2216  0.3  40.4 12.0 7.2  1.4 24.5 9.6 4.3 

(307) (0.4) (37.2) (10.7) (7.4) (1.7) (19.0) (8.6) (4.0) 

Peatlands  1804 0.4  35.2 10.2 5.6 1.7 22.1  8.9 3.5 

(236) (0.8) (34.3) (9.8)  (5.9) (2.2) (17.2) (8.6) (3.3) 
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Appendix  4. Marklund's (1988)  biomass  functions. The biomass  is  expressed  in 

ln(kilograms).  See the explanations  of  the symbols  from the pages 9-10.  

Dependent variable  Model R 

Scots Pine 

ln(stem  wood) 11.4219*(d/(d+14))-2.2184 0.983  0.300 

7.6066*(d/(d+14))+0.02*h+0.8658*ln(h)-2.6864 0.993  0.191  

ln(stem bark)  8.8489*(d/(d+16))-2.9748 0.964 0.339 

7.2482*(d/(d+16))+0.4487*ln(h)-3.2765 0.967 0.326 

ln(living branches  9.1015  *(d/(d+10))-2.8604 0.949 0.517 

incl.  needles) 13.3955*(d/(d+10))-1.1955* ln(h)-2.5413 0.960 0.456 

ln(needles) 7.7681  *(d/(d+7))-3.7983 0.917 0.574 

12.1095*(d/(d+7))+0.0413*h-1.565*ln(h)-3.4781 0.930 0.527 

ln(dead branches)  9.5938*(d/(d+IO)-5.3338 0.861  0.956 

7.1270*(d/(d+10))-0.0465*h+1.1060*ln(h)-5.8926 0.865  0.945 

In(stump)  11.0481*(d/(d+15))-3.9657 0.972  0.415 

ln(roots  > 5cm) 13.2902*(d/(d+9))-6.3413 0.943  0.556 

ln(roots  < 5 cm) 8.8795*(d/(d+10))-3.8375 
0.949 0.472 

Norway  spruce  

ln(stem wood) 11.4873*(d/(d+14))-2.2471 0.991  0.243  

7.2309*(d/(d+14))+0.0355*h+0.703*ln(h)-2.3032 0.996 0.154 

ln(stem bark)  9.8364*(d/(d+15))-3.3912 0.983  0.287 

8.3089*(d/(d+15))+0.0147*h+0.2295*ln(h)-3.402 0.984 0.279 

ln(living branches  8.5242*(d/(d+13))-1.2804 0.972 0.387 

incl.  needles) 10.9708*(d/(d+13))-0.0124*h-0.4923*ln(h)-l .2063 0.974 0.374 

In(needles) 7.8171  *(d/(d+12))-1.9602 0.948 0.500 

9.7809*(d/(d+12))-0.4873*ln(h)-l .8551 0.949 0.494 

8.4127*(d/(d+12))-1,5628*ln(h)+1,4032*ln(lc>-1.5732) 0.967 0.398  

ln(dead branches) 9.9550*(d/(d+18))-4.3308 0.845 1.094 

3.6518*(d/(d+18))+0.0493*h+1.0129*ln(h)-4.6351) 0.854 1.065 

5.6333*(d/(d+18))+2.7826*ln(h)-l ,7460*ln(lc )-5.3924 0.873  1.001 

In(stump) 10.6686*(d/(d+17))-3.3645 0.979 0.397 

ln(roots  > 5 cm) 13.3703*(d/(d+8))-6.3851 0.970 0.440 

ln(roots  < 5 cm) 7.6283*(d/(d+12))-2.5706 
0.962 0.416 

Silver and dow ny  

birch 

ln(stem wood) 10.8109*(d/(d+11 ))-2.3327 0.985 0.245 

8.1184*(d/(d+l 1  ))+0.9783*ln(h)-3.3045 0.995  0.146 

ln(stem bark)  10.3876*(d/(d+14))-3.2518 0.973  0.317 

8.3019*(d/(d+14))+0.7433*ln(h)-4.0778 0.979 0.279 

ln(living  branches  
excl. leaves) 10.2806*(d/(d+10))-3.3633 0.961  0.531  

ln(dead branches) 7.9266*(d/(d+5))-5.9507 0.778 1.182 

11,2872*(d/(d+30))-0.3081 *h+2.6821 *ln(h)-6.6237 0.788 1.162 
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Appendix  5.  Hakkila's  (1972  a,  1979,  1991) biomass  functions. The dry  mass  of  a  

stem wood could be estimated by  multiplying  basic  density  and  green volume.  

Hakkila's  (1972  a)  functions for stump  and roots were  converted into formula,  in 

which breast  height  diameter was  used as  an independent  variable instead of  stump  
diameter (see  Hakkila (1972  a)). The biomass is expressed  in kilograms or  

ln(kilograms).  See the explanations  of  the symbols  from the pages  9-10. 

Dependent variable  Model R
2 

Scots  pine 

(-27.43*(d/t)
2

+62.44*ln(h/d)-26.88*ln(h/t)+0.526*h+ Over  bark  stem (2.5-7.4 m) 

381.63)*0.99 *V 

Stem wood  (2.5-7.4 m) (-27.43*(d/t)
2

+62.44*ln(h/d)-26.88*ln(h/t)+0.526*h+ 
381.63)* 1.01 *V b, 

Over  bark  stem (> 7.4 m) (92.930*(h/d)-193.00*(h/t)
2

+1,832*(t/h)+341.77)* 
0.99*V b, 

Stem wood  (> 7.4  m) (92.930*(h/d)-193.00*(h/t)
2

+1,832*(t/h)+341.77)* 
1.01*V

bl  

ln(living branches  inc!,  nee-  2.3268*ln(d* 10)-9.3954 0.878 0.427 

dles) 3.4914*ln(d* 10)-l ,9498*ln(h* 10)-47.454* 0.908  0.370 

(d*  10)/(h* 10)
2 -5.2678  

In(needles) 1.6975*ln(d* 10)-7.47 0.688 0.514 

1,8485*ln(d* 10)+0.0155*cr-9.01 0.732 0.477 

Dead  branches  0.0194*(d*10)-0.84 0.228 2.46 

Stump and  roots 0.044*(d/0.7604)
2-4.9  

Norway spruce  

(-67.35*ln(d/t)-0.270*t+0.001679*h
3
+167.7/t-9.837*  Over  bark  stem (2.5-7.4 m) 

V
2

+17.79*(d/t)
3
 +307.21  )*  1.01  *  V 

Stem wood  (2.5-7.4 m) (-67.35*ln(d/t)-0.270*t+0.001679*h
3
+167.7/t-9.837*  

V
2

+17.79*(d/t)
3
+307.21  )*  1.01  *  Vbl 

Over  bark  stem (> 7.4 m) (-67.95*ln(d/t)-0.2795*t+0.619*h+19.13*(d/t)
3
+ 

303.37)* 1.01 *V 

Stem wood  (>7.4  m) (-67.95*ln(d/t)-0.2795*t+0.619*h+19.13*(d/t)
3
+ 

303.37)* 1.01 *  Vb , 

Living  branches  incl.  needles  0.10229*(d* 10)+3.30*  10"*(d* 10)
3 -3.71  0.881 11.73  

0.00026724*(d* 10)
2
+1.41  *  10'

6

*(d*  10)
3
+ 0.893  11.14 

0.00043562*  ((d*10)
3
/(h*10))+0.4112 

ln(living  branches  incl.  nee- 2.3031  *ln(d* 10)+0.017075*cr+992.36/(h* 10)
2
-9.821  0.923 0.282  

dles) 

ln(needles) 2.2204*ln(d* 10)-9.03 0.715 0.513  

Needles 1.592* 10"
8

*(d*  10)
3
*cr+4.73*  10'

6

*(d*  10)*cr+0.37 0.883 4.14 

Dead branches  0.0134*(d* 10)+3.9*  10"
8

*(d*  10)
3
-0.62 0.266 1.89 

Stump and roots  0.060*(d/0.7411 )2 -7.1 

Silver and downy birch  

Over bark stem (2.5-7.4 m) (22.84*ln(t)+2.771 *(t/d)+379.99)* 1.015*  V 

Stem wood  (2.5-7.4 m) (22.84*ln(t)+2.771*(t/d)+379.99)* 1.01 *V b
, 

Over bark stem  (> 7.4  m) (34.156*ln(t)+138.5/d+335.64)*1.015*V 

Stem wood  (> 7.4  m) (34.156*ln(t)+l 38.5/d+335.64)* 1.01 *Vbl  

ln(living branches  excl. leaves)  2.6016*ln(d* 10)-10.7699 0.839 0.451 

2.73067*ln(d* 10)+l 788.90/(h* 10)
2
+0.01664*cr-  0.886 0.366  

12.4606 

Dead  branches  0.0040*(d* 10)-0.07 0.020 1.63  
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Appendix  6.  Korhonen and  Maltamo's (1990)  biomass  functions. The biomass  is  

expressed  in  ln(kilograms).  See the explanations  of  the  symbols  from the pages 9- 

10. 

Dependent variable  Model  R
2 SITS  

Scots  pine 

0.879*ln(d
2

)+1.215*ln(h)-4.182 ln(stem wood) 0,992 0.145  

0.842*ln(d
2

)+1.212*ln(h)+0.087*ln(ti,)-4.326 0.139 

ln(stem bark)  0.885*ln(d
2
)+0.435*ln(h)-4.344 0,981 0.168  

0.905*ln(d
2
)+0.3925*ln(h)+0.101 *CT-4.409  0.161  

ln(living branches  3.1287*ln(d)-1.3936*ln(h)-0.0005298*d
2
+0.1162*l

c
-3.0599  0,947 0.303  

incl.  needles) 
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Appendix  7.  Finer's  (1989,1991)  and  Issakainen's (1988)  biomass functions for 

trees growing  on peatlands.  The biomass  of  stem wood,  stem bark  and stump  and 

roots  is  expressed  in  ln(kilograms).  The biomass  of other components  is expressed  

as  ln(grams).  See  the explanations of  the symbols  from the pages 9-10. 

Dependent 
variable 

Site Model R
2 s r„ 

Scots pine 

ln(stem wood) VNRmu 1.8136*ln(d)+0.9317*ln(h-l ,3)-3.2875 0.996 0.094 

RhNRmu 2.1064*ln(d)-1.6475 0.962  0.160 

IR 1,7256*ln(d)+1.0241 *ln(h* 10)-5.7103 0.99  0.064 

ln(stem bark)  VNRmu 2.0023*ln(d)-4.0168 0.972  0.175  

RhNRmu 1,6874*ln(d)-2.9847 0.906  0.208  

IR 2.1274*ln(d)-0.7392*ln(h* 10)-0.7220 0.97  0.133  

ln(living VNRmu 2.2387*ln(d)+3.2988 0.980 0.165  

branches  excl. RhNRmu 3.0560*ln(d) 0.999  0.344 

needles) IR 2.6708*ln(d)+1.3568*ln(cr)+2.7932 0.97  0.224 

ln(needles) VNRmu (1.8121 *ln(d)+2.3958)+( 1,6660*ln(d)+3.0319)+ 

(1,7205*ln(d)+2.8450) 

RhNRmu (2.0091 *ln(d)+1.1906)+( 1,8809*ln(d)+l .8862)+ 

(1.8666*ln(d)+2.1337) 

IR (1,9320*ln(d)+1.1458*ln(cr)+2.8966)+( 1.9828*  

ln(d)+l. 1520*ln(cr)+2.6514)+( 1,8779*ln(d)+0.8357* 

ln(cr)+2.6905)  

ln(dead VNRmu 1.7067*ln(d)+2.9225 0.665  0.620 

branches) RhNRmu 2.7l89*ln(d) 0.997  0.424 

IR 2.2181  *ln(d)+1.8943 0.87  0.365  

ln(stump and VNRmu, 

roots) RhNRmu 2.7929*ln(d)-4.5698 0.989  

IR 2.4142*ln(d)-3.3420 0.99  0.118  

Norway spruce  

ln(stem wood) MKmu 1.5541 *ln(d)+1.056*ln(h-1.3)-2.8414 0.998  0.082  

ln(stem bark) MKmu 2.7644*ln(d)-5.9120 0.988  0.191  

ln(living MKmu 2.0822*ln(d)+0.6252*ln(cr)+4.1857 0.987  0.180 

branches  excl. 

needles) 

ln(needles) MKmu (1.8981 *ln(d)+0.8337*ln(cr)+2.2939)+( 1.7137*ln(d) 

+0.5291  *ln(cr)+2.8349)+( 1.6714*ln(d)+0.5235* 

ln(cr)+2.7760)+(1.7820*ln(d)+0.6142*ln(cr)+ 

2.5818)+(  1.7122*ln(d)+0.5289*ln(cr)+2.4523)+ 

(1,8232*ln(d)+0.7358*ln(cr)+2.1302+( 1.8118*ln(d)+ 

1,2274*ln(cr)+3.1615) 

ln(dead MKmu 0.1328*d+5.5372  0.828  0.665 

branches) 

ln(stump and MKmu 3.0333*ln(d)-4.9853 0.982  

roots) 

Silver and 

downy birch  

ln(stem wood) RhNRmu  2.381  l*ln(d)-2.3362 0.986 0.109  

ln(stem bark)  RhNRmu 2.7731  *ln(d)-5.5507 0.962  0.213  

ln(living RhNRmu  3.3891  *ln(d) 0.999 0.252  

branches  excl. 

leaves) 

ln(leaves) RhNRmu  2.9749*ln(d) 0.999 0.270 

ln(dead RhNRmu  5.9290*ln(d)-10.9833*ln(cr)-19.7244 0.529 1.901  

branches) 

ln(stump and  RhNRmu  3.0861  *ln(d)-5.3806 0.991 

roots) 
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Appendix  8.  Laiho's (1997)  biomass  models for  trees  growing  on peatlands.  The 
biomass  is  expressed  as  grams.  See the explanations  of  the symbols  from  the pages 
9-10. 

Dependent variable  Model R
2 

s m 

Scots pine  

Stem wood  14.422*d' 840
*h 1185 0.996 4.26 

Stem bark  5.658*d
2 '25l

*h
0 '249 0.983  0.96 

Living  branches  excl.  needles  3 992  *d 3' 285
*l

c
i 0  804  0.960 3.06 

Needles  33.203*d :l32*l
cl

"° 502 0.971 1.13 

Dead  branches  3101.458*d
0,307

*h
re

i 3'275 0.823  2.85 

Norway spruce  

Stem over bark  38.71  i*d
l7"9

*h
0  901 0.999 0.25 

Silver  and downy birch  
Stem wood 6.329*d' *20*h' 580 0.999 0.47 

Stem bark  5.156*d' 
l97

*h'
456 0.981  0.29 

Living  branches  excl.  leaves  3.775*d 2  966*h
re

i-0 '745 0.960 0.67 

Leaves 13.180*d'978 0.983  0.12 

Dead branches  1130.121*d'693
*h"

2146  0.900 0.16 
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Appendix  9.  Tree height,  crown  length,  stem wood volume and stem wood density  

of  pines,  spruces  and birches  in different diameter classes  on  mineral soils.  The 

variables were  obtained from the NFI data. Stem wood density  was  determined as  

the relation between the biomass  estimated using Marklund's (1988)  models and 

stem wood volume estimated  by  Laasasenaho's (1982)  functions,  and  by  Hakkila's  

(1979)  models.  
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Appendix  10. The differences  in tree height,  crown  length,  stem wood volume and 

stem wood density  between fertile and infertile  mineral soils. If  the difference is  

positive,  the trees growing  on fertile mineral soils  have  larger  values for these 

characteristics.  If  the difference is  negative,  the trees  growing  on infertile  mineral 

soils  have larger  values. 
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Appendix  11. The biomass  of  above-ground  components  of  trees and the differ  

ences  in the biomass  of  above-ground  components  of  pines  between fertile and 

infertile  mineral soils and between Southern and Northern Finland. In  the left  fig  

ure, the biomass  of  above-ground  components  of  trees  was  estimated for  trees in 

the NFI data using  coefficients obtained from Kauppi  et  ai.  (1995),  and  mean basic  

densities of stems  obtained from  Hakkila  (1966).  The volumes in the NFI  data were  

estimated using  Laasasenaho's (1982)  functions. In  the right-hand  figure,  the dif  

ferences were  estimated  using  Korhonen and  Maltamo's (1990)  biomass model for 

above-ground  components  of  pine.  If  the difference  is  positive,  the trees growing  

on fertile  mineral soils  or  in Southern Finland have larger  values. If  the difference 

is negative,  the trees  growing  on infertile  mineral soils  or  in  Northern  Finland  have 

larger  values. 
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Appendix  12. The differences in tree height,  crown  length,  stem wood volume and 

stem wood density  between Southern and  Northern Finland  on  mineral soils.  If  the 

difference is  positive,  the  trees growing  in  Southern Finland have larger  values. If  

the  difference is negative,  the trees growing  in  Northern Finland have larger  values.  
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Appendix  13.  Tree height,  crown  length,  stem wood volume  and stem wood den  

sity  of  pines,  spruces  and birches in different diameter classes  on peatlands.  The 

variables were  obtained from  the  NFI data. Stem wood density  is  determined as the 
relation between the biomass  estimated  using  Marklund's (1988)  models and stem 

wood volume estimated by  Laasasenaho's (1982)  functions, and by  Hakkila's  

(1979)  models.  
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Appendix  14. The differences in  tree height,  crown  length,  stem wood volume, 

stem wood density  between mineral soils  and peatlands.  If  the difference is  posi  

tive,  the trees  growing  on  mineral soils  have larger  values.  If  the difference is nega  

tive,  the trees  growing  on  peatlands  have larger  values. 
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Appendix  15. The differences  in tree height,  crown  length,  stem wood volume,  

stem wood density  between peatlands  in Southern Finland and peatlands  in  North  

ern  Finland. If  the difference is  positive,  the trees growing  in Southern Finland 

have larger  values. If  the difference is  negative,  the trees growing  in Northern 

Finland have  larger  values. 
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Appendix  16. The biomass  of  birch  leaves  in the NFI data estimated by  Mark  

lund's (1988)  models for  pine  and spruce,  Mälkönen's (1977),  Kubin's (1982),  
Mälkönen's and Saarsalmi's (1982),  Finer's  (1989),  Kauppi's  et al.  (1995)  and 

Laiho's (1997)  models.  
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