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Abstract  

This thesis reports  a  new  system  for the production  of static stand description  in an inventory by  

compartments. The stand description  includes stock  density, diameter distribution and height  

diameter (H-D)  curve.  
The diameter distribution of the stand is  expressed  with percentiles.  Firstly, expected  percentiles  

are  predicted  with  regression  models using measurements  of stand variables. Secondly,  the pre  
dicted percentiles  are  localized for the  stand using  order statistics  of horizontal point  sample  plots  

(HPS-plots)  (i.e. quantile  trees),  which are  interpreted  as  measured percentiles  of  the  stand. Thirdly, 

the obtained localized percentiles  are  adjusted  in order to  ensure  compatibility  with the measured 

stem number. The expected  H-D curve  of  the stand  is predicted  using  the measured stand variables. 

Furthermore, it is  localized for the stand using  height  sample  trees.  The longitudinal  character  of 

the model makes it possible  to use  measurements  from several  points  in  time. Both the localizations 
of diameter distribution and of the H-D  curve are  based on the prediction  of  random effects  of  the 

models with the best  linear unbiased predictor  using  sample  measurements  of  the  response.  

The individual components are  combined as  a  new  system  for the prediction  of  stand description.  

A key  feature of  the system  is its  ability  to  utilize different amounts  of  input  information. Further  

more,  measurement  errors  of  stand variables are  utilized to  some degree.  The minimum input  of  the 

system,  which can be  obtained from one HPS-plot,  consists  of  measurements of the basal area, 
basal area median diameter (DGM), stand age and  site  fertility  class. Additional UPS-plots,  stem 

number measurements)  from fixed plot(s), old or  new  height sample  trees  and  quantile  trees  can 

also be utilized. The system  makes it possible  to  take more measurements  from stands with a  high 

accuracy  requirement  than from stands with a low accuracy  requirement.  

The system  was  utilized in estimating  a model of  expected  errors  of  predicted  volume and saw 

timber volume using different measurement  strategies  in different stands. The prediction error  

depended  on  the basal  area  and DGM of the stand and on the number of  UPS-plots, height  sample  

trees and quantile  trees.  Furthermore, a height  measurement  from a previous  inventory  decreased 
the prediction  errors  slightly.  The measurements  of  stem number did not  significantly  improve  the 

accuracy  of  volume and  saw timber volume predictions.  The estimated models were  used as  objec  

tive functions  in a constrained optimization  problem,  where the object  was to find an optimal  

measurement  strategy  for  a  single  stand in an inventory  where measurement  time is  limited. 

Key  words: stand structure, diameter distribution, height-diameter,  order statistics,  linear predic  

tion. longitudinal  analysis,  optimization,  forest planning,  calibration, adjustment,  localization. 
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1 Introduction 

The aim of forest planning  is  to find a man  

agement  strategy for  a forest area  that maxi  

mizes  the utility for the forest owner (Pukkala  

1994). The traditional primary unit of forest 

planning  in Finland is  a  forest stand. The  forest 

plan includes management suggestions  for 

every  stand of the forest area  under considera  

tion. In order  to  collect the data for  the  plan,  an 

inventory  by  compartments is  carried out  (Poso  

1983). 

A Finnish inventory  by compartments is 
based  on few  horizontal point  sample  plots  

(HPS-plots.  i.e. relascope  sample  plots,  angle  

count  sample  plots,  Bitterlich plots).  The plots  

are established subjectively by the person 

carrying  out the inventory  at locations that 

seem representative  for the stand. Using  

measurements  and visual assessments  of the  

plots, the most important characteristics,  

including  basal area, basal area  median 

diameter (DGM), height  of  a DGM-tree, stand 

age  and site fertility class are assessed  from 

each stratum of the growing  stock  in the stand 

(Paananen  et ai. 2000).  The simulator of a  
forest  planning  system  utilizes the stand wise  

characteristics  to  produce  a stand description,  

including  stock  density, diameter distribution 

and  height-diameter  (H-D) curve of the stand. 

In the  simulator of  the MELA-system  (Redsven  

et al. 2004), which  is the core of most  forest  

planning  systems  in Finland, they  are  predicted  

using the models of Mykkänen (1986),  
Veltheim (1987),  Kilkki  "et al. (1989),  
Siipilehto (1999) and Kangas  and Maltamo 

(2000b).  The obtained stand description  is  used 

to  generate a  set  of representative  trees  for each 

stand for the prediction  of  growth  (Hynynen  et 
al. 2002) and cutting  removal in alternative 

management schedules. 

The accuracy  of the input of the Finnish 
stand simulation system based on partially  

visually  assessed  stand characteristics is re  

ported  to be rather low (Poso  1983, Mähönen 

1984. Laasasenaho and Päivinen 1986, Pussi  

nen  1992, Pigg  1994, Kangas  et al. 2002. Haara 

and  Korhonen 2004, Kangas  et al. 2004),  and 

prediction errors of growth models decrease it 

further (Kangas  1997, 1998 a, 1998b, 1999). 

The data  users  are,  however, satisfied with the 

accuracy,  but  would not  like to see  it  decline 

(Uuttera  et ai. 2002). The aim of Finland's  

National Forest Programme  2010 (1999)  is  to 
increase the cover  of forest plans  from 50% to 

75% by 2010. This requires  decreasing the 

costs of planning per unit area (Heikinheimo  

1999, Paananen 2002, Saramäki et ai. 2003).  

which means  that  the current  level of accuracy  
should be retained at a lower cost  than previ  

ously. 

One  possibility  to  respond  to these needs is 

to develop  methods and models that provide  as 

accurate  assessments  as the current  inventory  

system  but  at a lower cost. Many studies have 

investigated  possibilities  to  carry  out  the inven  

tory  from the air using  aerial photographs  (e.g.  
Pitkänen 2001, Anttila 2002 a, Anttila and Le  

hikoinen 2002, Korpela  2004), satellite im  

agery (e.g.  Hyvönen  2002, Saksa  et al. 2003) or 
laser scanning  approaches  (e.g.  Holmgren  et al. 

2003. Maltamo et al. 2004  a). Even if these 

approaches  are promising,  they  are  not  yet  real 

alternatives to  the inventory  by compartments 

(Uuttera et al. 2002) and their  development  will  

take time. In other studies,  the  information of 

the previous  inventory  has been updated  by 

utilizing growth models and information about 

treatments from forestry databases (Hyvönen  

and  Korhonen 2003) or aerial photographs  

(Anttila  2002b) in order to  lengthen  the interval 

of two inventories. These approaches  can  be 

regarded  as  practical  variations of  the approach 

of Stälil  (1994), where it was suggested  that if 
the expected  utility of an inventory  was  greater 

than its costs  then a new inventory of a forest 

stand  should be earned out. 

Another possibility  is to search for possible  

new variables to be measured in the field that 

would provide  more information at a  lower 

cost than the currently  measured stand vari  

ables. hi  many studies carried out  in Finland, 

using  accurate  stem number in  the calculations 
has been found to  be useful (Siipilehto  1999, 
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Kangas  and Maltamo 2000b).  However, sev  
eral studies (e.g.  Kangas  et ai. 2004)  have re  

ported  large errors  in measurements  of stem 

number. The calibration algorithm of Kangas  

and Maltamo (2000  a) made it possible  to util  

ize different stand variables  in the prediction  of 

diameter distribution and they  found that of 

several potential  new variables the unweighted  

median, maximum and minimum diameters 

were the most promising  alternatives for new  

measurements.  In addition, new measurement  

equipment  is  being  developed  in order to make 

it possible  for a  single  person to measure a 

large  sample  of diameters and heights  rapidly  

in the field (Laasasenaho  et al. 2002,  Koi  

vuniemi 2003). 
Eid (2000) reported  that losses caused by  

mistiming of harvests are most serious  in 

young stands and in stands that are close to 

their economically  optimal  rotation age, while 

in middle-aged  and over-mature stands the 
losses  are smaller.  Thus, it was  suggested  that  

the inventory  data should be most accurate  in 
stands where expected  losses  are greatest. In  

addition. Kangas  and Maltamo (2002)  pro  

posed  that different variables should be meas  
ured in different kinds  of forests. Furthermore,  

Holmström et al. (2003)  reported  that in large  

stands, intensive field sampling  should be car  

ried out  while in  smaller  stands a less  intensive 

inventory  might be  satisfactory.  All these stud  
ies  indicate that money could  be saved by  vary  

ing  the  forest  inventory  strategy  from stand to 
stand.  

This study  aims at reducing  the costs  and 

improving  the  accuracy  of the traditional in  

ventory by compartments by  looking  for  new 

measurements, making the use  of the collected 

data more efficient and allocating  the meas  

urement  resources  to measurements  and stands 

where the utility is greatest. This requires  a 

calculation system  that is  able to  utilize various 

input  information. The current  system  for pro  
duction of  stand description  requires  a  fixed set 

of variables from each stand. Furthermore, it 

assumes that the input  information is  measured 

without errors,  even if it is  well known that  the 

errors of stand measurements  are large. Thus, 

in this study  a new system  for predicting  stand 

description  was  developed.  

In predicting  forest characteristics,  the use  of  

regression  models has become very popular.  

Some easily  measurable stand variables, the 

most common of which are basal area,  mean 

diameter, stand  age and site type, are used  to 

predict  other stand characteristics that cannot  

be measured, or  at least  are difficult to meas  

ure,  in the field. Examples  of these are  diame  

ter  distribution (e.g.  Rennolls et al. 1985),  tree 

height (e.g. Fang  and Bailey 1998), stand 

growth (e.g.  Woollons 1997), log  volume re  
duction (e.g. Mehtätalo 2002),  damages  (e.g.  

Jalkanen and Mattila 2000)  and the production  
of  berries (e.g.  Ihalainen et al. 2003). However,  

the most natural means to estimate any stand 

characteristic is  to measure  it. Thus,  if meas  

urement  of  the target variable is possible,  it 

should be preferred over  the measurements  of 
covariates of  a  regression  model (see  e.g.  Lappi  

1997). This study  applies  this principle  to di  

ameter distributions and H-D curves.  The ran  

dom parameter approach  and linear prediction  

theory  provide  effective tools for carrying  it 

out  (Lappi and Bailey  1988. Lappi  1991). 

The aims of  this study  were 

• To develop  tools  for  producing  a stand de  

scription.  These tools  include methods for 

predicting  diameter distribution and models 
for  the H-D relationship.  The tools  should  be 

able to utilize different  kinds of information 

measured at different levels of accuracy.  

Special  attention is  paid  to the effective use 
of sample  tree  information. (I  -  IV.)  

• To utilize the tools developed  in order to  

construct  a new system  for  producing stand 

description  in  forest  planning  in Finland (V).  
• To utilize the system  in the optimization  of 

data  collection in an inventory  by compart  

ments  (V).  
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2 Components  of  stand  description -  a  literature review  

Stand description includes the information of 
the stand measurements  in such  a form that it 

can be used in stand  simulation. An example  of  

a very coarse  description  includes the name of 

the main tree species  while a very detailed 

description  may include a complete  tree  map  of 

the stand with measured tree taper. However, 

stand description  is  always  a  simplification  of 
the reality and the extent  of simplification  

depends  on the purpose of  the stand description  

and the data available. The stand description  of  
this study  includes the stock  density, diameter 

distribution and H-D curve. 

The stock  density  is  described either by the 
number of stems  or by  the basal  area.  In the 

Finnish system,  the basal area is  used  because 

it can be measured with  higher  accuracy  than 

the stem number and it is  more strongly  corre  

lated with the total volume than the number of  

stems is. The measurement of the basal area of  

a sample  plot  is straightforward  with an angle  

gauge and the basal area  of  the stand is calcu  
lated as  the mean of the plot  wise basal areas.  

The  measurements of diameter distribution and 

the H-D relationship,  on  the other hand, are 

rather laborious to carry  out  in the field. Thus, 

these components  are  not  measured in the field; 

instead,  approaches  for predicting  them from 
stand  and sample  tree  measurements  are  used. 
The next two  subsections consider the ap  

proaches  reported  in  the relevant literature. 

2.1 Diameter distribution 

2.1.1 Approaches  

The diameter distribution is the basis of the 

stand description.  Many  approaches  have  been 

used  to construct the diameter distribution of a 

stand. In the following, the approaches  are 
divided into three main approaches:  (i) those 

based  on a sample  of diameters, (ii) those 

based on prediction or  recovery  of the parame  

ters of an assumed theoretical distribution 

model and (iii)  those based on known  diameter 

distributions of similar stands (imputation 

methods).  

Approach  (i). The most  natural way  to obtain 
the diameter distribution is to measure a diame  

ter  sample  from the stand. If the sample  is  large 

enough,  it can  be used as such  in  the simulation 

(e.g. Pienaar and Harrison 1988, Nepal  and 

Somers 1992, Tang  et al. 1997). If  the sample  
is  small,  it can  be smoothed (e.g.  Droessler  and 

Burk 1989, Uuttera and Maltamo 1995) or a 

theoretical distribution function can be fitted to 

it (e.g.  Bailey  and Dell 1973, Zarnoch and Dell 

1985, Van  Deusen 1986, Shiver 1988, Lindsay  

et al. 1996,  Zhou and McTague 1996, Scolforo 

et al  2003, Zhang  et al. 2003).  The theoretical 

distribution function can  be fitted using the 
maximum likelihood method, the method of 

moments, methods based  on linear regression  

or by  utilizing properties of certain percentiles  

or  stand variables. 

Approach  (ii). The measurement  of  a diame  

ter sample  is too  time-consuming  in many 

inventories. In these cases,  the diameter distri  

bution can be predicted with some easily  

measurable stand  variables. Traditionally,  these 

methods are divided into parameter prediction  
methods (PPM) and parameter recovery  meth  

ods (PRM) (Hyink  and Moser 1983). In the 

parameter prediction  method, the  parameters  of  
the assumed distribution function are  predicted  

with some measured stand variables using  

estimated regression  models (e.g.  Schreuder  et 

al. 1979. Little 1982, Rennolls et al. 1985. 

Kilkki and Päivinen 1986. Kilkki et al. 1989. 

Maltamo 1997, Siipilehto 1999. Temesgen 

2003, Robinson 2004). In the  PRM  the  parame  

ters are recovered from some stand variables 

using  known relations between the stand vari  

ables and distribution parameters (e.g.  Ek  et al. 
1975. Burk and Newberry 1984. Magnussen 

1986. McTague  and Bailey  1987. Kuru et al. 

1992). The stand variables used in PRM may 

be. for example,  percentiles  or  moments  of  the 

diameter distribution. The recovery  is. how  

ever,  possible  only  for as  many parameters as 

there are measured stand variables that are 
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linked with the diameter distribution. If the 

number of parameters is  greater,  partial  recov  

ery  can be used,  i.e. as many variables  as  pos  

sible are  recovered and the other parameters are 

predicted  (e.g.  Kilkki  and Päivinen 1986, Kan  

gas and Maltamo 2000b, I,  11. V).  

Approach (iii) The third approach  is to use 
known diameter distributions of  similar stands  

as the predicted diameter distribution of the 

stand (e.g. Haara et ai. 1997, Maltamo and 

Kangas  1998). These methods have also been 

called imputation methods (Ek et al. 1997, 

Temesgen  2003, Temesgen  et al. 2003).  The 
similar stands are selected from a neighbor  

hood that is defined with a distance function. 

The imputation  methods used in predicting  the 

diameter distribution are the  

method (Altman 1992) and the most similar 

neighbor  method (Moeur  and Stage  1995). The 

approach  of Nanos and Montero (2002),  where 

an interpolated  surface is used to carry infor  

mation from geographical  neighbors  to the 

target stands, also belongs  to this class  of ap  

proaches.  

The above approaches  can  also  be combined. 

For example, the neighbors  of the third ap  

proach  may  be smoothed diameter distributions 

instead of true distributions, thus combining  

approaches  (i)  and  (iii) (Maltamo and Kangas  

1998). Furthermore,  sample  information can be 

used to improve  a predicted  distribution; ex  

amples  of this are the Bayesian  approach  of 

Green and  Clutter (2000)  where the prior in  
formation of neighboring  stands (iii)  is com  

bined with sample  information (i) and the ap  

proach  of Paper  I in the present thesis  where 

sample  information (i)  is used to improve  pre  

dicted diameter distribution (ii). The approach  
of Maltamo et al. (2003  a) combining  empirical  

distributions of large trees  identified from a  

digital  video imagery  with predicted  distribu  

tion of small trees is  a combination of (i) and 

(ii). 

2.1.2 Distribution families  

No theoretical results have been presented  

regarding  which distribution family should be 

used as a diameter distribution. Hence, many 
distribution families have been used. The most 

important  factors affecting  the goodness  of fit  

of  a  distribution family  is  the number of  free 

parameters and the flexibility of the distribu  

tion to  represent all possible  distributional 

forms. 

The most commonly  used distributional fam  

ily is  the Weibull distribution (Bailey  and Dell  

1973), either in a three parametric  form with 

parameters for location,  scale and shape,  or  in a 

two-parametric form, where the location pa  
rameter has been given  a value of zero, i.e. the 

minimum diameter of  the  stand is  assumed to 

be zero.  An  unrealistic property of  the Weibull 

distribution is  that it has no upper limit,  i.e.  the 

maximum diameter of a stand is  infinity. This 

problem  can be solved by  truncating  the distri  

bution at a point  that is  regarded  as  the maxi  

mum possible  diameter of the tree species.  
Another possibility  is to use a reversed trun  

cated Weibull distribution, so that the location 

parameter receives an interpretation of maxi  

mum diameter and the minimum diameter is  

zero (e.g. Kuru et al. 1992, Robinson 2004). 
Other distribution families used are. for exam  

ple, Gram-Charlier (Cajanus 1914), normal 

(e.g.  Nanang  1998), lognormal (Bliss  and Re  

inker 1964), gamma (Nelson  1964), beta (e.g.  

Hafley and Schreuder 1977), the Johnson's  
distribution families (e.g. Zhou and McTague  

1996), the Chaudhry-Ahmad  family  (Chaudhry  

and Ahmad 1993, Nanos and Montero 2001)  
and the exponential  distribution (e.g.  Cancino 

and Gadow 2002).  Many  of these families also 

need to  be  truncated in applications  because of 

unlimited maximum and  minimum diameters. 

All the distribution families presented  below 

are. however, too rigid in some  stands. This 

happens,  for example,  in stands where the 

shape  of the  distribution is irregular  or  multi  

modal. Thus, approaches  that combine several 

distributions have been presented.  These ap  

proaches  are the segmented  distribution ap  

proach  (Cao  and Burkhart 1984),  finite mixture 

approach  (e.g.  Zhang  et al. 2001)  and the  per  

centile-based approach  (e.g. Borders et al. 

1987). 

The segmented  distribution is constructed 

from pieces of the selected distribution 

[Weibull  in Cao and Burkhart (1984)].  and the 

number of pieces  and locations of cutting  
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points  are  fixed before the  fitting procedure.  In 
the  finite mixture approach,  the density  func  

tion  is  a weighted  sum of several density  func  

tions of the selected  distribution family. In the 

reported  studies,  the number of distributions 

has  been two  and the theoretical distribution 

used has been either the Weibull distribution 

(Zhang  et al. 2001, Liu et al. 2002)  or the 

bivariate normal distribution (Zucchini  et al. 

2001). The percentile-based  approach  ex  

presses  the distribution using  a  fixed number of 

percentiles,  corresponding  to  predefined  values 

of  the distribution function. The continuous 

function is  obtained by  interpolation, either by  

linear (e.g. Borders et al. 1987, I. II) or by  

spline interpolation  (Maltamo  et al. 2000, Kan  

gas  and Maltamo 2000  c).  When linear interpo  
lation is  used, the obtained distribution consists  

of  pieces  of a uniform distribution (I).  Thus, it 

can be regarded  either as  a  segmented  distribu  

tion approach  or as a finite mixture approach  

using uniform distribution (See Section  3). 

2.1.3 Compatibility  of  diameter distribution 

Compatibility of stand description means 

that all stand variables calculated from the 

diameter distribution are equal  to their meas  

ured variables. It is a desired property of the 

stand description and incompatibility may 
indicate that the information of the stand meas  

urements is not  utilized effectively. In PRM, 
the compatibility  can be guaranteed  with re  

spect to  as many stand variables as  there are 

parameters in  the distribution family used. 

However, it usually  leads to  a  very  complicated  

set  of equations,  whose solution does  not nec  

essarily  exist  in closed form. 

Compatibility  of basal area weighted  and 

unweighted  diameter distributions can be guar  
anteed through  size-biased distribution theory  

(Gove and Patil 1998. Gove 2000, Gove  2003), 

where the relationships  between  the ordinary  

and basal area weighted  forms  of the diameter 

distribution are derived analytically.  It  makes it 

possible  to derive the parameters of  the ordi  

nary distribution from the parameters  of the 

basal  area  weighted distribution and vice versa.  
Thus, it provides  tools for the recovery  of the 

parameters of  weighted  distributions. 

In PPM, the compatibility  is  very hard to en  

sure. Thus, many studies have presented  algo  

rithms that aim at a compatible  stand descrip  
tion by adjusting the diameter distribution 

(Nepal  and Somers 1992, Cao and Baldwin 

1999, Kangas  and Maltamo 2000 a). In these 

algorithms, the adjustment  is applied  to the 

frequencies  of the stand table and no  new di  

ameter classes  are established in the adjust  

ment. Furthermore, the stand variables calcu  

lated using the adjusted  frequencies  are re  

quired to  equal  the measurements  exactly.  

These requirements  may be too  strict in prac  

tice,  where measurements  include errors.  An 

alternative for these approaches  is  presented  in 

Paper  11. 

2.2 Height-diameter  models 

2.2.1 Approaches  

The H-D model is  used to predict  heights for 

trees with given  diameters. The H-D relation  

ship  varies considerably  between stands (Lappi  

1997, Hökkä 1997. Jayaram and Lappi  2001, 

Eerikäinen 2003. Calama and Montero 2004, 

111, IV) and accuracy  of the predicted  H-D 

curve  has a considerable effect on the accuracy  

of the stand volume estimate. As  with diameter 

distributions, the approach  used in height  pre  
diction depends  on the data available and the 

possible approaches  could be classified in a 

manner similar to the classification of the pre  

vious section, i.e. into (i) approaches  based on 

a sample  of heights,  (ii) approaches  predicting 
the parameters of  the H-D curve  without height 

measurements and (iii) approaches  based on 

imputation.  The studies using  approaches  be  

longing  to  the second (ii) category  can further 

be divided into two  classes:  (ii-a)  approaches  
which assume that  a large  forest area can be 

divided into stands, each of which has its own 

H-D curve, and (ii-b) approaches  where a 

common H-D curve  is assumed for larger  ar  

eas.  for example  for states  or regions. 

Approach  (i).  The most natural approach  in 

predicting  the H-D curve of a stand  is to fit an 

assumed curve  to  observed H-D data from the 

target stand.  There are numerous studies  con  

cerning  fitting different kinds of curves on 
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observed H-D data (Curtis 1967, Omule and 

McDonald 1991. Arabazis and Burkhart 1992, 

Flewelling  and de Jong  1992, Fang  and Bailey  

1998).  The  aim of these  studies has been to 
find an appropriate  functional form  for the H-D 

curve and to show how the estimation should 

be done. A recent  study  of Zhang  et al. (2004),  

which models the spatial  variation within stand 

using geographically  weighted regression,  

provides  a  new view to  this approach.  

Approach  (ii-a). The variation of  H-D curves  

between stands  is  usually  taken into  account  by  
modeling  the parameters of the H-D curve  

using stand specific variables as predictors  

(Veltheim  1987, Borders and Patterson 1990, 
Parresol 1992, Lynch  and Murphy  1995, Fang  

and Bailey  1998, Knowe et al. 1998, Wang  and 

Hann 1998. Hanus et al. 1999, Zeide and 

Vanderschaaf 2002).  Furthermore, these mod  

els have been localized using measured 

heights, for example  by  re-scaling  the model so 

that the measured mean height is obtained 
when the diameter equals  the measured mean 

diameter, thus combining approach  (ii-a) with 

approach (i). However, even though  this ap  

proach  of localization works  rather well  when 

the mean diameters and heights  are  accurate,  it 

does not  take into account  the within-stand and 

between-stand variances of tree heights. In 

recent  studies,  in addition to  the use of stand  

specific predictors,  the hierarchy  of the data 

has been taken  into account  through  a mixed 

model approach.  It provides  an  effective and 

theoretically  justified means for localizing  the 

curves for a given  stand using measured 

height(s)  (Lappi  1997. Hökkä 1997, Jayaram 

and Lappi  2001, Calama and Montero 2004).  
The localization is  possible  even  using  just  one 

measured height  and the ratio  of within-stand 

and between-stand variances determines how 

close the expected  curve is to the measured 

height. The mixed model approach  also pro  
vides natural approaches  for taking into ac  

count the temporal development of the H-D 

curves (Lappi  1997, Eerikäinen 2003, 111.  IV). 

Approach  (ii-b). In  models belonging  to this 

approach,  single  values  of  the parameters of  an 
assumed H-D  model are  estimated  from a  large 

dataset consisting  of  measurements  from sev  
eral locations of the target area (Huang  et al. 

1992, Zhang 1997, Peng  1999, Huang  et ai. 

2000. Zhang et ai. 2002, Colbert et ai. 2002).  
When the model is used for prediction,  the  

estimated parameter values  are applied  to  the  
whole target area. 

Approach  (iii). With the exception  of Mal  

tamo  et al. (2003b), imputation  methods have  

not  been  used in the prediction of H-D curves, 

even though  this could be done concurrently  
with  the imputation  of diameter distributions. 

The reason  for this seems to be data related 

rather than methodological:  the datasets used  in 
the imputation  of diameter distributions have  

not  included tree  heights.  

2.2.2 Model forms 

Many  studies carried out  on H-D  curves  have  

compared  different functional forms for the H-  

D relationship.  The number of  functional forms 
tested exceeds  30  and no single  form has  been 

found to be superior. However, some forms  
have been among the best  ones in many  com  

parisons  either in a linearized or nonlinear 

form. The three most  frequently  used functions 

are the allometric function, also  called the  

power function (Greenhill  1881, Curtis 1968, 

Zeide and Vanderschaaf 2002, Eerikäinen 
2003. Zhang  et al  2004)  

Meyer's equation  (Meyer 1940. Stout and  

Shumway  1982. Farr  et al. 1989. Huang  et al. 

1992. Fulton  1999) 

and the Korf  curve, also  called the Lundqvist  
or  exponential  function 

where H is  tree  height, D is  diameter and  a, b 

and c are  parameters. 
Based on  the biological  growth pattern of a 

tree, Yuancai and Parresol (2001)  recom  
mended the use  of functions with an inflection 

H=aD" 
,
 (1) 

H=a(  l-e 6D ) (2) 

H=ae~
bD 

,
 (3) 
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point,  which means that the curve is  S-shaped.  

and has  an upper asymptote. 

The allometric equation  lacks both these 

properties.  However, it has a  strong mechanical 

basis:  if the exponent b is  given  a value of  2/3,  

the  stem is equally resistant  to bending  at dif  

ferent heights  (Greenhill  1881. p. 66-73;  see 

Zeide and Vanderschaaf 2002). 

The Meyer equation  has an  upper asymptote 
of a, but it lacks an inflection point.  It can  be 

expanded  to the Weibull type function by  add  

ing  a positive  power parameter to  D,  and to  the 

Chapman-Richards  type function by  adding  a 

power parameter to the whole expression  in  the 

parentheses.  These expansions  naturally  also 

have an upper asymptote and the Chapman-  

Richards  type of  function also  has an inflection 

point. Both of these expansions  have been 

recommended and used as H-D curves, the 

former by  Huang  et al. (1992).  Zhang  (1997) 
and Ishii et al. (2000)  and the latter by  Huang 

et al. (1992),  Zhang  (1997) and Zhang  et al. 

(2002). 

The  Korf curve has both an asymptote  and an 
inflection point.  The Korf curve  has been used 

both in the form where c= 1 (Curtis 1967, 

Zakrzewski  and Bella 1988, Arabazis and 

Burkhart 1992, Calama and Montero 2004)  and  
with other  positive  values  of c (Huang  et al. 

1992, Lynch  and  Murphy 1995, Lappi  1997, 

Hökkä 1997, Jayaram  and Lappi  2001. Colbert 

et al. 2002.  111. IV).  hi addition to these func  

tions. the Schnute function (Schnute  1981).  
which has  both an inflection point  and an upper 

asymptote, has been recommended in many  

studies (Huang  et al. 1992. Zhang  1997. Yancai  

and Parresol 2001). 

2.3 Other components 

The diameter distribution and H-D  curve  of a 

stand are regarded  as  the most important com  

ponents of stand description  in forest manage  

ment planning.  Other important components 

are. for example,  taper curves, spatial  pattern 

and age distribution. It is  well  known that  tree  

taper varies from stand to stand (Lappi  1986. 

Ojansuu 1993)  and spatial  patterns  may be very 
different in  different stands (Lin  2003). In the 

future, information about tree taper may  be 

obtained from harvester measurements  by  

using  imputation  methods and  the spatial  pat  

tern  may be determined by  using  high resolu  

tion remote  sensing  imagery  (e.g.  Uuttera et ai. 

1998). However, these approaches are not 

currently  in use, and field measurements  of 

these stand characteristics are too time consum  

ing  in inventories for forest management plan  

ning. Thus, the taper curves  of Laasasenaho 

(1982)  are assumed to apply  to  all stands and 
the spatial pattern within stands is assumed to 

be random. 

The diameter distribution and H-D curve  

produce  a static description  of  the stock  struc  

ture, which is the basis of growth and yield 

prediction.  The next important  component of 

the stand description  is a set of models that 

predicts the development  of the stand (e.g.  

Hynynen  et ai. 2002).  However, because the 

estimation of stand growth  is  out  of the scope 
of  this  study,  growth  models will not  be dis  
cussed any further. 

2.4 Other approaches  

An alternative to the separate prediction  of 
diameter distribution and  H-D curve  is the use 

of a bivariate distribution as the joint 
distribution of heights  and diameters. Ever 

since  Schreuder and Hafley  (1977)  proposed  it, 

Johnson's S
RB distribution has been widely 

utilized (Hafley  and Buford 1985, Knoebel and 

Burkhart 1991, Siipilehto 1996, Tewari and 

Gadow 1999, Siipilehto 2000).  Zucchini et al. 

(2001), however, found that a mixture of two 

bivariate normal distributions, which  has more 

free parameters than the bivariate Johnson's 

S
BB distribution, fitted their Central European  

beech  stand better. Furthermore, the trivariate 

Johnson's  SBBb distribution has been used in 

the estimation of the joint distribution of 

height, diameter and age (Schreuder  et al. 

1982). However, although  these  approaches  are 

theoretically  appealing,  their utility is  not  self  
evident  when compared  to the approach  based  

on  a univariate diameter distribution and the H- 

D curve (Knoebel and Burkhart 1991, 

Siipilehto 1996, 2000). Furthermore, a 

bivariate joint distribution of heights  and 
diameters is obtained also by using the 

estimated diameter distribution and error  

distribution of the H-D curve.  
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Because diameter measurements  are much 

easier to obtain than  height measurements, the 

current practice  is  to  predict  tree  height  from its 
diameter. Laser  scanning  (e.g. Maltamo et al 

2004b)  and digital photogrammetry  of trees 

from aerial photographs  (Korpela  2004).  which 

are promising  alternatives to the inventory  by  

compartments  in the future,  provide  quite  accu  
rate height measurements,  while diameter 

measurements are hard to  obtain from the air. 

Thus, the development of these methods to 

realistic approaches  in  forest inventories may 

reverse  the roles  of height and diameter in the  
future (Maltamo  et al. 2004b).  
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3 Percentile-based diameter distribution 

This study uses the percentile-based  ap  

proach  in the prediction  of diameter distribu  

tions.  The percentile-based  approach  of diame  

ter  distributions was  first  presented  by  Borders  

et al. (1987) and has later been  used in  Borders  

and  Patterson (1989),  Maltamo et al. (2000),  

Kangas  and Maltamo (2000b)  and Eerikäinen 

and Maltamo (2003). The percentile-based  

diameter distribution was introduced because  

of  its ability  to reproduce  multi-modal stand  

tables and the simplicity  of the mathematics 

needed (Borders  et al. 1987). More generally, it 

is  much  more flexible than the traditional pa  

rametric  distributional families,  e.g.  Weibull 

and Johnson's SB ,
 because  the  implied  assump  

tions about the form of the diameter distribu  

tion are weak (Maltamo  et al. 2000, Kangas  

and Maltamo 2000b). 

This study  regards  the percentile-based  dis  

tribution as  a piecewise  defined uniform distri  

bution. The interpretation  of the residuals of 

the percentile  models as  the horizontal errors  of 
the percentiles  is  emphasized,  and methods for 
effective use of the error  variances in calcula  

tions are  developed (I, 11, V). Furthermore, it is 

shown that measured sample  order statistics 

can be regarded  as measured percentiles,  which  

can be plotted  onto  the figure  of the  c.d.f. and 

used in localizing  the predicted percentiles  for 

a given stand (I,  V). Finally,  exact analytical  

formulas for relationships  between different 

stand variables are derived without transform  

ing  the distribution to  a  stand table. The formu  
las are utilized in adjusting  the predicted per  
centiles in order to  ensure  compatibility  of the 

stand description  (11.  V).  The next  five subsec  

tions summarize and complete  the properties  of 

the percentile-based  approach  derived in Pa  

pers  I,  II  and V. 

3.1 Distribution function and density  

Let the diameter distribution of a stand be 

described with a strictly  increasing vector of 

diameters, d=(dl ,d 2,  ■■■,dk )\ corresponding  to 

predefined values, p=(p,,p:,...,pk)'. of the cu  

mulative distribution function (c.d.f.) where 

p,=o  and pk
=  1. Assuming  that the c.d.f. be  

tween consecutive  percentiles  is linear, the 

c.d.f. of  tree  diameter Y  is  (I):  

where 

(The  capital  letter Y  is  used for random variable 

and the lower case  letter  y for its realization; a 

notation that is commonly  used in statistical 

literature.) The notation F
v
(y\A

m
) emphasizes  

that  vector  p is a predefined  constant  vector  

that defines the distribution family used and 

vector  d,„ includes the parameters of the  distri  

bution in stand m. The density  is obtained by  

differentiating  (4):  

0 V<£?,  

F„  (>'|d,„)=-  a,+b,y  d<y<di+l  ,for ;=1 k- 1, (4)  
1 y^d

k 

O v< dt 

/p(v|d„,)  = U = 1 k-1. (5)  
O v> dt  

b = Sm.—El  and a = p.-bd .  
' d

M -d,  
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Table  1. Equations for  the  calculation  of  some stand  characteristics from the percentile-based distribution of 
form (4). 

Note.  The equations for  the  basal  area  weighted diameter distribution are on the  left  and  for  the unweighted 
diameter distribution on the right.  The vertical lines in  the equations of  median mean the value of  d that satisfied  

the equation  on  the right  hand side of  the vertical  line. The notation  /'  means the  density  of  the weighted diame  
ter  distribution  and/ 1 the  density  of  the unweighted distribution. 

3.2 Moments of the  distribution 

The expectation  or  mean of  tree  diameter in a 
stand is calculated as the  expectation  of the 

percentile-based  diameter distribution (Eqs  4 

and 5). It  follows straightforwardly from the 

definition of the expected  value that (Casella  
and Berger  2002. p. 55) 

For  calculating  variance, the second moment  
of  the distribution,  defined as  E(Y

2

).  is  needed 

(Casella and Berger  2002. p. 59). It follows 

again  from the definition of  the expected  value 

that 

and the variance is obtained using  the well  

knovvn formula (Casella and Berger  2002, p. 

60)  

dk  

£(>')= J.i/po'|d,„>/v 
• (6) 

=Z ]  >'b.dy  =  z;Y. b,{dJ  - d?)  
,=l  

d
 £ i=l 

E{Y1 )=  }v 2
/

P
(v|d„,Xv  

(7)  

=  Z  jy^dy^^idj-d,3
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k 
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3.3 Relationships  between percentiles  and 
stand characteristics 

Many  computations  with the theoretical dis  
tributions used in the description of forest 

structure are very  complicated  and lead to 

results  that do not  exist  in closed form.  A usual  

solution to  this problem  is  to use  a stand table 

approximation  of the  distribution (e.g. Nepal  

and Somers 1992). With the percentile-based  
diameter distribution (Eqs  4 and 5),  many  stand 

characteristics can be rather simply  derived 

analytically  (See the Appendix of Paper II).  

The density  of  Y r:„ is  

The most  important  stand characteristics are  

given  in  Table 1 for both basal-area weighted  

and unweighted  diameter distributions. 

3.4 Order statistics  

The theory  of order  statistics is  of great im  

portance with the percentile-based  diameter 

distribution because a measured sample  order 
statistic is an unbiased estimator of a certain 

percentile  of  the underlying  distribution (I). 

Denote the r lh order  statistic  in a sample  of  
size nby Yr:„. If  the  sample  is drawn from a 
distribution with a c.d.f. of the form (4). the 

exact distributions of order statistics can be 

derived rather easily.  

and the joint density  of  two  order  statistics  Yr]:„ and Yr2:„ is 

where 

(Reiss  1989.1). 

The expectation  and variance of  a  single  or  
der statistic  follow from the same definitions 

and general  rule  that were  used in Equations  6, 

7  and 8  (Casella and Berger  2002.  p. 55-60. 1). 

The covariance of two order statistics  can be 

calculated using the corresponding  definitions 

and rule (Casella and Berger  2002. p. 144. 170)  

for bivariate distribution, as  shown in  Paper  I. 

Furthermore, the measured sample  order statis  
tic  is  an unbiased estimator of  the 100/?

lh  per  
centile of  the diameter distribution of  the stand, 

where 

and  Fp  is  the c.d.f. of the stand. 

3.5 Considerations on the PPM with the 

percentile-based  approach  

Assume that the percentiles  of the diameter 

distribution in stand m follow the model 

var(T)  = £(}'
2

)-[£(y)]
2

. (8) 

f ,
l
A = 

r

~'(l-a,-blyy''ifd i <y<d
i+l  for  «=  1 k-1 (9)  

0 otherwise  

£  ( v  v \^b, b Aa i +b>ys~\a
j

+b>y2-a -
b<ys  

''

 if4^v, <^.
+ i; 4.<y, <rf ). +1 :y 1 <y

2  fori,y=l  k-1  
|0 otherwise  

(10) 

„

 »! 
,
 

„

 «!  

0

 (r-l)!(«-r)! 1 («-/; )!(n --l)!(r,  -1)!  

p  = [£(*;,,  KL di) 

d,„=Bx„,+e,„, (12) 
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where B includes the parameters,  xm the predic  

tors and e
m
 the residual errors.  

Assuming that the  model is  correct  and B is 

known, the fixed part  of the model. Bx
m,
 gives  

the conditional expectations  of  the percentiles  

in the  stand given  x m,
 

and the vector  e
m
 includes the horizontal devia  

tions  of  the true  percentiles  of  stand m from 
their conditional expectations  or, in other 

words, stand effects  (Figure  1 of I). Thus,  the  
variance-covariance matrix of the residuals  

includes information about the between-stand 

variation of the percentiles,  which is useful 

information in adjusting and localizing  the 

percentiles  (I, 11, V). 
Bx„,=£(d|x,„), (13)  
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4 Datasets  of this study 

Two different datasets were used in the 

study.  The first  data, called mixed forest  data, 

are  a small data including  43 fixed rectangular  

plots  from conifer mixtures  of  North Karelia. 

This dataset was  used in the tests of  the meth  

ods  developed  for  diameter distribution predic  
tion  (I, II). The second dataset  (INKA-data)  is  a 

larger  dataset covering  the whole  of  Finland. It 
includes remeasured plots from 757 stands. 

This dataset was  used in the estimation of H-D 

curves  (IH, IV) and models for accuracy  of 
stand structure  prediction  (V). 

4.1 Mixed  forests  data (I,  II) 

The mixed forests data  were originally  col  
lected for estimation of  individual tree  growth  
models (Pukkala  et al. 1998). The plots  were 

measured from mixed Scots  pine-Norway  

spruce stands. Almost all stands are naturally  

regenerated  and  all  stands represent the me  
dium site fertility class  [Myrtillus  type in the 
classification system  of Cajander  (1926)].  The 

plot size varies between 600 and 3000 m 
2,
 

being  smaller in dense stands than in open 

forests. The  stands were selected to represent 
forests  of  different density,  age, tree  size,  spe  
cies composition,  size difference between the 

two  species and spatial distribution of trees in 

the stand. The stands are regarded  as even-aged 

although  there may be remarkable variation in 

the ages of the different tree species  strata.  
However, the  within-stand variation of  a  given  
tree  species  is small. The conifer mixtures of  
this  kind are  quite typical  in Finland and they  

are  considered even-aged  forest stands  in forest 

planning and management. Detailed size and 

growth measurements  of all trees were  made. 

However, this study  used only  the measured 
diameters (i.e. the empirical  diameter distribu  

tion), stand age and site fertility. The mini  

mum, maximum and mean values of the most  

important characteristics of the data are pre  

sented in Table 2 of  Paper  11. 

4.2 INKA-data (111,  IV,  V) 

The stands of the INKA-data (Gustafsen  et 

al. 1988, Hynynen  et ai. 2002)  are a subsample  
of  the stands  of  the 7

th  National Forest  Inven  

tory  in Southern Finland and  of  the 6 th National 
Forest Inventory  in Northern Finland. Only  
stands  on mineral soils  were included and sap  

ling stands were excluded. The plots were  

established between the years 1976-1982 and 

they  were remeasured twice  with five-year  
intervals. The dominant tree species  of the  

stands were Scots pine,  Norway  spruce or  
birch.  Only  healthy,  single-storied  stands with 
the proportion  of  major tree  species  being  at  
least 50% of  the total volume of the growing  
stock  were included. The Scots  pine dominated 

stands represent all fertility classes  of mineral 
soils except the barest sites,  which are unim  

portant for forest economy. The spruce and  

birch-dominated stands represent only  stands 
with at least  medium fertility. 

A cluster of sample plots  was  established on 

each stand. The  cluster included three fixed  

radius circular plots,  located 40 meters apart  

from each other (See  Figure  1 of IV). The plot 
size  varied according to the stand density  so 

that  the total number of sampled  trees in a 

stand was  at least 120 in Southern Finland and 

100 in Northern Finland. The  diameter at breast  

height  was  recorded from all trees  of  the plot.  
A smaller plot  of more detailed measurements  

was  established at the  center  of  each plot,  com  

prising  1/3 of  the area  of  the sample  plot.  These 

measurements  included, among others, sample  

tree  heights.  

The minimum, maximum and mean values 

of  the most  important  characteristics of  the data 

are given in  Table 1  of Paper  111. Table 1 of 

Paper  IV and Table 1 of  Paper  V. Note that 

these tables are calculated from the sub-data 

used in  these studies,  including  those stands of 

the original INKA-data that  fulfill the require  

ments  stated in these studies. 
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5 Methods 

5.1 Mixed models (111,  IV)  

In the following  a very short overview on 

mixed models is given  through  a forestry  ex  

ample. In many forestry  problems,  the data 
have a hierarchical structure that  is due to the 

division of the forest area to several stands and 

plots.  Furthermore, the  plots  may have been 

measured several times (e.g.  Hökkä and  Ojan  

suu 2004, I and II).  Essentially,  the stands, 

plots  and measurement  occasions  of the model 

data are  samples  from populations  of stands, 

plots  and times and the model will  be applied  

in new stands,  plots  and times that are  not  pre  

sent in  the modeling  data. The mixed model 

provides  a natural approach  for these kinds  of 
situations (see Davidian and Giltinan 1995, p. 

63-124; McCulloch and Searle 2001, p. 1-27; 

Diggle et al. 2002, p. 169-189). Gregoire  et al. 

(1995)  summarizes well the merits of this ap  

proach  in a situation where the structure  of  the 
data causes  spatial and temporal autocorrela  

tions between observations. 

A linear mixed model can be written  as 

The first term on the right  hand side of (14)  is 

called the fixed part  and the last two  terms the 

random part  of  the model. Matrix X is  the de  

sign  matrix of the fixed part.  Z the design  ma  
trix  of  the random part,  p the vector  of  fixed 

parameters, b the vector  of random parameters 

and e the  vector  of  residual errors  (Lappi  1993, 

p. 133-153, McCulloch and Searle 2001, p. 
156-163. Pinheiro and Bates 2000, p.  58-62).  
The parameters to be estimated are the fixed 

parameters, p. and variance-covariance matri  

ces  of random parameters, var(b)=D, and of 
residual errors,  var(e)=R. The parameters can  

be estimated, for  example, with the restricted 
maximum likelihood method (REML) (see 

Pinheiro and Bates 2000. p.  75-79).  

The fixed parameters  of the  model corre  

spond  to  the parameters  of  an ordinary  regres  
sion model and the fixed part  gives  the condi  

tional expectation  of  the response variable y 
given  the fixed  predictors.  The structure  of  the 

data determines the structure of D and R. In 

our example,  a block-diagonal  structure of  
matrix D  is assumed, which  implies  that trees 

of the same  stand and  plot  have constant  corre  

lations, as  have the trees  from the same stand 

and different plots  (see  e.g.  Pinheiro and Bates 

2000, p. 60-62).  Trees from different stands are 

assumed to be uncorrelated. Matrix R has  usu  

ally a diagonal structure  and if residuals have 

equal variance, it is  a  multiple  of  an identity  
matrix. However, spatial  or  temporal  autocor  

relations, for example,  lead to a  non-diagonal  
matrix R. For more details on modeling  the 
data structure  and autocorrelations using matri  

ces  D and R, see Pinheiro and Bates (2000, p. 

201-270). 

The variance-covariance matrix of the ran  

dom part  is 

Equation  (15)  shows  that the random parame  
ters imply correlations between observations. 

Furthermore, it implies  that the covariance 
between the observations and random parame  
ters is cov[b.(y-Xp)']=DZ'  (McCulloch  and  

Searle 2001, p. 255).  This covariance can be 
utilized in the prediction  of random effects 

using  observations of  the response variable. 

5.2 Prediction of random variables (I,  111, 

IV,  V)  

The error  terms of statistical models are  ran  

dom variables.  This study  utilizes the theory  of  

linear prediction  to localize the models for a 

given  stand by predicting  these  random vari  

ables with observations of  the response  from a 
sample.  A  short  overview  of  the theory  is  given  
in this section. 

Assume that we have a vector of random 

variables, x. which can be  divided into  two  

parts  

y = \p + Zb  + e. (14) 

V=var(y)=ZDZ'+R  . (15)  
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where X] and x 2  are  random vectors  of length  1 

or  more. In the applications  of this study,  x, is 

a  vector  of random effects (stand and time 

effects)  and x 2  is a  vector  of  observed residuals 

(observed  height or percentile  minus its ex  

pected  value).  It is assumed that  E(X])=fi,, 

E(x 2)=H2. var(x  !>=¥]. var(x2)=V2,
 and 

cov(xi,x2') 
= Vi  - Using the notation of 

McCulloch and Searle (2000,  p. 247),  this can 
be written as 

Assume that we have observed random vec  

tor  x  2  and  we  want  to  predict  vector  X!  The best  

predictor  (BP)  of  X! is  the conditional expecta  
tion 

(McCulloch  and Searle 2001. p. 248).  The best  

predictor  can usually  not  be calculated because 

it requires  the distribution of x,|x 2.  An estima  

tor  that requires only  first  and second moments  
is obtained by limiting  the consideration to 

linear unbiased predictors. The Best Linear 

Unbiased Predictor (BLUP) of  Xj  is  

with the prediction  variance of 

(McCulloch  and Searle 2001. p. 250). Thus, if 
the expectations  and variance-covariance ma  

trices of two  random vectors are known  and 

either of them is observed, the other  can be 

predicted.  The variance of the prediction  error  

can be calculated using Equation  (20). If  x  

follows the multinormal distribution. BLUP is 

also BP. 

The standard theory  of  mixed models utilizes  

BLUP  to predict  the realizations of  the random 

effects  in the modeling  data (McCulloch  and 
Searle 2001, p. 254-258).  It is  a special  case  of 

prediction,  where  the correlations between the 
observed random vector. x 2=y-Xp.  and the 

vector  of  random effects,  x,=b.  are  generated  
by  the structure  of  the data (Eq.  15), i.e.   

V
2=ZDZ'+R and Vl2=DZ\ If measurements  of 

the response variable from a  new stand are 
available in applications,  the realizations of  the 

random parameters in that stand can be pre  

dicted (Lappi  and Bailey 1998. Lappi  1991. 

III). Similarly, if we have  several  models that 

have correlated residual errors  and the correla  

tions are  known,  an observed response of any 

single  model can  be utilized in  predicting the 

responses of the other models in that stand 

(Lappi  1991, I). Thus, the realized random 
effects and/or random errors  of the models can 

be predicted in order to  localize the models for 
that stand. 

In practice,  the variance-covariance matrices 
used are replaced  with their  estimates. A pre  

dictor obtained using  these  estimates is some  

times called EBLUP, Estimated Best Linear 
Unbiased Predictor (e.g.  McCulloch and Searle 

2001. p.  257). 

5.3 Constrained optimization  (11,  V) 

This study  utilizes constrained optimization  

in adjusting  the percentiles  and stand variables 

to obtain a compatible  stand description  (11.  V) 

and in searching  for an optimal  measurement  

strategy  for a single  stand  (V). A general  con  
strained optimization  problem is defined as 

follows (Bazaraa and Shetty  1979. p. 2): 

minimize 

subject  to 

where z=(: l
-

2, :„)'  is a vector  of decision 

variables and /, g;,...,g„, and h, /?,  are  func  
tions of  z.  The  function / is  called an objective 

function, functions g/ g,„ inequality  con  
straints and functions hi,...,hi equality  con  

straints. The  solution  to the above problem  is  a 

value of  z that minimizes the function / and 

x
 
=

 M, (16)  
x 2 

M rrAjjv,  v
u

Ti  
x

: V
u

* V,J  

BP(\ t )= £(x,|x,) (18)  

BLUP(x,)  =i,= n, + V
;

V
l2
"'(x

:
 -  ) (19)  

var(i,-x t)=y-V;
:

V,-Iy2' 1 y 2

' (20)  
/(*) (21a) 

g,(z)<o for i—1,...,m (21b) 

hj(  z)  = 0 fory-1 /. (21c)  
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meanwhile satisfies the constraints. If functions 

f g],...,g,„ and  h,,....h/ are  linear in z, the prob  
lem is  a constrained linear optimization  prob  

lem and if any of  them is nonlinear in  z. the 

problem  is  nonlinear. 

A considerable amount  of research has been 

carried out  to develop  algorithms for solving  

optimization  problems  and modern software 

packages  include functions for doing it. The 

adjustment  problem  (H,  V),  which has both a 

nonlinear objective  function and nonlinear 

constraints,  was  solved using  IMSL subroutine 

NCONF. It  is based on successive  quadratic 

programming  (IMSL  1997). The problem  used 

to search for an optimal  measurement  strategy  

for a forest  stand has a nonlinear objective  
function and linear constraints. It  was  solved in 

the R-environment (R Development Core 

Team 2003) with the function ConstrOptim  

using  the simplex method of  Nelder and  Mead 

(1964). 
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6 Summary  of results 

6.1 Localizing  predicted  diameter distribu  

tion with sample  order statistics  (I,  V) 

If one has a  diameter sample  of  size  n from a 

stand,  the diameter of  the rth  smallest tree in the 

sample  is  a  measurement  of  the r
th order  statis  

tic of the sample.  Measuring  an order statistic 
in the field requires  only  the diameter meas  

urement  of one  single  tree  and the knowledge  

whether the diameter of  the other trees  is  larger 

or  smaller than the measured diameter. Thus, 

the measurement  could be carried out  rather 

rapidly,  even though  practical  studies on the 

measurements  have not been carried out until 

now. 

Paper  I showed  that a  measured sample  order  
statistic of an HPS-plot is a measurement  of 

some percentile  of  the underlying  basal  area 
diameter distribution (see  section 3.4). Corre  

spondingly,  if the sample  is from a fixed plot,  a 

sample  order statistic is a measurement  of 

some percentile  of the ordinary  (unweighted)  

diameter distribution. Furthermore, Paper  I 

presented  an  algorithm for  combining  the in  

formation of  expected  percentiles  of the diame  

ter  distribution (Eqs  12 and 13) with the infor  
mation of sample  order statistics. The algo  

rithm is  based on predicting  the stand effects  of 

a percentile-based  diameter distribution model 

(Eq.  12) with  BLUP. It utilizes the estimated 

variance-covariance matrix of  stand effects and 

the sampling  errors  of  the order  statistics.  

The algorithm  was examined with the mixed 
forests data  in Paper  I and with  the  INKA-data 

in Paper  V. The percentiles were predicted  

using the models of Kangas  and Maltamo 

(2000b).  An assumption  behind the method is  

that the diameters of the sample  plot  are  inde  

pendently  sampled  from the diameter distribu  
tion of the stand. The experiment  of Paper  I 

was  planned  in  such  a manner that this assump  
tion was valid. Thus, trees belonging  to the 

simulated HPS-plots  were randomly  selected 
from among all trees of the stand and tree  loca  

tions were not  utilized. In reality, however, 

trees of a sample  plot  constitute the sample.  

which is independent  and identically distrib  
uted only  if the stand is  spatially  homogenous.  

In Paper  V, the aim was  to mimic a real inven  

tory for forest management planning  and the 
measured sample  order statistics  were  obtained 

from true HPS-plots. In calculations, these 

plots  were  regarded  as  independent  and identi  

cally distributed samples  from the underlying 

diameter distribution, even  though  this assump  

tion  is  violated in  reality.  Comparing  the results 

of Papers  I and V provides  a view  of how vio  

lating  the assumption  of independent  and  iden  

tically  distributed sample  affects  the localized 
distributions. 

Another difference between Papers  I and V 

was  that in Paper  I the stand variables used in  

predicting  the percentiles  did not  include sam  

pling error,  while in Paper  V sampling  error  

was included. These errors  cause bias in the 

predictions  of the percentiles and have  a re  
markable effect  on their between-stand vari  

ance-covariance matrix.  Under  the assumption  
that the measurements follow a  lognormal  

distribution, the bias-corrected predictions  and  

a variance-covariance matrix of the stand ef  

fects that takes the measurement  errors  into 

account  were derived in  the Appendix  of  Paper  

V and used in localization. 

A problem in Paper  I was that because the 
measured median diameter was  used as the 

predicted  50
th percentile  and its variance was  

zero, the stand effects for the 50
th percentile  

were always zero. This caused peaks  around 

the median diameter in the localized distribu  

tions. In Paper  V. the use of a corrected vari  
ance-covariance matrix allowed also stand 

effects of  the 50
lh percentile  to  differ from zero,  

which solved  the peak  problem.  

It was  clearly  seen that even one measured 

sample  order statistic distinctly decreased the 
RMSE and absolute bias of volume and  Rey  

nolds' error  index (Reynolds  et al. 1988) (see  

Fig.  2 of I).  In addition, increasing the number 

of measured sample order statistics improved  

the accuracy  steadily.  Furthermore,  the method 
seemed to produce  good predictions  also in 
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complex  stands. The order statistics were 

clearly  useful also  in Paper  V. This was  seen  in 

the decreasing  RMSE of saw  timber volume. 

In Paper I, order statistics of independent  

samples  improved  the prediction of diameter 

distribution considerably,  both when consid  
ered through RMSE of total volume and 

through  error index. However, in Paper  V, 
there was no longer  a significant  decrease in 

the RMSE of volume. This is  partially  because 
the diameters of  a  true  HPS sample  are  not  

independent  and  identically  distributed. An  

other  reason  is  that the effect of measurement  

errors  of stand variables overrides the effect  of 

measured sample  trees on the RMSE of vol  

ume. In Paper  V, where stand variables in  

cluded sampling  error,  the RMSE of Scots  pine  
volume was,  on average, 13.4, but in Paper  I, 

where correct values were used, it was only  
1.3. 

6.2 Adjusting  the predicted  percentiles  to 

obtain a compatible  stand description  

(11,  V)  

Paper  II proposed  an algorithm for adjusting  
the diameter distribution in order to ensure its 

compatibility  with stand  variables. The  primary  
aim of  the study  was  to develop  an  algorithm 

that is able to utilize an inaccurate measure  

ment of stem number in the prediction of di  

ameter  distribution. Instead of adjusting  the 

stand table (Nepal  and Somers 1992. Cao and 
Baldwin 1999. Kangas  and  Maltamo 2000 a).  

the algorithm adjusts  the predicted  percentiles. 

This makes  it possible  to  utilize the variances 
of the prediction  errors  in the adjustment  and 

also to  adjust  minimum and maximum diame  

ters,  which is  problematic  in the adjustment of 

a stand table. In addition to  prediction  errors  of  

percentiles,  the algorithm takes into account  

the measurement  errors  of the stand  variables. 

The obtained stand description  is fully  com  

patible.  but the stand variables of the stand 

description  may  deviate from their measured 
values.  The magnitude  of the deviations de  

pends  on the variance of  the measurement  

errors  so  that variables measured with low 

accuracy  deviate more than variables measured 

with  high  accuracy.  

The algorithm was tested in the mixed for  

ests  data using multinomial measurement  er  

rors  of various  magnitudes  simulated to  the 

true  stand variables (basal  area, DGM and stem 

number). When the measurement  errors  were 

low,  the diameter distribution predictions  with 

model 2 of  Kangas  and Maltamo (2000b) 

(which includes stem number as  a  predictor) 

were  as  accurate  as  those obtained by  adjusting  
the predictions  of model 1 of  Kangas  and Mal  

tamo (2000b)  (which  does not  include the stem 

number as  a predictor).  However, increasing  
the measurement  errors  made the accuracy  of 

model 2 even poorer than that of model 1, 

while the adjustment  algorithm improved  the 

accuracy  considerably.  The adjustment  algo  

rithm was also superior  when compared  with 

an algorithm that adjusts  stand table and does 

not  utilize the measurement  and prediction 

errors  (Kangas  and Maltamo 2000  a). 

Another test  of the algorithm  was  carried out 

in Paper  V,  which showed  that the use  of stem 
number in an inventory  by  compartments does 

not  affect the predictions  of volume and saw 
timber volume significantly  even  if the meas  

urement  errors  are taken into account. The 

reason  is  probably  the same as  in the localiza  

tion, i.e. the errors  of basal area and DGM 

dominate in practical  forest inventory.  Thus, an 
inaccurate measurement  of stem number does 

not  improve  the accuracy  of stand  volume and 

saw  timber volume. However,  it may improve  
the accuracy  of some  other variables,  for  ex  

ample,  timber assortment  proportions  or  stand 

growth, even though  in the study  of Kangas  

and Maltamo (2003),  the accuracy  of stand 

growth could not  be improved  considerably  by  
the algorithm  of Kangas  and Maltamo (2000 a).  

The adjustment  algorithm  makes it also pos  
sible to use other stand variables than stem 

number in  the adjustment  by  including  them in 
the optimization as  additional constraints.  For 

example,  arithmetic,  basal area-weighted  and 

quadratic mean diameter can  be used. Equa  

tions for calculating  them were presented  in 

Table 1, but they  are not  yet implemented  in 

the system.  
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6.3 H-D models from longitudinal  data (111, 

IV,  V) 

Papers  111 and IV report models  for the H-D 

relationship  of the stand. The models were 

estimated by  tree species  and in applications  

the H-D curve  of each tree  species  is  predicted  

separately.  The models apply  the mixed model 

approach to longitudinal  data, which is  nowa  

days a standard  approach  in longitudinal  stud  
ies (McCulloch  and Searle 2001, p 187-219; 

Diggleetal.  2002, p 169-189). 

In previous  longitudinal  studies of H-D 

curves,  the development  of the parameters has 

been linked to  the stand age (e.g. Lappi  1997). 

However, Paper  in showed that the  develop  

ment rate  of an H-D curve  of a shade-tolerant 

species  stratum may differ substantially  be  

tween stands of equal age. (See  Figure  1 of 

Paper  EI). Two explanations  for this were 

given:  1) shade tolerant trees  may  survive  for a  

long  time as  an undergrowth  in a closed forest 

and begin  to grow rapidly as the amount  of 

light increases and 2) the development  rate  

depends  on the site fertility,  being  slower on 

poor sites  than on rich sites. Paper  IV showed 

that the second explanation  also  holds with 

shade-intolerant tree  species  (Figure 1 of Paper  

IV). On the other hand, in  stands with equal  

DGM, the development rate of H-D curves is 

fairly equal,  with only a random stand-wise 

deviation that seems to be constant  over  time 

(Papers  111 and IV).  Thus, linking  the develop  

ment of H-D curves  with stand DGM led to 

rather simple  linear mixed models, while link  

ing  the development  with stand age would have  

required  much more complicated  models. 
In order to provide  a suitable model for  dif  

ferent situations, five models with different sets 

of predictor  variables were estimated for each 

tree species.  The additional predictors  used 

were stand  location (x  and y coordinates), alti  

tude. cumulative temperature sum, site fertility,  

stand age and basal area. The mixed model 

approach  makes it possible  to localize the mod  

els  for a new stand using any number of 

measured sample  tree heights,  as  was  demon  
strated  in Papers  111 and IV. Thus, if the height  

prediction  obtained using  only  DGM of the 
stand  is  not  accurate  enough,  the accuracy  can 

be improved either  by  measuring  more covari  

ates and using  another model or  by  measuring 

sample  tree heights  and localizing  the model. 

However, as  Fig.  4a of  Paper  IV  demonstrates, 

despite  the model used, the information of one 

sample  tree  often overrides the effect  of addi  

tional predictors.  More generally,  the use  of 

sample  tree  heights  is  recommended because  it 

utilizes measured heights,  instead of  indetermi  

nate  correlations between stand variables and 

tree height,  to  improve height  prediction.  

The longitudinal  approach  of the model pro  
vides possibilities  to carry H-D information 

from one point  in time to another. For  example,  

a localized future H-D curve  can be predicted  

or  old  height  sample  trees  can  be used in  local  

izing  the  H-D  model for  a  given  stand. Paper  V 

showed that an old  height  measurement  im  

proves  the accuracy  of  volume and saw timber 

volume predictions. Furthermore, Paper  V 
showed that the number of  height  sample  trees 

has a considerable effect on  the accuracy  of 
volume and saw  timber volume predictions  in a  

forest inventory  by compartments and indi  

cated that the number of height sample  trees 
from one species  stratum  should be  more than 

one. 

6.4 A system  for producing  stand descrip  

tion in an inventory  by compartments  

(V)  

Paper  V utilized the results  of  Papers  I. 11, EI 

and IV to construct  a system  for  the prediction  

of stand description in a forest inventory  by 

compartments. An important feature of the 

system  is that  the stand description can be 

produced  with a varying  amount  of input in  
formation. The minimum input requirement  

includes the estimates of basal area. DGM. 

stand age and site fertility  class,  all of which 

can be obtained from the measurement  of one 

HPS-plot.  Additional measurements  that can be 
utilized are additional HPS-plots.  any number 

of stem number measurements  from fixed 

plots,  any  number of old or  new height  sample  

trees  and any  number of sample  order statistics  

(i.e.  quantile  trees) from the HPS-plots.  In 

addition, other stand variables that can be de  

rived from the diameter distribution, e.g. 

arithmetic,  basal-area weighted  and quadratic  

mean diameters (See Table 1).  can be used 
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through  the adjustment  algorithm of  Paper  H. 

In addition to  the measurements  of  the stand 

variables, the within-stand variance covariance 

matrix of basal  area,  DGM and  the other stand 

variables used is needed. If only  one sample  

plot is measured from a stand, a model-based 
estimate is required, but if more plots are 

measured, the estimate can  be based on the 

observations of  sample  plots.  
The possibility  to  use  various  input  informa  

tion makes the system  useful in various kinds 

of inventories. Examples  of  these  are  the inven  

tory  of forest planning  and  the pre-harvest  
measurement  of a stand marked for cutting.  
Furthermore, the measurement  efforts can be 

directed according  to the variable of interest.  

For example,  when aiming at accurate  estima  

tion of the total amount of wood different 

measurements  can be carried out than when 

aiming  at accurate  estimation of the saw log  

proportion.  

6.5 Optimizing  data collection in an inven  

tory  by  compartments (V) 

The system  for producing  a stand description 

was utilized to  estimate models for the ex  

pected  variance of  total and saw timber volume 

given the values of the stand variables and 

numbers of stand measurements.  The  estimated 

models show that the most important factor 

affecting  the accuracy  of stand description  is  
the number of HPS-plots, which provide  in  

formation on the total basal area. The second 

most important factor is either the number of 

height sample  trees or the number of quantile 

trees, depending on the stand  properties  and the 
aim of the inventory.  If the aim is  the accurate  

estimation of  the total volume, the second most 

important  factor (and  the only  one in addition 

to the number of HPS-plots)  is the number of 

height sample  trees. If the aim is  the  accurate  
estimation of  the saw timber volume, the situa  

tion is different: in stands where the DGM is 

low. say  less  than  20  cm, the second and third 

most important factors are the numbers of 

quantile  trees  and height  sample  trees, respec  

tively,  but in stands with a larger  DGM,  their 
order is  opposite  (see Fig.  4 of Paper V). This 

is  because  in stands with a  small  DGM,  the saw 

timber proportion depends  strongly  on the 
diameter distribution, whose prediction  accu  

racy is improved considerably  by quantile 

trees.  On the  other hand, in stands with a large  

DGM.,  almost all trees  are  saw timber trees  and 
the proportion of saw timber depends  on tree  

taper, the information on which is  provided  by  
the height  sample  trees.  The measurement  of 

stem number did  not  have a significant  effect 

on the accuracy  of  total volume nor on the 

accuracy  of  saw timber volume. 
Since the  accuracy  of  stand description  de  

pends  strongly  on stand  characteristics  and  the 
number of measurements, the measurement  

strategy of  a stand should depend on stand 

characteristics  and on  the aim of  the inventory.  

Paper  V proposed  an optimization approach  to 

find the optimal strategy for each stand.  

Searching  for  the optimal strategy  entailed 

solving  a  general  linearly  constrained optimiza  
tion problem,  where the numbers of different 

measurements  were used as  target variables. 
The optimization  minimized the expected  error  

of stand description subject  to budget con  
straints. The expected  error  was a  weighted 

average  of  the expected  prediction  errors  of  the 
total and saw timber volumes. For the defini  

tion of the constraints,  time requirements  of 
different measurements  were  needed; in  Paper  
V ad hoc guesses were used. The solution of 

the optimization  problem included concrete  

suggestions  about the number of HPS-plot,  

height sample  tree and quantile tree measure  

ments, which makes the approach  convenient 
for practical use. 



Discussion   27 

7 Discussion  

7.1  The system  for producing  a stand de  

scription  

This study presented  a  new system  for pre  

dicting stand description  in an inventory  by 

compartments. The system utilizes measure  

ments of HPS-plots,  stem number measure  

ments, sample  order statistics (i.e. quantile 

trees) and sample  tree  heights.  In addition,  old 

height measurements  can  be utilized, if avail  
able. The main differences between  the pro  

posed  system  and the  systems  that are  currently 

used in Finland (e.g.  Redsven  et al. 2004) are 
the possibility to vary the set  of  measured vari  

ables and the utilization of measurement error 

variances of the stand variables. Thus, the 

accuracy  of  the  produced  stand description  can 
be controlled through  the number of  different 

measurements.  Furthermore, the measurement  

resources  can be allocated to those measure  

ments  that provide  most information about the 
variable of  interest. The developed  system  was  
found promising  in the prediction  of stand 

description.  However, it  was  not  compared  
with the systems  that are currently  used in 
Finland and  comparisons  should be carried out  
in the future. 

The system  produces  a static description  of  

the stand.  However, the H-D model of the 

system  can also be used in predicting  the H-D 

pattern  of the stand in the future, and develop  

ing  the system  into a dynamic  stand develop  

ment model would require only additional 

longitudinal  models of percentiles  and stock  

density.  Furthermore,  all models of  the system  
could be estimated simultaneously,  which 
would provide  the estimates of cross-model  

correlations. These would make it  possible  to 
cross-calibrate the models (Lappi  1991). For 

example,  height measurement of spruce  could 

be used in localizing  the H-D  model of  pine  in 
a spruce-pine  mixture. This would make the 

use  of measured forest data even more effi  

cient. 

The longitudinal  H-D models (111  and IV) 

provided  a possibility  to utilize old height  

measurements  in the prediction  of the current  

stand description  and Paper  V showed that old 

height  measurements  improve  the prediction. 
As  mentioned above, the principle  used  with 

height  prediction  could be generalized  to other 
models of  the  system.  For  example,  estimating  

longitudinal  models for diameter percentiles  
would make it possible  to utilize also old 
measured percentiles  in predicting  diameter 

distribution. If  this  approach  proves  to  be  use  

ful, old measured information may become 

very valuable. Thus, in the near future, atten  
tion should be paid to  saving  all sample  meas  
urements  in the database in such a form that 

they can be  used later,  to  retaining  old meas  
urements  in  the database and to  saving  infor  
mation about the origin  of  the data (measured  

or  updated  with models).  For example,  instead 
of saving  only  the mean height  of the  stand 

based  on  a  height  sample  tree, the diameter and 
height  of the height  sample  tree should be 
saved.  Furthermore,  all plot  specific  measure  
ments  of  basal area  and DGM should be saved 

in the database, since  they  are  measured sample  

order statistics  that may  be very useful in the 

future. 

In addition to the measurements  of  stand 

variables, the system  developed  in this  study  
utilizes variances of their estimation errors.  

Paper  V assumed that  the forest data was  col  

lected with an objective  sampling  method that 

was  based on measurements  on randomly  lo  
cated sample  plots. In  the objective  inventory,  

the measurement  and prediction  errors  are  quite 
controllable, because standard formulas of  

random sampling can be applied  (e.g.  Koi  
vuniemi 2003. V). The current practice  in 
Finland is.  however, to use  a subjective inven  

tory method where plots are located subjec  

tively  and measurements  are  based on partly  
visual assessments.  In  the subjective  inventory,  
the estimation of stand  variables is  regarded  as  

more  cost-efficient  than in  the objective inven  

tory. However, processes  generating  errors  in 

an inventory  of this kind are very unclear and 
the errors  depend  strongly  on the person carry  
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ing  out  the inventory  (e.g.  Haara 2003, Haara 
and Korhonen 2004, Kangas  et  ai.  2004).  If  the 
measurement  errors  are  utilized in calculations, 

as  they  are  in the system  of this study,  the ob  

jective sampling  method may  be even more 

cost-efficient than the subjective  sampling  
method. Thus, comparisons  of subjective  and 

objective  sampling  methods should be carried 

out  in  the future. 

7.2 The use  of  sample  information 

The use  of sample  information is appealing  

because it provides  possibilities  to control the 

accuracy of predictions  through  the amount  of 

sample  measurements.  However,  using  sample  
information alone would be a waste of infor  

mation.  because some stand variables (DGM,  
basal area,  age, site fertility class)  are  measured 

anyway  and they  include information about the 

H-D curve  and diameter distribution. This 

study used both information on the stand vari  
ables and the measured sample  information in  
the prediction  of the H-D curve  and diameter 

distribution of a stand. The usefulness of the 

sample  measurements  seemed to be great when 

compared to other  possibilities  to  improve  the 

predictions. For example.  Paper  V showed that 

sample  order statistics provide much more 
information on the diameter distribution than 

measurement  of stem number. Furthermore, in  

the sample  stand of Paper  IV  (Fig.  4a of Paper  

IV) the utility of additional covariates was  

marginal when compared  to the utility of one 

height  sample  tree  in the prediction  of  the  H-D  

curve. 

The measurement  of a sample  of diameters 

with the measurement equipment that is cur  

rently used is  too  laborious in an inventory  for  
forest planning. However, quantile  trees  might 

be measured with little effort. This study  found 

quantile  trees to provide  considerable informa  

tion about the diameter distribution of the 

stand. This result is, in fact,  a  generalization  of 

the result of Kangas  and Maltamo (2002),  

where the most promising new measurements  

were minimum, maximum and arithmetic me  

dian diameter, i.e.  the first, last and middle 

order statistics of a sample  from the un  

weighted  diameter distribution. 
New measurement  equipment  (Laasasenaho  

et al. 2002) is  being  developed  in order to make 

it possible  for a single person to  measure a 

large  sample  of  diameters from  a  stand rapidly.  
The equipment  is  similar to an angle  gauge, but 

the slot width can be adjusted  and a laser te  

lemeter is included. The diameter of  a tree is 

measured by  adjusting  the  slot  width so that the 

tree  exactly  fills  it and measuring the distance 

to the tree  with a laser. However, the equip  

ment  has problems  in measuring  distances in 

branchy  stands and in stands with dense under  

growth. The quantile  tree approach could pro  

vide a solution to this  problem:  if the diameter 

cannot  be measured, the rank  of  the tree  on the 

plot could be assessed  visually and the ap  

proach  of Paper I used in the prediction  of the 

diameter distribution of the stand. 

The method for utilizing the measured sam  

ple  order statistics  is  based on the observation 

that a measured sample  order statistic is a 
measured percentile  of  the underlying  diameter 
distribution. The algorithm requires  the condi  
tional expectations  of the percentiles  and the 

variance-covariance matrix of the prediction 

errors  (i.e. stand effects). These are straight  

forwardly obtained when a percentile-based  

parameter prediction  method is  used  and thus, 

this approach  is  recommended in  the present 

study.  However, it might be possible  to localize 

also other distribution families with measured 

percentiles,  as  discussed in  Paper  I.  

Measurements of  quantile trees have not  

been carried out in practice,  except for the 

measurements  of the  DGM tree from an HPS  

plot.  which is  carried out  by  visually  determin  

ing  the median tree of the plot and  measuring  

its  diameter. The measurement  of  quantile  trees 

in the field could be carried out as follows. 

Before counting  any  trees of  the HPS-plot.  one 

selects  a tree that seems to belong  to the plot 
and measures its diameter. When counting  the 

trees with the angle  gauge one determines 

visually  for each  tree  on the plot if it is  larger 
or  smaller  than the selected tree.  However, in 

visual assessment measurement  errors  occur.  

Thus, the measurement  accuracy,  time con  

sumption  and  usefulness of measured quantile 

trees with visually  assessed  ranks  should be 

studied  in the future. 

A common practice  in forestry  is to predict  

various variables using regression  models. This 

study  utilized an approach  where the models 
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were localized using sample  measurements  of 

the response variable. The utilized approach  

was promising and other studies  have also 
shown it to be useful (e.g.  Lappi  and Bailey 

1988, Eerikäinen et ai. 2002,  Calama and Mon  

tero  2004). These observations raise  the ques  
tion of whether this principle  should also be 

used with other models of the forest  planning  

system.  For example,  should we begin  to meas  

ure  the growth of sample  trees in order to  

predict  the growth  more accurately  than  it is  
currently  predicted.  This would require  the use 

of such a model form and modeling  approach  

that would make it possible  to use sample  

measurements  that  are informative and  can be 

carried out  accurately  and rapidly  in the field. 

7.3 Optimal  allocation of  stand measure  

ments 

As discussed previously,  the studies  of  Eid 

(2000), Kangas  and Maltamo (2002) and 
Holmström et ai. (2003)  indicated that money 

could be  saved by  varying  the strategy  of  forest 

inventory  from stand to stand. The savings  
consist  of allocation of measurement  time on 

the stand level and the area level. On the stand 

level,  available measurement  resources  can be 

used for  measurements  that provide  the largest  

amount of information about the specified  

target  variable (e.g.  total volume or  saw timber 

volume).  On the area level,  more  time can  be 

spent on the measurement  of  those stands from 
which the most  accurate  information is  needed, 

while in stands where the accuracy  requirement  

is  lower, the measurements  can be limited to a 

minimum. For example,  more time can be 

spent on stands  that will be harvested in the 

near  future than on sapling  stands. 

Paper V gave an operative  tool to be used in 

finding  the optimal  measurement  strategy  for a 

single  stand in practice.  The optimization  algo  

rithm could be included in the field computer 

used in the inventory.  The computer would 

carry  out the optimization  after the measure  

ment of  the first HPS-plot and suggest the 
combination of additional measurements.  Fur  

thermore, the suggestion  would be updated 
after the measurement  of each  additional plot. 

The area level allocation of measurement  re  

sources  to  different stands was  not  optimized  in 

Paper  V in the sense that the resources  were 

distributed between stands in a way  that is  most 
efficient with regard to some criterion. How  

ever,  the maximum time requirement  can  vary 
between stands.  For  example,  it can be defined 

to depend  on stand characteristics. 

The target  variables in the optimization  of 
data collection were the errors  of total volume 

and saw  timber volume. These variables were 

selected as examples  in this study,  because they  

depend on all components of  the stand descrip  

tion, i.e. on the stand density,  diameter distri  
bution and H-D curve.  If appropriate data are  

available, the approach  of Paper  V can also be 

used in the prediction  of expected  errors  of 

some other target variables,  e.g. pole  volume or 

growth. In some cases,  the interest may not  lie  

in all three components.  For example,  the in  

terest may lie in the accuracy of  predicted  stand 

structure, i.e. in the predictions  of the diameter 
distribution and H-D curve, while the accuracy  

of stock density may be unimportant.  In  this 

case,  the target variable could be the saw tim  
ber proportion instead of  saw timber volume. 

If the variable of interest is the diameter 

distribution alone, the  target  variable should be 

a variable that gives  as  much information as  

possible about the accuracy  of diameter 
distribution. In different studies, different 

criterion variables have been  used in  measuring  

the accuracy  of  predicted diameter distribution. 

These are, for example,  RMSE and bias of 
different variables derived from the diameter 

distribution (e.g. Maltamo et al. 1995, 

Temesgen et al. 2002, Robinson 2004).  

Furthermore. Reynolds'  error  index  (Reynolds  

et al. 1988) and different goodness  of fit test 

statistics  and have been widely used (e.g.  Liu et 
al. 2002. Zhang  et al. 2003). All  these could be 
used as target variables in the optimization.  

With basal area  diameter distribution, the  

number of stems includes a considerable 

amount of  information about the form of the  

distribution (e.g. Siipilehto  1999. Kangas  and 
Maltamo 2000 c).  However, the measurement  

of stem number is very inaccurate (Kangas  et 

al. 2004). Thus, Maltamo et al. (2003b)  

proposed that instead of trying  to use  the stem 

number in the prediction of diameter 

distribution, it could be used as a criterion 

variable measuring the accuracy of the  

predicted  diameter distribution. Thus,  if the 
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aim of  inventory  is  accurate  basal  area  diameter 

distribution, a good target variable of the 

optimization could be the RMSE of stem 

number. 

The aim of  forest planning  is  to search for 

optimal  management schedules for the stands  

of the forest area under consideration. Thus, in 

order to  maximize the utility of a forest inven  

tory with regard  to forest planning,  the  effect of 

data collection on the management suggestions  

should be analyzed  and the measurement  strat  

egy  that minimizes the expected  sum of costs 

and losses  should be selected (Stähl  et al. 1994, 

Eid 2000 and Holmström et al. 2003).  This 

cost-plus-loss  approach  suggests  improving  the 

accuracy  of forest data whenever  the costs of 

the improved  accuracy  are lower than the 

money saved  in optimal harvest  decisions. This 

study  optimized  the forest inventory of forest 

planning  with respect  to the accuracy  of static 

stand description.  This approach was selected  

because at this stage the study  was limited to  
static prediction  of stand description  in the 

inventory  by  compartments. However,  as  dis  
cussed earlier,  a  natural extension of  the system  

is  a dynamic  system  with simultaneously  esti  

mated longitudinal  models for the stock  den  

sity,  diameter distribution and H-D curve. With 

the extended system,  management schedules 

could be produced  and cost-plus-loss  analyses  
of forest inventories  would be possible. 
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8 Reducing  the costs  of the inventory for forest planning 

This study  aimed at responding  to the need to 

decrease  the costs  of a forest inventory.  Using 

the  system proposed  in this study,  the costs 

might  be decreased in the following  ways.  

1. By optimizing  data collection on the stand 

level. A tool for optimization was pro  

posed  in  Paper  V. However, putting  it into 

practice  requires  knowledge  about the time 

requirements  of different measurements.  

Furthermore, if quantile trees are used, 

their measurement  accuracy  and time re  

quirement  should be studied first. 

2. By optimizing data  collection on the area 

level. Because the proposed  system  makes 
it possible  to vary the measurement  com  

bination from stand to stand, measurement  

resources  could be allocated to stands 

where the accuracy requirement  is  highest.  

3. By  utilizing data of  the previous  inventory.  

This study  utilized only  height data, but 

estimation of  longitudinal  models for basal 

area and stock  density  could provide  pos  
sibilities to utilize also old  measurements  

of basal area and DGM. This requires  that 
the measurements  of sample  plots  should 

be carried  out in  such a way  and saved in 

the database in such a form that they  can 

be utilized later. 

4. The proposed  system might produce  more 

accurate  estimates than the currently  used 

system  even  with the currently  used  meas  

urement  strategy,  because the proposed 

height  model is localized with a method 

that  has a stronger  theoretical basis than 

the one currently used. The accuracy  of  the 

current  system  and the proposed  system 
should be compared  in order to study  

which of  them produces  the  most  accurate 
estimates with the currently  used meas  

urement  strategy.  

If the aim is to improve the cost  

effectiveness instead of reducing  the costs of 

the forest inventory,  one possibility,  in addition 

to the four mentioned above, would be to im  

prove the accuracy  of forest data. If the ex  

pected savings  in optimal  harvest decisions are 

greater than the costs of the improved  accu  

racy, the improvement  is  advantageous  for the 

forest owner.  Furthermore,  an additional possi  

bility to  make  the use of measured data more 

efficient would be to  carry information be  

tween  individual models of the model system.  

In particular, in a mixed stand, information 

could be carried from one tree  species  to an  

other. as  discussed previously.  
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LOCALIZING PREDICTED DIAMETER DISTRIBUTION  WITH SAMPLE 

INFORMATION 

Lauri Mehtätalo 

Finnish Forest  Research Institute,  Joensuu Research Centre, P.O.  Box  68, Fin-80101 Joensuu, 
Finland. 

Abstract. This study  presents  a  new method for  predicting the diameter distribution of  a  stand. The 
method utilizes the percentile-based  diameter distribution. The expected  diameter percentiles  are 

first predicted  using  stand measurements.  Subsequently,  the distribution is  calibrated (localized)  for 
the stand using  sample  order  statistics,  which consist  of  one  or  more  diameters of  sample  trees  and 
their ranks  on  the sample  plot(s).  These measurements  can  be  carried out  rather  rapidly  in the field,  
because  the rank can  be assessed  visually.  The sample  order statistics  can  be  interpreted  as  meas  
ured sample  percentiles.  The expectations,  variances and  covariances  of  the measured sample  order 
statistics  are  derived using  the theory  of order  statistics.  Regression  models  are utilized to  predict  

the conditional expectations  of  predefined  percentiles, which are  then combined with the measured 

percentiles  using  the best  linear unbiased predictor  (BLUP).  The method was  tested in a real dataset 

using  simulated sample  plots.  The test showed that even  with  a  small number of  sample  measure  

ments, the Reynolds'  error  index  and RMSE and bias of volume could be decreased remarkably.  

Furthermore, increasing  the number of measurements  improved  the prediction steadily.  The pro  

posed  method seems to be a promising  tool in the prediction of diameter distributions of various 

forms and it  seems to work  also  in complex  stands. 

Key  words:  percentile,  order statistic,  rank,  BLUP. 
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Introduction 

The most natural way of estimating  the di  

ameter  distribution of a stand is to  utilize a 

measured sample  of diameters. However, the 

measurement  of a diameter sample  is time 

consuming  and  too cumbersome to  be carried 

out  by a single  person. Thus, in many invento  

ries,  e.g. in an inventory  by  compartments  for 
forest planning,  there are  no resources  for 

measuring a diameter sample.  This study  pro  

poses  the measurement  of  sample  order statis  
tics as  an alternative to  the measurement  of  the 

complete sample,  i.e. the measurement  of one 

or  more tree  diameters and determination of  the 

ranks of these diameters in the  sample.  The 

main point  in measuring  an order statistic  in the 
field is  that one  needs  to  measure  exactly the 

diameter of  only  one tree  and for the other trees 

one only  needs to know whether they  are  larger 

or smaller than the measured tree. In many 

cases, this can be assessed  visually  without 

walking  to  the base of the tree. Thus, order 
statistics  of a horizontal point  sample  plot  can 

be assessed  rather easily  by  a single  person. 
There are  three approaches  used in predicting  

the diameter distribution of  a stand. The first 

approach is based on a sample  of  diameters, 
which may either be smoothed somehow or 

used as  such  to  represent the diameter distribu  

tion of the stand (e.g.  Van  Deusen 1986. Pi  

enaar and Harrison 1988, Droessler and  Burk 

1989. Nepal  and  Somers 1992, Lindsay  et al. 
1996. Tang et al. 1997). In the second ap  

proach,  parameters of  some presupposed  distri  
bution family are predicted  with some easily  

measurable stand characteristics (e.g. Hyink  

and Moser 1983. Rennolls  et al. 1985. Kilkki  

and Päivinen 1986. Borders et al. 1987, Bor  

ders and Patterson 1990. Maltamo et al. 2000). 

In the first  approach,  the accuracy  of  prediction  

is good and can be improved  by enlarging  

sample  size,  but measuring  a sample  of diame  

ters is rather time consuming.  In the second 

approach,  on the other hand, the measurements  

can be obtained fairly rapidly  but the accuracy  

is not  good enough  for many inventories, e.g. 

for an inventory for  forest planning. 

The third approach  uses  known  relations  be  

tween  stand variables and diameter distribution 

to  recover the distribution parameters (e.g.  

Burk and Newberry  1984). The recovery  gives  

the only existing  compatible  solution of  the 

assumed distribution family.  However,  the 

correct family is not  known and thus, the ob  
tained distribution is not  the actual one even if 

the stand values are correct. The recovery  is 

possible  only  for  as  many parameters as  there 

are  known stand variables related to  the diame  

ter  distribution. Thus, with distribution families 

that have more free parameters than the number 

of  measured stand variables, only  partial  re  

covery  is  possible.  In  Finland,  partial  recovery  
is  commonly  used in parameter prediction by  

setting  the measured median to equal  the me  

dian of the  assumed distribution (e.g. Kilkki  

and Päivinen 1986. Maltamo et al. 2000);  it is  
used also  in this study.  

In the first approach,  the sample  diameter 
distribution converges to  the diameter distribu  

tion of  the stand as sample  size increases. 

Hence, if no information is  lost when smooth  

ing  the sample  diameter distribution, the  pre  

dicted distribution approaches  the actual distri  
bution of the stand as  sample  size  increases. 

With the second approach  this does not  hold: 

even if the values of  the predictors  were  known  

exactly,  the predicted  parameters of the distri  

bution would not  be the actual parameters of 
the stand. Instead, assuming  that the model is 

right,  they  are the conditional expectations  of 

the parameters given the values of the predic  

tors. In  other words, they  are the expected  

values of  the parameters in a  stand belonging  to 

the population  of stands with the given  values 

of the predictors.  In addition, the residual vari  

ances of the models of the parameters include 

information about how much the  parameters of 

a single  stand vary  from their  expected  values. 

The aim of this study  was to  develop  a 

method that is able to predict  the diameter 

distribution of a stand  using  measurements  of 

stand variables and order statistics  of  diameter 

sample(s).  The method combines the first  and 
second approach  presented above. It is shown  

that a measured order statistic is an unbiased 

estimator of some  percentile of the underlying  

diameter distribution. Thus, the percentile  
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based diameter distribution (Borders  et al. 

1987) is  a natural selection as the distribution 

family in this study. The expectations,  vari  

ances and covariances of the sample  order  

statistics are  derived using  the theory  of order 
statistics. The conditional expectations  of the 

percentiles  are first obtained using the second 

approach. Subsequently,  localized stand-level 

percentiles  are predicted  using the expected  

values of  the percentiles,  sample  order statistics  
and information about their accuracy.  The 

predicted  expectations  of the percentiles  are  

combined with the sample  information using  

the best  linear unbiased predictor  (BLUP).  The 
usefulness of the  method is  demonstrated with  

a case  study that is based on sample  plots  simu  
lated using  real  data. 

Method 

Percentile-based diameter distribution 

Let the diameter distribution of a stand be 

described with a vector of diameters 

d=(d,,d2,  ...,dk y corresponding  to certain prede  

fined values of the diameter distribution func  

tion Fy,
 say  vector p={php  2,...,pk )'. For vector  

p, pi=o, pk
= 1 holds  and the elements J, d

k 

and pu ...,
 pk of vectors  d and p are  in increas  

ing  order. Thus, the  diameter d,  is  the  100* p,'
h 

percentile  of the diameter distribution Fy.  As  

suming  that the cumulative distribution func  

tion (c.d.f.) between  consecutive percentiles  is 

linear we get the c.d.f. of  tree diameter Y: 

where 

This formulation is the percentile-based  
diameter distribution utilized, for example,  by  

Borders et al. (1987), Borders and Patterson 

(1990)  and  Mehtätalo (2004). Maltamo et al. 

(2000)  and Kangas  and Maltamo (2000  a) used 

the same distribution except that the 

interpolation  between consecutive  percentiles  
was carried out  with  a spline  function. In this 

study,  however,  linear interpolation  is preferred  

in order to keep  the computations  simple.  Thus, 

the resulting  distribution can be  interpreted  as  a  
piecewise  defined uniform distribution (cf.  Cao 

and Burkhart 1984)  or  as  a  finite mixture of  k- 1 
uniform distributions (c.f. Liu et al. 2002).  

Because of the linear interpolation,  many 
characteristics of the distribution, e.g.  

expectation, variance, median, and quadratic  

mean diameter, can be easily derived 

analytically (see Mehtätalo 2004). By 

derivation of  (1)  with respect to  v  one can  see  
that the  density  of the diameter is  a  constant  6,  

at each interval [d„d, tl ).  A distribution with a 
c.d.f. of the form (1) is later denoted with 

Pet'Cpi  d). 
Diameter distribution is commonly used to 

calculate number of stems, volume or some 
other stand characteristics between certain 

diameter limits.  However, it can also be inter  

preted  as  a probability  distribution giving  the 

probability  with which the diameter of a ran  

domly selected tree  is between two given di  

ameters. In this case,  a  random sample  of  trees 

in a  stand  is regarded  as a random sample  of 
diameters from the diameter distribution of the 

stand. 

Expectation,  variance and covariance of order 

statistics  

If one has measured the  diameter of a tree  

and, in addition, knows  its  rank  r  in  the sample  
of  size  n,  the measured diameter is  the  rlh  order 

statistic of the sample.  This  section shows that 
the measured sample  order statistic  is an esti  

mate  of certain percentile  of the underlying  

population,  i.e. it is a measured percentile  of 

the stand. The next  section demonstrates how 

this measured percentile  can be used  as  addi  
tional information in predicting the diameter 

distribution of  the stand. The idea is to cali  

brate (localize)  the expected  percentiles  for a 

certain stand using the measured sample  per- 

Because the measurements  come 

from a sample  or samples,  they  include some 

amount of sampling  error.  Hence,  to  be able to 

use the measured sample  order statistics in 

calibration, we need  to know their expectations  

0 )'<'/, 

F
r

(y)=-  ai +b ly  d j <y<d
j+l

,i=l 1-1, (1)  

1 y^d
t  

b = —— and a = p.-bd .  
' d

l+l -d, 
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and the variance-covariance matrix of their 

sampling  error.  Here they  are  derived using  the 

exact  results  for distributions of order statistics.  

Assume that Y,, is an independent  sam  

ple with a common distribution function Fy .  

Denote the r
Ol  order statistic  of  the sample  by 

Y
r „. The density  of Yr:„ is  (Reiss  1989. p. 21,  

Casella and Berger  2002. p.  229) 

17' 
where BAr.n)  = : and the func  

v
 

'
 (r  -  1)!(h  -'")! 

tions fY(y)  and Fr(y)  are  the density  and c.d.f of 

the random variable Y, respectively.  It  is easy 

to  see  that if F  is  uniformly distributed between 

[o,l], Y
r:„
 follows a  beta distribution with the 

parameters r  and n-r+l.  

Next, the diameter distribution of a stand,  

Fy(y).  is  assumed to be known and of the form 

(1). Then a sample  of diameters, Y,,...,Y„, is  a 

random sample  from the distribution Perc
p
(d).  

Writing (1)  into (2)  gives  the density  of  the rOl 
order  statistic  at the ;lh  interval [d„  di+l ): 

which is a  piece  of the beta distribution. The 

expectation  of  Y
r:„

 is  calculated as  

Dividing  the  integral  into subintervals  accord  

ing  to  the percentile  intervals  gives  

Utilizing  the assumption  that the distribution 

F
r(y)  is  the diameter distribution of the stand, 

its inverse (quantile  function) Ft gives  

the 100V
h diameter percentile  of  the stand 

(Reiss  1989. p. 14-15). Thus, the value of the 

c.d.f. corresponding  to the expectation  of the 

sample  percentile  is  the value of  p  satisfying  

E  (Y
rll

)  =  F
r

~l

 (p),  which gives  the solution 

Hence,  the diameter of the /-th  largest  tree  in a 
sample  of size  n, Yr:m

 is  an unbiased estimator 

of the 100*p percentile  of  the stand, assuming  

that the c.d.f. of  the stand is  Fy .

 

The calculation of  the second moment  of Y
r:„
 

corresponds  to  formula 4: 

giving  the variance  

The joint  density of two  order  statistics  YrI:„
 

and YrZ  „  from a  sample  of  size  n from a  popula  
tion with the c.d.f. FY(y) is  (Reiss  1989. p.  30-  

31.  Casella  and Berger  2002, p.  230)  

if.vi<v2 and 0 otherwise,  where r,<r2  and 

Writing (1) into (7)  gives  the joint density  in 

the case of the percentile-based  diameter 

distribution within each quadrangle  

\d„  di+l)*[d„dj+1): 

for  y\<y2 and 0 otherwise. To calculate the 

covariance between these  order  statistics  we 

need to  calculate the expectation  of  their prod  

uct first. Integrating each quadrangle  

f  
m

 {y)=Po  (r.  rt)  f. (  v)[Fr  (>•)]"'  [l  -  Fr  (y)]""  
,
 (2)  

frn  (}')=Po(r
-
n )b,  [a,  +b,y\  1 [l-tf,  -&,  v]" 

r

, (3)  

dt 

E( Yr„)  =Ä,  (''•")  \yfr ,\y)dy  ■ 

£( }'„) =  A('"-")Z  \yfr,:(yHv  ■ (4)  
'= ' d, 

P  = Ft [E(Y
rn )]. (5)  

E{Yj)=/)o (r,n)£  jy
2

fr ,:(y)dy 
'= 1 d, 

var(7
r
„)  = £(7j)-[£(f

r„)]
2

. (6)  

fr, „r,r(V,  ,  V,  )  =  Mr
i*
r

2  -n)fr  (  V,)/,  (V 2  )  X 
(7)  

[wrw^rNwr  

n ' 

PM- r
i-

n )  =  -, 
w
 rr:  •  

{ n ~ri)-\ r
2
 ~r \  -l)!(ri  "I)! 

,!' J{>\-y2)=Mrr'2-n)b,bx  
(g)  

(a{  +bty[ )'  \a
j

+b
J
y

2
-at -b iy^ 2 

''

 (l-a
J
-b

j
v

2
)'  
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gives 

Using  this result and the expectation  of single  

order statistic,  (4),  the covariance of two order 

statistics  is calculated as  

Since the densities (3)  and (8)  are n-  Ith1
th  and 

n-2
th order polynomials,  respectively,  exact 

calculation of  the integrals  may lead to degen  
eration of computing  accuracy  with large  val  

ues  of n and need to be calculated numerically  

in applications.  

Predicting  localized  percentiles  

Assume  that models predicting  k  diameter 

percentiles  are  available and  the 100*/?,
01
 per  

centile in stand m follows the model 

d
m
 =  fijm

 +e
m
 for i=1,2,...,k. Writing all  per  

centiles as a  vector,  the model for the whole  set  

of percentiles  in  stand m is 

where d, „={dlm, d2m d
k,„)\   

Hkm y and e
m=ielm e2m ...,ekm y with E(e,„)=o. 

Assuming  that  the model is  correct  and the 

parameters are known, vector fim includes the 
conditional expectations  of the percentiles  

given the values of  the stand variables,  £(d|x,„). 
These are later referred to as  expected  percen  

tiles of  the stand. Vector em  includes the stand  

effects of stand  m, i.e. the deviations of  the 

stand-level percentiles  from their conditional 

expectations.  Estimation of the model (Equa  
tion 10) using  a simultaneous regression  tech  

nique  (SUR)  produces  an estimate of  the vari  
ance-covariance matrix of stand-level devia  

tions, var(e,„), denoted by V)
k/k .  Writing the 

predefined p-values into vector  

p=(pi,p2,...,Pk)'■  the  diameter distribution based  

on expected  percentiles  of stand m can be writ  

ten  as Perc
p
 (H,„)  and the diameter distribution 

of  stand m,  correspondingly,  as  Perc
v(\i,„ +e,„). 

Since the following  calculations apply to  one  

stand, the stand index m is  dropped  hereafter. 

The measured order statistics are used to 

predict  the vector  of stand  effects,  e* x i., using  

the standard linear prediction  theory  (see  e.g. 

Lappi  1986. 1991. 1997). Assume that we have 

q measured order statistics  from a stand in 

vector  d*=(Yr: .„2,...,  Yrq:mi
)'. The meas  

urements  follow the model 

where the measured diameters are in vector 

d*
r/ xi,  their conditional expectations  in vector  

the stand  effects  in vector e*
r// ] and the 

sampling  error  in vector For the random 

part of the model E(e*)=E(£)=o and 

cov(e*,  e')=o  holds. At this stage  we  assume 
that the actual distribution of the stand,  

Perc
v{\i +e),  is  known  (I  return  to  this  later). 

The /rvalues  corresponding  to the measure  

ments  are obtained using  formulas (4)  and (5) 

and written into vector  p*
9xi. The conditional 

expectations  of measurements  are then calcu  
lated as  n*=F'(p*),  where F

1

 is  the inverse of 
the distribution based on expected  percentiles,  

Perc
p(\i). 

For predicting  the realized stand effects  of 

model 10. the sampling  variance-covariance 

matrix of order statistics,  var(e), denoted by  

Rqxq,  the variance-covariance matrix of  the 
stand effects  of model 11, var(e*),  denoted by  

D
*

qxci
 and  covariance matrix of  stand effects  of  

models 10 and 11, cov(e.e*'),  denoted by Ck ,

q  
are needed. The variances of order statistics  are  

calculated using  formula (6)  and written on  the 

diagonal of R.  If one  has measured several 
order statistics from the same sample  plot,  their 

covariances are calculated using formula (9) 

and written in the corresponding  cells of  matrix  

R. The covariances of order statistics  from 

different plots  are naturally  zero. Matrices D* 
and C are obtained from matrix D  by  interpo  

lating  it for  the values of p*. 

In  localization,  the unobserved random vec  

tor e is predicted  using  the observed random 

vector e*+£=d*-fi*. For the prediction,  we 

[t/„ dl=i)*[dJ,dj+l ) separately  for /.y-1 1 

P\  (l -")ZZ I  j  .V'l-V;/ij  ~.r:  „'  
J  (V,,  v2

Kv2^,  
7=l '=' d, d. 

cov(}; „)=£(>; „)-£(>; „)E(J; „). (9)  

d = u +e 
.
 (10) 

/»/ * »/ m * v /  

d*  = n*+e*+s, (11) 
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Figure 1. The distributions based on the expected 

percentiles,  µ  (dashed  line) and  on the localized 

percentiles,  µ+e  (solid  line)  obtained  using the  ob  

servation Y3:13=8.5  cm (�). 

need to derive the variances and covariances of 

these random vectors  using  the known matrices 

D, D*.  C and R. The  variance  of stand  effects 

of model 10, var(e), is straightforwardly D. 

Since cov(e*,  e)=o and cov(e,  e)=o, 

var(e*+e)=D*+R and 

cov[e.(e*+£)']=cov(e.e*')=C.  Using  the nota  

tion of McCulloch and Searle  (2001,  p. 247), 

these results  can be expressed  as  

The Best Linear Unbiased Predictor (BLUP)  

of e is calculated as  

with the prediction  variance  of 

(McCulloch  and Searle 2001, p. 250). The 
stand level  diameter percentiles  are obtained by 

adding  the predicted  stand effects to the ex  

pected  percentiles  (see  model 10).  

The stand-level diameter distribution would 

already  be needed in the calculation of p* and 

R. Since it is  the result of the prediction  and is 

not  known when p* and R are calculated, the 

solution is searched iteratively. At the first 

iteration step, the expected  diameter distribu  
tion of  the stand,  Perc

v(\x),  is  used as  the stand  
level  distribution to approximate  p* and R. 

Subsequently,  these approximations  are  used to 

predict  the stand-level diameter distribution, 

Perc
p

 (fi+e),  with BLUP.  Furthermore, this  

prediction  is  used to calculate new approxima  

tions of p* and R and the prediction of stand 
effects is  carried out  again. Repeating  this until 

the predicted  stand-level percentiles  converge 

gives  the final predicted  stand-level diameter 
distribution. 

In some cases,  we  may obtain two observa  

tions of the same percentile.  This happens  

when there are two measurements  of the same 

percentile  from different plots,  i.e. the number 
of tally  trees is  the same on two sample  plots  
from the same stand and diameters with the 

same rank are measured from both plots.  This 

means that the same row  (and column) is in  

cluded in matrix D*  twice. It is  therefore singu  

lar and the calibration cannot be carried out. 

The non-singularity of matrix D* can be guar  

anteed by  treating  the several  measurements  of 
the same  order  statistic as one measurement  in 

the calculations. In this case, the mean of 

measured diameters is used as the observed 

percentile  and the elements of matrix R are 

calculated using  general  rules for  the variances 

and  covariances of  sums. 

Numerical example 

This section presents  a  numerical example  of 
the calibration algorithm.  The model of  Kangas  

and Maltamo (2000  a)  was used to predict  the 

conditional expectations  of A=ll percentiles  of 

basal-area diameter distribution. The predictors  

of the model are basal area median diameter 

(DGM), age, basal area and  soil type. The  

models  predict  the oth0
th  10

th

,
 20

th

,
 30

th

,
 40

th

,
 60"\ 

70
th

.

 80
lh

,

 90
lh

,

 95
th  and 100

th  percentiles,  i.e. 

In addition, the known  DGM is  used as the 50
th  

percentile.  The models have been estimated 

using  seemingly  unrelated regression  and the 
estimated variance-covariance matrix D was  

"el r  To")  Fd C ?| 
D*+R_JJ  

e = C(D  *  +R)  '  (d  *  -(i  *) (12)  

var(e-e)  = D-C(D*+R)  '  C' (13) 

p=(o  0.1 0.2 0.3 0.4 0.6 0.7 0.8  0.9  0.95  1.0)'. 

B 
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obtained from the original  SUR-fit (Table  1). 

The model of percentiles  is estimated on a 

logarithmic  scale,  i.e.  the model is  of the  form 

(cf.  Equation  10) 

In order to  give  a numerical example  of the 

proposed  algorithm, the  diameter distribution 

of  a  Norway  spruce stand was  predicted, where 

DGM  is  20 cm,  basal  area  is  22 m2
/ha 

,

 stand 

age  is  64  years and site fertility class  is  mesic. 

The predicted logarithmic percentiles  using  

these values (i.e. conditional expectations  

given  the values of  stand variables)  were 

In addition to  the known stand  variables,  the 

third smallest tree  of  a  horizontal point  sample  

of 13 trees has been observed to be 8.5 cm  in 

diameter, i.e. Y
3 ]3 has been observed to be 

1n(8.5)=2.140.  The expectation  of the sample  

order  statistic  Y3:13 of the distribution Perc
v
(\i)  

is (Equation  4) E(Yi  u )= 2.595. Equation  5 

gives  the value p*= 0.182,  which means that  

the measured order statistic is a measurement  

of  the 18.2
th  percentile  of  the diameter distribu  

tion. The  observed percentile  has been plotted  

onto  Figure  1 at the location (2.140,0.182). 

Note that we  have £=ll percentiles of prede  

fined percentage values and <7=l measured 

percentiles.  Thus, p*. e*,  e, R and D* are sca  

lars  and  C is  a  vector  with a length  of 11. 

The next  step  is  to predict  the stand effects  of 

the percentiles,  e (Equation 14). In order  to be 
able  to do it,  we need the variances  of sampling  

errors  (R), the variances of the stand effects  

(D*)  and the covariances between the stand 
effects of model 14  and the stand effect of the 

18.2
th

 percentile  (C).  The variance of  sampling  
error  is  (Equation  6)  R=var(e)=  0.0577 and the 

variance of stand effect is  obtained by  interpo  

lation of matrix D (Table 1) for the value of 
0.182. 

Linear interpolation  gives D*=var(e*)=  0.0746+(0.0293-0.0746)/0.10*(0.182-0.1)=0.0376.  The  

covariances (C)  are  also obtained by  linear interpolation  of  matrix D  (Table  1) as  

The stand effects  of  model 14 are predicted  as  (Equation  12) 

The localized percentiles  are obtained by  adding  the stand effects  to  their conditional expectations  

(see Figure  1). 

The next  step in the calculations would be to 

calculate the values  of p* and  R again by  as  

suming  that the sample  has been drawn from 

the localized distribution and to iterate this 

until convergence. However,  in this example  

the iteration is not  carried out.  

ln(d)  = n  +  e. (14)  

f  1.63   
2.35  

2.65  

2.79  

2.91 

H= 3.08 . 
3.15 

3.24 

3.31 

3.38 

13.53J 

"

 0.050 1+(0.0223-0.0501)/0. 10*(0.182-0.1) "l f 0.0274 
N

 
c= ; :  

-0.00903+(-0.00774+0.00903  )/0.10*(0.182-0.1)  j [-0.00798,  

'

 0.0274 f -0.13 T 

e  = ; (0.0376  +  0.0577)  '  (0.0274 -0.00798)( 2.140  -  2.595)  = : 
-0.00798  J [0.0381  y  
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Table  1. The within-stand variance covariance matrix (D)  of the percentile  models  of  Kangas and  Maltamo  
(2000 a)  for  Norway  Spruce (Kangas.  A.,  personal communication).   

Testing  with real data 

Arrangement of  the test 

The calibration was  tested in  a small dataset 

consisting  of 43 fixed rectangular  sample  plots  
from mixed Scots  pine-Norway spruce stands. 

For the test, Norway spruce trees  were se  

lected, because the number of Norway spruce 

sample  trees  per stand  is  much greater  (42-222) 

in  the data than the number of Scots  pine trees 

(13-168).  Furthermore, the Norway  spruce  data 

is more  challenging  than the Scots  pine  data, 

because  it includes various  forms of the diame  

ter  distribution,  including  symmetric,  skewed, 

extremely  wide, mound-shaped,  bimodal and 
multi-modal forms. 

The  dataset has been originally  collected by  
Pukkala et al. (1994) for productivity  studies 
and  it has  been further used by Kangas  and 
Maltamo (2000b)  and Mehtätalo (2004) in 

testing  the performance  of diameter distribu  
tion prediction algorithms.  The size of the 

sample  plots in the data varied from 600 to 

3000 nr.  the number of tally trees from 42 to 

222, the basal area  of Norway spruces from 
1.54 to 24.07 m

2

/ha  and DGM fVom 5.5 to  33.9 

cm. Because of  the fairly small number of  trees 

in each plot,  it was  assumed that a slightly  
smoothed distribution describes  the distribution 

of the stand better than the actual  measured one 

(Droessler  and Burk 1989, Maltamo and Kan  

gas 1998). Hence, the actual distribution was  

smoothed with a Gaussian kernel (Härdle  1990, 

p.  15-20) using  bandwidth determined by the 
function 

where  wm is  the width of  the actual  distribution 
and Nm is  the number of  sample  trees  in stand  

m (see Mehtätalo 2004). The smoothed tree  

stock of the original sample  plot  is subse  

quently  referred to as  a  stand. 

To illustrate the effect of calibration on  the  

accuracy  of the predicted  diameter distribution 

of the stand, a  varying  number of horizontal 

point  samples  were simulated in each stand and 

two sample  trees were  randomly  selected from 

each plot  as  sample  measurements  of sample  
order statistics.  The number of sample  plots  in  

a stand was  varied systematically  from 1 to 6.  

thus resulting  in the number of  sample  trees  
from any  one stand being  2, 4, 6. 8. 10  or  12.  

The trees  belonging  to a sample  plot  were se  
lected by  generating  a uniformly  (0.1)  distrib  

uted random number for each tree  of the stand 

and selecting  those trees  for which the random 

number was less  than  the sampling  probability  
of the tree. The localized predictions of  diame  

ter  distributions were  calculated by  predicting  
the stand effects  of  model 14 using  these meas  

urements. 

The models of Kangas  and Maltamo (2000  a)  

were used in the test. In this test the exact val  

i
 u'„i 6.5  

d, d
:
 ds d< d

5 d6 d? ds d, d/o du 

d, 0.162  

d: 0.0501  0.0746  

d3 0.0223  0.0349  0.0293  (symm) 

d4 0.0107  0.0156  0.015  0.0142 

ds 0.00689  0.00877  0.00935  0.00933  0.0098  

d
6 0.00021  -0.00269  -0.00265  -0.00153  -0.00093  0.00319  

d7  -0.00274  -0.0051  -0.00395  -0.00245  -0.00133  0.00301  0.00592  

ds -0.00548  -0.00729  -0.00592  -0.00357  -0.00249  0.00296  0.00584  0.00868 

d, -0.00655  -0.00814  -0.00656 -0.00447  -0.00328  0.00311  0.00579  0.00835 0.011  

dm -0.00672  -0.00818  -0.00699  -0.00479  -0.00351  0.00305  0.00597  0.00837  0.011  0.0135  

du -0.00982  -0.00903  -0.00774  -0.00541  -0.00366  0.00281  0.00625 0.00863 0.0109  0.0138 0,025  
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ues of the stand characteristics were used in 

predicting  the expected  percentiles  to guarantee 

an equally  accurate  predictions  regardless of 

the number of sample  plots.  To ensure safe 

interpolation  of  matrix D, linear interpolation  

was  used;  and to guarantee logical  behavior of 

the interpolated  variances and covariances,  the 

interpolation  of  variances was carried out be  

fore interpolating  the covariances (see  the nu  

merical example  presented  above).  Since the 
models  were  originally  estimated  on  the loga  
rithmic  scale,  the calibration was  carried out  on  

the same scale. Thus, the logarithmic  percen  
tiles and diameter measurements  were used 

instead of the arithmetic ones  in all calcula  

tions. When transforming  the  logarithmic per  

centiles onto the arithmetic scale, the bias  

caused by the logarithm transformation was 
corrected by  adding  half of the prediction  vari  

ance to the predicted  logarithmic  percentiles 
before applying  the  exponential  function (see 

Lappi  1991). The  correction terms were ob  

tained for the expected  percentiles from the 

diagonal  of D and for the  localized percentiles  

from the  diagonal  of var(e-e)  (Equation  13). 

In some stands,  the calibration algorithm 
failed for two  reasons.  Firstly,  the iteration did 

not  converge  before the maximum number of 

iterations was  reached and secondly,  there was 

some  iteration step after which the distribution 

was not  monotone  and thus the iteration could 

not  be continued. These situations were cir  

cumvented in the test by  repeating  the sam  

pling until the calibration did not  fail. How  

ever.  to get a  reliable figure  about the perform  

ance of the method in practice,  the proportion  

of  those cases  where the first  attempt  failed for 

one of the first two  reasons  was  calculated. 

To  compare the predicted  distributions with 

the actual one. bias and relative root  mean 

square error  of volume (in per cents)  were 

calculated. The volume was  calculated in 1 cm 

classes, using the volume functions of 

Laasasenaho (1982) with tree  DBH as  the  pre  

dictor. In addition, an error  index proposed  by  

Reynolds  et al. (1988) was  used in the com  

parisons  to measure  the goodness  of fit of the 
distributions. The error  index was  calculated in 

2 cm classes using  the basal area as weight.  

Thus, the error  index  was the sum of  the abso  

lute differences between the actual and pre  
dicted basal areas of the diameter classes. The 

calculation was  repeated  100 times to  decrease 
the effect  of  sampling  error  in the results.  

The calculations were carried out in  R, an 

environment for statistical computing (www.r  

project.org, Venables and Ripley  2002). In 

addition, the numerical integrations  needed in 
the calculation of  expectations,  variances and 

covariances of order statistics  were  carried out 

with IMSL-subroutines(lMSL  1997), which 

were linked into R. 

Test results 

The  effect of  calibration on the accuracy  of 
the predicted  diameter distribution was  consid  

erable. Even two sample  trees per stand de  
creased the RMSE of volume from 2.71t0 2.52 

and  the absolute bias of volume from 0.84 to  

0.66. The mean of the error  index also de  

creased clearly,  from 4.67 to 4.37. Further  

more.  increasing  the number of sample  trees 

improved the accuracy  of  the localized distri  
butions steadily (Figure  2)  with the result that 

12 sample  trees reduced the RMSE of volume 

by  29 per  cent  and the absolute bias by  62 per  

cent  when compared  to the distributions based 

on expected  percentiles.  The prediction  results 

were relatively accurate because the exact 

stand variables were  used in the prediction of 

expected  percentiles  and all calculations of 

volume were based only  on  tree  diameter, not  

on tree height. 
To demonstrate the effect  of  iteration. Figure  

2 presents  the results  for localized distributions 

after the first  iteration step  and converged  itera  
tion. The iteration had a considerable effect on 

the accuracy  of volume prediction.  With two 

sample  trees, the accuracy  of volume predic  

tion after the first  iteration step was  even lower 
than that of  the distributions based on expected  

percentiles,  but with a larger  number of sample  

trees, the  first  iteration step also improved  the 

accuracy.  However, regardless  of the number 

of sample  trees, the advantage  of iteration for 
the accuracy  of volume predictions  was re  

markable. The effect  of iteration on the error  

index, on the other  hand, was  somewhat con  

fusing.  With two sample  trees,  the values of  the 

error  indices were almost the same after the 
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first iteration step and converged  iteration. 
With a large  number of  sample  trees, on the 
other hand, the iteration increased the value of 

the error  index when compared  to  the value 
after the first  iteration step.  I will return  to this. 

Visual examination of the localized distribu  

tions showed that  they  are  realistic (Figure  3). 
In most cases the localized distributions were 

more consistent with the form of the actual 

distribution than the distributions based on  

expected  percentiles  were. Furthermore, the 

calibration algorithm could produce  skewed 

and multimodal distributions in  cases  where the 

distribution based on conditional expectations  

was  rather symmetric  and unimodal (Figure  3. 
stands a and b).  In addition,  calibration usually  

moved the  predicted  minimum and  maximum 

diameters in the right  direction. The  prediction  

errors  of the localized percentiles  were smaller 

than the errors  of the  expected  percentiles  
(Figure  4).  

In some cases the short distance between 

consecutive percentiles  caused quite high  peaks  
in some diameter classes  (e.g.  stand a in Figure  

3). However, the frequencies  of the diameter 
classes beside the peaks  were usually  low, 

which compensates for  the error caused by  

peaks.  Hence, peaks  do  not  increase the RMSE  
and absolute bias of stand volume remarkably  

but they may have an effect  on the error  index. 

Visual examination of the localized distribu  

tions showed that the peaks  were in many  cases  

higher  after converged  iteration than after the 
first  iteration step. In addition, increasing  the 
number of sample  trees increased the occur  

rence  of high  peaks.  This may be an explana  

tion for the result that  if there were a large  

number of sample  trees the  error indices after  
the first iteration step were lower than those  

after converged  iterations. The  peaks  are in  

many cases  in percentile  intervals just  below or 

above  the  50
th

 percentile  (=DGM)  and  may  be  a  
consequence of using  the  measured DGM as 

the 50
lh percentile.  A peak  arises  when the 

measured DGM is far from the midpoint  be  

tween the localized 40
th  and  60

th  percentile. 
For convergence it was  required  that  the sum 

of the absolute differences of the percentiles  at 

subsequent  iterations was less  than 10"
6.  The 

Figure 2. The effect of increasing the number of  

sample trees  on the relative  RMSE (a)  and  bias  (b)  

of  volume  and  the  basal  area weighted error index  
(c).  The  results  are  presented both  using the  predic  
tions  after  the  first  iteration  step (�) and  after con  

verged iterations (•). 

maximum number of iterations was 50. A sam  

ple  with which  the calibration was successful  
could easily be found for all stands. In the 

following,  the proportions  of  failed calibrations 

are  presented  for the first sample  attempted.  
The number of  sample  trees  had a clear effect  
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Figure 3. Examples  of  the predicted  and  localized  distributions  with  2.  6  and  10 measured  sample  trees  from 
1. 3 and 5 sample  plots, respectively.  The upper  graphs  are the cumulative distributions and  the  lower  ones  the  
densities.  The  dotted lines are the  distributions based  on expected  percentiles,  dashed lines the localized distri  
butions after the first  iteration  step and  solid  lines  the  localized  distributions after converged iteration. The  
actual distribution of  the stand is the  stepped line in each  of  the upper  graphs and the histogram in the  lower 
ones, hi  the upper  graphs, the marks  are the  measurements  (the  same symbols  are  used for  measurements  from 
the  same sample plot).  

on the convergence:  with two  sample  trees per 
stand the iteration converged  in 98% of the 

stands and the average number of iterations in 

these stands was 8.28, while with  12 sample  

trees  the proportion  of  converged  iterations was  

only  88%  with an average  number of  iterations 

of 12.0. Of  the unsuccessfully  localized distri  
butions. the  iteration did not  converge  in 7%, 

and the percentiles  were  not  monotone in some 
iteration step  in the other  93%. 

The above calculations were carried out  with 

the Norway  spruces  of the test  data. Because 

Norway  spruce is  a shade tolerant tree  species, 

its diameter distribution may have various 
forms. The same calculations were carried out 

also with the Scots pines  of the  test stands. 

Scots pine  is a shade intolerant tree  species,  
which  usually  has a unimodal diameter distri  

bution. Thus, the diameter distribution of Scots 

pine  is  much easier to  predict  than that of  Nor  

way  spruce. With Scots pines,  RMSE and ab  

solute bias of volume were lower than in the 

Norway  spruce data when using  the expected  

percentiles  in the prediction.  In addition, the 

effect of calibration on  the RMSE and absolute 

bias  were clearly  stronger.  The error  index was,  

however, greater in the  Scots  pine  data than in 

the Norway  spruce  data, but  the effect of  cali  
bration was. again,  stronger. For example,  in 

the Scots  pine  data, two  sample  trees  decreased 

the RMSE of volume from 1.31 to 1.10, abso  

lute bias from 1.03 to  0.63 and mean of  the 

error  index from 5.76 to 5.41. Thus, the cali  

bration  seems  to be clearly  useful in both Scots 

pine  and Norway  spruce data. 
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Figure 4. The effect of  calibration on the accuracy  
of  the  predicted percentiles  in stand b  of Figure 3. 

The  dotted  line  is  the  distribution based  on expected 

percentiles  of  the  stand, the solid line is  the localized 
distribution, and  the  marks  are  the  sample measure  

ments. The lengths of the horizontal lines  at the 

measurements and predicted  percentiles show  the  
standard deviation of  the sampling and prediction 

error, respectively.  The standard deviations are 
obtained from the  diagonal elements of  the  matrices 
D, var(ê-e) (eqn  11) and  R (eqn 6) for the ex  

pected. localized and  measured  percentiles,  respec  

tively.  

Discussion  

This study  presented  an algorithm for com  

bining  the information from sample  order sta  

tistics  and the predictions  of  expected  diameter 

percentiles.  The test  results showed  that using 
this method the accuracy  of  predicted  diameter 

distribution could be improved considerably  
with a small number of sample  tree  measure  

ments. Furthermore,  by  increasing  the number 
of sample  trees, the predicted  distribution 

seemed to approach  the actual distribution of 

the stand. 

Because of its flexibility, the percentile  

based diameter distribution has been found to  

be a good alternative in stands with complex  
diameter distributions (Maltamo et al. 2000).  

This study  showed that using measured order 
statistics further utilizes the flexibility of the 

percentile-based  method. Thus, the proposed  
method seems to  be a promising  alternative for  

the prediction  of  diameter distributions in com  

plex  stands.  

A clear advantage  of the method is  its flexi  

bility in producing  predictions  of different 

accuracy.  In other  words,  using  this method, a 

realistic  prediction  of the diameter distribution  

can  be achieved with quite a small  number of 

measurements  (i.e. even with no sample  order  

statistics measured)  and the accuracy  of the  

predicted  distribution can be improved  steadily  

by  increasing  the time used in measuring sam  

ple  trees.  Hence,  any  realistic predefined accu  

racy  requirement  can be obtained with a suffi  

cient number of diameter measurements and. 

on the other hand,  any allotted measurement  

time  can be used effectively  for  improving  the  

accuracy  of prediction.  Therefore the method 

can be useful in various inventories with dif  

ferent accuracy requirements:  for example,  for 
tactical  forest planning  one  or  two  sample  trees  

may produce  a  sufficiently  accurate  prediction,  
while for the pre-harvest  measurement  of a  

stand some more measurements may be 

needed. 

The aim of this study  was to explain  the  

methodology,  demonstrate its use and show 
how the proposed  method works  with accurate  

measurements  of order statistics from i.i.d. 

samples. No comparisons  with other methods 

were carried out, since  no methods that utilize 

the same input  information are  available. How  

ever, the models used in the prediction  of ex  

pected  percentiles  have been thoroughly  tested  

(Kangas  and Maltamo 2000b).  They were  
found superior  when compared  to the parame  

ter prediction  methods based on the Weibull 
distribution. Furthermore,  the percentile  mod  

els  of  Scots  pine were found to produce  ap  
proximately  as accurate  predictions as  the k  

nearest  neighbor  method of Maltamo and Kan  

gas (1998). This study  showed that  predictions  

based on expected  percentiles  can further be  

remarkably  improved  by the use  of measured 
order statistics.  

When deriving the expectations,  variances 
and covariances  of order statistics,  the sample  

was  assumed  to  be independent  and identically  

distributed (i.i.d.), i.e. the  stand  was  assumed to 

be spatially  homogeneous.  The method was  

tested with simulated i.i.d. samples,  where  

selecting  sample  trees was not based on the 
location of the tree in the  stand.  This approach  
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was  selected to test the method in a  situation 

where  the assumptions  behind the method are 

valid. In practice,  however, stand characteris  

tics are spatially  correlated within a stand. 

Thus, the test  results  of this study  are  an exam  

ple  of localization in  a somewhat ideal situa  

tion. In a practical  situation, where samples  are 

not  i.i.d,  the advantage  achieved by  calibration 

may  be smaller than in the test situation of  this 

study.  In  addition, it  may be profitable  to dis  

tribute the measurements  to several plots  in a 

non-homogenous  stand to  get a spatially  more 

representative  sample.  A more reliable view of 

the advantage  of  the method would be achieved 

by  testing  the method in  a dataset with real 

measured sample  plots. 

Figure 3 showed that the localized  distribu  
tions  may be of  various  forms,  including bi  

modal and skewed forms. However, for exam  

ple  in stand c of Figure  3, all combinations of 

sample order statistics did not  produce  a bi  
modal distribution. Thus, attention should be 

paid  to the selection of measured order statis  

tics.  For  example,  in a stand where distribution 

seems to be bimodal, the measurements  of 

maximum diameter of the lower peak and 

minimum diameter of the upper peak  would 

probably  provide more information about the 

form of the distribution than two randomly  
selected sample order statistics.  Furthermore,  

measurement  of  the smallest possible  sawtim  

ber tree  as a sample  order statistic would 

probably lead to more  accurate estimation of 

sawtimber volume than measurement  of a ran  

domly selected tree. Thus, in the future, the 
usefulness of different strategies  in the selec  

tion of sample  order statistics should be stud  

ied. 

Since  the percentile  models used predict  the 

diameter distribution weighted  by basal area, 
the sample  plots  of this  study  were horizontal 

point samples.  However, the approach  pre  

sented can be used as such  with  an unweighted  

diameter distribution. In this case,  fixed-radius 

sample  plots  should  be used instead of  horizon  

tal point  sample  plots  

Since the measured order statistics are  re  

garded  as  measured percentiles,  the approach 
of this study  requires  the percentile-based  di  

ameter distribution. However, the approach 

could be generalized  also to other distribution 

families, when the parameter prediction  

method is  used. This requires  derivation of the 

expectations, variances and covariances of 

order statistics using the distribution family 
used. Furthermore,  the covariances between the 

measured percentiles  and the parameters of  the 

distribution family should be known. Estimates 
of them would be  obtained by  fitting simulta  

neously  models for the parameters of the dis  

tribution family  and  percentiles  of  the distribu  

tion. The required  covariances of  the measured 

percentiles and distribution parameters would 

be obtained by interpolation of the estimated 
within-stand variance covariance matrix for the 

/>values  of  the measurements.  

No measurement  error  was  assumed for the 

sample  plot measurements.  In practice,  how  

ever, measurements  always  include error.  

When measuring  sample  order statistics,  the 

error  may be either a measurement  error  of 
diameters or an error  in the determination of 

the rank of the tree on  the plot. The measure  

ment  error  of  diameter is  quite  easy to take into 

account  by adding  the variance of  measurement  

error  on the diagonal  of matrix R (see Lappi  

1991). The error  in  the determination of rank, 

on the other hand, is somewhat more compli  

cated. It can be regarded  as  a measurement  

error  of diameter,  the magnitude  of which is 

related to the difference between the  diameters 

of subsequent  trees in the sample  plot. Hence, 

the measurement  error  of rank should increase 

the diagonal  elements of R proportionally  to 

the absolute difference between subsequent  
diameters on  the sample  plot. However, most 

errors  in determining  the rank presumably  

happen  with trees that  have diameters close to 

each other. In this case  the effect  of measure  

ment  error  is  quite small and should not  cause 
serious problems.  

In practice,  the predictors  of percentiles in  
clude measurement  or sampling  error, which 

may be large.  Therefore, in addition to the  error  

caused by the between stand variation, the 

predictions  of  expected  percentiles  also  include 

error  variation and bias caused by the meas  

urement  error  of the predictors.  Taking  this 

error  into  account  would require  derivation of 

prediction  error  variances and covariances  of 
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the expected  percentiles  as  well as  some kind 

of bias correction on  the expected  percentiles.  

Since the aim  of this study  was merely  to in  

troduce the concept of  combining  the two  types 

of studies,  the work required  for taking  such 

errors  into account  was  not  tackled. 

A problem  with the proposed  method was  
that the localized distribution sometimes had 

peaks  around DGM. A simple  solution to the 

peak  problem  would be to use  linear interpola  

tion between the localized 40
th

 and  60
th  percen  

tiles  instead of  using  DGM as  the localized 50
th  

percentile. Another, more elegant solution 
would be to use the measurement  error  vari  

ance of the DGM as  the within-stand variance 

of  the 50
th percentile  and  derive its effect on 

matrix D. Thus, taking  the effect of measure  

ment errors  of stand variables into account  

would  probably  solve the peak  problem.  

If a practical  situation had been simulated, 

the expected  percentiles  should have been 

predicted  using  stand variables calculated from 

the sample  plots. However, it would have af  
fected the accuracy  of the  expected  percentiles  

since the number of sample  plots  varied in 

different simulations. To make the test show 

only  the effect of  calibration on the accuracy  of 

the predicted  distribution the exact stand char  
acteristics  were used instead  of  the means of 

the sample  plots. 

The procedure  used  with the unsuccessfully  
localized distributions was  to pick  a new sam  

ple from the stand and try again,  in the test 
situation of  this study.  In applications,  a proce  

dure for the situations where the calibration 

fails is  needed. A simple  approach  would be to 

drop one or  more  sample  trees  from among  the 

measured sample  trees  and to try  to find a solu  

tion by using  the rest  of  the sample  trees. How  

ever.  this would waste  expensive  field informa  
tion. Because the main reason for failure was  

the non-monotony of the  percentiles,  the pro  

portion  of  failures could  be decreased remarka  

bly  by  ensuring  the monotony through formula  

tion of  the percentile  models. 
The calculation of exact expectations,  vari  

ances and covariances of order statistics with  

numerical integration  was rather slow, espe  

cially  when the number of  measured sample  

order statistics  was high. For example,  the 

calculation of the 4300 sample  plots  with two 

sample  trees took 1.5 hours  with a modern 

personal  computer and increasing  the number 

of sample  trees to 12 increased the time re  

quirement  to almost  4 hours. In these calcula  

tions. IMSL subroutines DCONG  and  DQDAG  

(IMSL 1997)  were  used. With a view to speed  

ing  up the  computations,  the calibration was 

also  carried out using  asymptotical  expecta  

tions and variances of sample  order statistics 

(Reiss  1989, p. 109-110), integrals  of which 

can be calculated analytically.  With this  

method the accuracy  of the localized distribu  

tions was clearly  better than that  of the distri  

butions based on expected  percentiles,  but  

nevertheless clearly  worse than using exact 

results.  This could be expected,  since the 

asymptotical  results  are  quite  far from the exact 

ones with such a sample  size that is obtained 

using  relascope  factor 1. The time requirement  

could probably  be decreased by adjusting  the 

parameters of the numerical integration  algo  

rithm. Furthermore, more effective algorithms  

might be available and the development  of 

faster computers  will  eliminate this problem  in 

the future. 

However, even though  the results of  this 

study  represent a somewhat ideal situation and 
there are  many things  that could be  taken  into 

account in order  to  improve  the  method, it is  a 

promising  method that brings  together  the good 

properties of the parameter prediction  method 

and of the use  of  sample information. 
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An  Algorithm for  Ensuring Compatibility 
Between Estimated  Percentiles  of 

Diameter Distribution  and Measured 

Stand Variables 

Lauri Mehtätalo 

ABSTRACT. It is  difficult  to  formulate a  diameter  distribution  model  that  is  compatible with  

many  stand  variables.  In  previous studies, compatibility  of diameter  distribution  has  been  
ensured  with  the  aid  of calibration  (adjustment) based  on making small  changes to the  

predicted frequencies of  diameter  classes. In  these  methods, the  minimum  and  maximum  
diameters  cannot be  changed, and  the  measurement error  of  the  stand  variables  is  not  taken  

into account.  In  this  study, two calibration  methods  based on minimizing deviations  from 

predicted percentiles  were developed. Because  minimum  and  maximum  diameters were  

among  the  predicted percentiles, there  were no problems in changing them  in  the  calibration.  
In the  first  method, the measurement error of the  stand  variables  was  not taken  into  account.  

In  the second  method, in  addition  to deviations  from predicted  percentiles, deviations  from the  

measured  stand  variables  were allowed, and  the  measurement error  was taken  into  account  

by weighting each  term of  the  objective  function  inversely  by  its  error  variance.  The  methods  

were tested in  a dataset  of  Finnish  mixed  coniferous forests. Both methods  were found  to be  

better than  the reference method  used  because  the minimum  and maximum diameters  could  

be changed. Even  if  the  measurement error  was large, the  second  method  was still  advanta  

geous,  while  the  other  methods  were  of  no use.  For.  Sci.  50(1):20-32. 

Key Words: Diameter  distribution, compatibility, calibration, nonlinear  optimization, mea  

surement error,  percentile. 

Diamktkr  
distribution

 
is

 
an

 
essential

 
stand

 
character

 istic when  assessing,  for example, volume,  basal  

area, or stem number.  It enables  the  calculation  of 

the volumes  of trees  between  certain  diameter  limits,  thus 

providing  a tool for  assessing,  for  example,  the  volume  and  

monetary value  of logs  obtained  in  a harvest.  The  diameter  
distribution can also be  projected into  the  future,  enabling the 

prediction of future  incomes and  the  effect of different  
harvest  schedules  on these.  The  results  can then  lie  compared 

with  each  other in  a  forest management planning process.  The 

accurate description of  the  stand  structure is  very  important 

when simulating  stand  development for  forest  management 

planning, and in  long-term simulations the  small  trees  are 

also of  interest. 

Different theoretical  distributions  have been used for 

describing the diameter  distribution  of a stand.  These  in  
clude, for  example, the lognormal (Bliss  and  Reinker  19641,  
Weibull  (Bailey  and Dell  1973), beta  (Loetsch  et  al.  1973.  p. 

48-61) and  Jonson's  SB (Hafley  and Schreuder  1977)  distri  
butions.  In recent  decades,  the Weibull  distribution  has  been  

the  most  commonly used  because  of  its  flexibility,  the  fairly 

straightforward interpretation of its  parameters,  and  the  closed  
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form of its  cumulative  distribution function  (Bailey and  Dell  

1973). Many methods  for  estimating the  parameters  of the  

Weibull  distribution  have  been  presented. The  maximum  
likelihood  method or the method of moments can be used  if 

a sample  dbh-distribution  from the  stand  is  available  (Van 

Deusen  1986.  Lindsay et  at. 1996). If a sample is  not avail  
able.  the  parameters  can be  predicted with  the  parameter  

prediction  method  (PPM)  or estimated  using the  parameter 

recovery  method (PRM).  In PPM. the parameters are esti  

mated  by  developing regression  models  with  stand  character  
istics  as independent variables,  and  parameters of a target 

stand  are predicted  using measured  stand  variables.  In  PRM, 
the  parameters of the distribution  are  recovered  from some 
known  or  predicted stand  characteristics. Recovery  can be 

based  on the  moments  of  the  distribution  (Burk  and  Newberry 

1984). known  characteristics  of  certain  percentiles (Bailey 
and  Dell  1973, Shiver  1988) or some measured  stand  vari  

ables  (Eketal. 1975,  Hyinkand Moser  1983).  When  predict  

ing the  future  distribution  of  a  stand,  the  development of  the 

parameters, stand  variables,  moments  or  percentiles  is  mod  
eled as a function  of time. 

It has been  demonstrated that theoretical  distributions  

work  well  in  even-aged unthinned  forests:  but  in  more  hetero  

geneous  forests,  distributions  which  are purely  parametric  
have  been  found  to  be  too  rigid  (e.g.,  Cao  and  Burkhart  1984,  
Maltamo  and  Kangas 1998) and  more  adaptable methods  are 

needed.  In  a percentile-based method  (Borders et  al.  1987), 
the  diameter  distribution  of  a stand  is  described  with  percen  
tiles  of the  distribution.  The percentiles can be predicted 

using known  stand  characteristics,  and  the  development of 
the  percentiles with  respect  to  stand  age  can also  be modeled  
(Borders  and Patterson 1990). The continuous  distribution 

function  between  the percentiles  can be  interpolated either 
with  linear  interpolation (Borders et al.  1987) or with  an 

adequate spline function  (Maltamo et  al.  2000). 

If a measured  sample  of tree  diameters is  available,  the  

sample distribution  can be  used  as such  in calculating present  

volume.  If the  sample is  small,  the sample  distribution  can be  
smoothed,  for  example with  a kernel  method,  to  obtain  a  
distribution  that  better  describes  the  underlying population 

distribution  (Droessler  and  Burk 1989. Maltamo  and Uuttera  

1998). Fitting  a  theoretical  distribution  to  the  sample distri  
bution  can have  a detrimental  effect: if  the  population distri  

bution  does not follow  the theoretical distribution  used,  some 

of  the information  on the  form of  the distribution  is lost 

(Borders and  Patterson  1990.  Nepal and  Somers  1992). A 

good  estimate  of  the  future  distribution  may  be  obtained  by 

projecting  the  present  sample diameters  and  stand variables  
into  the future  with  individual  tree  growth models  (Pienaar  
and  Harrison  1988.  Nepal and  Somers 1992.Tang etal.  1997) 
and  adjusting the  projected diameter  distribution  to  obtain  a  
stand  description compatible with  the  projected  stand  vari  

ables.  

The  incompatibility of  the distribution  may  be  a prob  
lem  in those  cases where  the distribution  is  projected  into  
the  future  with  models (Nepal and  Somers  1992,  Cao  and  
Baldwin  1999). or if  all  the measured  stand  variables  have  

not  been  used  in the  prediction of  the  diameter  distribu  

tion,  or if  the  diameter  distribution model  used  does  not 

guarantee compatibility  with all  the  stand  variables  used  

as  predictors  (Kangas and  Maltamo  2000  a).  In such cases, 
calibration  (adjustment) of the  diameter  distribution  can 
be  useful.  In  the  calibration, the  predicted frequencies of 

the diameter  classes  are adjusted slightly to obtain a 

distribution  compatible with  all  the  measured  or  projected  
stand  variables.  This  approach has  two drawbacks.  The 

first  is that  new diameter classes  are not  constructed, and 

problems  arise if  the  minimum  and  maximum  diameters  of 
the uncalibrated  distribution  are far  from the true diam  

eters. The other drawback  is that the  stand characteristics  

used  are assumed  to be accurate,  i.e..  no measurement  or 

prediction  error  is  assumed.  
In  Finland,  forest management planning is  based  on 

stand-wise  inventories  carried  out approximately  every  
tenth  year,  and  stand  development is  predicted with  indi  
vidual  tree  growth models  using representative  trees  picked  
from  the  predicted diameter  distribution  of  the  stand  ( Kilkki 

et  ai.  1989). The costs  of the  inventories  are kept  low  to 
make  forest  planning inexpensive. Therefore,  rather  than 

measuring a sample diameter  distribution  to  predict  the  
stand diameter  distribution, the assessed  stand  character  

istics  are used. The  basal-area  weighted form  of the  diam  

eter  distribution  (basal  area diameter  distribution) (see 

Gove and  Patil  1998) is used  to ensure the accurate  de  

scription  of  the  large,  valuable  trees.  In  the  inventories,  an 

angle-gauge is  used  to  determine  the  basal  area and  basal 

area median  diameter of  a few.  subjectively  chosen sample 

plots, and  the  stand variables  are calculated  using the  

sample plot measurements.  Due  to  within-stand  variance  
and measurement error, the total error in  the measurement 

may be as high as 20%  of the  mean values of the  variables  
(Poso  1983.  Laasasenaho  and Päivinen  1986.  p.  9).  

Depending on site  features,  damage, the  forest  owner's  

activity,  etc..  Finnish  forest  stands  may differ  markedly from  

each  other.  One  stand  may  have  dense natural  undergrowth,  
while  in another  there  may  be  no undergrowth at  all:  a stand  

may  be  a  mixed forest  or a  one-species  forest:  it  may  comprise  

many age  cohorts  or be  even-aged: it  may  be naturally  

regenerated, planted,  or  sowed,  etc.  In  this  situation,  it  might 
be  advantageous to change the set  of assessed  variables  

according to the  type of forest stand. However,  it would  

require a large dataset and much work  to  model  diameter  
distributions  with  all measurement  combinations  forall  types  

of stands  in  order  to  determine  which  variables  work  in  any  

given type  of  stand.  It would  also  be  very  hard  to  formulate  
models  that produce compatible distributions  with  all  mea  

surement combinations.  A simpler approach is  to  predict  the  
distribution  with  commonly measured  stand  variables  and  to  
lake other  variables  into  account through calibration.  

The  aim of  this  study  was  to  develop a  calibration  method  
that  could  be  used  in Finnish  forest  management planning. 
This  meant that  (1)  the  method  could  not  prohibit  the  formu  
lation of  new diameter  classes  and  (  2)  the  measurement error 

of the stand  characteristics  had to  be  taken into  account.  The 

calibration  was based  on the  percentiles  of the  diameter 

distribution  instead  of the  frequencies of the diameter  classes.  
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At the  end  of the  study, the  effect of calibration  in  the  

predicted  diameter  distributions  is  demonstrated  with  a case 

study. 

The Method 

A  diameter  distribution  compatible with the measured  

basal  area  median  diameter  and  basal  area  is  obtained  by  

scaling the  basal  area diameter  distribution  with  the mea  

sured  basal  area of the  calculation  unit.  i.e.. by  multiplying 

the two. If additional  stand characteristics  have  been  mea  

sured.  e.g., stem number  or mean diameter,  the  resulting 

distribution  may  not be  consistent  with  all the  measurements. 

This  study  proposes  a method  for  calibrating the  predicted  

percentiles.  The derivations are presented for  the  basal  area 
diameter  distribution,  but  they  can be easily  reformulated  for  

a stem number  diameter  distribution.  

Calibration  of  the  Percentiles  of a  Basal-Area  
Diameter  Distribution  

Let  us assume that the diameter  distribution  is described  

using percentiles of  the basal  area diameter distribution  and 

the cumulative  distribution  is linear  between  one percentile 

and  the  next  (Figure 1).  Denote  the  ordered  set of  M  percen  
tiles  by  [dj,  d-, d

m
) and  the  corresponding percentage 

values  by  {p,,  p1 pm
}. where  p {  =  0  and  pm  =  100. (The  

usual  notation,  e.g.. is used  to  show  exactly  which  

percentile is under  consideration.) Suppose that we have  

predictions  of  the  percentiles and  denote  them  by  {dv d-,,--- 
d

M ]. In  addition,  we may  have  measurements  of  some stand  
variables.  When  presenting the  calibration  methods,  it  is  

assumed that  the basal  area G.  basal  area median  diameter  

d
Gn,

 and  stem number  N have  been  measured.  Denote  these  
measurements  by  G, dGm and  N , because  they are from a 
sample  and  are therefore  estimates  of  the  true  values.  Let  us 

assume that  the measurements are unbiased,  i.e.. E(G)  = G. 

E{dc,„)=dc„,  and  £(jv)  =W. 
We want  to  modify  the  predicted  percentiles  to  make the  

predicted  distribution  consistent  with  the measured  stand  
variables.  Here  it is also assumed  that the stand  variables  are  

known  exactly,  i.e..  they  are assumed  to  be  measured  without  

Figure  1. An example  of a cumulative predicted  percentile-based  

distribution and the predicted  and calibrated fourth  percentile.  

error.  The  problem is.  in fact, to  find  a calibrated  distribution  

that  is as close to  the  predicted distribution  as possible  and  

concurrently satisfies  the  calibrating  equations.  This  leads  us  

to formulate  the  calibration  as an optimization problem,  
where  the  distance  between  the  predicted  and  the  calibrated  
distribution  is  minimized,  and  the  measured  stand  character  

istics  are included  in  the  optimization problem as constraints.  

First,  for  each  predicted diameter,  we  define  a deviational  
variable  sr  which  implies the  deviation  of  the calibrated  ith 
percentile from  the predicted percentile. The  calibrated  zth 

percentile  is  d:  =d,  +sr  
The  optimization problem is 

minimize 

subject to 

4 G 

where is  the  deviational  variable  corresponding to<Y,o<7f .  
The  objective  function  (1)  measures the  distance  between  the  
calibrated  and  predicted  diameter  distribution,  the  constraints  

(2) and  (3)  are monotony constraints  and constraints  (4)  and  

(5) are calibration  constraints  determining the  relations  be  

tween the measured  stand  variables.  A detailed  discussion  on 

the  optimization problem follows.  
To obtain  a monotone distribution,  the  calibrated  percen  

tile  dj must  be  less  than  the calibrated  percentile rf.+1 for  i  = 
1 M-1.  Thus  we get 11  monotony constraints, one for  each  

percentile  interval.  In  optimization,  because  we have  to  use 
the  operation less  than or  equal to  instead  of  the operation less  
than,  we need to  add  a small  constant  implying the  smallest  
difference  allowed  between  two  consecutive  percentiles (e.g., 
0.1 cm),  denoted by  e in  constraints  (2) and  (3).  Note  that  it  
is  not  required that the  predicted set  of  percentiles be  mono  

tone for  calibration  to  be  possible.  Since calibrated  percen  
tiles  are always  monotone, the procedure can. as  a byproduct,  
make  a nonmonotone set of percentiles monotone. 

In this situation  we  need  two  calibration  constraints:  the  

first  for the relation between  the stem number  and the basal  

area and the  second  for the basal  area median  diameter.  The 

first  calibration  constraint  [Equation (4)] is  formulated  as 
,V = ,V. where N is the stem number  of the calibrated  

Z(5„.5,,...,jw ) (1) 

d
i
+s i +eZd

M
+s

i+r i  = 1.2,..., M -\. (2) 

+  .9|  +  £ 0  • (3) 

1007 C 

r \ 

xy pm  -Pi ! '  
i=\  (^■+i +si+i)-p,+- 5/)  

k
(^/+ 5.) (^+i+Vi)

/
 

= N. 

•«so*  =  0- (5) 
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distribution.  (The notation  A  is used  on the measured  or 

predicted variables  and  the  notation  ~ on the  calibrated  ones).  
The  calibrated  stem number  is  calculated  using Equations  

(A 7)  and  (A  8)  in  the  Appendix, substituting  the  calibrated  
values  4=d, +Sj and d

i+l  =  di+l  +s i+l for and  di+v 
respectively.  The  second  calibration  constraint  [Equation 

(5)1 is  formulated  as  rf50<7r  = äc „,
 •  where  cl

Gm is  the measured  
median of the distribution. Letting the predicted median  

equal the  measured  median  we get Equation (5). If we  have  
other  measurements  connected  with  the distribution,  they  can 
be formulated  as additional  calibration  constraints  in the 

problem. Some examples of  these  are presented  later.  

We  require that  in  the  objective  function  (1). (a)  negative 

and positive  deviations  of  the same  absolute  value  cause 

equal increase  in  the  value  of  the  objective  function,  and  (b) 

the objective function  takes the  prediction error  of  the percen  

tiles into  account.  Estimates of the  prediction errors of the 

percentiles  (and later also  the  covariances  between  consecu  
tive  percentiles) are supposed  to  be  known  from  the  modeling 

stage  of the  percentiles.  As a first trial  for  the  objective  
function  we examine  the function 

where  0,~  = var(d, is the  prediction error  variance  of 

dj. In  this formulation, the  sign of the  deviational  variable  
does  not matter,  and  the  increase  caused  in  the  objective  

function  by the change of a percentile  is  inversely  propor  
tional  to its  prediction error. However,  this  function  will  

move the  extreme percentiles rather  than  the intermediate  

ones. This is because  the deviations are assumed to be 

independent. However,  the error  terms  of the percentile  
models  are strongly  correlated  (for  an example,  see Table  la),  
because  each  percentile  model  explains  partly  the  location  of 
the  distribution  and  partly  the  shape of  the  distribution.  Thus  

seemingly  good  weights  in  the  objective  function  may  cause 
bad  results  since  the  objectives  of  a multiple  objective  opti  
mization  problem are strongly  correlated  (Steuer 1986,  p.  

198). The  correlation  can be  made  less  strong by dividing  the  
distribution  into  the location  and the shape  of  the  distribution.  
This  is  done by  reformulating the  deviational  variables  as 

differences  between  consecutive  percentiles  and  letting the  

median  diameter  dso7c  explain the  location  of  the  distribution.  
The  absolute  correlations  between  the  prediction errors  of  the 

differences  are markedly  lower  than  those  of  the  predicted 

percentiles (Table lb). The  objective function becomes  

where  

The  Measurement  Error  of  Stand Variables 

In the  previous section,  the  calibration  did  not  allow  the 

calibrated  values  of  stand characteristics  to deviate  from their  

measured  values. However,  as discussed  before, in  practice  
the measurement (or prediction) error  may  be  significant. If 

the  distribution  is  calibrated  strictly  to  the  erroneous mea  

surements,  the  calibration  may not succeed,  or the calibrated  

Table  1. The estimated standard deviations (diagonal) and correlations (off diagonal) of the prediction error of the 

percentiles (a)  and the difference  between  consecutive  percentiles (b)  in  the Scots pine models  of Kangas and  
Maltamo (2000b)  without stem number. The basal  area median diameter (dS„J  is  assumed  to be measured without 
error. 

M 2 
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distribution  may  have  abnormally  high peaks  in  some  diam  

eter classes.  Therefore  it is better  to calibrate  the distribution  

only  approximately  to  the  measured  values.  In  this  section the  

optimization  problem is  modified  to  take  the  measurement 

error  into account.  

In  addition  to  the  deviational  variables  of  the  percentiles,  
deviational  variables  for the measured  stand characteristics  

are introduced.  The calibrated  basal  area and stem number  are 

defined as G=G +  sG  and  N= N +  sN , where  the  v-vari  
ables  are the  corresponding deviational  variables.  

The  optimization  problem is  now 
minimize 

subject to 

where 

and 

are the measurement error variances  of the stand charac  

teristics.  The  changes to the  previous  formulation,  i.e.. 

Equations (1)—(5). are adding three  terms  to  the  objective 
function  (8), substituting  the  calibrated  basal  area and  

stem number  for the  measured  ones in  the  constraint  (11). 

dropping the  basal  area median  diameter  constraint  (5)  

from  the problem formulation  (no  longer needed  since  we 

no longer assume  that  the  calibrated  median  is  equal to the 

measured  median) and  adding  the  nonnegativity constraints  
of the  calibrated  stand  variables  (12)—(13). 

Additional  Stand Variables  in the  Calibration  

In addition  to basal  area, stem number,  and basal  area 

median  diameter,  we may  also have  other  measured  stand  
variables.  This  section presents  some examples of how 
additional  stand  variables  are included  in  the optimization 

problem.  

In most  cases,  the  new  stand  variables  can be  included  

in  the  optimization  problem as additional  calibration  con  
straints.  However,  a nonnegativity constraint  for  the  new 
calibrated  stand variable  should  be  added  [cf. Equations 

(12) and  (13)]. The  calibration  constraints  are formulated  

by  calculating analytically  the  corresponding variable  
from the  diameter  distribution  and equating it  with  the 
calibrated  stand variable,  i.e.. the measured  stand  variable  

plus  the  corresponding deviational  variable.  Some  ana  

lytically  calculated  stand  variables  are presented in  the 

Appendix. The  measurement  error  of  the  new variables  is  
taken  into  account  by  adding  the  corresponding term into  
the  objective  function, as was  done  in  objective  function  

(8)  [cf.  objective  function  (7)].  In  the  following, there  are 
three  examples of new constraints.  

The constraint for the mean diameter  of the stem number  

diameter  distribution  is  formulated  by equating the  expected 
value  of  the  distribution  (A  10) with  the  corresponding mea  
sured  mean diameter  as in  

and  the constraint for the mean diameter  of the basal-area 

diameter  distribution  is  formulated  by  equating the  expected 
value  of the basal area diameter  distribution  (A  9)  with  the 

corresponding measured  mean diameter  as in  

The  constraint  for  the  quadratic mean diameter  is  obtained  

similarly by  equating the  calculated  quadratic mean diameter  

(Al2)  with  its  calibrated  value  as in  

In  Equations <  14)—(1 6>. äi  is  the  slope of the  calibrated  
diameter  distribution  between  the  calibrated  percentiles  d 
and  djM [see  Equation (A5)l: 
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The minimum  and/or maximum diameter  can be used  in  

calibration,  simply by  using the  measured  value  as the  predic  

tion  of the  minimum  and/or  maximum  diameter.  After this,  

the  "predicted" minimum  and/or  maximum  diameter  equals 
the  measured  one, and  the only change tq be  made   

optimization  is  to  correct  the  variances  O,  i"  and  oV/-l  v/"  in  
the  objective  function (7).  The  variance  cr, of three  
terms: 

Here  it  is  assumed  that  the  percenti  le  d] has  been  measured  
and  the measurement  error  is  uncorrelated  with  the  prediction  
errorof  the  percentile dj. Thus,  the  first  term  in  Equation (18)  
is  replaced by  the  measurement error  variance  of the  mini  

mum diameter, the  second  term remains  as  before, and  the  

third  term is zero. The  variance  becomes  

where —  c/,)  is  the  measurement error  variance  of  the  
minimum  diameter.  The jW

~can  be  calculated  
similarly. 

Because  consecutive  percentiles  are  correlated,  the  mea  
sured  minimum  and  maximum also  include  some informa  

tion  about  the  other  percentiles.  In  Equation (19)  this  infor  

mation  was  not  used.  Some  kind  of rescaling of the  other  

percentiles  before  the  calibration  might be  useful.  One  could  

use. for  example,  a  crude  linear  scaling  such  as the  one used  

by  Kangas and  Maltamo  (2000  c), but  a better  alternative  
would  be  a scaling that  takes  advantage of  the  covariance  

structure of the  percentiles. 

A  Case Study 

The effect of calibration  on the diameter  distributions  is 

demonstrated  by the  following case  study.  The  predicted 

percentiles are calibrated  with  stem  numberin  two  ways:  first 

ignoring the measurement error and  then taking it into ac  

count. The  methods  are compared with  a published calibra  

tion  method  (Kangas and Maltamo  2000 a)  and  also  with  a 

method where  all  the stand variables  are already used  as 

explanatory variables  in  the  percentile  models  (Kangas  and  
Maltamo  2000b).  

Data 

The  empirical  data  of this  study  are from  mixed  pine  

spruce  (Pinns  sylvestris,  Picea  abies) stands  (Pukkala  et 
al. 1998). The  dataset  consists  of sample trees  measured  

from 43 rectangular plots  of 600  to  3000  m 2  situated on 

mineral  soils.  The dataset  was separated into two  sets  
based  on the  tree  species,  and  these  parts  were calculated  

separately.  Some  characteristics  of  the  data  are presented 
in Table  2. 

Due to  the  varying number  of measured  trees  and  
different  plot sizes  in  the  different  stands, the  measured  
diameter  distributions contain  different amounts of sam  

pling error.  In  this  study,  it  was assumed that  a  Gaussian  
kernel-smoothed  (Härdle 1990, p.  15-20) distribution  de  
scribed the  population  better  than  the  actual  measured  
distribution.  The  value of  the  smoothing parameter  (i.e.. 
the  standard  deviation  of the  normal  distribution  used) was 

determined  as a function  of the number  of measured  trees 

and  the  width  of  the  distribution, using information  from 

recent  studies  (Maltamo and Uuttera  1998, Uusitalo  1997. 

p. 29)  and  visual  examination  of smoothed  distributions. 
The selected  function  was  

where  vr
5  is the  observed  width  of the  measured  distribution 

in  cm and  n is the number  of measured  trees in  stand s. The 

value  of  the  smoothing  parameter  varied  from  1.06  to  1.89  in  
the Scots  pine subdata  and  from 0.98 to  2.18 in  the  Norway 

spruce  subdata.  

Predicting  and Calibrating the  Distribution 

The  percentile  models  of  Kangas  and  Maltamo  (2000b) were 
used  to  predict  the  diameter  distribution.  The  models  predict  M  
=l2  percentiles  of  the  basal  area diameter  distribution,  i.e.. the  

percentiles  0.10.20.30,40.50.60.70.80.90.95.  and  100. The  
measured  basal  area median  diameter  is  used  as  the 50%  point.  
For  each  tree  species,  two  model sets  with  different  predictors  
are presented.  The  predictors  of model  set 1 are the stand  basal  

area,  basal  area median  diameter,  stand  age.  and  a dummy 
variable  for mineral soil. In model  set  2. the  stem number  is 

included  as  an  additional  predictor. In  this study,  linear  interpo  
lation  was  used  to produce a continuous  distribution  function  

between  the  predicted percentiles. 

Table 2. Some  characteristics  of the data.  Gs is  the basal area of the tree species and  G r  
the total  basal area of the stand (m

2
/ha),  N is  the  stem number (1 /ha), V is  the total 

volume (m
3
/ha),  dam  is the basal  area  median diameter (cm),  T  the stand age (yr) and n 

the number of measured trees in the stand. 

G|  {=  var(d|  -</[)  +  var(Ä  —di) 

-2cov(rf,  -d\,d2 -d^.  

aL2

2
= -d,)  +  var(<?2 ~d

2
)  - (19)  

_

 iv s. 6.5  
,20) 

Scots  pine Norway  spruce  
Min Mean Max Min Mean Max 

G
s 2.97 14.9  32.3  1.54  10.9 24.1 

G, 4.82 27.3 46.2  4.82 27.3 46.2 

N 92.9 391 1600 247 954  2170 

V 11.0 100 224 6 79.0 208.3 

6.47 25.9 35.2  5.53 17.8 33.9 

T 19 68.5 102 19 68.5 102 

11 13 47.1 168 42 109  222  
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Table 3.  The error scenarios.  Error  is  simulated from  the multi-normal distribution 

using correlation  structure  as follows:  corr(edgM ,eG )  = -0.29,  corr{e
dgM

.e
N )  = 0.01 and  

corr(eN,eG
)  =  0.56. 

According to Poso  (1983). the  within-stand  standard 

deviation  of basal  area and basal  area median  diameter  

may  be  32%  and 23%  of  the  true  value,  respectively, and  
thus  the sampling errors  using, for  example, five  sample 

plots  are 14.3% and  10.3%,  respectively.  In addition,  the  

measurements contain  a random  measurement error. Be  

cause exact information  on the error variance  was not 

available,  the  error was  taken  into  account  by  using five  

error  scenarios,  each  with  different  error  variances  (Table 

3). The standard  deviation  of the  measurement error  was 

assumed  to  be  proportional  to  the true value  of  the  stand  

variable, and  the errors were assumed  to be correlated, 

because  in  an inventory,  all  stand characteristics  are  mea  
sured  in  the same sample plots. The  correlations  were 
obtained  from unpublished data. The whole  dataset  was 

calculated once with  each error  scenario.  

For  each  stand  the  distribution  was  predicted with  both 
model  set 1 and 2. The distribution  obtained with  model  set 

1 (ml) was calibrated  using three  methods.  In the  first  
method,  called  percentile  calibration  I (pel), the  percentiles  

are calibrated  ignoring the  measurement  error  (see  Table  4).  
In the  second  method  (pc  2)  measurement  error  is taken  into  

account.  The  third  method  was  the method  of Kangas and 

Maltamo  (2000 a).  which  was used  as a reference  method.  In 

this  method,  the  frequency table  is  calibrated  to  obtain  a 
distribution  satisfying  the  calibration  constraints  (frequency 

table  calibration,  ftc) using the  distance  function  based  on the 

square  root  (see  Kangas and  Maltamo  2000  a).  The  calibra  
tions  pc  1  and  ftc are later  called  "strict  calibrations"  because 

they  do  not  take  the  measurement  error  into  account.  The  
calibrated  distributions  were  compared with  the  distribution 

predicted with model  set  2 (m 2)  in  order  to  compare  cali  
brated  distributions  with  a distribution  predicted  with  regres  
sion models  that use the  same information  as used in the 

calibrations.  If  the  calibration  did  not succeed,  or  the percen  
tile set obtained  with model  set 2 was not monotone, the 

prediction obtained  with model  set  1 was  used  as  the predic  
tion  of the  distribution.  Because  of  the rather  small  number of 

plots,  all  calculations  were  repealed 50  times  to  diminish  the  
effect  of  sampling error. 

Table compared in the case study. 

The calibrations  of  the  percentiles were carried  out using 

IMSL subroutine  DNCONG  (IMSL  1997.  p.  1003-1007), 
which  solves  a nonlinear  optimization  problem with  nonlin  

ear constraints. The  program  for  the  calibration  method  of 

Kangas  and  Maltamo  (2000 a)  and the  covariance  matrices  for 
the  percentile  models  were obtained  from  Professor  Kangas. 

Comparison of the Methods 
The goodness of  fit of the  predicted distributions  was  

measured  with  the error  index  proposed by  Reynolds et  al.  

(1988). The  error  index of a  diameter  distribution  is  calcu  

lated  as 

where and  /■  are the  true  and  predicted  stem numbers  of 
class  i,  and  iv(  is  the weight of  class  i.  In  this  study, tree  basal  
area was  used  as weight, and  hence  the error  index  is  the  sum 
of the absolute deviations  of the class-wise  basal  areas. 

Averages  of  the  error  indices  in  the  dataset  were calculated  in  
order  to compare  the  calibration  methods.  

The relative  root  mean square  error  of  volume  (in  percent)  
was calculated as 

where  1/ and  V' are the true and  estimated  volumes  of  stand 

/, and n  is the total number  of  stands.  Tree volumes  were 

calculated  with the dbh-based  volume  functions of 

Laasasenaho  (1982.  p. 41).  

Results  

When the  measurements  included  only  a slight error, there  

was no difference  between  the method that  takes the mea  

surement error  into  account (pc  2)  and  the  method  that  does  

not  (pel) (Figure 2).  However,  when  the  measurement  error  

was increased,  the strict calibration  method pel even in  

e =^wi\fi~fij. « 21 >  
/=1 

li  (K-K)  /  
KV  = jv  • ,22 > 

Standard deviation of the error  term (%  of the true  value) 

Scenario  Gf. Or. <rv 

1 0.5 0.5 0.5 

II 4 5 6 

III 8 10 12 

IV 12 15 18 

V 16 20 24 

Method 

Initial predicted  
distribution Calibration method 

Changes in the predicted minimum 
and maximum allowed 

Measurement error of stand variables 

taken into account 

pci model set 1 Equations (7),  (2)—(5)  Yes No 

pc2 model set 1 Equations (8)-(  13) Yes Yes 

ftc model set 1 Kangas & Maltamo 2001a No No 

ml model set 1 — 
— 

— 

m 2 model set 2 — 
— 
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Figure 2. The average of the error index  in the Scots  pine  (a)  and 

Norway spruce (b)  subdata sets. The value in the x-axis  legend  is 

the mean value of the predicted  distributions (method ml) and 

the fines represent  the difference between the other methods 

and method ml (see  Table 4). 

creased the value of the error index,  while  the  calibration  

method pc  2  clearly  decreased  it.  With respect  to  the  RMSE  of 
volume, no clear  differences between  the calibration  meth  

ods can be  seen (Figure 3).  When  the  measurement error  was 

small,  the  RMSE of volume  decreased  in  all  calibrations,  but  

when  the measurement error  increased,  the RMSE of volume 

was even slightly increased  by  the calibrations.  

The  error  index  of the  pc 2 method was also  lower  than  that 

of the  ml  method,  where  the  stem number  was  a  predictor  in  
the percentile models.  The method  m  2. however,  seems to 

have  produced slightly  smaller  RMSEs of  volume than  any  of 
the calibration  methods. 

The  percentile calibrations  worked  better than the ref  

erence method  (ftc).  especially with  respect  to  the  Norway  

spruce data  (Figures I and  2). The  explanation is  that  the  

percentile  calibrations  can produce new diameter  classes  

while  the reference method cannot. The trees  in  the Nor  

way  spruce  data  are much  smaller,  and the  stem  number  is  

greater than  in  the Scots pine data (Table  2).  If the  true  

minimum of the distribution  is  small, its overestimation  

causes a large underestimation  in  the  stem number of  the  
stand and vice versa. Because  the ftc method does not 

produce new  diameter  classes,  the  frequencies of the  
smallest  or largest classes  must become  very  high to 

Figure  3. The difference of the relative  RMSE of volume between 

method  ml and the  other methods in the Scots  pine  (a) and 

Norway  spruce (b) data sets. 

satisfy  the  stem number  constraint  and  this  causes peaks  in  

the  calibrated  distribution  (see  Figure 4c).  

To  summarize,  if  there  is  very  little measurement  error  in  

the stand variables,  and  the  distribution  models  predict the 

minimum  and maximum  diameters  well,  all  calibration  meth  

ods  are equally  good. If the predicted minimum  and  maxi  

mum differ  from the  true  values,  the  percentile  calibrations  

are better  than  the frequency  table  calibration.  Furthermore, 
when  the  measurement error  of  the stand  variables  increases, 

the goodness of fit of the distributions  is  clearly better  with  

the pc  2 method than  with  the  strict  calibrations  ( pc  lor  ftc)  or 

even  with  the  m  2  method, because  the  pc  2  calibration takes  
the reliability of the measurement into  account.  Hence,  when 

simulating forest  development, it  may  be  advisable  to  use  the  
assessed stem number  as a calibration  variable  rather  than as 

a predictor of the diameter  distribution  model.  When  the  

present volume  is estimated,  calibrating with an erroneous 

stem number  seems to be  of very little  use.  

Some examples of diameter  distributions  obtained  with  

different  methods  are presented  in  Figure 4 and  Table 5. In 

subfigure a. the  prediction m  I  is  not  very  good, but  the  stand  
characteristics  calculated  from the  predicted distribution  are 

close  to their  measured  values.  Thus, there  are no remarkable  

conflicts  between measured stand characteristics  and the 
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Figure  4. Examples  of diameter distribution predictions  in three 

Scots  pine stands. 

distribution to be calibrated  (ml). Hence,  the calibrated 

distributions  are quite similar  to the predicted ml distribu  

tion.  Subfigure b  shows  quite a  typical  situation, where the  

measurements and  the  initial  predicted distribution  mi are 

mutually conflicting,  which causes peaks  in the strictly  
calibrated  pel and  ftc  distributions.  When  differences  be  

tween the measured  and calibrated stand  variables  are al  

lowed, the calibrated distribution is between the true and 

initial  predicted m  I  distributions,  and  no  excessive changes 
in  the  form of the distribution  have  been  necessary.  In  

subfigure  c,  the  measurements  are strongly  conflicting,  be  

cause the measured  stem number  and basal  area median  

diameter  are  clearly underestimates,  and the basal  area is 

clearly an overestimate  (Table  5). The  strict  calibrations  have  

moved  many  trees  to  the  diameter  classes  just  below  the  basal  
area median  diameter in  order to decrease  the  stem number  

without changing  the  basal  area  median  diameter.  Model  2  
has  not  been  able  to  produce  a nonmonotone percentile set.  
and  thus the  prediction  of model  I  has  been  used.  The  pc  2  
method  has  moved  all  the  percentiles  to  the  right  and  cor  
rected  the  conflicting measurements;  hence  the  distribution  
is  quite close  to the true distribution.  

If the  measurements  are so  strongly  conflicting  that  the set  
of  calibration  equations is  inconsistent, the calibration  fails.  

The  unfeasibility  of  the  calibration  problem is  a  serious  

problem when  the measurements  contain  errors. In the Scots 

pine data with  error  scenario  V (Table 4), 15.1% of the 

problems  were  unfeasible  with the  ftc method and  3.0%  with 
the  pc  1 method.  The  difference between  these  methods  arises 
from the  fact  that  the predicted minimum  and  maximum  
diameters  can be  changed in pel.  With  the  pc  2  method, the  
calibration  problem was  never unfeasible—in  practice  it  is  a 
universal  result.  It  is  always  possible to  find  a solution  to  the  
calibration  problem because  each  calibration  constraint  has  a 
deviational  variable  with  no bounds  on the  right-hand side  

[and on the  left-hand  side  only  the  lower  bound  determined  

by  constraints  (12) and  (13)]. 

The calibration  taking the  measurement  error  i  nto account 

changes the  values  of  mutually conflicting  stand  variables.  
Hence,  with  the  calibration  method  pc  2. the resulting RMSE  
of basal  area was slightly lower  than that  of  the  measurement 

(Figure 5).  The  RMSE of  the  basal  area  median  diameter  was 
reduced  by  as much  as 4% in  error  scenario  V. All  calibra  

tions  produced an RMSE  of  stem  number  considerably  smaller  
than  that  obtained  with  model set  l, but  only  the  pc  2  method 

produced an RMSE of stem number  approximately  equal to 
that  of the measured  stem number.  With the  strict calibrations  

pci  and ftc.  if  the  calibration  succeeds,  the  calibrated  stem 
number  is exactly  equal to the  measured  stem  number.  

However,  when  the  calibration  fails,  the  initial  predicted 
distribution  has to be used  and therefore, with the strict 

calibrations  the  RMSE  of stem  number  is  quite far  from  the  
RMSE of the measured stem number. 

Because  the  RMSE of the  stand variables  was  reduced  

with  the pc  2  method, the  calibrated  stand  variables  can be  
used as new estimates of the stand variables in the other 

models  of  the stand simulator. The distributions  of the  cali  

brated  basal  area, basal  area median diameter, and stem 

number  were symmetric and  close to a normal distribution.  

Table  5.  True, measured  and calibrated  stand variables  of the distributions  in Figure  4. 

Stand variable 

Stand (a) Stand(b)  Stand (c)  

G A G ,V £ A,n, G N 

True 31.7 6.55 " 92.9 8.43  2.98  786 26.0 17.6 449 

Measured 31.8 6.76 107 7.17 2.99  811 23.5 20.3 370 

Calibrated (pc2)  31.6 6.79 107 7.67  2.89  843 26.0 19.3 416 
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Figure  5. The root means square error of the basal area (a),  basal 

area median diameter (b) and  stem number (c)  in different error 

scenarios in the Scots  pine  subdata. The value in the x-axis  

legend  is the relative  RMSE of the measured stand variable (in 

percent)  and the lines represent  the difference between the value 

obtained from  the calibrated/  predicted  distribution and  the 

measured value. 

The  bias  of  stand  variables  was  slightly higher after  calibra  
tion: the biases  of measured  basal  area, basal  area median 

diameter  and  stem  number  in  the  Scots  pine  data  using error  
scenario  V were 0.09. -0.18. and 2.5. and after calibration  

they  were  -0.22.0.60.  and 11.21.  respectively. However,  the  

change in the  biases  is  so small  that it  hardly  causes problems 
in applications. 

Discussion  

The aim  of this study was  to develop a calibration  method  

able to produce new diameter  classes  in the  distribution  while 

taking the  measurement  error  of the  stand  variables  into  

account.  When  percentiles  of  the  distribution  are calibrated  
instead  of  the  frequencies of  a stand  table,  the  minimum  and  
maximum  diameters  are changed as easily  as other  percen  
tiles.  The  reliability  of  the  predicted  percentiles  can be  taken  
into  account  in the  formulation  of the  objective  function  by  

weighting each  term  inversely  with  the corresponding error  
variance.  

When the  continuous  diameter  distribution  is  interpolated 

using linear  interpolation, many  stand  variables  can be  easily 

derived  analytically from the  predicted distribution.  In cali  

bration they can  be  formulated  as  calibration  constraints  by  

equating them to their  measured  values.  When  deviational  

variables  are used  also for the stand  variables,  the calibrated  

distributions  need  not  fulfill  the  measurements  exactly.  The  

measurement error  of the  stand  variables  can be  easily  taken  

into  account  in the  objective  function  by weighting the  

corresponding deviational  variables  with  the  inverse  of the  

corresponding measurement error  variance.  Calibration  re  

sults were presented using the  measured  basal  area,  basal  area 
median  diameter  and stem number as calibration  variables,  

but  other  stand variables  can also  be  easily  included  in  the  
calibration, as shown  in the section  "Additional  Stand  Vari  

ables in the Calibration."  

One  problem  in the  formulation  of  the  calibration  problem 

was  that  the errors  of  the  percentiles and  stand  variables  are 
correlated.  The  correlation  between  the prediction errors  of 
the percentiles was  made less strong by  reformulating the 

objective function  to  minimize  the  sum  of  percentile  interval  
widths. This  reformulation  decreased the correlation  coeffi  

cients  of the  terms  in  the  objective  function  from between  
0.61 and  0.90  to between  -0.07  and  0.15. The  resulting 
correlation  w  as  regarded as  so weak  that  it  w  as not taken  into  

account. The  measurement error correlation  of stand vari  

ables was not  taken  into  account  either.  In  the  earlier  stages  
of  the  study,  the Mahalanobis  distance  s'  V - '  s  was  used  as a 

distance function,  where  s is a vector of  the  deviational  

variables  and V their  variance-covariance  matrix.  This for  

mulation  takes  the  prediction error  correlation  into  account,  

but  it  was  found  to  be  problematic because  it  was very  
vulnerable  to the estimation  error  of  the  matrix V. In addition  

to  the  variances  andcovariances  of the  prediction errors  of the 

percentiles, this  matrix  requires  the  covariances  between  the  

measurement  errors  of  the  stand  variables  and  the  prediction  

errors  of  the  percentiles.  The  effect of  the measurement  errors  
in  the  predictors  of  the  percentiles on the  error  variances  and  
covariances should  also have  been  estimated. 

In this  study, two methods  for  calibrating predicted  

percentiles  of  diameter  distribution  were developed. The  
first method assumed that the calibration  variables  were 

measured  without  error, and it is thus comparable to 

previous calibration  methods.  In  the comparisons, this  
method was found  to be  a little  better than  previous  
methods,  and  the improvement arose from allowing the  

predicted minimum  and  maximum  of the di stribution  to be  

changed. This method was  a good calibration  method  
when there were no measurement errors in the stand 

characteristics:  but  when there  were errors in  the measure -  



30 Forest  Science 50(  I ) 2004 

ments,  it  worsened  the  goodness of fit of  the  distribution,  
as did the reference method.  

In the  second  method, the error variance  of the mea  

surements was  taken into account,  and the results  showed  

that  this  was  necessary.  The  effect  of calibration  on the  

RMSE of volume  was negligible,  but  the  effect on the  
value of  the  error  index  measuring the  goodness  of  fit  can 

be  clearly  decreased  by  calibration.  This  was also seen in  
the figures of  the  calibrated  distributions.  The strictly  
calibrated  distributions produced peaks  in  the  distribu  

tions  (Figure 4), whi  Ie  the  method  taking the  measurement 
error  into  account  produced smooth  distributions  holding 
the form  of  the  predicted distribution, even if  the  stand  

measurements  were very  conflicting. This  method did  not  

have  the  problem of unfeasibility  either,  which  was a 

problem in  the  other  methods.  With  respect to the  error  
index,  the calibrated  distribution was  also better than  the 

distribution  predicted with  models  using the  calibration  
variables  as predictors and  it  seems to be  useful  to take  the 

erroneous  measurements  into  account  through calibration  
rather  than  use  them  as predictors  of  the  diameter  distribu  
tion  model.  In  addition,  it seems to  be useful, as well  as 

safe, to use the calibrated  stand variables  as corrected  

estimates of the stand variables  in  the other models  of the 

simulation  system. 

A problem with  this  second  method  is  that  it  can be  used  

effectively  only  when  the initial  diameter  distribution  is  

described  with  percentiles. Naturally, percentiles can be  
calculated  from  any predicted  diameter  distribution, but  the  

prediction  error  of  percentiles  calculated, for  example, from 

a Weibull distribution  is  at  least  very  difficult,  if  not  impos  
sible.  to compute.  In  addition  to prediction  errors  of  the  

percentiles, the measurement error variances  of the stand  

variables  are needed.  These variances  should be estimated 

from  some data  and  the  susceptibility  of  the method  to  the  
estimation  error  in these  variances  should also be  studied.  In 

this  study, only basal area, basal  area median diameter  and  

stem number were used  as calibration  variables.  The use of 

other stand variables  should  he tested. The use of calibrated  

stand  variables  in  other  models  of  the  simulation  system  also  
needs  to be  tested  before  applying the  idea  in  practice.  
However,  the  calibration  method  pc  2  seems  to  be  a promising 
tool  in predicting  the diameter  distribution  for  stand  simula  
tions.  
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APPENDIX 

The Stem Number of a Basal-Area 

Diameter Distribution 

Let  G  be Ihe basal  area and N the stem number  of a stand 

and the  density  of  the  basal-area  diameter  distribution  

as  a  function  of  Ihe  tree  diameter  .v. The  density function  adds  

up  to  unity.  Denote the  basal  area of a  tree,  whose  diameter  
is  .v.  by  g(x). The  density  function  of  the stem number  is  thus  
(see  Gove and Patil  1998) 

Assuming that  the  basal  area G of the  stand  is known,  

the  stem number between  diameters  dj and  d-, can be  

calculated  as a definite  integral of the density function  of  

the stem number:  

and the number  of stems in the stand can be calculated  as 

Some Results of a Percentile-Based 

Diameter Distribution 

Assume that  the  basal  area diameter  distribution  of a stand 

is  described  with  M percentiles  d., d 2 c/M  of certain  
percentage  values  p t ,  p-,,.... p M of  the  cumulative  basal  area 
diameter  distribution, where  p:  is  a fixed  percentage value  

implying how  large a proportion of  the  total  basal  area 
consists of  trees,  the  diameter  of  which  is  less  than  d

r
 Assume 

further that the cumulative  distribution  function is linear 

consecutive percentiles  d
t
 and di+l 

where  the  slope a(  is  calculated  as 

The  density function  is  the first derivative  of the  cumulative  

distribution 

Assuming that  the  cross-section  of  a tree  is  circular  in  

shape and  using equations (A  2)  and  (A  6),  the  stem number  
between  diameters  and  di+l  is  calculated  as 

The stem  number  of the  distribution is the sum of the stem 

numbers of all these intervals 

The  expected  value  of  a basal-area  diameter  distribution  is  
calculated  as 

/"(,)=±G/C(.r)/*(.v). (Al)  

d
: d, 

Njuz  =  Njf
N

(X)dx=Gjf
G

(x)/g(x)dx  (A  2)  

N  =C\  f c {x)lg(X)dx (A3)  
d

mn
 

Fic(x)=al
x  +  bi , (A 4) 

„
 1 /'/+! ~Pi  
' 100  d

i+l
 -dj 

,A3)  

f,
G(x)=F, c '(.x)=ai . (A  6)  
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The  quadratic mean diameter  of the  stand  is  the  diameter  

of  the  tree  representing  the mean basal  area. If the  basal  area 

and  number  of stems of a stand are known,  the mean of  the 

tree-wise  basal  areas is calculated  as G/N and  the diameter  of 

the  tree representing  this basal  area (the quadratic mean 

diameter)  as  

The expected value  of  the  stem number  diameter  
distribution  is calculated  as 

Substituting 6" with  the known  basal  area and  N  with  the 

calculated  stem number  (Equation A  8) we get,  after 
cancellations:  

4s  =  J*  xf
G

{x)dx  
t/

min 

iv 1 r M (A  9)  
=2- j xa4x  =~ 2l  "'V'+l J  

/=l rfj i=l  

I~4G  
4,-fa- < AI » 

3»-  I  '/'-l.)- £  f  7<l'  
S  J 4* 4  
/=l d, X 

M-\  
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A longitudinal height-diameter  model  for  Norway 

spruce  in  Finland  

Lauri Mehtätalo 

Abstract:  A height-diameter (H-D)  model for Norway spruce (Picea abies (L.)  Karst.)  was estimated from  longitudi  

nal data. The  Korf  growth curve was used  as the H-D  curve. Firstly,  H-D  curves for  each stand at each measurement 
time  were fitted, and  the trends in the parameters  of the H-D  curve were modeled. Secondly, the trends were included  
in the H-D  model to estimate  the whole model at  once. To take  the hierarchy of the data into account,  a mixed-model 

approach was used.  This  makes it possible  to calibrate the model  for a new stand at a given point in time using sample  

tree  height(s). The heights  may  be from different points in time and  need  not be from the point in  time being pre  
dicted. The  trends in the parameters  of the H-D  curve  were  not estimated as a function of stand age but as a function  
of  the  median diameter of basal  area weighted diameter distribution (d° m). This  approach was chosen  because  the stand 

ages  may  differ  substantially among stands with similar current growth patterns.  This  is  true especially with  shade  

tolerant tree species,  which can regenerate  and survive  for several years  beneath the dominant canopy layer  and  start  

rapid  growth later. The growth patterns  in  stands  with a  given cf' m

,
 on the other  hand, seem not to vary  much. This  

finding indicates that the growth pattern of a stand does not depend on stand age but on mean tree size in the stand. 

Resume  : Une equation de prediction de la hauteur par  le diametre (H-D)  pour repinette de Norv£ge (Picea  abies (L.)  

Karst.)  a et£ calibr£e ä partir de donn£es longitudinales. La courbe H-D  est  representee  par  la courbe de croissance  de 
Korf.  Des  courbes  H-D ont d'abord  £te ajustees pour chaque peuplement et chaque prise  de mesures. et les  variations 
dans les  parametres  de la courbe H-D  ont ete modelisees.  L'equation H-D  a ensuite  ete reajustee apr£s y avoir  incor  

pore  les  modeles de variation de ses parametres.  La procedure d'estimation par  modele  mixte a ete utilis£e pour  tenir 

compte  de la hierarchie des donn£es. Cette procedure permet de calibrer le module  pour  un nouveau peuplement h un 

moment donne dans le temps en utilisant un £chantillon des hauteurs  d'arbre. Les  hauteurs peuvent  provenir  de mesu  

res  prises  ä differents moments dans le temps et n'ont pas  besoin  d'etre prises  au meme  moment que  la prediction. La 

variation  des parametres de liquation H-D  n'a pas  £t£ modelis£e en fonction de Tage du peuplement. mais plutöt en  

fonction  du diametre median de  la  distribution des  diametres ponderee par  la  surface  terriere  (d?™). En  effet. des  peu  

plements d'age  tr£s  different peuvent  avoir  des patrons  de croissance  similaires.  C'est  le cas  particuli&rement chez les  

essences tolerantes  ä F  ombre qui peuvent  se  regenerer  et survivre  pendant plusieurs annees sous couvert et entamer 

une croissance  rapide  par  la  suite. Par  contre. les patrons de croissance dans les  peuplements ayant  une valeur de <A ,m  
donnee  ne semblent pas varier beaucoup. Ce resultat  indique que la croissance  d'un peuplement ne depend pas  de Tage 
du peuplement. mais de la taille moyenne des arbres  dans  le peuplement. 

[Traduit  par  la Redaction]  

Introduction 

In Finnish  forest management planning, describing the  

current  forest  structure comprises  two  stages:  firstly,  the di  
ameter distribution  of the  stand is estimated,  and  secondly,  
the  heights of  trees  are predicted. Because  height is  quite ex  
pensive  to  measure in  practice,  one usually has  only  a few  or  
even no height measurements  available  from a stand.  How  
ever. one may  have  old  height  measurement(s) from  a previ  
ous inventory  or inventories.  A good  height-diameter (H-D)  
model  is  able  to predict the  H-D  pattern even if  no height 
measurements are available,  and  if measurements are avail  

able.  a good model  uses them  effectively  even if  they are 
from different points in time.  Some stand characteristics  
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other  than  tree height may also  improve the  prediction of the 

H-D pattern of the stand, and a good model  utilizes  these  

variables  if they are measured.  

Many comparisons of different  functions have  been  car  
ried  out  to find  an appropriate function  for  the  H-D  relation  
ship in  a stand  (Curtis  1967: Arabatzis  and Burkhart  1992: 

Huang et al. 1992:  Lynch and  Murphy 1995: Fang and  

Bailey  1998). However,  no function  has  been  found to  be  su  

perior. A commonly used  function  for  the H-D curve is  the  
Korf  function  (see.  e.g.. Parresol  1992: Flewelling and  De  
Jong 1994:  Lappi 1997). Lynch  and  Murphy  (1995) selected  
this model  function  from among  the  several  functions  they 
tested.  Omuie  and  Mac  Donald  (1991) and Flewelling  and  De  

Jong (1994)  have  discussed  whether  the H-D curves  from  
different  points in  time  may  cross  and have  proposed differ  
ent  constraints  for  such  crossings. However,  no theoretical  

justifications  for  these  constraints  have  been  shown,  and  as 

Lappi  (1997) and  Lynch and  Murphy (1995) have  pointed 

out, crossover is a natural  consequence  of different growth 

rates in  different diameter  and height classes.  The model  of 

Lappi (1997) uses the same model  function  as that of 
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Flewelling and De Jong (1994). but  has  no constraints  for  

the curves.  It has  all  the  features  of a good model  listed  
above  and  will  be  the  starting  point  of  this  study.  This  ap  

proach has  been  used  recently by Hökkä  (1997) and  Jayaram  
and  Lappi  (2001); however,  in those  studies  the  data  were 
cross sectional.  

In previous studies with  longitudinal data (e.g., Curtis  
1967:  Lappi  1997:  Eerikäinen  2003: Flewelling and  De Jong 
1994). the  development of an H-D  curve is  usually associ  
ated  with  stand  age.  i.e.,  the  growth pattern  of  a stand  is  as  
sumed  to depend on stand age.  However,  the  age  at which  

maturity  is  reached  varies  among  stands.  This  is  true  espe  
cially with  shade-tolerant  tree species, because  as a conse  

quence  of improved light  circumstances,  after a long stay as  

undergrowth in  a  mature  forest those  trees  may  suddenly be  

gin to  grow  like  young saplings.  This  indicates  that  the  pa  
rameter  defining the  growth rate  of an individual  tree  may  
not  be  tree  age  but  tree  size.  Hence,  it  would  be  sensible  not  
to link  the  height growth pattern  to stand age  but  to mean 
size  of trees  in  the  stand.  Another  problem with  shade  
tolerant  tree species is that  the  age  distribution  of trees  in  a 
stand  may  be  very  wide,  and  the  definition  of stand age  may  
be  ambiguous. In this  article. I show  how  an H-D  curve of  a 

shade-tolerant  tree  species  can be  modeled  from longitudinal 
data. 

The  aim  of this study  was to develop an H-D  model  for  
shade-tolerant  Norway spruce  (Picea abies  (L.) Karst.)  

growing in  Finland.  The  model  should  be  able  to  (/) predict 
the H-D  pattern of a  forest stand  when no tree heights are 

measured,  (ii) use measured  diameter(s) and  height(s) to im  

prove  the prediction,  (Hi)  use  old  measurements  to  improve 
the  prediction,  (iv)  predict the  future  H-D curve of  a  stand,  
and  (v) use  different combinations  of stand  characteristics  in  

the  prediction of an H-D  curve. The  model could  be  used in  
practice for predicting tree  heights  in  forest management  

planning and  for  optimizing  the  number  of height measure  
ments in  field  surveys. 

Data 

The  modeling data are a subset  of a larger  data  set. col  

lected  from permanent  sample plots  by  the Finnish  Forest  
Research  Institute (Gustafsen et  al. 1988). The sample 
stands  in  the  original data were selected  randomly from the 

sample plots  of the  seventh  National  Forest  Inventory, which  
are situated on mineral  soils  and  forestland.  The  data cover 

the  whole  area of  Finland.  In  each  sample stand,  three fixed  
radius  sample plots  were established, and  various  character  
istics  were recorded,  including the diameter,  height, and  

species  of each  tree.  These  same measurements  were taken  
one to three  times  at 5-year  intervals.  In  addition,  when  es  

tablishing  the  plots,  the  height growth and  diameter  growth 
over the last 5 years  were measured in some stands. Hence, 

the  number  of  measurement occasions  for each  plot of the 

modeling data  is  one to four.  
In  this  study,  the  three  sample plots  were combined  to  ob  

tain  data  for  a  certain  stand.  The  modeling data  were con  
structed from stands including, on average, 10 or more 

Norway spruces  per  measurement occasion.  In the actual  
modeling data,  only  Norway  spruces  were included,  but  
basal  area and  median  diameter  of basal  area weighted diam  

Table 1. Some  characteristics of the modeling data. 

Note: T is  stand age at breast  height  (years).  (f 
"'

L  is  me  
dian of basal area weighted diameter distribution (centi  

metres). G is  basal area (square metres per hectare).  D is 

diameter at breast height  (centimetres),  and H is  height  

(metres).  

eter  distribution  (<:/"")  were calculated  from all  trees  belong  
ing to the dominant  story  of the  stand.  The  total  number of 
stands in  the data was 249. and each stand was measured,  on 

average,  3.3 times. The total  number of height  measure  

ments in the data was  18 056. and the number  of trees in a 

stand on a certain measurement  occasion  varied  between  3  

and  49 (mean  22). The minimum,  mean, and  maximum  val  

ues of the  most  important variables  are shown  in Table  1. 

Model development 

Basic model formulation 

Development of the H-D model  starts from an exponen  

tial function, known  also  as Korf's function  (see Zeide  1993; 

Lappi 1997): 

where  H and  D are tree height and  diameter  at breast height 

(1.3  m). respectively, and  a, b. and  c are parameters to be  es  

timated. Note that  setting c  = 1 in eq. 1 gives eq. 6 of  Curtis  

(1967). which is  a very  common function  (either in  its expo  

nential  or  logarithmic form) in  studies  of  H-D models  
(Zakrzewski and  Bella  1988: Huang et  al. 1992; Arabatzis  
and  Burkhart  1992: Fang and  Bailey  1998). Curtis  (1967) 
and  Arabazis  and Burkhart  (1992) suggest  it  for  routine  use.  
and Curtis  (1967) remarks  that  a  value  of c other than 1 

could provide a better fit in young stands. 
Because  diameter  is  measured  at breast height, the H-D  

models  are often estimated in  the  form where breast  height 

(1.3 m) is  subtracted  from the  left-hand  side  of the equation 

to get  diameter  and  height to  behave  consistently when  D  = 
0. Subsequently,  the equation is  linearized  with  a logarith  
mic transformation.  The  transformation  ln( H  -  1.3) is. how  

ever, highly  variable  for small  trees. A  more stable  
formulation  (although not  fully compatible with  small  diam  
eters) is  obtained  by  adding a small  constant.  X.  to  the  diam  
eter D  (see Lappi 1991.  1997). This  constant  can be  
interpreted as  the expected difference  between  the diameter  

at  ground level  and  that  at breast  height. The  resulting incon  

sistency  is  not very  serious  because  it  occurs with  small  

trees,  which  are not  very  important in  the  prediction of stand  
volume.  The  inconsistency  can be corrected,  for  example,  by  

substituting breast height for all  predicted heights below  
breast  height. 

Equation 1 was  linearized  with  respect  to parameters a  
and  b  by  logarithmic transformation.  The linearized  equation 
with the  additional  X  parameter  is  

[l] H= a eT
h" 

Variable  n  Min. Mean Max 

T 249 3  65 155 

249 1.1 19.5 35.1  

G 249 0.1 19.6 41.5 

D 18 056 0.3 16.1 49.9 

H 18 056 1.4 13.5 32.7 
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where  A = ln(fl). B =  b.  and  C  =  c.  Attempts to  fit eq.  2  into  
the  data showed  that  it  is  clearly overparametrized. since pa  
rameters B and  C are  strongly  correlated.  Furthermore, it  

cannot be  linearized  with  respect  to  parameters C  and  X. To  
overcome these  problems, fixed  values  were given to those  

parameters. To  find  the  values  of X  and  C.  eq. 2  was fitted  
for each  stand  and  measurement occasion  using different  
combinations  of X  and  C.  The value  of  X  giving lowest  mean 
error variance  over all stands and measurement occasions  

was selected as the fixed  value of X. For each  stand and 

measurement  occasion, the  value  of C giving the  lowest  er  
ror  variance  with the  fixed  X  was selected  from among  all  
the tested values.  The fixed value  of C was  calculated  as the 

mean of these  measurement-occasion-wise  optimal values.  
Some  attempts were also  made  to  estimate  a trend  curve for  
C  as a  function  of stand  age  or as Lappi (1997)  did.  but  
no clear  trend was  found.  To reduce  the correlation, both  be  

tween the estimates of A and B and between their  estimation  

errors, the diameter  was  reparametrized as 

where  X=  1  cm.  C  =  1.564. and  Dln  is  diameter  of tree  /in  
stand  k  at time  t. The model  using this  parametrization is 

The  parametrization (eq. 3) also  provides interpretations 
for  parameters  A and B. A is  the  expected  logarithmic height 
of a tree  with  a diameter  of rf*" n  + 10 cm, which  is roughly 
the  height of the  trees  with  the  largest D in  the  stand.  (The 
mean difference  between  maximum  D and  c/"11  in  the model  

ing data  was  6.8  cm.)  B is  the  expected  difference  in  the  log  
arithmic height between  trees  with  diameters  of 30 and 
10 cm. Lappi  (1997)  used  quite a similar  parametrization. 

except that  he  had  a  fixed  diameter  instead of (/[""  +lO  in  
the numerator. 

Stage of  development 

In  this study,  the term stage of development is  used  to  de  
scribe the  maturity  of the stand.  The  stage  of  development is  
a nonquantitative, abstract variable  defining at which  state  
the stand  is  in  its  development process.  The  growth pattern  
of a stand  depends strongly  on the stage  of  development. Be  
cause the  stage  of development cannot be measured,  it can  

not be  used  as an independent variable  in  the  H-D  model.  
Some measurable stand characteristics are. however,  

strongly  connected  with  the  stage  of  development and  can be  
used in  the  model  as if  they were equivalent to  the  stage  of 

development. Such variables  are. for example, stand  age,  
(/•"". and  quadratic mean diameter. 

Usually the models  describing stand development are 

bound  to stand age. i.e.. stand age is used  to describe  the 

stage of  development. However,  with  the  modeling data in  
this study this does  not work  well.  There  are two main  rea  

sons for  this.  First,  shade-tolerant  tree  species  may  regener  

ate and  survive  for dozens  of  years  as undergrowth in a 
mature forest.  Secondly,  the  stand development process  from 
a sapling stand to a mature one takes  longer on poor sites 

Fig. 1. Estimated asymptote of logarithmic H-D  curve (parame  

ter A in  eq. 2)  versus stand age (a)  and weighted median diame  

ter (dGm) of the stand (b) in the estimation  data.  The estimates 

of any one stand are connected by lines. 

than  on rich  sites.  These  phenomena are visible  when  fitting 
eq. 2 for  each  stand  and  measurement  occasion  to  study  the  
trends  of parameter A, which is  interpreted as the  asymptote  
of the H-D curve (the fixed values  were used  for X and C). 

In  Fig.  In one can see old stands  for which  the asymptote  of 

the  H-D  curve develops very steeply, as it  would for a 

young sapling stand.  This  implies that  the  spruces  in  those  
stands have  either  grown very slowly during their first de  

cades or that  they arrived in  the  forest later  than  the  trees  
used in the  determination  of the stand  age.  In addition,  the 

age  at which  the trend  in the  asymptote of the  H-D  curve 
levels  out  (i.e.,  the age at which  maturity is  reached)  varies  

[2] In (H)  = A -  B(D + K)' c 

r
-, 

_
 (Dm  + 

C

 ~  (d'-! m  +lO + 
'  k " (lO  + +  X)-^  

In (Hi.t j) Akt Bktxktj  +  E kti  
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markedly among  forests. When  the  asymptote is plotted 

against  stand </"" (Fig. 1  b),  all  stands  seem to  follow  the  
same  trend,  except  for a stand-wise  shift  in  the  level  of the  
curve. Thus, the development of the  H-D curves was  linked  
to the stand  </,m . 

Trend  functions  for the parameters  of the H-D  curve 

The  first step in the  analysis  was  to  study  how  the  param  

eters  A and  B develop during stand  development. This  was 
done  by  first estimating these  parameters  (A and  B)  sepa  
rately  for  each  stand and  measurement occasion  and  then  

studying what  kind  of  trend function would  be  appropriate to  
describe  the  trends of the  parameters  as a function of cf  '"\ 
At this  stage,  the  interest lay  in  finding the  form of the  trend  
functions  and  estimating  their nonlinear  parameters. These  
trends and  parameter estimates would  later  be written into  

the  original  H-D  equation, and all  linear  parameters would  
be  estimated  at  once. The  modeling was  carried  out  with  R.  
an open  source environment  for  statistical  computing (see  

http://www.r-project.org;  Venables  and  Ripley  2002), where  
the  package nlme  (Pinheiro  and Bates  2000)  was  used  to fit 

nonlinear  and linear  mixed-effects models.  

Equation 4 was fitted for each  stand  at each  measurement 

time  with  ordinary  least  squares.  (It  would  later  be  fitted  us  

ing weighted least  squares (WLS) because the residuals  
were  heteroscedastic  with respect  to tree diameter; at this 

stage,  however,  it  was ignored.) The  obtained  estimates  of 

parameters A and  B  were plotted against  if "".  Parameter  A 
seems to  have  a clear  sigmoidal trend,  while  parameter  B ap  

pears  to be  linear  with  respect to cf'm (Fig. 2). A four  

parameter Champman-Richards equation (Richards  1959; 

Zeide  1993)  was  fitted  for  parameter  A, and  a simple  linear  
model  was fitted  for  parameter  B: 

The  p  parameters  are fixed.  ak and are the  sland-level  
random  parameters,  and akl  and p (7  are the residuals,  all  of 
which  have  an expectation of 0 and  constant  variance.  This  
notation  is used  for residuals  because they will  be  later  inter  

preted  as measurement-occasion-level  random parameters.  It  
might have  been  reasonable  to  assume  that  parameters  other  
than  intercepts  were also  random,  but  to  avoid  convergence  
problems in  the estimation  of the  final  model,  no  additional  

random  parameters  were used.  

The complete model 

In the  previous  sections,  the  model was estimated  in two 
stages.  Firstly,  eq.  4  was fitted  for  each  measurement occa  
sion  to obtain the estimates  of parameters  A and  B.  and  sec  

ondly. the trend  functions  (eqs. 5 and 6) of estimated  

parameters A  and  B were fitted.  The  next  step  in  the  analysis  
is  to  write  the  trend  equations into  eq.  4.  The  final model is  
obtained  by  fitting the  resulting model  to the  original data  

set.  The  complete model  equation is 

Fig. 2.  The weighted least  squares  estimates of parameter  A  
(a)  and B (b) in eq. 4 plotted against weighted median  diameter 
(dGm) of the stand. Estimates of the same stand at different 

points in time are connected with lines. The continuous solid 

lines  are the expectations of the trend  equations (eqs.  5 and 6).  

where  x kll  is  the  parametrization (eq. 3)  of tree  diameter,  and 
z kl  is  the nonlinear  part  of eq.  5. i.e..  (1  -  e~To re  
tain the linearity of the model,  the  previously  obtained  esti  
mates  of nonlinear  parameters were used  as fixed  constants,  
and only  linear  parameters were reestimated.  The  parameters  
are the  same as in  the  trend  functions  shown previously:  p Ur  
P2„.  /?|,,. and  p2i,  are fixed population-level parameters,  ak

 
and (i t. are random stand-level  parameters,  akr  and  |3 h

 are 
random  measurement-occasion-level  (i.e..  time  level)  param  
eters  nested within stands,  and  E /7 , is  the  tree-level  residual.  
The  random  parameters  and  residual  error  are assumed to be 

normally distributed  with  an expectation of  0 and constant  

[s] A
kt
 = p UI

 + p 2a(  1- e )"" +ak + a
k

, 

[6] B
kt = p ]b + p 2hci<; m  +  p (. +pb 

[7] In  (Hkli )  =  ( Plu  +ak  +  akl)  +  p 2u : k,  

-  (Plb + +  skt)Xhj  -  P2bdkt m
-

X
kti  +  E hi  
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variance.  The  covariances  cov(ak ,
 p t

.)  and  cov(a
t.r (3 t.,)  may 

be  nonzero,  but  cov(a k .  ak ■)  =  cov(akr  atr-)  = cov((3 t ,  p r ) = 

cov(P {,, 
= cov(e

t„, 
= 0  for  k  *  k',  t * t',  and  i  * i'.  

The  terms in  parentheses in  eq. 7 are the  intercepts  of 
trend  functions.  The  model  assumes  that  the  expected  devel  
opment  of the  parameters  follows the fixed  part  of  the  mod  
els in eqs. 5 and 6. However,  because  of the stand-level  

random  parameters  a(. and (3t,  in  any  one stand  the level  of 
the  trend  functions  may  differ from the expected trend. In  
addition,  the  measurement-occasion-level  random  parame  

ters  imply  that  at  a certain  point  in  time  the  parameter  values  
may  further  deviate  from the  expected trend  function  of the 
stand.  

When  the trend  functions  were estimated,  the  heterogene  

ity  of residual  variation  was not taken  into  account.  How  
ever. examination  of the  standardized  residuals  against  tree  
diameter  showed  that the  variance  of P

w
 is  about  constant 

only  with  trees  with  a diameter  of less  than  7.5  cm; for  

larger  diameters  a clear  decreasing trend  was  seen. Similar  
trends  in  variances  have also  been  found  in  previous studies  
(Lappi 1997;  Jayaraman and  Lappi 2001),  and  Lappi  (1997) 

gives  a good explanation for  this:  with  large trees,  physical  

stability  requirements do  not  leave  as much room for  height 
variation  as with  smaller  trees.  The  following power  func  
tion was used to describe the  variance of the error term: 

where  a and  8 are  fixed  parameters.  With  the software used  
it  is  possible  to  estimate  the parameters  of the  variance  func  
tion  simultaneously with  the  other  model  parameters. 

A primary estimate  for  the  power  parameter  8 was ob  
tained  by  fitting eq. 7  to  the  data.  The  estimate  was  8 =  0.53.  
which  homogenized the variance  well.  This estimate  was 
used  to predict the  residual  variance  for  each  tree. The  pa  
rameters  (A and B) of the H-D curves of each stand  and  

measurement  occasion  were then reestimated  with WLS. us  

ing inverted  predicted variances as WLS  weights.  Further  
more. the  parameters  of  trend  functions  in eqs.  5  and 6  were 
reestimated  using these  new estimates  of parameters  A and  
B.  The  obtained  nonlinear  part  of the  trend  function  in  eq. 5 
was z k,

 = (1-e
-0065

)
09W. Finally, eq. 7 was fitted again 

using the  obtained  value  of :kr  At this  stage,  new estimates  
for the  parameters  of the variance  function  were also ob  
tained. 

Fitted models  

One  requirement for  the model  was that  it  should be  able  

to utilize  the  measured  stand variables  when  predicting  the  
H-D curve. To avoid  a situation  in  which  some of the mea  

sured  stand  characteristics  cannot be  used in  predicting  the  
stand  H-D  curve, models using different  levels  of informa  
tion  were estimated. The  additional  predictors  were assumed  
to affect the  H-D curve by  shifting the  level  of  the  trend  
functions,  i.e.. it  was assumed  that />,„ = b

ltd + b
Ur
\

tll  +  
b

2ir
x

21
,  + 

....
 and p u

, = + b
Ur
\

lh
 + b

2
,
r
x

2h
 + where  .v,„. 

A,/,. ,v 2 „. .v2;,.... are the  additional  predictors, and  blhr  b„
h.  b UI.  

/>,, are fixed  parameters  to  be  estimated.  These  equations 
were written into  eq. 7,  and  the  whole  model  was  estimated  

using restricted  maximum  likelihood.  Only  significant  pre  
dictors at  the 1% level  of significance were included in the  

final  models; the predictors were found  by backward  
elimination.  The  additional  predictors  tested were stand  co  
ordinates.  altitude  above  sea  level,  cumulative  temperature  

sum. soil  type, dummy variable  for  thinned  stands,  basal  
area.  age.  basal  area of spruces,  and  cf'm of spruces.  

In Table 2 the  estimated  models  are  presented from the  
crudest  model  (I) to the  broadest  model  (V). Model  I is  the  

basic  model with  only  tf' m  as  a predictor. In model 11. site 
fertility  class  and  geographical variables  are included.  These  
variables  take  into  account  the large geographic variation  in  
the data:  the maximum  distance  between  stands  in the mod  

eling data was  845 km. the altitude  above  sea  level  varied  
from 10 to 360  m, and  the  cumulative  temperature sum var  
ied  from 725  to 1342.  The  geographical variables  are always  
known  in  practice (they can be  derived  from the  stand  loca  

tion.  for  example,  using generally available  maps), and thus  
they are  also  used  in all  other  models.  A commonly assessed  
stand  characteristic  is  also the  site  fertility  class,  which  is  in  
the model  as a dummy variable  for  mesic  and  poorer sites.  
These  variables  do not cause any harm  if  the  H-D  curve of  a 

stand  is  predicted for  several  points  in  time,  since their  val  
ues do not change over  time and  thus need  not be measured  

at each  point in time.  

In  addition  to the  predictors  of model  11, models lII—IV  
include  different combinations  of stand variables.  In models  

111 and IV. stand characteristics  are assumed to be measured  

only  as  mean values  of the  dominant  story,  not  by  tree  spe  
cies. The difference  between  models  111 and  IV is that stand 

age is used  in  model  IV but  not in model  111. In  model  V the  

stand  characteristics  (G  and  cf" n
) are also  assumed  to be  

measured  by  tree  species, but  as seen in  the  models,  these  
variables  provide only a small  amount of additional  informa  

tion:  basal  area of spruces was not  significant  at all.  and  </""  
of spruces  was  a significant predictor only for  the  A parame  
ter. 

The  estimated  parameters of the  variance  function  vary  

only  slightly, and  the residual  variation  in each  model  is  
about the  same.  The  differences  among  models  appear  in  
how  the  explained variation  is  shared  between  the fixed  and  
random  parts  of the models.  Model  0 was estimated  to dem  

onstrate  and  compare this  division.  The  only fixed parameters  

in  model  0  are parameters />,„ and i.e.,  the  trend functions  
of A  and B are assumed  to be constant,  and all variation  of the 

variables  A and  B is  described  by  the random  part  of the  
model. In the other models,  this variation  is shared  between  

fixed predictors and random  parameters.  The  proportion ex  

plained by  fixed  parameters  of  a given model  can be  calculated  
as R:  = 1 -  (variance of random  parameter  in  the  given  model/ 
variance of random  parameter in  model  0).  For  example, for  
stand-level  random  parameter  ak in  model  I, it  is  calculated  as 
R2 ,  =I  -  var(a

(  i)/var(a
(  () ). This  statistic  has  been  calcu  

lated for both stand-level  and measurement-occasion-level  

random  parameters  in Table 2. One should  note, however,  

that the  value  of R 2 does  not  behave  consistently  in  all cases,  
because  the  correlation  between  random  parameters is  high, 
and the estimated  share of the variation  between  stand and  

measurement occasion varies  slightly among models.  

In model I. the estimated  trend  functions  explain 85% of  

the stand-level  variation  and 95% of the  measurement  

occasion-level  variation  of the  maximum height in  the  stand  

(parameter A). With parameter  B the proportion is clearly  

[B] var(e t .„)  = cr{  [max(Dt,,,7.s)r
6

)
2  
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Table 2. Estimated parameters  of eq. 7  with different predictor combinations. 

Note: Only significant parameters  at the 1%  level are included  in  the models. The predictors are as follows: yk, the north coordinate in the Finnish 

G, total basal area  of  the stand (100  nr/ha):  (f" m. median of basal  area  weighted  diameter distribution  of the stand (100 cm): (f"m of spuces (100 cm):  
which takes a value of 1 with stands on mesic or poorer  sites, a and 5 are coefficients of the variance function (eq. 8). 

lower,  which  is  due  to  the  large within-stand  variation  of  pa  
rameter  B when  compared with  that  of parameter  A (Fig. 2).  
One  can see two clear  improvements  in  the  calculated  R~ 
values  among the models.  The  first one occurs between  

models  I and  11, i.e.,  when geographical variables  and  site  
fertility class  are included  in  the model.  In this case,  only  
the  stand-level  R1 increases  markedly because the additional  
fixed  predictors  in model  II are constant  in  a certain  stand,  
and thus they do not explain the variation  at the  
measurement-occasion  level.  The  second  improvement be  
comes evident  when  the  most commonly measured  stand  
characteristics  are included, i.e., between  models  II and 111. 

In  this  case, the  improvement occurs  also  at  measurement  
occasion-level  R2 because  values  of the additional  predictors  

vary among  measurement occasions. Stand age also  im  

proves the  fit slightly, and  it  should  be  used  when  it has  
been measured.  On  the other hand, measurement of  stand 

characteristics  by  tree species is clearly not useful.  

Application of the  model  

When  the  model  is  applied in  predicting the  H-D curve of 
a  stand,  both  the fixed  and  random parts  can be  utilized.  The 

prediction  of the fixed  part  is  obtained  simply  by  placing the  
measured  values  of the predictors  in the appropriate model  
of models  I-V. If no tree  heights have  been  measured, the 
expected  value  0  is  used  for  all  random  parameters, and  the 

prediction  of the  fixed  part  is the  predicted  H-D  curve. 
If tree  heights have  been  measured,  they can be  used  to 

predict  the random  parameters of  the  stand  and measurement  
occasion  levels.  The random  parameters  of a  linear  mixed  

model  are predicted using  the  best  linear  unbiased  predictor  

(see  Searle  1971;  McCulloch and Searle  2001). which  has  
been  applied, for example,  by Lappi (1991. 1997) in the 

context  of linear  mixed-effects  models in  forestry.  Assume  
that  we have  n measured  trees,  possibly  from  different  points 
in  time.  The measured  log-transformed heights are  in  vector  

ynx |  and  their  expectation  in  n„ x] .  The  measured  heights are 
described  by  the model 

where  Z„x,„  is  the  model  matrix  of the  random  part of the  
model. bmxl  is  the  vector  of  the  random  parameters, and  e„xl  
is the  vector  of prediction  errors. In  addition,  we  define  the  
variance-covariance  matrices of  the  random  parameters  and  
residuals  as var(ft)  = D mx „, and  var(e) = R„ x„, respectively.  
The  number  of random  parameters to be  predicted (m) de  

pends on how  many  measurement occasions  we have  in  the  
stand.  For  example, if we are predicting the  random  parame  

ters  of  eq.  7in stand  kat  measurement times  t t and  t  2.  in  = 6  
and  h'  =  (a k,  P( ..  a(li , ). A numerical  example of 
predicting the random  parameters is presented in Lappi  
(1991).  

When random  parameters are predicted,  the  estimates  of 
matrices  D and  R are  needed.  The  estimate  of  D (denoted by  
D) can be  built  up from  the estimated standard  deviations  

and  correlations  of the  random  parameters  (Table 2). The es  

timated error  variances  of the measured  trees can be calcu  

lated  using the  variance  model  in  eq. 8, with  the  estimated  
parameters  5 and  CT from Table 2.  These variances  are placed 
on the  diagonal of matrix  R. Because  prediction  errors  of 
different trees are assumed to be uncorrected,  the non  

diagonal elements  of R  are zeros. The  best  linear  unbiased  
predictor of the  random  parameters  is  calculated  as 

When  the random  parameters are calculated,  the estimated 

variance-covariance  matrices R and D are substituted for 

matrices  R and  I), and  the prediction of the fixed  part  is  sub  

stituted for  (he  vector  (a.  For  further  details see.  for  example. 
Lappi (1997) and  Searle  (1971. pp. 458-462). 

To  obtain  calibrated  H-D curves,  the  predictions of  the  
random  parameters from the  vector  b  are placed in  eq. 7.  
Note  that  the  predicted stand-level  random  parameters can 
also be  used  to predict the  H-D  curve at a  development 
stage  for  which we do  not  have  measurements. In this  case, 
we just  place  the  predicted  stand-level  random  parameters  in  

eq. 7 and  use  the expectation 0 for  the  measurement  
occasion-level  parameters.  

Calibrating the  H-D  curve  with  measured  heights 

[9] y = |jl +  Zb +  e  

[lo]  

Population level  (fixed  part)  Stand level 

Model Pin  Phi Pit Plb  SD (at) SD (pt ) 

0 2.91 0.692  0.278 0.136 

1 1.40 2.15 0.384 0.0157  0.108 0.0958 

II 9.45 -  0.94 lyk  -  0.1 19alt -  0.121 dd + 0.0324soil 2.12 0.656 -  0.028 ldd 0.0171 0.0891 0.0867 

III 8.39 -  0.8 lyk  -  O.lOlalt -  0.0999dd + 0.46G + 
0.0213thin + 0.0367soil  

1.82 0.646 -  0.0262dd 
-

 0.305G 0.0196 0.0869 0.0842 

IV 11.79 -  1.24yk -  0.127alt -  0.138dd + 0.369C -  

0.106cPm + 0.0210thin + 0.2287 

1.92 2.33 -  0.225yk -  0.0379dd -  
0.338G +  0.00 128f 

0.0167 0.0813  0.0800 

V 11.81 -  1.24yk -  0.1 28alt -  0.139dd + 0.36C -  

l.OSrf0"1 + 0.2247" + 0.332d G"u + 0.0201  thin  

1.93 2.33 -  0.226yk -  0.0381dd -  

0.339G +0.1 28r 

0.0167 0.0812 0.0800 
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uniform coordinate system, 1000 km: alt, altitude above sea  level  (100 m); dd, cumulative temperature sum  (average  of  the years 1951-1980)  (100 x dd):  
T, stand  age at breast  height  (100 years);  thin, dummy variable indicating  if  the stand has  been thinned within the last  10 years:  soil, dummy variable 

Utilizing the  longitudinal character  of the model  

When  the  longitudinal  character  of  the  model  is  applied in  

practice,  the  fixed  predictors  of  the  model  need  to  be  known  
at each point in  time under consideration,  i.e.. both  at the  

point! s )  used  in  predicting random  effects and  at  the  point at  
which  the  H-D curve is  predicted.  The  longitudinal charac  

ter of the  model  can be  utilized  in  two  different  ways:  (/)  us  

ing height measurements  from several  points in  time to 
predict the H-D curve at a certain  point  in  time  and  
(/'/')  making predictions  into  the  future.  In case /. the  use of 
the  model  is straightforward:  just  place the measured  stand 
variables  into  the  appropriate model and,  if  heights have  
been  measured,  predict  the  random  parameters  using eq. 10. 
In  case ii. the  situation  is  a bit  more complicated, because  
usually one wants  to  predict the  H-D  curve for  some partic  
ular  point  in  time,  not  for  the  time when  (/"" reaches  a cer  
tain value. Therefore,  we need to  predict c/"" first and  use it  
in  the  prediction of the  H-D  curve. 

Figure  3  shows  that  the  variation  in  cf-' m in  stands  at any  
particular  age is considerable.  Among-stand variation  is,  
however,  greater than  within-stand  variation.  In  addition,  in  

any one stand,  the  change in  cf' m is stable  with respect  to 
stand age.  This is a typical situation,  in  which  a longitudinal 
analysis  can be  applied (Diggle et  al.  1994).  and  it  was  used  
to model the  development of  cf' m as  a function  of stand age. 
In  any  one stand  the growth rate  seems to be  almost  linear  
except for  a slightly concave trend.  Hence,  a simple  power 
function seems to fit the  data  well.  The  power  function  was 
linearized  with  a logarithmic transformation  to obtain the 

model 

where u and  v are fixed  population-level parameters.  Uku
k  is  a 

stand-level  random  parameter,  and  T
kl  is  the  breast-height 

age of stand  k  at time  l. The  parameters  it k  and  ekl  are as  
sumed  to  be independent and  normally  distributed  with  ex  
pectations of 0  and  variances  a;, and  a;,, respectively.  The  
transformation  linearized  the data rather  well,  with the ex  

ception of a few  very  variable  young  stands. The likelihood  
ratio  test showed  no significant  difference  between the  
model  in  eq.  1  I and a  model without  intercept n: thus, the 

Fig. 3. Stand weighted median diameter (dGm)  versus  stand age 
in the modeling data. The lines connect measurements of any  

one stand. 

intercept was dropped from the model. The parameter  esti  
mates were r = 0.727.  a;, = 0.372

2 .  and  a;, =  0.0751
2.  The  

estimated standard  deviations  show that the major propor  
tion  of the  random  part  is  due  to the  among-stand variance  

component  as opposed  to the  within-stand  component.  
In practice, stand  age  and cf' m  are always  known at  least  

for  one point in  time,  and they  can be  used  to  predict  the lo  
calized  stand-level  </"n

-age  curve. We  just need  to predict 
the stand-level  random  parameter  u k  with  eq. 10 using the 
observed  age(s)  and  </*""(s)  of the  stand. The  localized  curve 
is then  obtained by writing the  prediction  of  the  random  ef  
fect  u k into  eq. 11. and  the obtained  curve is  used  to predict  
the if-"" at a certain  future point  in  time.  Furthermore,  the  
predicted df,m is  used in predicting the  H-D  curve at the 
time point under  consideration.  

[ll] ln(4; m )  =II  +  V  ln(  T
k ,)  +uk  +  e

k
, 

Measurement-occasion level Variance function 

corrtaj., p(
.)  Rf< SD (a„)  SD (|3„,) corr(a

fa ,  pt(
)  RA Rl  o 8 

0.718 0.0793 0.0247 0.346 0.408 -0.539 

0.269 0.848 0.501 0.0168 0.0223  -0.681 0.955  0.188  0.401 -0.534 

0.592 0.897 0.591 0.0170 0.0225 -0.642 0.954 0.171 0.402 -0.535 

0.698 0.902 0.615 0.0139 0.0211 -0.484 0.969 0.271 0.402 -0.535 

0.657 0.914 0.652  0.0117 0.0222 -0.49 0.978  0.196  0.404 -0.537 

0.653 0.915  0.652 0.0114 0.0222 -0.517 0.979  0.192  0.404 -0.537 
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Fig. 4. An example of predicted H-D  curves using model 11. 
The solid  lines are the predicted population curves at different 

ages,  with no  measured  heights used. The  broken  lines are the 
calibrated curves obtained using three height measurements: 

height of weighted median  tree at age 37 (•) and two height 

measurements at age 42 (�). The small symbols show the obser  
vations for the stand at age 42 (�) and at  age 52 (+)  (to  make  
the plot more legible, the observations  at age 37 are  not shown).  
In the prediction of the 52-year curve,  the predicted dGm was 
used; the true value at  this age was 27.4 cm.  

Application example 

As an application example, take  a look  at  a 42-year-old 
stand  selected  from the  modeling data.  It was assumed  that  
stand  </""  and  the  height of two  sample  trees (one  small  and 
one large) had been measured  at the age of 42 years.  Fur  

thermore.  the diameter  and  height of the tree with the me  

dian  basal area had been measured  at the age of 37 years.  

Using these  measurements,  the  predictions  of the  stand  H-D 
curve at ages  37.  42. and  52 years  were made. 

To exemplify  making predictions about  future  develop  
ment. stand  </"" at age  52 was  predicted  using the model in 

eq. 11. The  random  effect u t  was  predicted  with  eq. 10 using 
the  known s at ages  37 and 42. Equation 10 was used  

also  to predict  the  random  effects of the H-D curve (i.e..  the  
stand effects and  measurement-occasion-level  effects for 

ages 37 and  42 years) with  the  three  measured  sample trees.  

The  calibrated  curves were calculated by placing the pre  

dicted  random  effects in  eq.  7 and  using an expectation of 0 
for  the effects that  are not predicted. 

The  curves obtained  both  by  using and  not  using the mea  
sured heights are shown  in Fig. 4. The  calibrated  curves 

match the  observed  heights very  well,  while  the  uncalibrated  

population-level curves,  at least  for  this  stand,  clearly  under  
estimate  height. In this case, the predicted  </""  at age 52 
(22.0  cm)  was clearly below  the true value  (27.4 cm), but 
the produced prediction of the H-D  curve was  good. 

whereas  using the true  value  would  have  produced clear  
overestimates  for heights.  

Discussion  

In  this  study.  <f' m  was used  to  describe  the  stage  of devel  

opment  of a stand  instead  of using the  traditional  stand  age.  
This  definition  produced quite nice  trend  functions  for the 

parameters of the H-D  curve as a function  of d° m,  while  the  
use  of stand  age  would  have  led  to considerable  problems 
with  the trend  functions.  This  is because the  development of 
the  H-D  curve depends strongly on the development of ct"" 
(Fig.  1), but stand  age does  not  explain d 

0
 well  (Fig.  3).  

When  the  development of the H-D  curve was linked  to  if"". 
the  scatterplots in  Figs,  la  and  3  did  not  harm  the  estimation  
of  the model.  The  use of d°m instead  of stand  age makes  the 
model  efficient in  the cases where  <f'm is  known both  at the 

current  point in  time  and  at the  points  at  which  the height 
measurements  are made. This is because  in this case, the 

stand-level  trends  in  the  parameters are precisely  predicted 
and  the  current  stage  of development is  known.  It should  be 

noted  that  </"n is  measured  even in  the  most  parsimonious 
inventories  in  Finland,  and  it is even more often  known  than 

stand  age.  The  use  of </,m  instead  of stand  age  also  elimi  
nates  the  problem of how  to define  stand  age  in  heteroge  
neous forests. 

With Norway spruce,  which is  a rather  shade-tolerant  tree  

species,  the  difference  between  stand  age  and  stage  of  devel  

opment  is  evident  (Fig. la).  One  reason for  the  difference  is  
that  shade-tolerant  trees  may  stop their growth  in  shelter  but  
later, when  the amount  of light increases,  continue their  

growth as if  they were young  trees. Another  reason is that  
site  properties  affect the  age  at which  maturity is  reached, 
i.e.,  trees  on poorer sites  grow  more slowly  but  for  a longer 
time  than  trees  on rich  sites.  The  second  argument is  true  
also  with  shade-intolerant  tree  species  (see,  e.g.. Fig.  3b  in  
Lappi 1997). Thus, it  could  be useful  to also  link  the H-D 

curves of  those  tree  species  to mean tree size.  One should  

note  that  the variable  used  as mean  size  need  not  necessarily  
be  cf' m

:  one can use  any variable  describing the mean tree 
size  in the  stand. 

A problem caused  by  the definition  used  for  the  stage of 
development is  that  we cannot straightforwardly  predict  the 
H-D  curve at  some particular point of time in the  future. In  

stead.  the predictions are made at the point in time  at which  

cf m has  reached  a particular value.  If one wants  to  make  the  
predictions  for  a particular  point  in  time, the  development of 
jiim nee(js  t0 5e predicted first. The  known  stand  age(s)  and  
</""(s), however,  make  it  possible to estimate  a stand-level 
(/""-age curve by calibrating eq. 11. which  can be  used  to 
predict ef' m at any  point  in  time. 

When the stage  of development is defined using </*"". it  

may  in  some cases move "backward".  Take,  for  example, a  
stand where there  are small  spruces  in a mature forest. Be  
cause the spruces  are in  a  stand  at  a "late"  stage  of develop  
ment. the predicted H-D  curve develops like  that of a  
mature forest. When  the  sheltering trees disappear, e.g.,  be  
cause of a harvest,  cf" n decreases,  and  the  stand  returns  to an 

"earlier"  stage of development. Therefore,  the  predicted H- 
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D  curve begins to develop as for a young forest, which  

seems  to be  realistic  according  to Fig.  la.  

The  approach used  in  this study  was  a modified  version of 
the  analysis  of  Lappi (1997). Using this  approach it  was  pos  
sible  to  estimate  a model  that  fulfills the  requirements set at  
the  beginning of this article, and it  seems to  be  an appealing 

approach for modeling the  H-D  curve from longitudinal 
data. The  estimation of model  parameters  with modern  sta  
tistical  software  is  easy,  and  imbalanced  data and  missing 
observations  are no longer harmful.  An  important property  
of the  random-parameter approach is  that  the measured  

heights can be used to localize  (calibrate) the curve for  a 
new stand  and  at  a  given point  in  time.  One  should  note that  

localizing  can be done  even using just  one measured  tree  of 

any  diameter  from any  point in  time,  and  no representative  

sample is  needed,  as is  the  case, for  example,  in  the  model  
of Lynch and Murphy (1995). Furthermore, in  calibration, 

the  within-stand  and  among-stand  variation  observed  in  the  
modeling data are used  in a statistically  correct  and  well  

grounded manner. 

The  same precision  in the  prediction  can be  achieved by  
utilizing either  the fixed part or the random  part of the  
model.  This  means  that  one can either  measure all  possible  
stand  characteristics and use model V, or, more likely, mea  

sure some  sample trees and  d°m and  use the  more  parsimoni  
ous model I or 11. In the second  approach, the prediction 

error decreases, while  the number  of trees increases, and  

with  a sufficient  number  of  height  sample trees, both  ap  
proaches result  in  equally accurate  (but not the same) predic  

tions.  However,  when applied outside  the  estimation  data,  
the first approach is more  likely to produce biased  predic  

tions  than  the  second one. This  is  why  Lappi  (1997) recom  
mends the second approach if  the  prediction is equally 
accurate  with  both  approaches. The  second  approach appears  
more straightforward,  because  it  does  not  utilize  somewhat  

fuzzy  correlations  between  stand  characteristics  and  the H-  
D  curve,  but  improves the  prediction  of  the  H-D  curve with  
measured  heights and  diameters.  The  second  approach  is  
useful  in  optimizing collection  of  forest  data under  some ac  

curacy  constraints,  because the precision  of the  prediction  
can be  improved by  increasing  the  number of  measurements.  

Naturally, the  approaches can also  be combined,  i.e..  models  
lII—V can be calibrated  with  measured  heights, if all  the 

fixed  predictors are known  at each  point in  time. 

The data were grouped according to the stand  and  the  
measurement occasion, where the measurement-occasion  

level was nested  within stands. Lappi (1997) used  an addi  

tional  tree-level  grouping to take  into  account the  fact  that  
the  same trees  are measured  several  times  and  the  prediction  
errors  of the  same tree  at different  time  points  are correlated.  
The  tree-level  random  parameter was  nested  within  stands  
but  crossed  with  the  random  parameter of the measurement  

occasion  level.  The  random  parameter of the  tree  level was  
also  tested  in  this  study,  but  estimating the model  became  so 
slow  that  it  was abandoned.  This  is  not likely to have  a con  

siderable  negative effect on the  fit. because  in  the  modeling 
data, the number  of measurement occasions  of one tree was  

low (on  average  3.05) when  compared with  the  number  of 

trees  (5919). In applications,  the  tree-level  random  parame  

ter would  be used  only  if the  same tree  were measured  at 

Fig. 5.  Expected H-D curves at  different  stages  of development 
obtained with model 1.  

different  points in  time.  This  is,  however,  very exceptional 
in  practical  inventories, and  even if  it happens, no one 
knows  that  it  was  the same tree  because  the  sample trees  are 
not marked. 

The  trends  of  the  parameters  are associated  with  the  way  
in  which  stands  develop. Parameter  A was interpreted as the  

height  of  the  largest trees  in  the  stand,  and  the  trend  of  A is  
hence  closely  related to the height growth of the  (largest) 
trees  in the  stand.  Growth in  parameter  B. on the  other  hand,  
moves the  curve  to  the  right  in  the  coordinate,  which  means 
that  it  is  associated  with  diameter  growth. This  phenomenon 
can be  seen  in  Fig.  5, where predictions  of the  expected  H-  
D  curves  at different  stages of development are plotted:  in  

early  stages  of development, the  expected curve  is  both  mov  

ing  to the right,  and  the  asymptote  is  rising, while  at late  
stages  of development, the  asymptote  is  rising  only  slightly, 
but  the  curve  is  still moving  to  the  right  as rapidly  as  before.  
The  convex trend  function of parameter A  thus  implies that  
height growth is most rapid  in early stages  of development 
and  decreases  as  the stand  gets  older,  while  linear  growth in 
B indicates  that  diameter growth continues  steadily  up to a 

fairly  old  age.  These  trends  agree  with  our knowledge  on 
tree growth pattern  and  indicate  that the trends  of A and  B 

are logical.  
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HEIGHT-DIAMETER MODELS FOR SCOTS PINE AND BIRCH  IN FINLAND 

Lauri Mehtätalo 

Finnish Forest  Research Institute, Joensuu Research Centre, P.O. Box  68,  Fin-80101 Joensuu, 

Finland. 

Abstract. Height-Diameter  (H-D)  models  for two  shade-intolerant tree species  were estimated 
from longitudinal  data.  The longitudinal  character of  the  data was  taken into account by  estimating  
the models as  random effects models using  two nested  levels: stand and measurement  occasion 

level. The results  show  that the parameters of  the H-D  equation  develop  over  time but  the devel  

opment rate  varies between stands.  Therefore the development  of  the  parameters  is  not  linked to  the 
stand age but  to the median diameter of the basal-area weighted  diameter distribution (DGM). 
Models were  estimated with  different predictor  combinations in order  to  produce  appropriate  mod  
els  for  different situations. The estimated models  can  be  localized for  a  new  stand using  measured 

heights  and diameters, presumably  from different points  in time,  and the H-D  curves  can  be pro  

jected  into the future. 

Key  words:  longitudinal  analysis,  random parameter, mixed model,  stand development 
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Introduction 

Many  studies have presented  models for the 

prediction of  the height-diameter  (H-D)  rela  

tionship  of  a  stand. Most of  these models use  a  

representative sample  of height  sample  trees 

from the target stand (Curtis  1967. Arabatzis & 
Burkhart 1992, Huang  et al. 1992, Lynch  & 

Murphy 1995. Fang  & Bailey  1998) and  the 

main focus in  these studies lies in finding  the 

best  functional form of the model. However, in 

many situations,  the sample  size needed is  too  

large  for practical  purposes. This is because 

height  measurements  are  time-consuming  and  
in  many situations,  for example  in a  stand wise 

inventory  for  forest management planning,  

only  one  or  a  few sample  trees  from  a  stand can  
be measured. Therefore, in recent  studies.  

models that  can predict  the H-D relationship  of 

a stand using  few or  even  no sample  trees  have 

been developed  (Lappi  1997. Eerikäinen 2003,  
Mehtätalo 2004).  In these models, the accuracy  

of  the prediction  can be improved  by  enlarging  

the number of  height  sample  trees.  

The H-D relationship  of a stand is not  stable 

but develops over  time (Curtis  1967, Flewel  

ling & de Jong  1994, Lappi  1997). However, 
Mehtätalo (2004)  observed that  with a shade  

tolerant tree species  (Norway  spruce, Picea 

abies)  the  age at which maturity  is  reached 
varies from stand  to stand and gave two rea  

sons  for this. First,  after a long  stay  as under  

growth. shade-tolerant trees may suddenly  

begin  to grow  as rapidly  as  young saplings  and  

secondly,  the development  of a  stand from a 

sapling  stage to  a  mature  stand  takes  longer  on  

poor sites than on rich  sites,  i.e. the develop  
ment  rate  varies between stands. On the other 

hand, stands that are  reaching  maturity seem to  

have almost equal  mean tree  size.  Thus, instead 

of  linking  the development  of H-D  relationship  

with stand age, Mehtätalo (2004) linked it with  

basal area weighted  median diameter of the 

stand (DGM). The latter of the reasons  given 

above for the variation in the age at which 

maturity  is reached might  hold also  with shade  
intolerant tree species.  Therefore, this study  

presents  an analysis  similar to that in Mehtätalo 

(2004)  but  with two shade-intolerant tree  spe  

cies. 

The aim of  this  study is  to  model the H-D re  

lationship  of Scots  pine  (Pinus  sylvestris)  and 
birch (Betula  pendula  and Betula pubescens)  in  

Finland. The methodology  is  the same as  was 

used in Mehtätalo (2004),  but here it is  applied  

to shade-intolerant tree species.  Methodologi  

cally,  the  aim is  to study  if the development  of 

the H-D curve  of shade-intolerant tree species  

should also be linked with mean tree  size rather 

than with stand age. Furthermore, the aim of 

this  study is  to  show  that the  model formulation 
used  in Lappi  (1997)  and Mehtätalo (2004)  can 

be  successfully  applied  with several tree  spe  

cies with only minor changes  in the model 

formulation. 

Data 

The modeling  data are a subset of a larger  

dataset collected by the Finnish Forest Re  

search Institute (Gustafsen et al. 1988). The 

sample  stands of  the data were selected ran  

domly  from those sample  plots  of  the 7
th
 Na  

tional Forest Inventory which  are situated on 

mineral soils  and forest land. Three fixed  

radius sample  plots  were established in all 
stands.  Each  sample  plot  was measured 3 times  
with 5  year  intervals. In addition, when estab  

lishing  the plots,  the growth of  the trees  over  
the previous  5 years was  recorded in some  
stands. Thus, the number of measurement  oc  

casions for each stand varied from 1 to 4. 

In this  study, the three plots  were  combined 

to  obtain the data  of a stand. Only  stands  with 

on average more than 10 Scots  pines  / meas  
urement occasion were selected to the Scots  

pine data and stands  with more than 8 birches / 

measurement  occasion to the birch data. All 

trees  of  other  tree  species  than the one in ques  

tion were removed from the data  of any  given 

tree  species.  However, before doing this. DGM 

and basal area  were calculated from all  trees 

belonging  to  the dominant story of the stand. 

The Scots pine  data included 46338 observa  
tions from 497 stands (1774 measurement  

occasions)  and the birch data 2979 observa  

tions from 61 stands (190 measurement  occa  
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Table  1. Some characteristics of  the modeling  data.  

sions).  Table 1 summarizes the modeling  data  

sets  of  this study.  

Model development  

The model is the linearized form of the ex  

ponential  function (Korf function),  which in 

many studies has  been  found good  for the de  

scription  of the H-D  relationship  of  a stand 

(Zakrzewski  & Bella 1988, Huang  et al. 1992, 

Arabatzis & Burkhart 1992, Fang  & Bailey  

1998). The model formula is 

where H is  tree  height  and  D diameter at breast 

height and A, B  and C and X are parameters. 

The parameter  X is  interpreted  as  the expected  
difference between diameter at ground level 

and that at breast height.  It is  an alternative for 

the more commonly  used subtraction of the 
breast height  from the height;  for more discus  

sion on the matter  see  Lappi  (1991. 1997). 

Trying to fit model (1) to  the data showed 

that the model is clearly overparametrized.  
Thus, the first step  in the  analysis  was to re  

duce the number  of  parameters to be estimated. 

To do this, model (1)  was  fitted separately  for 

each stand and measurement occasion using  
different combinations of parameters  C  and X. 
The value of X giving  the  lowest  mean error  

variance over all stands and measurement  oc  

casions was selected  as the fixed value of  X. 

The selected values were  7  for  Scots  pine and  6  
for birch. For each stand and measurement  

occasion,  the value  of C  giving  the lowest error  

variation was  selected and these values were  

modeled as  a function of DGM to fit a heuristic 

trend function  for parameter C (see Lappi  

1997). The trend function of C for Scots  pine  

was C=o.9B23+o.os7s3*DGMbut for  birch no 

trend was  found and  thus the constant  C=1.809 

was used. 

The model for tree i  in stand k  at time t is 

where parameters Ak, and Bkl need to  be esti  

mated. The next step in the analysis  was to 

study  whether DGM is  a  better descriptor  of  the  

stage of  development  than the stand age. If  it 
is. then in the subsequent  longitudinal  analysis  

(Diggle  et al. 2002) rather than using  stand age, 

we use DGM as the variable describing the 

development  of  the stand. 
Model (2) was fitted separately for  each 

stand and measurement  occasion. The  obtained 

parameter estimates were plotted  against  stand  

age and DGM (Fig. 1). Only  the estimates of 

parameter A are  shown here: it is interpreted  as  
the asymptote of the H-D curve  of a stand, i.e. 

it is the maximum tree  height of the stand. In 

any one stand, parameter A seems first to de  

velop rather rapidly  and later level out  at some 

level, which can  be interpreted  as  the maxi  

In(H)  =  A-B(D  +  A)~
C  

,

 (1) 

In ( H
kn )  = Atr  -  Bkt  ( D

kr,  +  a  y
c
" +  stu ,
 (2) 

Scots  pine birch 

«=1774  S II o 

min mean max  min  mean max 

stand  age  at breast  height,  years 1 52 166 6 58 126 

y-coordinate, km  6652 7135 7568  6658  7111  7520  

x-coordinate, km  204 479 716 214 478 654  

altitude, m 5  151 320 2 146 300 

temperature sum,  dd 658  982 1339  696 998 1350 

DGM, cm 2 15.6 38.6  2.5 16.5 32.1 

basal area.  m2
/ha 0.1 13.7 40.8 0.1 15.1 35.3 

DGM  of tree  species,  cm  2 15.8  38.5 2.4 13.4  31.8 

basal  area  of tree  species,  nr/ha 0.1 12.6 37.8 0.1 7.1 30.3 
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Figure 1.  Estimates  of  parameter A of model (2)  against  stand  age (a and  b) and  stand  DGM  (c  and d) in  Scots 
pine data  (a and c) and birch data  (b and  d). Hie  estimates  of  the  same stand  at different points  in  time  are 
connected  by  lines.  

mum height  of a  tree of  that tree species  grow  

ing  at that site (Figures  la and lb). This  level  

varies considerably  between stands. Another, 

more interesting  feature is that in  those stands  

where the maximum height is low.  the overall 

development  of the stand takes  longer  than in 
those stands where the maximum height is 

high. In  other words, the development  rate of 

parameter A varies between stands,  being  

higher  in stands where  trees get higher. This 

implies  that  two  stands of equal  age are  not  at 

the same stage of  development.  Plotting  the 

parameters against  DGM (Figures  lc and Id) 
shows that the  form of the trend as a function 

of DGM  is  quite similar in  all stands except  for 

a vertical shift in the level  of the curve.  This 

implies  that  stands with equal  DGM are at the 

same stage of  development,  but.  because of site 

properties,  location, etc.. the asymptote of the 

H-D curve is not  equal  in  all stands  with any 

given  DGM. Thus,  a  good  strategy  in modeling  
is  to link the H-D  relationship  with DGM in  the 

model and take the vertical shift in the parame  
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ters  into account  with stand-specific  predictors 
and random parameters. 

The estimates of  A and B and their estimation 

errors  are strongly  correlated. To reduce these 

correlations,  the diameter was reparametrized  

as 

The model using  this parametrization  is 

Parametrization (3) provides  interpretations  for  

the parameters of (4):  A is  the expected  loga  
rithmic height of a  tree with  a diameter of 

DGM+IO and Bis the expected  difference in 

the logarithmic  height  between diameters of 30 
and 10 cm. 

The next steps in the analysis  were as  fol  
lows [for  more  in-depth  description,  see 

Mehtätalo (2004)  and Lappi  (1997)]:  

1. Model 4 was fitted with OLS for each 

stand and measurement  occasion. 

2. Appropriate  trend functions for the esti  

mates of  parameters A  and B were searched for 

and fitted as multilevel random effects models 

using  stand and measurement  occasion  levels. 

3. The trend functions were written into 

Model 4. The  nonlinear parameters were used 

as fixed constants and the linear parameters 

were re-estimated. An appropriate  model for 

the residual variation as a  function of tree di  

ameter  was  defined and fitted concurrently.  

4. Step  1 was repeated  using  WLS, where the 

weights  were calculated as  the inverse of the 
variance function obtained in  step 3. Further  
more, steps  2  and 3 were  carried out  again.  

5.  The intercepts  of the trend functions  were 
assumed to depend linearly on some stand 

variables. Different predictor combinations 

were used to  obtain an appropriate model for 

different practical situations. The assumed 

dependencies  were written into the model, the 
model was  fitted and nonsignificant  predictors  

were  dropped  stepwise.  

The analysis  was carried out with the R  

implementation  of the S-language  (Chambers  

1998, Venables & Ripley 2002. see 

http://ww.r-project.org), where package  nlme 

(Pinheiro  & Bates 2000)  was  used  for the ran  

dom effects models. 

Fitted  models 

For both tree species,  an appropriate  trend 
function for parameter A was the Chapman-  

Richards function (Richards 1959) 

and for parameter B, a linear function of the 
form 

was used. In (5)  and (6),  pla,
 p2a p3a,  P-ia, Pn, 

P2b and p3b are  fixed parameters,  ak  and pk 
stand-level random parameters and akt  and fik,  
the residual errors, which are later interpreted  

as measurement  occasion level random pa  

rameters.  In the birch model, the parameter p3b 

was  0.  

The complete  model for both tree  species  is 

where zk,  is the nonlinear part of (5)  and the 

parameters are as  explained before. It is as  
sumed that the random effects are normally  

distributed with a mean  of 0 and constant  vari  

ance. Covariances  cov{ak.fik) and cov(akhfikl ) 

may be nonzero but all other covariances be  

tween the random effects and the error  term are 

zero. The error term ;:k ,,  is assumed to be nor  

mally distributed with a variance that depends  

on tree diameter according  to the formula 

(Dk ,l+ A)-
C

 ~(DGM kI  + lO  +A)'
0

 

(10  +  /1)  
r

 -(30  +A)  
c

 

In (H
m )  = A

k,-Bk ,xhi
+£

kh .
 (4) 

•4  =Pu  +  P 2a(l  -e'
pM )"'  +«*  +a

h ,
 (5)  

B
h

 ~P\b  +Pi b
DGM

h
 +p,bDGM

h

2  +/?,  +ph
 (6)  

HHk,)={Pu +a
k  +«

fa
)+P2„"to-\PU  +A  +A,K,  (?)  

-P^DGM^-p^DGM^x^+e^,  
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Figure 2. Stand  DGM against stand age  in a data  

including all  stands  of  the  original  data.  Subfigure a 

shows the  relation  on the  arithmetic scale  and sub  

figure b shows the  relation  between  logarithmic 
DGM and  age.  The solid  line  in subfigure b  is the  
expected development obtained with  the  fixed  part  

of  model (12). 

where A=4.5 for Scots pine and A-9.5 for 
birch. 

The estimated nonlinear part of the trend 

function of A  was  

for Scots  pine  and  

for birch. In step  5.  the fixed parameters  pla 
and plb were written as  linear combinations of 
the predictors used in the model, i.e. 

Pxa  =K  
a
 +b

l
 
a

X
la
 +K X

2a
 +- and 

P\b ~ b
 X

\b
 ~^"^2b X

2b
 "'"•••? Where Xj

a,
 Xjfo  

x2a.
 xy„... are  the additional predictors  and b()a .  

b
0b • bla , b,are their coefficients. 
The estimates of the  fixed parameters  and 

variances of  the random parameters are in 

Tables 2  and  3. For  both tree  species,  5  models 
with different predictor combinations were 

estimated. Model I  uses  only  DGM as  predic  
tor.  In model 11. variables describing  the geo  

graphical  location are  included. Models 111 and 

IV include, in addition to the predictors  of 
model 11, stand characteristics measured from 

the whole growing stock and furthermore, 
model V includes  those measured by  tree  spe  
cies. The difference between  models 111 and IV 

is  that model IV includes stand age. Only  pre  
dictors with statistically  significant  coefficients 

were included. The significance  level used  was 

1% in Scots  pine  models and 5%  in the models 
for birch. The significant  predictors were 

searched stepwise,  refitting the model and 

eliminating  the least significant  parameter until 
all remaining  coefficients were significant.  

One can see  that the  variances of the random 

parameters decrease when the number of pre  
dictors increases. This happens  because the 

variation explained  by the additional fixed 

predictors belongs  to  the random part in the 

more sparse  models. 

Prediction  of  DGM in the future 

In  the  prediction  of  the H-D  curve of a stand 

at a given point  in time, the DGM  of the stand 

at that point  in  time needs to be known. With 

current  and past  points  in time this is not  a  

problem,  since in Finnish inventories DGM is  a 

very commonly measured mean stand charac  

teristic. However, in  order to  be able to  predict  

var(%)  = CT2  (max(Dto
,A)) , (8) 

_

fc= (l (9) 

Z
h (10) 
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the H-D curve  in the future, a model for the 

DGM was estimated. Since the DGM used in 

the models is the DGM of all trees species  

belonging  to the dominant canopy layer, one 

and the same model can be  used with Scots 

pine, birch and Norway  spruce. To construct  

such a  model the modeling  data comprised  

both the full data used  in  this  study  and that 

used in Mehtätalo (2004). 

As  seen in  Fig.  2a, the DGM of  a stand with 

a given  age varies considerably,  especially  with 

older stands. However,  the change  in DGM is 

stable with respect to stand age. Thus,  if we 

have an  observation of stand DGM at some 

age, we can predict  the DGM at some other age 

rather well. The nonlinear trend in  Fig.  2a was 
linearized by  taking  logarithms  from DGM and 

age to obtain the model 

where Tkt is  age of  stand  kat  time t, u and  v  are 

fixed parameters, uk and vk  are stand level 
random parameters and ek,  is  the residual. The 

random parameters and residual error were 

assumed to be normally distributed with a 

constant  variance. The parameter estimates 

obtained were w=0.1113(5.e.=0.05411) and 

v=0.6999 (5.e.=0.01342), var(«*)= 1.060
2

,
 

var( vk )= 0.2681
2

.
 cov(u k,vk)= 0.2693 and 

var(ek,)=  0.05280
2.  The linearized model seems 

to fit the data well  (Fig.  2b).  When utilizing  the 
model to predict  the DGM of a  stand with a 

given age. the stand  effects uk  and vk are  pre  

dicted using the best linear unbiased predictor  

(e.g. Searle 1971: 458-462,  see Lappi  1993, 

1997 and Mehtätalo 2004). 

Application  example  

To demonstrate the use of the estimated 

models, H-D curves  were predicted  with each 
of the models for one stand selected from the 

modeling  data. The stand was  a  35-year-old  

mixed-species  forest with a DGM of  12 cm and 

a basal area  of  22m
2
/ha,  of  which 17.7nr/ha 

was Scots pine and 3.4m"/ha birch.  

Fig.  3 shows the fixed part  predictions  ob  

tained with each of the models in Tables 1 and 

2. The predictions  obtained with the various  
models differ slightly  from each  other. How  

ever,  for both tree  species  all models give  too  
low heights in this stand. 

Fig.  4a  demonstrates the effect of localiza  
tion on the predictions. Models II and  V for 

Scots  pine  were localized for the sample  stand 

by  predicting the stand and time effects  of the 

H-D models using  one  measured height sample  

tree  from  the stand. The prediction  was  carried 

out with the best  linear unbiased predictor;  the 

equations  have been presented many times  

before (Lappi  1993,  1997, Mehtätalo 2004)  and 

are  thus not  presented  here. The localized mod  
els  give  much better  height  predictions than the 

fixed parts  only. Note that  in Fig.  4a the local  
ized  models are  very  close to  each other  even  if 

the fixed part predictions  are not.  This  is be  

cause the information of one  measured sample  
overrides the information of the additional 

fixed predictors  of  model V. This demonstrates 
the somewhat self-evident fact that it is more  

efficient to improve  the prediction  of the H-D 

curve of a stand by measuring heights and 

diameters than by  measuring  the covariates of 

model V. 

Fig.  4b demonstrates the projection  of  the H- 

D curve  of  a stand  into the future. The meas  

urements  were  made at the age of  35 years and 
the H-D curve  is projected to the age of 45 

years.  This required  knowledge  about the DGM 

at the age of  45 years, which was predicted  

using  model (12).  The random effects  of  model 

(12) were predicted  with BLUP using the 

known DGM at the age of 35 years to obtain a 

stand-specific  DGM-age  -curve.  It was  used to 

predict  the DGM of the stand at the age of  45 

years. The projected  H-D  curves  were calcu  
lated  using  the predicted  DGM. The projections  

obtained with the localized model are again  

clearly  better than the predictions  of the fixed 

part  only  but they  seem to  be underestimates of 

the height.  In fact,  all localized models in Fig.  

4 seem to give  slightly underestimated heights.  
This is because the expected  H-D curve  is so  

far from the observations that one measurement  

does not  move it far enough.  Using  more than 

one sample  tree  would reduce the bias of  the 

predictions.  

\n(DGM h )=u+vln(7^) +ti
k
 +  v

t
ln(r

fe
) +e

to
 , (11)  
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Figure  3 Predicted  H-D  curves  of  Scots  pine (a) and  
birch  (b) in  a 35-year-old mixed pine-birch stand  

selected  from the  modeling data.  The  predictions are 
calculated  with  each  of the  models I-V using only  

the fixed part of the model.  The marks show  the  

observed  heights  and diameters. 

Discussion  

In this study  H-D models for Scots  pine  and 
birch were estimated for practical  use in 

Finland. The models can be used to predict  the  
H-D relationship  of  a stand with known DGM. 

If other stand characteristics  than DGM are  

measured, they  can be used through  selecting  

from models I V the model that  best suits  

the situation. Measured height-diameter  pairs 

Figure 4. Predicted  H-D  curves  of  the Scots  pines  in 
the  stand  of Fig.  3. Dashed  lines  are  the  predictions 

of  the models obtained using the  fixed  part  only  and 
solid  lines  are localized  using one measured height  

diameter  pair  at  the  age  of 35  years  (the big solid 
ball  in  the figures).  Subfigure a shows  the  predic  

tions  obtained  using models  II and  V  at  the  age  of  35  

years, hi  subfigure b.  the  H-D  curves  after  10 years  
growth are predicted with model  11. Small  symbols  

are  the  observations (•  at the age  of  35  years  and � 

at  the  age of 45  years).  The DGM  of  the  stand  at  the  

age  of 35  years  was 9.6 cm  and  the  predicted  DGM 

at the  age  of  45  years was  11.5 cm.  

can be used in localizing  the model for a target 

stand and.  due to  the longitudinal  character of 

the model,  information from any  point  in time, 
i.e. any stage of development,  can  be utilized. 
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Furthermore, the H-D curve of a stand in the 

future can be predicted,  but this  requires  the 

prediction of  DGM  at that  point  in time.  These 

properties  of the model are  discussed in Lappi  

(1997) and Mehtätalo (2004).  

Mehtätalo (2004)  observed  that the devel  

opment of the H-D curve  of a shade-tolerant 

tree  species  (Norway  spruce) depends  on mean 

tree  size  in the stand rather than on stand age. 

The present study  continued this work and 

showed that  the observation  made with shade  

tolerant tree species  is true also with shade  

intolerant tree species.  The reason  for this is 

that the site properties  affect the development  

rate  of a forest stand, so that stands on  poor 

sites develop  more slowly  and  for  longer  than 

stands  on rich  sites.  Because of  this,  the models 

predicting the development  of  the H-D curve of 

a stand perform better when mean diameter of 

the stand is  used as the variable describing  the 

maturity  of  the stand instead of  stand age. This 
effect on the  performance  is  probably  also  true 

of models predicting  other things  than H-D  
curves.  Hence, when modeling  the develop  

ment  of  any  stand characteristics,  for example,  

diameter distribution and stand growth,  the use 

of stand age as  the only  variable determining 
the stage of  development  of the stand should  be 

viewed critically. 

However, the method for taking  into account  

the effect of  DGM on the development  of  H-D 

curves  which has been presented  here is  not  the 

only  correct one; other approaches  may also 

lead to equally  good results.  For example,  the 

development  of parameters A and B can be 
linked with stand age and the DGM can be 

used in the prediction  of  the random effects  as 

Lappi  (1997)  did  in his models 6  and 7.  Thus, 
if both  DGM and age are known, it is  not  obvi  

ous  that the development  of H-D curves  should 

be linked with DGM and linking  it with age 

may work as  well, if the DGM is taken into 

account in the models. However, using age 

only  will not lead to as  good models as  will the 

use  of  DGM  only  and  thus, if one of  them must 

be chosen, it  would be preferable to use the 

DGM. 
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Abstract. This  study  presents  models for the expected  error  of the total volume and saw timber 

volume due to  sampling  errors  of stand measurements.  The measurements  considered are  horizon  

tal  point  sample  (HPS) plots,  stem numbers from circular plots,  sample  tree  heights,  sample  order 
statistics  (i.e.  quantile  trees)  and  sample  tree  heights  from the  previous  inventory.  Different meas  
urement  strategies  were  constructed by  systematically  varying  the numbers of  these measurements.  
A  model system  developed  for  this  study  was  utilized in a  dataset of  170 stands  to  predict  the total 
volume and saw timber volume of each stand with each measurement  strategy.  The errors of  these  

volumes were  modeled using  stand characteristics and  the numbers of  measurements  as  predictors.  
The most  important  factors affecting  the error  in the total volume were the numbers of HPS plots  

and  height  sample  trees.  In  addition, the number  of  quantile  trees  had a  strong effect  on  the error  of  
saw  timber volume. The  errors were  slightly  reduced when an old height  measurement  was  used. 
There  were significant  interactions between stand characteristics and measurement  strategies.  Thus 

the  optimal  measurement  strategy  varies  between stands. It was demonstrated how constrained 

optimization  can be  used to  find the  optimal  strategy  for any  one stand.  
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Introduction 

Forest management planning  in Finland is 
based on inventory  by  compartments  of the 

target area. In the inventory,  basal area,  basal 

area median diameter (i.e., the median diame  

ter  of the basal area weighted  diameter distri  

bution. DGM), height  of the DGM-tree, stand 

age and site fertility class of  each stand are 

estimated with the aid of a few subjectively  
located horizontal point  sample  (HPS) plots.  

Using these data, estimates of  the diameter 

distribution and  height-diameter  curve  (H-D  

-curve)  of the stand are produced.  These esti  

mates  are  used to build up a set of  representa  

tive trees  (i.e. a sample  from a  diameter distri  

bution),  which are  then used  in the simulation 

of alternative management schedules for the 
stand. 

The system described above produces, in 

most  cases,  a  reasonable description  of  a  stand. 
There are. however, many things  that are not  

taken into account  or that  could be done better 

in the  system.  One weakness  is  that, due to the 

subjective location of sample  plots  and visual 

assessment of stand characteristics,  the sam  

pling errors  cannot be  calculated using the 

standard formulas from sampling  theory.  Thus, 

the accuracy  of stand measurements is not  

known and cannot  be taken into account  in the 

predictions.  Furthermore,  no assessment of the 

accuracy  of the predictions  can be given. Be  

cause the system includes chains  of models 
with nonlinear transformations, random errors  

of the predictors  may cause bias in the predic  
tions (Gertner 1991. Kangas 1997. Kangas  

1999). Another weakness is  that  the combina  

tion of measurements  is fixed. This combina  

tion may not  be  optimal  and thus reallocation 

of the measurement  resources  (i.e..  the meas  

urement  time) to different measurements  could 

improve  the accuracy  of  the stand description  
and growth estimates. For example.  Kangas  
and Maltamo (2000  c) suggested  that  substitut  

ing  height  sample  trees for HPS plots  might 

improve  the accuracy  of  volume predictions.  

Kangas  and Maltamo (2002) studied the use  
fulness of different measurements  in the esti  

mation of  total volume. They  utilized a calibra  

tion (or adjustment)  algorithm (Kangas  and 

Maltamo 2000  a)  to predict  the stand descrip  
tion using several measurement  strategies  and 

estimated  models  for the prediction  variance of 
stand volume as  a  function of  basal area,  DGM 

and stem number of the stand. The best meas  

urement  strategy  varied between stands  and 

depended  on stand characteristics.  However, 

their model did not  take into account  the sam  

pling and  measurement  errors  of the stand 

characteristics. According  to previous studies,  

the standard errors  (including sampling  and 
measurements  errors)  of  partly subjective  and 

visual stand assessments  may  even be more 

than 30% of  the true values of the stand  char  

acteristics (Mähönen  1984. Pigg  1994. Kangas  

et ai. 2002, Kangas  et ai. 2004.  Haara and 

Korhonen 2004).  In this study,  in  order to be 
able to  control the errors  of stand measure  

ments, sample  plot measurements  are  assumed 

to  be accurate  and the sample  plots  are  located 

randomly  in the stand. Thus, the stand meas  

urements  include only  sampling  errors, which 

are controlled by  varying  the number of meas  

urements  carried out in a stand. 

Response  surfaces  (Khuri  and Cornell 1987) 

can be used to study  the effect of one or  more 

experimental  factors on the outcome  of  a  com  

plex  system.  For example,  they  are used in 

studying  the effect of errors  in predictors on 

the response of a process-based  forest growth 

model (Gertner  et al. 1996).  The idea is  to vary 

systematically  the values of the experimental  
factors and calculate the outcome  of  the system  

using  each  combination of them. The response 
surface is  a regression  model that has the ex  

perimental  factors as  predictors  and the out  

come as  the  dependent  variable. The values of 
the experimental  factors  are  selected so  that the 

model matrix is orthogonal.  The approach  of 
this study  resembles the response surface ap  

proach.  However, the analysis  is not  carried 

out  in a single  stand but  in a  dataset consisting  

of several stands and the stand variables  are 

also treated as experimental  factors. Thus, the 

model matrix of  the surface is  not  orthogonal.  

However, the estimated surface can be used in 

the prediction  of  responses,  in a  similar manner 

as the ordinary  regression  model. 

This study  presents  a model that  can be used 
in the optimization  of  stand  measurements  in 
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an  inventory  which is  carried  out  by  compart  

ments and where sample  plots are located 

objectively.  The  model predicts the expected  

error  in the predicted  total volume and saw 

timber volume of the stand using the stand 

characteristics  and the accuracy  of different 

stand measurements  as  predictors.  The model 

can be used in comparing  different measure  

ment  strategies  and in finding  the optimal  one 

for  a single  stand. The limitations of the tradi  

tional calculation system  made it necessary  to 
build up a new  one for this  study. The aims of 

this  study  were: (a)  to build up  a new system  

for producing a stand description  for forest 

planning,  i.e. a  system  that is able to utilize 

different kinds of  information measured with 

different levels of accuracy,  (b)  to estimate a 

model for the prediction  variance of total vol  

ume and  saw timber volume using  stand  char  
acteristics  and the accuracy  of  the stand  meas  

urements  as  predictors,  and (c)  to show  exam  

ples  of how this model can  be used in antici  

pating the prediction variance of a stand 

description,  i.e. in allocating  the  measurement  
time to  different measurements  optimally.  

The system  for producing  the  stand 

description  

A model system  for  the prediction  of stand 

description  was developed.  The input of the 

system  includes the values of the stand vari  

ables (basal  area.  DGM, age. site  fertility class,  

information about thinning  during the past  ten  

years, stand coordinates,  temperature sum, and 

altitude), the variance-covariance matrix of 

their errors (including  sampling  and measure  

ment errors),  any number of height sample  

trees from any points  in time (i.e., trees with 
known diameter and  height) and any number 

of sample order statistics  (i.e., trees with 

known diameter and  rank at the  sample  plot). 

The sample  order statistics are later called 

quantile trees. The output of the  system  is a 

stand description that  includes the basal area, 

basal area diameter distribution and H-D  curve  

of the stand; this output can be used in the 
calculation of volume, saw timber volume, 

dominant height,  etc. 

The R-implementation  of the S language 

was  used in implementing  the system  on a 

computer (R Development  Core Team 2003). 

However, some parts  of the system  (numerical 

integration, constrained nonlinear optimiza  

tion) could not be done with standard R  
functions and IMSL-subroutines were  used 

(IMSL 1997).  They  were linked to R. 
The production  of the stand description 

comprises  the  following  four stages. Since all 

parts  of  the system  have been published  else  
where, the algorithms  are  not  presented  here in 

detail. It is not  necessary to understand the 

algorithms  in order to  grasp the concept as  a 

whole and therefore skipping  the following  

four subsections will not  prevent the reader 
from understanding  the rest  of  the article. 

Stage  1:  Predicting the expected  diameter 

percentiles  

The expected  diameter percentiles  are pre  

dicted with the models of  Kangas  and Maltamo 

(2000b).  The models use  a percentile-based  

approach  (Borders  et al. 1987), predicting  the 

logarithmic  oth,0
th

,
 10

th

,
 

...,
 80

th
.
 90

lh
,
 95

th and 
100

th percentiles of the basal area diameter 
distribution. The  fixed predictors  of  the model 

are  DGM, age. basal area  and dummy variable 

for site fertility. The model for  the diameter 

percentiles  of  stand m is  of  the  form 

where B is  the matrix of fixed parameters, xm 

is  the vector of predictors  in stand m.  and  e,„  is  
the vector of residuals in stand m with an ex  

pectation of 0 and variance-covariance matrix 

D. Assuming  that the model is  correct  and the 

parameters are known, the fixed part of the 

model gives  the conditional expectations  of  the 

logarithmic  percentiles given x„„  and the re  

siduals e,„ are the deviations of the true  loga  
rithmic percentiles of  stand m from their condi  

tional expectations,  later called stand effects.  

The conditional expectations  of the percentiles  

of stand m are  predicted  using  model (1).  The 

continuous distribution function is  obtained by  

linear interpolation  on these predictions. 

In(d,„ ) = Bx,„  +  e,„  = E (lnd|x,„ )  +  e,„ . (1) 
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The measurement  errors  in the estimation 

data  were so  small that their effect on the pa  

rameter  estimates is neglected. However, when 

utilizing the models in real forest  inventories, 

the measurement  and sampling  errors  are  much 

larger. Because of  the nonlinear transforma  

tions,  these errors  cause bias in the predicted  

diameter percentiles  and affect the variance  
covariance  matrix of the error  term, which is  

needed later. The  effect of errors  in predictors  

on the predicted  distribution is shown in the 

Appendix,  as  are the derivations of  the  cor  

rected  predictions  of the percentiles  and  the 

error  variance-covariance matrix. The formulas 

given  in the Appendix  (Equations  A  9  and  A  10) 

were  used for prediction.  

Stage  2: Localizing  the diameter distribution 

for a  stand  

If  one  has  measured the diameter of  a  sample  

tree and,  in addition, knows its rank r  in a 

sample of  size  «, the measured diameter is the 

r
Ol  order statistic  of  the sample,  D

r:„.
 It  can be  

shown (Mehtätalo  2004  d) that an order statistic  

of an  i.i.d. diameter sample  is  an unbiased 

estimate of a  certain,  say  100/ A  diameter  per  
centile of the stand,  where the value of  p de  

pends  on the diameter distribution of  the stand 

(we  will return  to  this  later). In other  words, 

the diameter of a  quantile  tree. D,.„, is  a  meas  

ured diameter percentile  of the stand. The 
measured percentiles  can be utilized in localiz  

ing  the expected  percentiles  of the stand by  

predicting the stand effects e,„ of model (1). 

The localization utilizes the variance  

covariance matrix of the measurement  error  

(i.e. sampling  error) of the measured percen  

tiles and the variance-covariance matrix of  

stand effects. The former is derived using  the 

theory  of order statistics  (Reiss 1989: 21, 30- 

31, see Mehtätalo 2004 d) and the latter was  

obtained in stage 1. 

The predicted  percentiles  follow model (1).  

Furthermore, the measured percentiles  follow 

the model 

where the logarithmic  measurements are in 

vector  ln(d*
m
), their conditional expectations  

in  vector  £(lnd*|xm ).  the stand  effects  in vector  
e*

m
 and the measurement  errors  in vector  z

m.
 

The measured diameters estimate the 100xp*
lh 

percentiles  of  the stand. The  elements of  p* are 

calculated as  p*  = F x
[E(D

r:
„)\,  where F  is  the 

cumulative diameter distribution function 

based on the conditional expectations  of the 

percentiles  and E(D r:„)  is  the expectation  of  the 
measured order  statistic, which  depends  on  the 
diameter distribution of the stand [for 

derivation of  E(Dr:n), see  Mehtätalo (2004  d)]. 

At this  step, F is  used as the diameter 

distribution of  the stand (we  will return  to this 

later). Vector £(lnd*|x
m

) is obtained by  

interpolation of the predicted logarithmic  

percentiles  for the values of p*. Vectors e,„, 

e*,„ and z
m will be predicted  under the 

assumptions E(e
m

)=E(e*
m
)=E(E

in)=o,  
var(e m)=D. var(e* m)=D*. var(£,„)=R,  

cov (e,„.e* m)=C and cov(  e*
m, £,„)=o, where 

matrices  D.  D*,  C and R are  known:  matrix D 

is  the corrected variance-covariance-matrix of 

the stand effects  of model (1)  (Equation  A  10) 

and matrices D* and C are derived from it with 

linear interpolation.  The matrix R includes 
variances and  covariances of measured order  

statistics,  which can  be derived using their 

probability distributions (Reiss  1989: 21. 30- 

31, see  Mehtätalo 2004 d). 

The aim is  to  predict  the unobserved random 

vector  e,„ using the observed  random vector  

ln(d*„,)-  £(ln d*|x
m

).  The  prediction  is  
based on the theory of linear prediction 

(McCulloch  and Searle 2001: 169. Searle et al. 

1992: 269-275). The best  linear unbiased pre  
dictor of  vector e

m
 is:  

and the  variance-covariance matrix of the pre  
diction error  is 

The localized logarithmic  percentiles  are  ob  
tained by  adding  the predicted  stand effects  to 

In ( d *„)  =  E  (In  d*  |  x,„ )  +  e +e,„  , (2) 

e„,  =  C(D*+R)"'[lnd* ll  -£(lrid*|x
m )] (3)  

var(e,„-e,„)  = D-C(D*+R)- I C. (4) 
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the conditional expectations  of the percentiles  

as  in 

Because we have  obtained a improved  predic  
tion of the  diameter distribution of the stand, 

new  estimates of E(D
r;
„)  and p* can now be 

calculated using the localized diameter distri  

bution (Equation  5).  Therefore, the localization 

is  repeated  until the iteration has no consider  

able effect on the predicted  distribution. 

In some cases,  the localized percentiles  are 

not obtained because the distribution of some  

iteration step is  not  monotone or  the iteration 

does not  converge (see  Mehtätalo 2004  d). In 
these cases,  the localization is  carried out  using  

a reduced set of quantile trees, including the 

same trees as before but dropping one tree 

randomly.  

Stage  3: Ensuring  compatibility  with meas  

ured stand  variables 

The predicted  diameter distribution is com  

patible  with the measured basal area and DGM. 
If  additional stand characteristics  dependent  on 
the diameter distribution are measured, the 

compatibility  is no longer  guaranteed.  Me  
htätalo (2004  a) presented  an algorithm for 

ensuring  compatibility  of  predicted  percentiles,  
basal area. DGM and stem number. In this 

study,  the stem number of trees  with a diame  

ter  of  5  cm or  more was  known. Thus,  a modi  
fication of the algorithm  of Mehtätalo (2004  a) 

was needed in order to take  into account the 

fact  that the stem number was  measured only  

above a fixed  threshold diameter of  5 cm. 

Let d
x

,...,d
M
 be the predicted  

100*/), 100*pj
h diameter percentiles  from 

stages 1 or  2  and F  the cumulative distribution 
function obtained from them with linear inter  

polation,  where Pi,P2,-- Pm-i,Pm are the fixed 
values given in stage 1 (i.e., 0. 

0.10 0.95,1.0). Furthermore, let k  be the 

index of the smallest percentile  above 5 cm. 
The modified algorithm adjusts  only  percen  

tiles d
k ,...,dM .  The adjusted  combination of 

percentiles  and  stand variables is  the combina  

tion that is compatible with and as  close  as  

possible to the original combination with re  

gard to  a specified  distance measure.  The dis  

tance (Equation  6a)  is  defined as  the weighted  

sum of squared  deviations from the  predicted  

percentiles and measured stand variables, 

where the weights  are  the inverse errors  of  the 

percentiles  and stand variables. The compati  

bility requirement  is included in the algorithm  

as  a  constraint (Equation  6d) in which the stem  

number based on the adjusted  percentiles  is 

equated  to the adjusted  stem number. Addi  

tional constraints (Equations  6b,  6c,  6e and 6f) 

are  needed to  ensure  monotony of the adjusted  

percentiles  and non-negativity  of the percen  
tiles and stand variables. The adjusted  set of 

percentiles  and stand variables is found by  

solving  the following  optimization  problem:  

ln(<U = Bx
».
 +e„,  • (5) 
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minimize 

subject  to 

where s,  is  the deviation of  the adjusted  1 0()*p,
lh  percentile  from its predicted  value. a,

2

 the vari  

ance  of  its  prediction  error,  cr  , +l

2

 =  var(t/ +1 -dt j,  c  a  constant  determining  the  minimum allowed 
distance between  adjacent  percentiles,  f/,.< the measured basal  area  of  trees  above 5  cm  calcu  

lated  as -  F  (S)J  G , Ndzs  the  measured  stem  number of  trees  above  5  cm, sN  and  s G  the  devia  
tions of  adjusted  basal area  and stem number from their measurements  and aN

~ and a  J  their error  

variances,  respectively.  The adjusted  percentiles  are  calculated as c/ +s
j for i=k M and ad  

justed  basal area and  stem  number as  G  +  s
Ci
 and +  s

N
.  respectively.  

This  stage produces  an adjusted  set of per  

centiles and stand variables. The algorithm  

also adjusts the values of stand variables,  and  
the distribution is scaled to the adjusted basal 

area  instead of  the original  measured one. 

Note that if the  measurements  of quantile 

trees  or  stem number are  not  available, stages 2 
and  3  can be omitted without causing  any  

problems.  

Stage  4: Predicting  the H-D curve 

A height  model of  Mehtätalo (2004  c)  is  used 

to  predict  the H-D curve  of  the stand. The 

model is called model V in  Mehtätalo (2004 c) 
and it is an application  of model V of Me  

htätalo (2004b)  for Scots  pine.  The predictors  

are basal area. DGM, stand age, site fertility 

class,  stand coordinates, altitude, cumulative 

temperature sum and a dummy variable indi  

cating whether the stand has been thinned 

during the past  10  years. The  model was  esti  

mated from longitudinal  data applying  a mixed 

model approach.  With this  model, the H-D 

curve  can be predicted  using  commonly  meas  

ured stand variables. The H-D model can be 

localized into  a  new  stand using  any  number of 

measured heights  and diameters. The height  

measurements  may be from several points  in 

time, for example,  height measurements from 

the previous inventory can be used. The  local  
ization is based on predicting  the stand and 

time-effects of the models using  the standard 
linear prediction  theory  (see  Lappi  1991. Lappi  

1997. Mehtätalo 2004b). 

~  = i*L  + sp  +is2%-+iG-+i£. (6a) 
i=k <Ji,i+1 <750% °G a

A' 

dt  +s+t  s  < dl+l  + s
(+l , for  i  = k,k  + -1, (6b)  

d
k
 +s

k
 +O.Ol > 5 

,
 (6c) 

4(Grf > 5
 (^ +^)~ 5 l

v

5  (^ +Si), 
-

 
100* 

„
 r f \\ -^

+s
»" (6d)  

+ g 1 1 
(<L+«,�!  )-(<*,■+*,)[(<+*,) (<L+*, + i)J  

G„>  
5
 +s

G
>o, (6e) 

+ s.y  O, (6f) 
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Figure  1. The  map  of  sample plots  and trees  in  one 

stand. The  diameter of  the mark  is  proportional  to 
that of the tree. 

Data 

The primary  dataset  of  the study 

This study  used a permanent dataset col  
lected by the Finnish Forest  Research Institute 

between the years 1976 and 1992 (Gustafsen  et 

al. 1988).  The stands were  a sample  from those 
stands of  the  6 th and 7th national forest invento  

ries that were located on mineral soils and on 

forest land. In  each stand.  3 permanent circular 

plots  were measured 1-3 times with 5-year 

intervals. However,  only  the  first and third 

measurement  occasions were used in this 

study.  The plot  size  varied between stands and 

was determined so that at least 120 sample  

trees per stand were measured in southern 

Finland and 100 sample  trees per stand in 

northern Finland. 

The tree species  and the diameter at breast 

height  were recorded from all  trees belonging 

to the sample  plot. In addition, the height  was 

recorded from approximately one third of the 

trees, i.e. those trees which belong  to the in  

nermost  circle of the plot  (see  Figure  1). This 

study  used only  the Scots  pine  trees of  the data. 

The dataset of this study included those 

stands where no regeneration  cuts  were made 

between the first and third measurement  occa  

sions. the total  volume of Scots  pine was more 

than 10m
3
/ha,  the  total basal  area  of  Scots pine 

was  more  than 4 m
2
/ha and  a  HPS  plot  using  a  

basal area  factor of  1 could be established on 

all  plots  of  the first and third measurement 

occasions  (see  below).  The total number of 

stands  in the  data was 170.  The stand descrip  
tion was predicted for the third measurement  

occasion using new measurements  simulated 

using  the data of the  third occasion and old 

measurements  simulated using  the data of the 

first occasion. 

Data preparation  

In order to  calculate the (assumed)  true  stand 

volume and saw  timber volume of  a stand, the 

heights  of all sample  trees were needed. The  

unknown heights  were predicted using the 
model of Mehtätalo (2004  c) (model  V),  which 

was localized for each stand using  the meas  
ured  height  sample  trees of the third measure  

ment occasion. The saw timber volume was 

defined as the total volume of  those  parts of 
stems that include at least a  4-meter long  log  

with  a minimum top diameter of 15 cm. In the 
calculation of volume, the taper curve  func  

tions based  on diameter and height  were used 

(Laasasenaho  1982).  

The within-stand variances of DGM, basal 

area  and stem number were needed in order to 

calculate the sampling errors  of the stand 

measurements  in the simulation. They were 

estimated from the measurements  generated  on 
the three sample  plots  of  the stand. The gener  

ated measurements  of basal area and DGM 

were made from HPS plots  using  a basal area  

factor of 1 and the measurements  of stem 

number from a circular plot with a radius of 
3.99 m. It was assumed that the true values of 

DGM and basal area could be obtained using  
all  sample  trees of  the stand, i.e. it was as  

sumed that  the expectations  of the  measure  

ments  were known. The within-stand sampling  
variance of random variable X was calculated 

using  the formula 

i[*,-£(x)]
2

 
.  (7)  
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where E(X) is  calculated from all sample  trees 

of  the stand and X f is  the measurement  gener  

ated on the z"1  sample  plot.  The covariance of 

sampling  errors  of  variables X  and Y  was  cal  
culated correspondingly  as 

The radius of the HPS plot  determined by 
the thickest tree  of the circular plot  was  often 

greater than the radius  of  the circular  plot. In 
this case,  all trees  that would have belonged  to 
the HPS plot  were not  present in the data, i.e.  

the circular plot should have been larger in 

order to include all  trees of the HPS-plot.  The 

area of the missing  surface was  calculated by  

subtracting  the area  of the circular sample  plot. 

A
f,  from the area determined by  the maximum 

diameter of the plot, D max ,
 

where A
s
 is  the area of  the missing  surface. To 

obtain unbiased measurements  on the HPS 

plots,  trees were generated  on the surface. The 

stock  density  and  diameter distribution on the 
surface were assumed to  be similar to those on 

the fixed plot and the tree  locations were as  

sumed to be random. These criteria were ful  

filled by  duplicating  trees of the circular plot  

on  the missing surface and placing  them at  
random locations  as  follows (see  Figure  1). A  

random number (from L'(0.1))  was  generated  
for each tree  on  the circular plot.  If it was  less  

than the ratio AJAf, the tree  was  included in the 
surface. If A

s
 was greater than A,, for one or  

more plots  in a stand, the stand was not  in  

cluded in the data. The distances of the dupli  

cated trees from the center  of the plot were 

generated using the formula 

+ •  where ''Dmax  and iy  

are the radii corresponding  to  the areas in 

Equation  9 and C/(0,1) is a random number 
from the uniform distribution between 0  and 1. 

The result of the above calculations was a 

stand specific  dataset  including  the true  values 

of the stand characteristics and the within  

stand variances and correlations of basal area, 

DGM and stem number on the first and third 

measurement  occasion. In addition, the data 

included the (assumed)  true  total and saw tim  

ber volumes of the third measurement  occa  

sion. A short  summary of  the data is  given  in 
Table 1 and histograms  of estimated within  
stand standard deviations and correlations in 

Figure  2.  

In addition to the stand specific  dataset, data  

sets  of  potential  new and old  sample  trees  were 

generated.  The dataset of  potential new sample  

trees  included those trees  of the third meas  

urement  occasion that belonged  to the HPS 

plots  established at the centers  of the circular 

plots.  However, only  the true height sample  

trees  were included, i.e.  the duplicated  trees 

and trees with unknown height  were deleted 

after determination of the ranks and the total 

number of trees on  the HPS plot. For each 

potential  sample  tree, diameter,  height,  rank  on 

the HPS plot  and total number of  trees on the 

plot were saved. The dataset of potential  old 

sample  trees  was  generated  in a similar manner 

from the data of the first measurement  occa  

sion but only  heights  and diameters of  the plot 

specific  basal area  median trees  were  included. 

Table  1. Summaries  of the data. 

Note.  DGM is  the basal  area weighted median  di  

ameter of  the stand. 

t[.Y-£(T)][K-£(}•)]  
cov(x,y)  = . (8)  

A=*{D
m
j2)

2

-A
f , (9) 

min. mean max. 

stand age,  years  22 72 180 

basal  area,  nr/ha  4.5  15.7 28.5 

stem  number. 1/lia  123 1052 3463 

DGM, cm 6.3  16.8 32.0 

total volume, nr/ha 19.7  107.1 308.8 

saw timber volume, nrAia 0 47.4 254.4 
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Figure 2. Histograms of  the estimated within-stand standard deviations of  basal area  (a).  DGM (b).  stem 
number  (c)  and  the  within-stand correlations  of basal  area and  DGM (d)  on the  third  measurement occasion. 

Construction of the data for the  response 

surface  models 

The next  step  in the analysis  was  to define 

the measurement  strategies  and simulate reali  

zations of them for each  stand. These realiza  

tions were then used to study  the accuracy  of 

predicted stand description with different 

measurement  strategies.  
The simulated inventory  of a stand com  

prised various amounts of  the following  meas  

urements:  

1. Measurement of a basal-area and DGM from 

an HPS plot  using  a basal area factor of  1  

(G-plot). The basal area is  then the number 

of  trees  on the plot  and the  basal area  median 

diameter (DGM)  of  the plot  is  determined as 

the median diameter of  the sample.  

2. Measurement of the stem number by count  

ing  the number of trees above 5 cm from a 

plot  with a radius  of  3.99 m (N-plot).  The N  

plots  were assumed to be from different lo  

cations than the G-plots (i.e. no correlation 

between the sampling  errors  of N-  and G  

plots  was assumed)  in order  to derive more 

information from the N-plots and to avoid 

problems in the simulation of different num  

bers of  G- and  N-plots. [see  Husch et al. 

(1982. p. 258-260) for  previous  work on 

combining  measurements  from HPS-plots  

with measurements  from fixed-area plots.]  
3. Measurement of diameter and height  of one 

of the trees  on the G-plot (H-tree).  
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4. Measurement of diameter and rank of one of 

the trees  on the G-plot (Q-tree). 

5. In addition, it  was  assumed that one 10-year  
old  height measurement  from the DGM-tree 

might be available from the stand (old  H  

tree). 

A measurement  strategy  of  the stand  defines 

how many G-plots, N-plots, H-trees,  Q-trees  
and old  H-trees are measured from a stand. A 

total of  384 (4x3x4x4x2)  measurement  strate  

gies were constructed by  varying  systemati  

cally  the number of measurements  carried out 

in a stand between the assumed minimum and 

maximum values that  would be used in  prac  
tice. The number of G-plots was  1, 3, 5 or  7, 

the number of  N-plots 0,  2  or  4. the number of 

H-trees 0,  2,  4 or  6,  the number of  Q-trees  0, 2, 

4 or  6 and the number of old  H-trees 0 or 1.  

When simulating  a realization of a meas  

urement  strategy, the  measurements  of  H-  and 

Q-trees  were selected randomly  from the set  of 

potential  new sample  trees  and the old H-tree 

measurement  was selected randomly  from the 

set  of  potential  old  sample  trees  of the stand.  
The H-  and Q-trees were  the same trees  when  

ever  possible,  which minimized the number of 

diameter measurements  in the inventory.  Since 
the required  amounts  of G- and N plot meas  

urements  could be  more than three, the true 

sample  plots were not  used,  a Monte Carlo 

approach  was  used instead. The measurements  

were generated  by  adding  errors  from a multi  
normal distribution to the true  values of the 

stand characteristics. The plot measurements  

were assumed to  be accurate  and the generated  

measurements  included only  a sampling  error  

component. The error  variances  were obtained 

by  dividing the within-stand variance  obtained 

with Equation  7 by  the number of plots. The  
correlation between DGM and basal area  

measurements  was the within-stand correlation 

based on Equation  8 and their correlation with  

stem number was zero since the measurements  

were assumed to be from different locations. 

When an old height  measurement  was  used  

in the prediction  of  the  H-D curve,  old  DGM 
and basal area measurements  were needed in 

the calculation of the fixed part of  the height  

model. The old measurements were generated  
in a  similar manner as the new ones,  but  as  

suming  that the number of sample  plots  in  the 

previous  inventory  was  5,  i.e.  the variance of 
the generated  measurements  was  the within  
stand variance of the first measurement  occa  

sion divided by  5.  The information about other 
stand variables (age, site fertility,  information 

about thinning,  stand coordinates, altitude,  

temperature sum) was  assumed to be as  accu  

rate  as  in the data of this study  and no meas  

urement errors  were added to them. 

Ten realizations of each measurement  strat  

egy were produced  for  each stand and the 

diameter distribution and H-D curve were 

predicted using the system  described previ  

ously. Using these predictions,  the total vol  

ume and saw timber volume were calculated 

for each realization. The root  mean squared  

errors  (RMSE) of these characteristics were 

calculated from the 10 realizations for each 

stand and measurement  strategy,  thus resulting  

in 65280 (=l7O standsx3B4 strategies)  RMSE 

values of total and saw  timber volumes. The 

RMSE of variable V was calculated using the 

equation  

where Vt is  the i
h
 observation and  V,nie  is  the  

true value of variable V. 

Modeling  the errors 

The RMSE of volume and  saw timber vol  

ume were modeled using  the number of meas  

urements  (G-plots.  N-plots, H-trees. Q-trees  
and old H-trees) and stand characteristics 

(basal area  and DGM) as  predictors. The 
RMSE using  measurement  strategy  j in stand k  

was assumed to follow the model 

where ykj  is  the RMSE, x
kj  includes the fixed 

predictors  and b the fixed parameters. Ukuk  is a  
random effect for stand k,  v

;
 a  random effect  

for strategy  j and ekj  the residual error  for strat  

\w~ vJ  
RAISE , (10) 

= x i7
b + "t  +v j+v n i)  
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egy  j in  stand k.  The  variance of the residual 

error,  var(ej
;), seemed  to increase as  the pre  

dicted value increased and it was taken into 

account  by  using weights in the estimation of 
the model. The weights were obtained from the  

inverse  of a variance function that was fitted 

using an approach  similar to that of Lappi  

(1997).  The  mixed model approach  was used 

to take into account  that the observations of a 

stand are  correlated, as  are  the observations of  

a strategy.  The model was  estimated using  the  

MIXED procedure  of  SAS (Littell  et al. 1996). 

Assuming  that  the sample  plots  and sample  

trees  are a  random sample from the population,  

their effect  on the RMSE should be propor  

tional to l/  V  number of  measurements  .  Plot  

ting the  observations against  the number of 

measurements  showed that this assumption  

holds rather well in the data and transforma  

tions of this form were used. 

First,  a main effects model including only  

significant  predictors  (using  1% level  of sig  

nificance)  was fitted. Plotting  the residuals in  

different groups of fixed predictors  showed  
that the  stand variables had significant  interac  

tions with the amounts  of  measurements.  In  

addition, the number of old and new height  

measurements  interacted. The cross products  

were included in the model and the non  

significant  ones were dropped one by one 

using backward elimination until all terms of 

the model were significant.  The estimated 

models are in Table 2  and Figures  3 and 4 
show predictions  of  the models using  different 

measurement  strategies.  In the estimation of 
the model for RMSE of total volume (RV, otal), 

all 170 stands  were used. Since the volume of 

saw timber was often zero in stands  with a 

small DGM. the models for RMSE of saw 

timber volume (R Vsm,  lmlber ) used only  stands 
with a DGM of more than 13 cm.  To provide  

an idea of the total variation in the data, a vari  

ance component model with the intercept  as  
the only  fixed predictor  was  fitted to the data. 

The estimated variance components of  this 
model are shown in the last three lines of Table 

2. However, note that the total variation of 

single  realizations  is  greater  than the variance 
component because the observations of the 
data are based on ten  realizations. 

The estimated coefficients (Table 2) show 
that  RV, olni and RV

sau
.  

,imber decrease with in  

creasing  amounts of measurements  and de  

creasing  basal area  and DGM. The old  height  

measurement  decreases the RV
totah except for 

situations where the number of new height  
measurements  is  high  and the basal  area  is  low, 
and it decreases the RV

sm
 nmher  if the number of 

new sample  trees is  three or  less.  These trends 

are  realistic and in  accordance with our prior 

hypotheses.  The consistency  of the model 
coefficients was considered by plotting the 

model predictions  against  DGM  and basal area 

using  different values of other predictors. The 

plots  showed logical  behavior  with  different 

values of stand variables and stand measure  

ments. Examples  of these plots  are shown in 

Figures  3 and 4. 

In addition to  basal  area  and DGM,  the most 

important factors affecting  RVlola/  were the 

number of G-plots  and H-trees  (Figure 3).  The  
number of  old H-trees had a slight  effect  on the 

predicted  R  V,„ lai but the numbers of Q-trees  

and N-plots were not  significant predictors  at 
all. The number of N-plots did not affect  

RV
sair
 nwber significantly  either. However,  the 

number of Q-trees was  one of the most impor  

tant  predictors  in the model of RV
smr

 , lm i,er. 

along  with the numbers of  G-plots and H-trees 

(Figure  4). Note that when stand DGM is 

small, the measurement  of one  Q-tree may  

decrease the RV
smv  nmb„ even more than the 

measurement  of seven G-plots. The effect  of 

an old H-tree was,  again,  significant  but  slight. 

The main result with respect to the use of an 
old height  sample  tree is. however, that  it re  

duces RV
tola, (except  for  stands with low basal 

area and some new H-trees)  and RV
:au
 nmher  (if 

the number of new sample  trees  is three or 

less).  Thus, by using  old height sample  trees, 

an improvement  on the predictions  of  total and 

saw timber volume can be  obtained with little 

effort. 
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Table  2. Models  of the  root  mean squared errors  of volume (left)  and  saw timber volume  (right). 

Note:  Tlie  estimated standard errors  are  in  parentheses.  The total variation is  obtained from a model  with the  

intercept as  the only  fixed predictor.  The  notations are as follows: /)G=number of  G-plots;  /;//=number of  H  
trees;  nHo=number  of old  H-trees  (0 or  1); >/(>=number of Q-trees;  G=basal  area.  m

2

/lia: Z)GA/=basal area 

median  diameter,  cm.  

RVtotal Vscnvtimber  

Fixed  part 

Intercept  -0.2195  (0.3805) -0.5369 (0.6725) 

1/yfnG  
-42.333  (1.5905) -6.2779 (0.1468) 

xj-JnH  +  X  -5.5433  (0.2565) -0.2364  (0.1581) 

l/yjnQ  + l  
-  3.5707 (0.1394) 

nHo  0.7473  (0.1305) 0.3144(0.09612) 

nHoj  V  nH +1  -0.8203  (0.1647) -0.6574  (0.1495) 

G
2 -  0.008175  (0.001856) 

DGM/yfnG  1.9529  (0.0503) .  

G/V^G 0.29  (0.01683) -  

1/(DGM*^//^G) 
334.35 (11.8928) _ 

DGM
2 /4nG 

- 0.0373 (0.000409) 

G
2/V^G 

- 0.003378 (0.00035)  

DGM/<JnH  + 1  0.2932  (0.01432) -  

G/ylnH  + 1 0.3961  (0.0119) -  

DGM
2/y/nH  + 1 

- 0.005581 (0.000355) 

G
2/y/nH  + 1  0.003074  (0.000305) 

DGM :/JnQ+\  
. -0.00575 (0.000356) 

G
1/y]nQ+ 1  

- 0.004386 (0.000305) 

nHo*G  -0.02214(0.005164) -  

Random  part 

var(i/t) 0.07444(0.01359) 0.08025 (0.009348) 

var(v
;
) 23.0597(2.5172) 13.561 (1.7549) 

var  (ew )  0.9366 (0.005216) 0.7806 (0.00513) 

Total variation  

vMitk) 14.6026(1.0674) 1.8388  (0.1375) 

var  (v,) 34.2693 (3.7352) 44.0895 (5.6703) 

var(e^) 1.0061  (0.005593) 0.9406(0.006179) 



Optimizing  field  data collection  13 

Figure 3. The observations and predictions  of the  

logarithmic RMSE of total  volume using different 
measurement  strategies  against  basal  area  in a stand  

with  a  DGM of  17 cm  (a) and  against  DGM in  a  
stand with  a basal area of 16 m2/ha (b). The  num  

bers  in the  legends indicate  the  number  of  G-plots,  
H-trees  and  old  H-trees. respectively,  The  logarith  

mic  scale is used  to make  the  plot  more legible. 

Figures  3 and 4 show that approximately  the 

same accuracy  can be reached with various 

combinations. For example,  in a stand where 
DGM is around 20 cm and basal  area is 16 

nr/ha, one G-plot and  six  H-trees lead to  ap  

proximately  as accurate  a prediction  of saw 

timber volume as  one G-plot and six  Q-trees  

(Figure  4b). In addition, these figures show 

Figure  4. The  observations  and  predictions of the  

logarithmic  RMSE of saw  timber  volume  using 
different  measurement strategies  against  basal area  
in  a stand with  a  DGM of 17 cm  (a)  and  against  

DGM in  a stand  with  a  basal  area  of 16  m2/ha (b).  

The  numbers in the  legends indicate the number  of 
G-plots.  H-trees. Q-trees  and old H-trees. respec  

tively.  The logarithmic scale is used  to make  the  
plot  more legible. 

that the interaction terms have a  great  effect on 

the models. The  interaction results in the pre  

dicted accuracies  of different strategies  cross  

ing  each other when plotted  against  basal area 

and DGM. This phenomenon  is especially 

strong  when the predictions of R  V
;tm
 nmher are 

plotted  against  DGM (Figure  3b)  and it means 
that the measurement  strategy of a stand 
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should depend  on the stand  characteristics. For 

example,  if the DGM is  small,  substituting  the 

measurement  of Q-trees for G-plots could 
reduce the error  of  predicted  saw timber vol  

ume. The estimated models  make it possible  to  
define optimization  problems,  where the ex  

pected  sampling  error  of  the stand description  

is minimized subject  to given budget  con  

straints,  as  shown in the  next  section. 

Utilizing  the models  

Definition  of  the optimization  problem  

This  section demonstrates how the estimated 

models (Table  2)  can be used to optimize  data 

collection in a forest  inventory.  In the  optimi  

zation,  the accuracy  of  the obtained stand de  

scription  is  maximized (i.e.  the RMSE is  mini  

mized)  with respect  to time constraints.  

Define the  measurement  strategy  as  a vector  

having 3 elements, s'=(s l ,s: ,s3), where the 
elements Sj, s; and s 3 are the numbers of G  

plots.  H-trees and  Q-trees measured from the 

target  stand, respectively.  The state variables 

are  in vector  r,  which includes the stand char  

acteristics  (DGM  and basal area) and the in  
formation about the  old height  measurement.  

The number of old H-trees  is in vector  r be  

cause the decision whether  to  measure  it or  not 

is not made during the inventory;  it  either is 

available  or  not  and is always  used when avail  

able. Furthermore, define a cost vector  

c'=(c/,C2,cj),  where ch c: and c, are  the times 

required  for measurement  of one G-plot, H  

tree and Q-tree,  respectively.  The maximum 
time used for measurement  of  the target stand 

is defined by  the constant  c
max

.  The optimiza  

tion problem  is  defined as  follows: 

subject  to 

To carry out  the optimization,  the state vec  

tor r  needs to be known.  Thus, before carrying  

out  the optimization,  one  G-plot needs to  be 

measured in order to estimate the DGM and  

basal area  of the stand. Therefore, the mini  

mum number of G-plots  in  the optimization  

problem  is 1. If additional G-plots are meas  
ured during  the inventory,  the optimization  is 

carried out again  using  the improved  estimate 

of the  state vector  r  based on  all  G-plot meas  

urements  available. 

The unit for the time can be, for example, 
hours or  minutes. However, a  more convenient 

approach  is to define it  as  a function of the 
time needed for some basic  measurements, for 

example,  as  the  time needed for the measure  

ment  of one  G-plot.  The time requirements  of 
other measurements are then defined as pro  

portions of  the basic measurement.  Further  

more, the time requirement  and maximum 
available time may also be a function of the 

state  vector  r.  For example, the measurement  
time of  a  G-plot and Q-tree may depend  on the 

basal area of the stand and more time can be 

spent inventorying  a mature stand than a young 

one. 

Application  examples  

The optimization  problem  (Equations  12a  

12c) was  solved in  order to find an optimal  

measurement  combination in four hypothetical  
stands with different DGMs and basal areas.  

No  old H-tree was assumed to be available. 

The  optimization  was  carried out both with 

respect  to the total  volume and the saw  timber 

volume. The cost vector was defined as 

c"=(  1,0.3,0.5), i.e. the measurement  of an H  

tree  takes 30% and the measurement  of a Q  

tree  takes 50% of the time needed to  measure  

one G-plot. The time available for measure  

ments  was the time of 5 G-plots, i.e. cmax  was 

5. Tables 3-5 show real number solutions of 

the optimization problems but near-optimal  

integer  solutions can be obtained by rounding  

the figures  of the real  solution to the nearest  

integers.  Another possibility would have  been 

to use  the complete  enumeration of integer  

solutions, which is a realistic  alternative be  

cause  the number of  possible  integer  solutions 

is rather small. 

When the RMSE  of total volume is mini  

mized. the measurement  resources  are distrib  

uted between measurements  of G-plots  and H  

trees, but when RMSE of saw timber volume is 

minz=v(s,r) (12a) 

s'c-c,„M
<O (12b)  

s"-(1.0.0)>0. (12c) 
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minimized,  the resources  are distributed be  

tween  G-plots, H-trees and Q-trees  (Table  3). 

The values of stand characteristics have a 

strong effect on how the resources  should be 

distributed between different measurements. In 

particular, a slight growth in DGM  causes  

remarkable changes  in the optimal combina  
tion. 

In order to show  an example  where  the cost 

vector and maximum measurement  time de  

pend  on the state vector, the optimization  was 

carried  out  again using  a cost  vector of 

and c
max

 of 0.25 XG, where Gis the basal area 

of the stand. The time unit is now the time 

required  for the measurement  of one G-plot in 

a stand with a basal area of 20  m

2

/ha. The 

solution differs from that in Table 3, but the 

trends are  quite similar in both solutions. How  

ever,  no conclusions  about the optimal  combi  
nation should be drawn on the basis of these 

results  because of the  ad hoc definitions of the 

cost vectors. 

If both total volume and saw timber volume 

should be  predicted  accurately, both variables 

need to  be taken into account  in searching  for  a 

single  solution. In this case,  the objective  func  

tion can be defined as a weighted  average of 
the RVtoiai  and RVsaw umber  (Table  5).  

Table  3. The  solution of  the optimization problem  (Equations  12a-12c) using  costs  determined by  vector 
c'=(  1,0.3,0.5) and a  cmax  of  sin the four hypothetical  stands.  

Table  4.  The solution of  the optimization  problem  (Equations  12a-12c) using  costs  determined by  Equation 

(13)  and  a  c maN of  0.25 XG  in  the  four  hypothetical stands.  

Table  5.  The solution of  the  optimization problem (Equations  12a-12c) using  the  objective  function r=0.2x 

RVtotal+ O.8xRVsa w.  ,timber  costs determined by  Equation (13) and  a  cmax  of  0.25xG in the  four hypothetical 
stands. 

c'=(o.o5xG,  O.I+O.OUDGM,  0.033xG) (13)  

target variable DGM G  si S-, S3 v(s,r)  

R  Vtotal 15 15 3.97 3.42 0 8.88 

R'san'  timber 15 15 2.48 2.92 3.29 5.57 

RI  total 25  15 4.02 3.27  0 15.6 

R'saw  timber 25  15 4.25 2.5  0 13.01 

R  V,total  15 25 3.68 4.39  0 12.15 

R  ysaw  timber 15 25 2.4 3.2 3.27 11.16 

R  Vtotal 25  25 3.84 3.88 0 18.92 

RVsmr  timber 25  25 3.88 2.62 0.67 19.12 

target variable DGM  G Sl s- > S3 v<s,r)  

Rl  total 15 15  3.96 3.11 0 8.98 

timber 
15 15 2.46 2.61 2.46 5.79 

RVtotal 25  15 4.01 2.11 0 16.25 

R timber 25  15 4.26 1.59  0 13.34 

R  V total 15 25  3.76 6.21 0 11.55 

R saw  timber 15 25  2.45 4.61  3.94 10.77 

R  Ktotal 25 25  3.85 4.12 0 18.77 

R timber 25  25  3.86 2.76 0.91  18.96 

DGM G s 1 Si S3 v(s.r)  

15 15 3.03 2.78 1.53 6.72 

25 15 4.19 1.74 0 13.93 

15 25 2.88 5.07 2.69 11.31 

25 25 3.88 3.17 0.57 19.05 
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Discussion  

The aim of this study  was  to predict  the  error  
of  the saw  timber volume and  the total volume 

in an inventory  where  different numbers of G  

plots.  N-plots, H-trees and Q-trees  are  meas  

ured in a stand. The study  showed that the 

error  depends  on stand variables and on the 

measurement  strategy used. Furthermore, the 

amounts of measurements  showed consider  

able interaction with  the stand variables. This 

indicates  that the most accurate  stand  descrip  
tion is obtained with different measurement  

strategies  in different stands. The study  also 

demonstrated how the optimal strategy for 

each stand can be  found as a solution of an 

optimization  problem  where the expected  error  

is minimized with respect to budget  con  

straints. Instead of  using variances, the num  
bers  of single  measurements  were used as  the 

accuracy  measure  of stand measurements.  

Thus, the solution of  the optimization  problem  

includes  concrete  numbers  of  sample  plots  and 

sample  trees,  making  the results convenient 
and easily  applicable  in practice.  

This study  used  the RMSE of total and saw 

timber volume as  measures  of the accuracy  of 
stand description. Depending  on  the aim of the 

inventory,  other measures  can be used as  well. 
These measures  can be any  variables that de  

pend  on the stand description. For example,  

goodness  of fit statistics  of diameter distribu  
tion or  root  mean squared  errors  of stem num  

ber,  stand growth or  dominant height  could be 
used. 

An alternative formulation of the optimiza  
tion problem  would have been to minimize 

costs with  respect to some  accuracy  require  

ment. However, the solution of this problem  
would have required  nonlinearly  constrained 

optimization  whereas the problem  formulation 
used (Equations  12a-12c)  could be solved with 

linearly  constrained optimization. 

The number of  Q-trees  had a very strong ef  
fect on the RMSE of saw timber volume in 

stands with a small DGM but in stands with a 

large  DGM the  effect was  remarkably  smaller. 

The explanation  of  this is  that the Q-trees  af  
fect  the predicted  diameter distribution but not  

the basal area.  The accuracy  of total volume 

estimate depends  much more on the accuracy  
of basal  area  and DGM  than on  the accuracy  of 
the diameter distribution. For example  in the 

tests carried out  by Kangas  and Maltamo 

(2000b,  2003),  the accuracy  of volume varied 

very little between the different distribution 

models. Even adjusting  the distribution accord  

ing  to several different stand variables had no 

marked effect. The accuracy  of  the saw timber 
volume estimate,  on the other hand, depends  
much more on the accuracy of the diameter 

distribution, especially  in stands  where only  
part of  the trees  are  saw timber trees.  Thus,  the 

improved predictions of  the diameter distribu  

tion do not  have a great  effect on the error  of 

predicted  volume and saw timber volume in 

stands where the  DGM is large, but in stands  
with a  smaller DGM the improved prediction  

of diameter distribution clearly  decreases the 

error of saw timber volume. 

The  estimated models predict  the error  of  the 

total and saw timber volumes in an inventory  

where the locations of  sample  plots  are  random 
and sample  plot and tree measurements  are 

accurate. If  the measurements  include, in addi  
tion to the sampling  errors, visual assessment  

errors  and measurement  errors,  the model 

predictions are  downward biased.  However, if 
the relations between sampling  errors  of  differ  

ent variables are approximately  equal  to the 
relations between total errors,  the measurement  

errors  may not  have a strong effect  on the 

optimal measurement  strategy.  In this study, 
the means of the  within-stand standard devia  

tions of basal area, DGM and stem number 

were 3.27,  1.34 and 408, respectively.  In the 

study  of  Kangas  et ai. (2002),  the total standard 

errors  of these variables (including  visual as  

sessment errors,  sampling errors  and measure  

ment  errors)  were 2.73, 3.67 and 422, respec  

tively  and other  studies  have reported  the total 

errors  of basal area and DGM to be between 

2.8-5.5 and 2.3-2.6, respectively  (Mähönen  
1984. Laasasenaho and Päivinen 1986. Pussi  

nen  1992, Pigg 1994, Haara  and Korhonen 

2004).  Comparisons  of the sampling  errors of 

this  study  with the reported  total errors show 

that the proportion of assessment and meas  

urement  errors  of the total errors  is approxi  
mately the same with basal area and stem 
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number, but  with DGM it seems to be much 

higher.  Therefore, the optimal measurement  

strategies  obtained using  the estimated models 

are  probably  not  optimal  in  a partly  subjective  
and visual inventory.  However, if the propor  

tion of  measurement  error  of DGM could be 

decreased to the same level as  the proportion  
of measurement  error  of basal area and stem 

number,  the models of this  study  could pro  

duce near-optimal  solutions also in a partly  

subjective  and visual inventory based on objec  

tive  location of  sample  plots.  

The current  practice  in Finland is  to  use  sub  

jectively  located sample  plots.  This results in 
biased estimates of stand  variables if the per  

son carrying  out  the inventory  does not  have a 
realistic  view of the stand. Furthermore, the 

sample variance of subjectively  located plot 

measurements  underestimates the real within  

stand variance. Because the bias and underes  

timate of  variance depend  mostly  on the person 

carrying  out  the inventory,  they  are hard to 

estimate. The system utilized in the prediction  

of stand description  requires unbiased esti  

mates of  stand variables and estimates of their 

error  variances. Thus,  if the inventory  based on 

subjective location cannot be shown to  be 
much  more efficient than the inventory  based 

on objective  location,  the subjective  location 

should be abandoned. 

In this  study,  the algorithm of Mehtätalo 

(2004  d) was  used for the first  time in localiz  

ing the diameter percentiles  using true trees  

from true sample  plots.  Q-trees  improved  the 

predictions  of diameter distribution markedly,  

as  seen in the effect of number of Q-trees  on 

the RMSE of  saw  timber volume. However, the  

measurement of diameter and  the determina  

tion of rank were assumed to  have been made 

without error.  Field measurements  of Q-trees 

are carried out in a similar manner as the 

measurements  of DGM, i.e. by  assessing  the 

rank  visually  and measuring  the diameter accu  

rately  (in  fact, the measurement  of DGM is a  

special  case  of  the Q-tree  measurement).  As  
discussed before,  the measurements  of DGM 

include a great deal of measurement  errors  and 

the same  supposedly  holds for Q-trees. too. 

Thus the real gain  derived from Q-tree meas  

urements  is  probably  not  as  great as the model 

shows.  The accuracy  of  the measurements  of 
Q-trees should be studied, as  should the use  

fulness of the localization with Q-trees with 

erroneous ranks. 

The  data  used in this study were quite lim  
ited. In particular, there were  only  a  few  stands 

with large DGM in the data, because the radii 

of the circular plots  were  so small  that an HPS 

plot could not be  established in  stands with 

large  diameters. Therefore,  the models should 

not  be  extrapolated  to stands outside the range 

of the data. A safe approach  would be to use  a 

DGM of  32 cm and a  basal area of 28.5 m"/ha 

in optimization  if the true  values  are higher  
than these. Since the numbers of measurements  

are included in the model in a theoretically  

well-grounded  form, the extrapolation  of the 
number of  measurements  should not be as  

risky  as  the extrapolation  of DGM and basal 

area. However, solutions where the number of  

G-plots  is  more than 7 or the number of Q- or  

H-trees is  more  than 6 should not  be accepted  

unreservedly.  
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APPENDIX 

Expectation,  variance and covariance of 

logarithmic  measurements  

Assume that we have measured the values of 

variables X{>o and X2
>o and the unbiased 

measurements  Xt and  X  2  are  lognormally  

distributed with expectations  X x and  X 2  and  

variances var  ( Ä- ,  j  =  cr,
2

.  var  lj(2 )  =  cr
2

 and  

co  v^Xt ,X =p. We want  to know  

£  (in  X}  j.  var  (in  Ä,)  and  cov(lnX,,lnX2 j  .  
It follows from the properties  of a lognormal  
distribution (see.  e.g.. Johnson and Kotz  1972: 

18-20. Hines and Montgomery  1980: 188-191) 

that the logarithmic  measurements  are multi  

normally distributed with the expectations,  

variances and covariances of 

and 

Now assume that we have  k  unbiased log  

normally  distributed measurements  in random 

vector  i  = yX l ,Xl ,...,Xk j'  with  the  variance 
covariance matrix var(x) =C.  Formulas 

(A1)-(A3) give  the matrix results  

and 

Prediction error of models with erroneous  

logarithmic  predictors  

Assume a  model of the form 

where ym
 is  a vector  of interest variables from 

observation m, B is  a  matrix of parameters.  \ m
 

the vector  of predictors  and e„, the vector of 
residual errors.  For example,  vector  y m

 could 

include percentiles  of  a  diameter distribution of 

stand m. Assume that the measured predictors  

are lognormally  distributed with E  (x m ) =\
m 

and var(x
n,  )=  C. We want  to know how 

errors  in the predictors  affect the model predic  

tions. y , =BIn x ~ 
v ill 111 

The expectation  of  the prediction  is  

Using Equation  (A  4) we get 

£(lnA',)  =  21nA',  -  jln(er,
:

 +  A',
2

) . (Al)  

var(lnA',)  = ln(af  +X,
2

)-21n.Yl (A  2)  

=  ln(/7+X 1X2
)-ln(J[' 1A'

2 ) .  (A3) 

£(ln  i)  =  21n  x  -jln{[l  ®(C +  xx')]lM } (A  4)  

var(lnx)  =  ln(C  +  xx')-ln(xx') . (A  5)  

y„, = Blnx
m

+e„,, (A 6)  

E(y
m
)  = £(Blnx„)  = B£(lni,„) . (A 7)  
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Thus, the predictions  are biased, the last  

term of (A  8) being  the bias. The true  value  of 

the bias cannot  be calculated since the expecta  
tions of the measurements  are not known. 

However,  approximate  bias can be  calculated 

by  substituting  the expectations  of  the meas  

urements  with  the measured values. An ap  

proximately  unbiased prediction with model 

(A  6) using  measurements  (A  7) is obtained by  

subtracting  the approximate  bias from the 

prediction:  

The variance-covariance matrix of the error  

term  is 

Using  Equation  (A  5)  we get 

The  first  term of (A  10) is the increase of the 

residual variance  caused by  the measurement  

errors  of  the predictors.  

£(y,„)=Bf2lnx„,-^ln{[l®(C +^A;)]l}l  
f j v (A8)  

=Blnx„,  +Bl  lnx„,  --ln{[l®(C+xm
x

m')]lj  I  

-Bln(i) ~h{[i(E)(c+v,;)]l}j.  
(A  9)  

var(y,„)  = var(Blni,„+e,„)  

= Bvar(lnx
;
„)B'  +  D  

var(y,„)  = B[ln(C  +  xx')-ln(xx')]B'  + D  

«  B[ln(C  +  xx')-ln(xx')] B'+D 
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