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ABSTRACT

This thesis reports a new system for the production of static stand description in an inventory by
compartments. The stand description includes stock density, diameter distribution and height-
diameter (H-D) curve.

The diameter distribution of the stand is expressed with percentiles. Firstly, expected percentiles
are predicted with regression models using measurements of stand variables. Secondly, the pre-
dicted percentiles are localized for the stand using order statistics of horizontal point sample plots
(HPS-plots) (i.e. quantile trees), which are interpreted as measured percentiles of the stand. Thirdly,
the obtained localized percentiles are adjusted in order to ensure compatibility with the measured
stem number. The expected H-D curve of the stand is predicted using the measured stand variables.
Furthermore, it is localized for the stand using height sample trees. The longitudinal character of
the model makes it possible to use measurements from several points in time. Both the localizations
of diameter distribution and of the H-D curve are based on the prediction of random effects of the
models with the best linear unbiased predictor using sample measurements of the response.

The individual components are combined as a new system for the prediction of stand description.
A key feature of the system is its ability to utilize different amounts of input information. Further-
more, measurement errors of stand variables are utilized to some degree. The minimum input of the
system, which can be obtained from one HPS-plot, consists of measurements of the basal area,
basal area median diameter (DGM), stand age and site fertility class. Additional HPS-plots, stem
number measurement(s) from fixed plot(s), old or new height sample trees and quantile trees can
also be utilized. The system makes it possible to take more measurements from stands with a high
accuracy requirement than from stands with a low accuracy requirement.

The system was utilized in estimating a model of expected errors of predicted volume and saw
timber volume using different measurement strategies in different stands. The prediction error
depended on the basal area and DGM of the stand and on the number of HPS-plots, height sample
trees and quantile trees. Furthermore, a height measurement from a previous inventory decreased
the prediction errors slightly. The measurements of stem number did not significantly improve the
accuracy of volume and saw timber volume predictions. The estimated models were used as objec-
tive functions in a constrained optimization problem, where the object was to find an optimal
measurement strategy for a single stand in an inventory where measurement time is limited.

Key words: stand structure, diameter distribution, height-diameter, order statistics, linear predic-
tion, longitudinal analysis, optimization, forest planning, calibration, adjustment, localization.
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1 INTRODUCTION

The aim of forest planning is to find a man-
agement strategy for a forest area that maxi-
mizes the utility for the forest owner (Pukkala
1994). The traditional primary unit of forest
planning in Finland is a forest stand. The forest
plan includes management suggestions for
every stand of the forest area under considera-
tion. In order to collect the data for the plan, an
inventory by compartments is carried out (Poso
1983).

A Finnish inventory by compartments is
based on few horizontal point sample plots
(HPS-plots, i.e. relascope sample plots, angle
count sample plots, Bitterlich plots). The plots
are established subjectively by the person
carrying out the inventory at locations that
seem representative for the stand. Using
measurements and visual assessments of the
plots, the most important characteristics,
including basal area, basal area median
diameter (DGM), height of a DGM-tree, stand
age and site fertility class are assessed from
each stratum of the growing stock in the stand
(Paananen et al. 2000). The simulator of a
forest planning system utilizes the stand wise
characteristics to produce a stand description,
including stock density, diameter distribution
and height-diameter (H-D) curve of the stand.
In the simulator of the MELA-system (Redsven
et al. 2004), which is the core of most forest
planning systems in Finland, they are predicted
using the models of Mykkénen (1986),
Veltheim (1987), Kilkki et al. (1989),
Siipilehto (1999) and Kangas and Maltamo
(2000b). The obtained stand description is used
to generate a set of representative trees for each
stand for the prediction of growth (Hynynen et
al. 2002) and cutting removal in alternative
management schedules.

The accuracy of the input of the Finnish
stand simulation system based on partially
visually assessed stand characteristics is re-
ported to be rather low (Poso 1983, Mihonen
1984, Laasasenaho and Pidivinen 1986, Pussi-
nen 1992, Pigg 1994, Kangas et al. 2002, Haara
and Korhonen 2004, Kangas et al. 2004), and

prediction errors of growth models decrease it
further (Kangas 1997, 1998a, 1998b, 1999).
The data users are, however, satisfied with the
accuracy, but would not like to see it decline
(Uuttera et al. 2002). The aim of Finland's
National Forest Programme 2010 (1999) is to
increase the cover of forest plans from 50% to
75% by 2010. This requires decreasing the
costs of planning per unit area (Heikinheimo
1999, Paananen 2002, Saramiki et al. 2003),
which means that the current level of accuracy
should be retained at a lower cost than previ-
ously.

One possibility to respond to these needs is
to develop methods and models that provide as
accurate assessments as the current inventory
system but at a lower cost. Many studies have
investigated possibilities to carry out the inven-
tory from the air using aerial photographs (e.g.
Pitkdnen 2001, ‘Anttila 2002a, Anttila and Le-
hikoinen 2002, Korpela 2004), satellite im-
agery (e.g. Hyvonen 2002, Saksa et al. 2003) or
laser scanning approaches (e.g. Holmgren et al.
2003, Maltamo et al. 2004a). Even if these
approaches are promising, they are not yet real
alternatives to the inventory by compartments
(Uuttera et al. 2002) and their development will
take time. In other studies, the information of
the previous inventory has been updated by
utilizing growth models and information about
treatments from forestry databases (Hyvonen
and Korhonen 2003) or aerial photographs
(Anttila 2002b) in order to lengthen the interval
of two inventories. These approaches can be
regarded as practical variations of the approach
of Stahl (1994), where it was suggested that if
the expected utility of an inventory was greater
than its costs then a new inventory of a forest
stand should be carried out.

Another possibility is to search for possible
new variables to be measured in the field that
would provide more information at a lower
cost than the currently measured stand vari-
ables. In many studies carried out in Finland,
using accurate stem number in the calculations
has been found to be useful (Siipilehto 1999,
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Kangas and Maltamo 2000b). However, sev-
eral studies (e.g. Kangas et al. 2004) have re-
ported large errors in measurements of stem
number. The calibration algorithm of Kangas
and Maltamo (2000a) made it possible to util-
ize different stand variables in the prediction of
diameter distribution and they found that of
several potential new variables the unweighted
median, maximum and minimum diameters
were the most promising alternatives for new
measurements. In addition, new measurement
equipment is being developed in order to make
it possible for a single person to measure a
large sample of diameters and heights rapidly
in the field (Laasasenaho et al. 2002, Koi-
vuniemi 2003).

Eid (2000) reported that losses caused by
mistiming of harvests are most serious in
young stands and in stands that are close to
their economically optimal rotation age, while
in middle-aged and over-mature stands the
losses are smaller. Thus, it was suggested that
the inventory data should be most accurate in
stands where expected losses are greatest. In
addition, Kangas and Maltamo (2002) pro-
posed that different variables should be meas-
ured in different kinds of forests. Furthermore,
Holmstrom et al. (2003) reported that in large
stands, intensive field sampling should be car-
ried out while in smaller stands a less intensive
inventory might be satisfactory. All these stud-
ies indicate that money could be saved by vary-
ing the forest inventory strategy from stand to
stand.

This study aims at reducing the costs and
improving the accuracy of the traditional in-
ventory by compartments by looking for new
measurements, making the use of the collected
data more efficient and allocating the meas-
urement resources to measurements and stands
where the utility is greatest. This requires a
calculation system that is able to utilize various
input information. The current system for pro-
duction of stand description requires a fixed set
of variables from each stand. Furthermore. it

assumes that the input information is measured

without errors, even if it is well known that the

errors of stand measurements are large. Thus,
in this study a new system for predicting stand
description was developed.

In predicting forest characteristics, the use of
regression models has become very popular.
Some easily measurable stand variables, the
most common of which are basal area, mean
diameter, stand age and site type, are used to
predict other stand characteristics that cannot
be measured, or at least are difficult to meas-
ure, in the field. Examples of these are diame-
ter distribution (e.g. Rennolls et al. 1985), tree
height (e.g. Fang and Bailey 1998), stand
growth (e.g. Woollons 1997), log volume re-
duction (e.g. Mehtidtalo 2002), damages (e.g.
Jalkanen and Mattila 2000) and the production
of berries (e.g. Thalainen et al. 2003). However,
the most natural means to estimate any stand
characteristic is to measure it. Thus, if meas-
urement of the target variable is possible, it
should be preferred over the measurements of
covariates of a regression model (see e.g. Lappi
1997). This study applies this principle to di-
ameter distributions and H-D curves. The ran-
dom parameter approach and linear prediction
theory provide effective tools for carrying it
out (Lappi and Bailey 1988, Lappi 1991).

The aims of this study were
e To develop tools for producing a stand de-

scription. These tools include methods for

predicting diameter distribution and models
for the H-D relationship. The tools should be
able to utilize different kinds of information
measured at different levels of accuracy.

Special attention is paid to the effective use

of sample tree information. (I-IV.)

e To utilize the tools developed in order to
construct a new system for producing stand
description in forest planning in Finland (V).

e To utilize the system in the optimization of
data collection in an inventory by compart-
ments (V).
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2  COMPONENTS OF STAND DESCRIPTION — A LITERATURE REVIEW

Stand description includes the information of
the stand measurements in such a form that it
can be used in stand simulation. An example of
a very coarse description includes the name of
the main tree species while a very detailed
description may include a complete tree map of
the stand with measured tree taper. However,
stand description is always a simplification of
the reality and the extent of simplification
depends on the purpose of the stand description
and the data available. The stand description of
this study includes the stock density, diameter
distribution and H-D curve.

The stock density is described either by the
number of stems or by the basal area. In the
Finnish system, the basal area is used because
it can be measured with higher accuracy than
the stem number and it is more strongly corre-
lated with the total volume than the number of
stems is. The measurement of the basal area of
a sample plot is straightforward with an angle
gauge and the basal area of the stand is calcu-
lated as the mean of the plot wise basal areas.
The measurements of diameter distribution and
the H-D relationship, on the other hand, are
rather laborious to carry out in the field. Thus,
these components are not measured in the field;
instead, approaches for predicting them from
stand and sample tree measurements are used.
The next two subsections consider the ap-
proaches reported in the relevant literature.

2.1 Diameter distribution

2.1.1 Approaches

The diameter distribution is the basis of the
stand description. Many approaches have been
used to construct the diameter distribution of a
stand. In the following, the approaches are
divided into three main approaches: (i) those
based on a sample of diameters, (ii) those
based on prediction or recovery of the parame-
ters of an assumed theoretical distribution
model and (iii) those based on known diameter

distributions of similar stands (imputation
methods).

Approach (i). The most natural way to obtain
the diameter distribution is to measure a diame-
ter sample from the stand. If the sample is large
enough, it can be used as such in the simulation
(e.g. Pienaar and Harrison 1988, Nepal and
Somers 1992, Tang et al. 1997). If the sample
is small, it can be smoothed (e.g. Droessler and
Burk 1989, Uuttera and Maltamo 1995) or a
theoretical distribution function can be fitted to
it (e.g. Bailey and Dell 1973, Zarnoch and Dell
1985, Van Deusen 1986, Shiver 1988, Lindsay
et al. 1996, Zhou and McTague 1996, Scolforo
et al 2003, Zhang et al. 2003). The theoretical
distribution function can be fitted using the
maximum likelihood method, the method of
moments, methods based on linear regression
or by utilizing properties of certain percentiles
or stand variables.

Approach (ii). The measurement of a diame-
ter sample is too time-consuming in many
inventories. In these cases, the diameter distri-
bution can be predicted with some easily
measurable stand variables. Traditionally, these
methods are divided into parameter prediction
methods (PPM) and parameter recovery meth-
ods (PRM) (Hyink and Moser 1983). In the
parameter prediction method, the parameters of
the assumed distribution function are predicted
with some measured stand variables using
estimated regression models (e.g. Schreuder et
al. 1979, Little 1982, Rennolls et al. 1985.
Kilkki and Pidivinen 1986, Kilkki et al. 1989,
Maltamo 1997, Siipilehto 1999, Temesgen
2003, Robinson 2004). In the PRM the parame-
ters are recovered from some stand variables
using known relations between the stand vari-
ables and distribution parameters (e.g. Ek et al.
1975, Burk and Newberry 1984, Magnussen
1986, McTague and Bailey 1987, Kuru et al.
1992). The stand variables used in PRM may
be, for example, percentiles or moments of the
diameter distribution. The recovery is, how-
ever, possible only for as many parameters as
there are measured stand variables that are



10 Mehtdtalo

linked with the diameter distribution. If the
number of parameters is greater, partial recov-
ery can be used, i.e. as many variables as pos-
sible are recovered and the other parameters are
predicted (e.g. Kilkki and Pdivinen 1986, Kan-
gas and Maltamo 2000b, L, II, V).

Approach (iii) The third approach is to use
known diameter distributions of similar stands
as the predicted diameter distribution of the
stand (e.g. Haara et al. 1997, Maltamo and
Kangas 1998). These methods have also been
called imputation methods (Ek et al. 1997,
Temesgen 2003, Temesgen et al. 2003). The
similar stands are selected from a neighbor-
hood that is defined with a distance function.
The imputation methods used in predicting the
diameter distribution are the k-nearest-neighbor
method (Altman 1992) and the most similar
neighbor method (Moeur and Stage 1995). The
approach of Nanos and Montero (2002), where
an interpolated surface is used to carry infor-
mation from geographical neighbors to the
target stands, also belongs to this class of ap-
proaches.

The above approaches can also be combined.
For example, the neighbors of the third ap-
proach may be smoothed diameter distributions
instead of true distributions. thus combining
approaches (i) and (iii) (Maltamo and Kangas
1998). Furthermore, sample information can be
used to improve a predicted distribution; ex-
amples of this are the Bayesian approach of
Green and Clutter (2000) where the prior in-
formation of neighboring stands (iii) is com-
bined with sample information (i) and the ap-
proach of Paper I in the present thesis where
sample information (i) is used to improve pre-
dicted diameter distribution (ii). The approach
of Maltamo et al. (2003a) combining empirical
distributions of large trees identified from a
digital video imagery with predicted distribu-
tion of small trees is a combination of (i) and
(ii).

2.1.2 Distribution families

No theoretical results have been presented

regarding which distribution family should be

used as a diameter distribution. Hence. many
distribution families have been used. The most

important factors affecting the goodness of fit
of a distribution family is the number of free
parameters and the flexibility of the distribu-
tion to represent all possible distributional
forms.

The most commonly used distributional fam-
ily is the Weibull distribution (Bailey and Dell
1973), either in a three parametric form with
parameters for location, scale and shape, or in a
two-parametric form, where the location pa-
rameter has been given a value of zero. i.e. the
minimum diameter of the stand is assumed to
be zero. An unrealistic property of the Weibull
distribution is that it has no upper limit, i.e. the
maximum diameter of a stand is infinity. This
problem can be solved by truncating the distri-
bution at a point that is regarded as the maxi-
mum possible diameter of the tree species.
Another possibility is to use a reversed trun-
cated Weibull distribution, so that the location
parameter receives an interpretation of maxi-
mum diameter and the minimum diameter is
zero (e.g. Kuru et al. 1992, Robinson 2004).
Other distribution families used are, for exam-
ple, Gram-Charlier (Cajanus 1914), normal
(e.g. Nanang 1998). lognormal (Bliss and Re-
inker 1964), gamma (Nelson 1964), beta (e.g.
Hafley and Schreuder 1977), the Johnson’s
distribution families (e.g. Zhou and McTague
1996), the Chaudhry-Ahmad family (Chaudhry
and Ahmad 1993, Nanos and Montero 2001)
and the exponential distribution (e.g. Cancino
and Gadow 2002). Many of these families also
need to be truncated in applications because of
unlimited maximum and minimum diameters.

All the distribution families presented below
are, however, too rigid in some stands. This
happens. for example, in stands where the
shape of the distribution is irregular or multi-
modal. Thus, approaches that combine several
distributions have been presented. These ap-
proaches are the segmented distribution ap-
proach (Cao and Burkhart 1984), finite mixture
approach (e.g. Zhang et al. 2001) and the per-
centile-based approach (e.g. Borders et al.
1987).

The segmented distribution is constructed
from pieces of the selected distribution
[Weibull in Cao and Burkhart (1984)]. and the
number of pieces and locations of cutting
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points are fixed before the fitting procedure. In
the finite mixture approach, the density func-
tion is a weighted sum of several density func-
tions of the selected distribution family. In the
reported studies, the number of distributions
has been two and the theoretical distribution
used has been either the Weibull distribution
(Zhang et al. 2001, Liu et al. 2002) or the
bivariate normal distribution (Zucchini et al.
2001). The percentile-based approach ex-
presses the distribution using a fixed number of
percentiles, corresponding to predefined values
of the distribution function. The continuous
function is obtained by interpolation, either by
linear (e.g. Borders et al. 1987, 1, II) or by
spline interpolation (Maltamo et al. 2000, Kan-
gas and Maltamo 2000c). When linear interpo-
lation is used, the obtained distribution consists
of pieces of a uniform distribution (I). Thus, it
can be regarded either as a segmented distribu-
tion approach or as a finite mixture approach
using uniform distribution (See Section 3).

2.1.3 Compatibility of diameter distribution

Compatibility of stand description means
that all stand variables calculated from the
diameter distribution are equal to their meas-
ured variables. It is a desired property of the
stand description and incompatibility may
indicate that the information of the stand meas-
urements is not utilized effectively. In PRM,
the compatibility can be guaranteed with re-
spect to as many stand variables as there are
parameters in the distribution family used.
However, it usually leads to a very complicated
set of equations, whose solution does not nec-
essarily exist in closed form.

Compatibility of basal area weighted and
unweighted diameter distributions can be guar-
anteed through size-biased distribution theory
(Gove and Patil 1998, Gove 2000, Gove 2003),
where the relationships between the ordinary
and basal area weighted forms of the diameter
distribution are derived analytically. It makes it
possible to derive the parameters of the ordi-
nary distribution from the parameters of the
basal area weighted distribution and vice versa.
Thus, it provides tools for the recovery of the
parameters of weighted distributions.

In PPM, the compatibility is very hard to en-
sure. Thus, many studies have presented algo-
rithms that aim at a compatible stand descrip-
tion by adjusting the diameter distribution
(Nepal and Somers 1992, Cao and Baldwin
1999, Kangas and Maltamo 2000a). In these
algorithms, the adjustment is applied to the
frequencies of the stand table and no new di-
ameter classes are established in the adjust-
ment. Furthermore, the stand variables calcu-
lated using the adjusted frequencies are re-
quired to equal the measurements exactly.
These requirements may be too strict in prac-
tice, where measurements include errors. An
alternative for these approaches is presented in
Paper II.

2.2 Height-diameter models

2.2.1 Approaches

The H-D model is used to predict heights for
trees with given diameters. The H-D relation-
ship varies considerably between stands (Lappi
1997, Hokka 1997, Jayaram and Lappi 2001,
Eerikidinen 2003, Calama and Montero 2004,
III, IV) and accuracy of the predicted H-D
curve has a considerable effect on the accuracy
of the stand volume estimate. As with diameter
distributions, the approach used in height pre-
diction depends on the data available and the
possible approaches could be classified in a
manner similar to the classification of the pre-
vious section, i.e. into (i) approaches based on
a sample of heights, (ii) approaches predicting
the parameters of the H-D curve without height
measurements and (iii) approaches based on
imputation. The studies using approaches be-
longing to the second (ii) category can further
be divided into two classes: (ii-a) approaches
which assume that a large forest area can be
divided into stands. each of which has its own
H-D curve, and (ii-b) approaches where a
common H-D curve is assumed for larger ar-
eas, for example for states or regions.

Approach (i). The most natural approach in
predicting the H-D curve of a stand is to fit an
assumed curve to observed H-D data from the
target stand. There are numerous studies con-
cerning fitting different kinds of curves on



12 Mehtdtalo

observed H-D data (Curtis 1967, Omule and
McDonald 1991, Arabazis and Burkhart 1992,
Flewelling and de Jong 1992, Fang and Bailey
1998). The aim of these studies has been to
find an appropriate functional form for the H-D
curve and to show how the estimation should
be done. A recent study of Zhang et al. (2004),
which models the spatial variation within stand
using geographically weighted regression,
provides a new view to this approach.
Approach (ii-a). The variation of H-D curves
between stands is usually taken into account by
modeling the parameters of the H-D curve
using stand specific variables as predictors
(Veltheim 1987, Borders and Patterson 1990,
Parresol 1992, Lynch and Murphy 1995, Fang
and Bailey 1998, Knowe et al. 1998, Wang and
Hann 1998, Hanus et al. 1999, Zeide and
Vanderschaaf 2002). Furthermore, these mod-
els have been localized using measured
heights, for example by re-scaling the model so
that the measured mean height is obtained
when the diameter equals the measured mean
diameter, thus combining approach (ii-a) with
approach (i). However, even though this ap-
proach of localization works rather well when
the mean diameters and heights are accurate, it
does not take into account the within-stand and
between-stand variances of tree heights. In
recent studies, in addition to the use of stand-
specific predictors, the hierarchy of the data
has been taken into account through a mixed
model approach. It provides an effective and
theoretically justified means for localizing the
curves for a given stand using measured
height(s) (Lappi 1997. Hokkd 1997, Jayaram
and Lappi 2001, Calama and Montero 2004).
The localization is possible even using just one
measured height and the ratio of within-stand
and between-stand variances determines how
close the expected curve is to the measured
height. The mixed model approach also pro-
vides natural approaches for taking into ac-
count the temporal development of the H-D
curves (Lappi 1997, Eerikdinen 2003, IIL IV).
Approach (ii-b). In models belonging to this
approach. single values of the parameters of an
assumed H-D model are estimated from a large
dataset consisting of measurements from sev-
eral locations of the target area (Huang et al.

1992, Zhang 1997, Peng 1999, Huang et al.
2000, Zhang et al. 2002, Colbert et al. 2002).
When the model is used for prediction, the
estimated parameter values are applied to the
whole target area.

Approach (iii). With the exception of Mal-
tamo et al. (2003b), imputation methods have
not been used in the prediction of H-D curves,
even though this could be done concurrently
with the imputation of diameter distributions.
The reason for this seems to be data related
rather than methodological: the datasets used in
the imputation of diameter distributions have
not included tree heights.

Many studies carried out on H-D curves have
compared different functional forms for the H-
D relationship. The number of functional forms
tested exceeds 30 and no single form has been
found to be superior. However, some forms
have been among the best ones in many com-
parisons either in a linearized or nonlinear
form. The three most frequently used functions
are the allometric function, also called the
power function (Greenhill 1881, Curtis 1968,
Zeide and Vanderschaaf 2002, Eerikédinen
2003, Zhang et al 2004)

H=aD’ , (1)

Meyer’s equation (Meyer 1940. Stout and
Shumway 1982, Farr et al. 1989, Huang et al.
1992. Fulton 1999)

H =a(1—e’bD) 2)

and the Korf curve, also called the Lundqvist
or exponential function

H=ae™ ", 3)

where H is tree height, D is diameter and a. b
and ¢ are parameters.

Based on the biological growth pattern of a
tree, Yuancai and Parresol (2001) recom-
mended the use of functions with an inflection
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point, which means that the curve is S-shaped,
and has an upper asymptote.

The allometric equation lacks both these
properties. However, it has a strong mechanical
basis: if the exponent b is given a value of 2/3,
the stem is equally resistant to bending at dif-
ferent heights (Greenhill 1881, p. 66-73; see
Zeide and Vanderschaaf 2002).

The Meyer equation has an upper asymptote
of a, but it lacks an inflection point. It can be
expanded to the Weibull type function by add-
ing a positive power parameter to D, and to the
Chapman-Richards type function by adding a
power parameter to the whole expression in the
parentheses. These expansions naturally also
have an upper asymptote and the Chapman-
Richards type of function also has an inflection
point. Both of these expansions have been
recommended and used as H-D curves, the
former by Huang et al. (1992), Zhang (1997)
and Ishii et al. (2000) and the latter by Huang
et al. (1992), Zhang (1997) and Zhang et al.
(2002).

The Korf curve has both an asymptote and an
inflection point. The Korf curve has been used
both in the form where c=1 (Curtis 1967,
Zakrzewski and Bella 1988. Arabazis and
Burkhart 1992, Calama and Montero 2004) and
with other positive values of ¢ (Huang et al.
1992, Lynch and Murphy 1995, Lappi 1997,
Hokka 1997, Jayaram and Lappi 2001, Colbert
et al. 2002, III, IV). In addition to these func-
tions, the Schnute function (Schnute 1981),
which has both an inflection point and an upper
asymptote, has been recommended in many
studies (Huang et al. 1992, Zhang 1997. Yancai
and Parresol 2001).

2.3 Other components

The diameter distribution and H-D curve of a
stand are regarded as the most important com-
ponents of stand description in forest manage-
ment planning. Other important components
are, for example, taper curves, spatial pattern
and age distribution. It is well known that tree
taper varies from stand to stand (Lappi 1986.
Ojansuu 1993) and spatial patterns may be very
different in different stands (Lin 2003). In the
future, information about tree taper may be
obtained from harvester measurements by

using imputation methods and the spatial pat-
tern may be determined by using high resolu-
tion remote sensing imagery (e.g. Uuttera et al.
1998). However, these approaches are not
currently in use, and field measurements of
these stand characteristics are too time consum-
ing in inventories for forest management plan-
ning. Thus, the taper curves of Laasasenaho
(1982) are assumed to apply to all stands and
the spatial pattern within stands is assumed to
be random.

The diameter distribution and H-D curve
produce a static description of the stock struc-
ture, which is the basis of growth and yield
prediction. The next important component of
the stand description is a set of models that
predicts the development of the stand (e.g.
Hynynen et al. 2002). However, because the
estimation of stand growth is out of the scope
of this study, growth models will not be dis-
cussed any further.

2.4 Other approaches

An alternative to the separate prediction of
diameter distribution and H-D curve is the use
of a bivariate distribution as the joint
distribution of heights and diameters. Ever
since Schreuder and Hafley (1977) proposed it,
Johnson’s Sgp distribution has been widely
utilized (Hafley and Buford 1985, Knoebel and
Burkhart 1991, Siipilehto 1996, Tewari and
Gadow 1999, Siipilehto 2000). Zucchini et al.
(2001), however, found that a mixture of two
bivariate normal distributions, which has more
free parameters than the bivariate Johnson’s
Spp distribution, fitted their Central European
beech stand better. Furthermore, the trivariate
Johnson’s Sggg distribution has been used in
the estimation of the joint distribution of
height, diameter and age (Schreuder et al.
1982). However, although these approaches are
theoretically appealing, their utility is not self-
evident when compared to the approach based
on a univariate diameter distribution and the H-
D curve (Knoebel and Burkhart 1991,
Siipilehto 1996, 2000). Furthermore, a
bivariate joint distribution of heights and
diameters is obtained also by using the
estimated diameter distribution and error
distribution of the H-D curve.
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Because diameter measurements are much
easier to obtain than height measurements, the
current practice is to predict tree height from its
diameter. Laser scanning (e.g. Maltamo et al
2004b) and digital photogrammetry of trees
from aerial photographs (Korpela 2004), which
are promising alternatives to the inventory by

compartments in the future, provide quite accu-
rate height measurements, while diameter
measurements are hard to obtain from the air.
Thus, the development of these methods to
realistic approaches in forest inventories may
reverse the roles of height and diameter in the
future (Maltamo et al. 2004b).
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3  PERCENTILE-BASED DIAMETER DISTRIBUTION

This study uses the percentile-based ap-
proach in the prediction of diameter distribu-
tions. The percentile-based approach of diame-
ter distributions was first presented by Borders
et al. (1987) and has later been used in Borders
and Patterson (1989), Maltamo et al. (2000),
Kangas and Maltamo (2000b) and Eerikdinen
and Maltamo (2003). The percentile-based
diameter distribution was introduced because
of its ability to reproduce multi-modal stand
tables and the simplicity of the mathematics
needed (Borders et al. 1987). More generally, it
is much more flexible than the traditional pa-
rametric distributional families, e.g. Weibull
and Johnson’s Sg, because the implied assump-
tions about the form of the diameter distribu-
tion are weak (Maltamo et al. 2000, Kangas
and Maltamo 2000b).

This study regards the percentile-based dis-
tribution as a piecewise defined uniform distri-
bution. The interpretation of the residuals of
the percentile models as the horizontal errors of
the percentiles is emphasized, and methods for
effective use of the error variances in calcula-
tions are developed (L, II, V). Furthermore, it is
shown that measured sample order statistics
can be regarded as measured percentiles, which
can be plotted onto the figure of the c.d.f. and
used in localizing the predicted percentiles for
a given stand (I, V). Finally, exact analytical
formulas for relationships between different
stand variables are derived without transform-
ing the distribution to a stand table. The formu-
las are utilized in adjusting the predicted per-
centiles in order to ensure compatibility of the
stand description (II, V). The next five subsec-
tions summarize and complete the properties of

the percentile-based approach derived in Pa-
pers I, Il and V.

3.1 Distribution function and density

Let the diameter distribution of a stand be
described with a strictly increasing vector of
diameters, d=(d;,d,,...,d;)’, corresponding to
predefined values, p=(p.ps,....px)’» of the cu-
mulative distribution function (c.d.f.) where
p=0 and p;=1. Assuming that the c.d.f. be-
tween consecutive percentiles is linear, the
c.d.f. of tree diameter Y is (I):

0 v<d,
F,(v[,)={a,+by d<y<d, .fori=l..k-1, (4)
1 y2d,

where

b =p1+‘—_§f and a, = p, - bd,.

i+l i

(The capital letter Y is used for random variable
and the lower case letter y for its realization; a
notation that is commonly used in statistical
literature.) The notation F,(y|d,) emphasizes
that vector p is a predefined constant vector
that defines the distribution family used and
vector d,, includes the parameters of the distri-
bution in stand m. The density is obtained by
differentiating (4):
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Table 1. Equations for the calculation of some stand characteristics from the percentile-based distribution of

form (4).
weighted unweighted
k-1
b(Ind,,, - Ind,) .
unweighted mean == =>b (d,+12 _diz)
N 2%
i=1 ' d: d|+l
— 4 4
1 k-1 N R 3 zbl (dl+| —-dx )
weighted mean EZ b, (dN,' - d,') 7 =
b(d. ;)
i=1
1 Crot 1
unweighted median d|— j S ,( )dt == dsw
- ( 11 Jd r 2
b|—- ‘
i=1 d: d1+l
d
. . 3 2 N
weighted median dsoo, dl— jt Y (t)dt ==

quadratic mean

stem number/basal area

kZ_iﬂb, (d.'-d})
i=1

Note. The equations for the basal area weighted diameter distribution are on the left and for the unweighted
diameter distribution on the right. The vertical lines in the equations of median mean the value of d that satisfied
the equation on the right hand side of the vertical line. The notation 7 means the density of the weighted diame-
ter distribution and /" the density of the unweighted distribution.

3.2 Moments of the distribution

The expectation or mean of tree diameter in a
stand is calculated as the expectation of the
percentile-based diameter distribution (Eqs 4
and 5). It follows straightforwardly from the
definition of the expected value that (Casella
and Berger 2002, p. 55)

(6)

For calculating variance, the second moment
of the distribution, defined as E(Y°). is needed
(Casella and Berger 2002. p. 59). It follows
again from the definition of the expected value
that

d,

B()= [0l
d, . (7)

k=1 i =

= [yibdv= 3:2:17' (d.'-d)

=l 4

and the variance is obtained using the well-
known formula (Casella and Berger 2002, p.
60)
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var(¥) = E(¥*)-[E(Y)] . (8)

3.3 Relationships between percentiles and
stand characteristics

Many computations with the theoretical dis-
tributions used in the description of forest
structure are very complicated and lead to
results that do not exist in closed form. A usual
solution to this problem is to use a stand table
approximation of the distribution (e.g. Nepal
and Somers 1992). With the percentile-based
diameter distribution (Eqs 4 and 5), many stand
characteristics can be rather simply derived
analytically (See the Appendix of Paper II).

The density of V., is

0 otherwise

fr" (y) = {ﬂobz (a, +b’y)"" (l—a, _b’y)n-r lfd, <v<

The most important stand characteristics are
given in Table 1 for both basal-area weighted
and unweighted diameter distributions.

3.4 Order statistics

The theory of order statistics is of great im-
portance with the percentile-based diameter
distribution because a measured sample order
statistic is an unbiased estimator of a certain
percentile of the underlying distribution (I).

Denote the " order statistic in a sample of
size n by Y,,,. If the sample is drawn from a
distribution with a c.d.f. of the form (4), the
exact distributions of order statistics can be
derived rather easily.

d.  fori=1..k-1

€))

and the joint density of two order statistics Y,;.,and V.., is

P L B N e B e Y
rin\J1°.2
0 otherwise
(10)
where
B n! d g n!
e ] =

' (r=1)Y(n-r)! l (n=r)!(r, =1, =1)!(r, = 1)!
(Reiss 1989. 1).

The expectation and variance of a single or-
der statistic follow from the same definitions p= F,,[ E(Y, )Id] . (11)

and general rule that were used in Equations 6,
7 and 8 (Casella and Berger 2002, p. 55-60, I).
The covariance of two order statistics can be
calculated using the corresponding definitions
and rule (Casella and Berger 2002, p. 144, 170)
for bivariate distribution, as shown in Paper L
Furthermore, the measured sample order statis-
tic is an unbiased estimator of the 100p™ per-
centile of the diameter distribution of the stand,
where

and F, is the c.d.f. of the stand.

3.5 Considerations on the PPM with the
percentile-based approach

Assume that the percentiles of the diameter
distribution in stand m follow the model

d,=Bx, +e,, (12)
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where B includes the parameters, x,, the predic-
tors and e,, the residual errors.

Assuming that the model is correct and B is
known, the fixed part of the model, Bx,,, gives
the conditional expectations of the percentiles
in the stand given x,,,

Bx, = E(d|x,), (13)

and the vector e,, includes the horizontal devia-
tions of the true percentiles of stand m from
their conditional expectations or, in other
words, stand effects (Figure 1 of I). Thus, the
variance-covariance matrix of the residuals
includes information about the between-stand
variation of the percentiles, which is useful
information in adjusting and localizing the
percentiles (L, II, V).
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4 DATASETS OF THIS STUDY

Two different datasets were used in the
study. The first data, called mixed forest data,
are a small data including 43 fixed rectangular
plots from conifer mixtures of North Karelia.
This dataset was used in the tests of the meth-
ods developed for diameter distribution predic-
tion (I, IT). The second dataset (INKA-data) is a
larger dataset covering the whole of Finland. It
includes remeasured plots from 757 stands.
This dataset was used in the estimation of H-D
curves (III, IV) and models for accuracy of
stand structure prediction (V).

4.1 Mixed forests data (I, II)

The mixed forests data were originally col-
lected for estimation of individual tree growth
models (Pukkala et al. 1998). The plots were
measured from mixed Scots pine-Norway
spruce stands. Almost all stands are naturally
regenerated and all stands represent the me-
dium site fertility class [Myrtillus type in the
classification system of Cajander (1926)]. The
plot size varies between 600 and 3000 m’,
being smaller in dense stands than in open
forests. The stands were selected to represent
forests of different density, age, tree size, spe-
cies composition, size difference between the
two species and spatial distribution of trees in
the stand. The stands are regarded as even-aged
although there may be remarkable variation in
the ages of the different tree species strata.
However, the within-stand variation of a given
tree species is small. The conifer mixtures of
this kind are quite typical in Finland and they
are considered even-aged forest stands in forest
planning and management. Detailed size and
growth measurements of all trees were made.
However, this study used only the measured
diameters (i.e. the empirical diameter distribu-
tion), stand age and site fertility. The mini-
mum, maximum and mean values of the most
important characteristics of the data are pre-
sented in Table 2 of Paper IL.

4.2 INKA-data (111, IV, V)

The stands of the INKA-data (Gustafsen et
al. 1988, Hynynen et al. 2002) are a subsample
of the stands of the 7" National Forest Inven-
tory in Southern Finland and of the 6™ National
Forest Inventory in Northern Finland. Only
stands on mineral soils were included and sap-
ling stands were excluded. The plots were
established between the years 1976-1982 and
they were remeasured twice with five-year
intervals. The dominant tree species of the
stands were Scots pine, Norway spruce or
birch. Only healthy, single-storied stands with
the proportion of major tree species being at
least 50% of the total volume of the growing
stock were included. The Scots pine dominated
stands represent all fertility classes of mineral
soils except the barest sites, which are unim-
portant for forest economy. The spruce and
birch-dominated stands represent only stands
with at least medium fertility.

A cluster of sample plots was established on
each stand. The cluster included three fixed-
radius circular plots, located 40 meters apart
from each other (See Figure 1 of IV). The plot
size varied according to the stand density so
that the total number of sampled trees in a
stand was at least 120 in Southern Finland and
100 in Northern Finland. The diameter at breast
height was recorded from all trees of the plot.
A smaller plot of more detailed measurements
was established at the center of each plot, com-
prising 1/3 of the area of the sample plot. These
measurements included. among others. sample
tree heights.

The minimum, maximum and mean values
of the most important characteristics of the data
are given in Table 1 of Paper III. Table 1 of
Paper IV and Table 1 of Paper V. Note that
these tables are calculated from the sub-data
used in these studies, including those stands of
the original INKA-data that fulfill the require-
ments stated in these studies.
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5 METHODS

5.1 Mixed models (III, IV)

In the following a very short overview on
mixed models is given through a forestry ex-
ample. In many forestry problems, the data
have a hierarchical structure that is due to the
division of the forest area to several stands and
plots. Furthermore, the plots may have been
measured several times (e.g. Hokkd and Ojan-
suu 2004, I and II). Essentially, the stands,
plots and measurement occasions of the model
data are samples from populations of stands,
plots and times and the model will be applied
in new stands, plots and times that are not pre-
sent in the modeling data. The mixed model
provides a natural approach for these kinds of
situations (see Davidian and Giltinan 1995, p.
63-124; McCulloch and Searle 2001, p. 1-27:
Diggle et al. 2002, p. 169-189). Gregoire et al.
(1995) summarizes well the merits of this ap-
proach in a situation where the structure of the
data causes spatial and temporal autocorrela-
tions between observations.

A linear mixed model can be written as
y=Xp+Zb+e. (14)
The first term on the right hand side of (14) is
called the fixed part and the last two terms the
random part of the model. Matrix X is the de-
sign matrix of the fixed part, Z the design ma-
trix of the random part, B the vector of fixed
parameters. b the vector of random parameters
and e the vector of residual errors (Lappi 1993,
p. 133-153. McCulloch and Searle 2001, p.
156-163, Pinheiro and Bates 2000, p. 58-62).
The parameters to be estimated are the fixed
parameters, B. and variance-covariance matri-
ces of random parameters, var(b)=D, and of
residual errors, var(e)=R. The parameters can
be estimated, for example, with the restricted
maximum likelihood method (REML) (see
Pinheiro and Bates 2000, p. 75-79).

The fixed parameters of the model corre-
spond to the parameters of an ordinary regres-
sion model and the fixed part gives the condi-

tional expectation of the response variable y
given the fixed predictors. The structure of the
data determines the structure of D and R. In
our example, a block-diagonal structure of
matrix D is assumed, which implies that trees
of the same stand and plot have constant corre-
lations, as have the trees from the same stand
and different plots (see e.g. Pinheiro and Bates
2000, p. 60-62). Trees from different stands are
assumed to be uncorrelated. Matrix R has usu-
ally a diagonal structure and if residuals have
equal variance, it is a multiple of an identity
matrix. However, spatial or temporal autocor-
relations, for example, lead to a non-diagonal
matrix R. For more details on modeling the
data structure and autocorrelations using matri-
ces D and R, see Pinheiro and Bates (2000, p.
201-270).

The variance-covariance matrix of the ran-
dom part is

V=var(y)=ZDZ'+R . (15)

Equation (15) shows that the random parame-
ters imply correlations between observations.
Furthermore, it implies that the covariance
between the observations and random parame-
ters is cov[b,(y-XB)’]=DZ" (McCulloch and
Searle 2001, p. 255). This covariance can be
utilized in the prediction of random effects
using observations of the response variable.

5.2 Prediction of random variables (I, III,
IV, V)

The error terms of statistical models are ran-
dom variables. This study utilizes the theory of
linear prediction to localize the models for a
given stand by predicting these random vari-
ables with observations of the response from a
sample. A short overview of the theory is given
in this section.

Assume that we have a vector of random
variables. x, which can be divided into two
parts
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(16)

where x; and x, are random vectors of length 1
or more. In the applications of this study, x, is
a vector of random effects (stand and time
effects) and x, is a vector of observed residuals
(observed height or percentile minus its ex-
pected value). It is assumed that E(x;)=p,
E(x2)=pa,  var(x))=V,,  var(xp)=V,, and
cov(xy,X;’) = V. Using the notation of
McCulloch and Searle (2000, p. 247), this can
be written as

X [ ™ V. v,

X, B, ) V." V, )

Assume that we have observed random vec-
tor x, and we want to predict vector x; The best

predictor (BP) of x; is the conditional expecta-
tion

(17)

BP(x,) = E(x,|x,) (18)
(McCulloch and Searle 2001, p. 248). The best
predictor can usually not be calculated because
it requires the distribution of x;|x,. An estima-
tor that requires only first and second moments
is obtained by limiting the consideration to

linear unbiased predictors. The Best Linear
Unbiased Predictor (BLUP) of x; is

BLUP(x,) =%, =p, + V.V, (x, - p,) (19)
with the prediction variance of
var(¥ -x )=V, -V,.V, 'V’ (20)

(McCulloch and Searle 2001, p. 250). Thus. if
the expectations and variance-covariance ma-
trices of two random vectors are known and
either of them is observed. the other can be
predicted. The variance of the prediction error
can be calculated using Equation (20). If x
follows the multinormal distribution. BLUP is
also BP.

The standard theory of mixed models utilizes
BLUP to predict the realizations of the random

effects in the modeling data (McCulloch and
Searle 2001, p. 254-258). It is a special case of
prediction, where the correlations between the
observed random vector, x,=y-XB, and the
vector of random effects, x,=b, are generated
by the structure of the data (Eq. 15), i.e. V;=D
V,=ZDZ’+R and V,=DZ’. If measurements of
the response variable from a new stand are
available in applications, the realizations of the
random parameters in that stand can be pre-
dicted (Lappi and Bailey 1998, Lappi 1991,
II). Similarly, if we have several models that
have correlated residual errors and the correla-
tions are known, an observed response of any
single model can be utilized in predicting the
responses of the other models in that stand
(Lappi 1991, I). Thus, the realized random
effects and/or random errors of the models can
be predicted in order to localize the models for
that stand.

In practice, the variance-covariance matrices
used are replaced with their estimates. A pre-
dictor obtained using these estimates is some-
times called EBLUP, Estimated Best Linear
Unbiased Predictor (e.g. McCulloch and Searle
2001, p. 257).

5.3 Constrained optimization (II, V)

This study utilizes constrained optimization
in adjusting the percentiles and stand variables
to obtain a compatible stand description (II, V)
and in searching for an optimal measurement
strategy for a single stand (V). A general con-
strained optimization problem is defined as
follows (Bazaraa and Shetty 1979, p. 2):

minimize
f(z) (21a)
subject to
g (z)<0 for i=1.....m (21b)
h(z)=0 for j=1...../ (21¢)

where z=(z,.z-.....2,)" is a vector of decision
variables and f, g;.....g,, and A,.....h; are func-
tions of z. The function f'is called an objective
function. functions g;.....g, inequality con-
straints and functions #;,.....h; equality con-
straints. The solution to the above problem is a
value of z that minimizes the function f and
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meanwhile satisfies the constraints. If functions
/- gis----gn and hy,... .k are linear in z, the prob-
lem is a constrained linear optimization prob-
lem and if any of them is nonlinear in z, the
problem is nonlinear.

A considerable amount of research has been
carried out to develop algorithms for solving
optimization problems and modern software
packages include functions for doing it. The
adjustment problem (II, V), which has both a
nonlinear objective function and nonlinear

constraints, was solved using IMSL subroutine
NCONF. It is based on successive quadratic
programming (IMSL 1997). The problem used
to search for an optimal measurement strategy
for a forest stand has a nonlinear objective
function and linear constraints. It was solved in
the R-environment (R Development Core
Team 2003) with the function ConstrOptim
using the simplex method of Nelder and Mead
(1964).
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6 SUMMARY OF RESULTS

6.1 Localizing predicted diameter distribu-
tion with sample order statistics (I, V)

If one has a diameter sample of size n from a
stand, the diameter of the " smallest tree in the
sample is a measurement of the " order statis-
tic of the sample. Measuring an order statistic
in the field requires only the diameter meas-
urement of one single tree and the knowledge
whether the diameter of the other trees is larger
or smaller than the measured diameter. Thus,
the measurement could be carried out rather
rapidly, even though practical studies on the
measurements have not been carried out until
now.

Paper I showed that a measured sample order
statistic of an HPS-plot is a measurement of
some percentile of the underlying basal area
diameter distribution (see section 3.4). Corre-
spondingly, if the sample is from a fixed plot, a
sample order statistic is a measurement of
some percentile of the ordinary (unweighted)
diameter distribution. Furthermore, Paper I
presented an algorithm for combining the in-
formation of expected percentiles of the diame-
ter distribution (Eqs 12 and 13) with the infor-
mation of sample order statistics. The algo-
rithm is based on predicting the stand effects of
a percentile-based diameter distribution model
(Eq. 12) with BLUP. It utilizes the estimated
variance-covariance matrix of stand effects and
the sampling errors of the order statistics.

The algorithm was examined with the mixed
forests data in Paper I and with the INKA-data
in Paper V. The percentiles were predicted
using the models of Kangas and Maltamo
(2000b). An assumption behind the method is
that the diameters of the sample plot are inde-
pendently sampled from the diameter distribu-
tion of the stand. The experiment of Paper I
was planned in such a manner that this assump-
tion was valid. Thus, trees belonging to the
simulated HPS-plots were randomly selected
from among all trees of the stand and tree loca-
tions were not utilized. In reality, however,
trees of a sample plot constitute the sample,

which is independent and identically distrib-
uted only if the stand is spatially homogenous.
In Paper V, the aim was to mimic a real inven-
tory for forest management planning and the
measured sample order statistics were obtained
from true HPS-plots. In calculations, these
plots were regarded as independent and identi-
cally distributed samples from the underlying
diameter distribution, even though this assump-
tion is violated in reality. Comparing the results
of Papers I and V provides a view of how vio-
lating the assumption of independent and iden-
tically distributed sample affects the localized
distributions.

Another difference between Papers I and V
was that in Paper I the stand variables used in
predicting the percentiles did not include sam-
pling error, while in Paper V sampling error
was included. These errors cause bias in the
predictions of the percentiles and have a re-
markable effect on their between-stand vari-
ance-covariance matrix. Under the assumption
that the measurements follow a lognormal
distribution, the bias-corrected predictions and
a variance-covariance matrix of the stand ef-
fects that takes the measurement errors into
account were derived in the Appendix of Paper
V and used in localization.

A problem in Paper I was that because the
measured median diameter was used as the
predicted 50™ percentile and its variance was
zero, the stand effects for the 50™ percentile
were always zero. This caused peaks around
the median diameter in the localized distribu-
tions. In Paper V. the use of a corrected vari-
ance-covariance matrix allowed also stand
effects of the 50™ percentile to differ from zero,
which solved the peak problem.

It was clearly seen that even one measured
sample order statistic distinctly decreased the
RMSE and absolute bias of volume and Rey-
nolds” error index (Reynolds et al. 1988) (see
Fig. 2 of I). In addition, increasing the number
of measured sample order statistics improved
the accuracy steadily. Furthermore, the method
seemed to produce good predictions also in
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complex stands. The order statistics were
clearly useful also in Paper V. This was seen in
the decreasing RMSE of saw timber volume.

In Paper I, order statistics of independent
samples improved the prediction of diameter
distribution considerably, both when consid-
ered through RMSE of total volume and
through error index. However, in Paper V,
there was no longer a significant decrease in
the RMSE of volume. This is partially because
the diameters of a true HPS sample are not
independent and identically distributed. An-
other reason is that the effect of measurement
errors of stand variables overrides the effect of
measured sample trees on the RMSE of vol-
ume. In Paper V, where stand variables in-
cluded sampling error, the RMSE of Scots pine
volume was, on average, 13.4, but in Paper I,
where correct values were used, it was only
1.3.

6.2 Adjusting the predicted percentiles to
obtain a compatible stand description

(IL V)

Paper II proposed an algorithm for adjusting
the diameter distribution in order to ensure its
compatibility with stand variables. The primary
aim of the study was to develop an algorithm
that is able to utilize an inaccurate measure-
ment of stem number in the prediction of di-
ameter distribution. Instead of adjusting the
stand table (Nepal and Somers 1992, Cao and
Baldwin 1999, Kangas and Maltamo 2000a),
the algorithm adjusts the predicted percentiles.
This makes it possible to utilize the variances
of the prediction errors in the adjustment and
also to adjust minimum and maximum diame-
ters, which is problematic in the adjustment of
a stand table. In addition to prediction errors of
percentiles, the algorithm takes into account
the measurement errors of the stand variables.
The obtained stand description is fully com-
patible, but the stand variables of the stand
description may deviate from their measured
values. The magnitude of the deviations de-
pends on the variance of the measurement
errors so that variables measured with low
accuracy deviate more than variables measured
with high accuracy.

The algorithm was tested in the mixed for-
ests data using multinormal measurement er-
rors of various magnitudes simulated to the
true stand variables (basal area, DGM and stem
number). When the measurement errors were
low, the diameter distribution predictions with
model 2 of Kangas and Maltamo (2000b)
(which includes stem number as a predictor)
were as accurate as those obtained by adjusting
the predictions of model 1 of Kangas and Mal-
tamo (2000b) (which does not include the stem
number as a predictor). However, increasing
the measurement errors made the accuracy of
model 2 even poorer than that of model 1,
while the adjustment algorithm improved the
accuracy considerably. The adjustment algo-
rithm was also superior when compared with
an algorithm that adjusts stand table and does
not utilize the measurement and prediction
errors (Kangas and Maltamo 2000a).

Another test of the algorithm was carried out
in Paper V. which showed that the use of stem
number in an inventory by compartments does
not affect the predictions of volume and saw
timber volume significantly even if the meas-
urement errors are taken into account. The
reason is probably the same as in the localiza-
tion, i.e. the errors of basal area and DGM
dominate in practical forest inventory. Thus, an
inaccurate measurement of stem number does
not improve the accuracy of stand volume and
saw timber volume. However, it may improve
the accuracy of some other variables, for ex-
ample, timber assortment proportions or stand
growth, even though in the study of Kangas
and Maltamo (2003), the accuracy of stand
growth could not be improved considerably by
the algorithm of Kangas and Maltamo (2000a).

The adjustment algorithm makes it also pos-
sible to use other stand variables than stem
number in the adjustment by including them in
the optimization as additional constraints. For
example, arithmetic, basal area-weighted and
quadratic mean diameter can be used. Equa-
tions for calculating them were presented in
Table 1. but they are not yet implemented in
the system.
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6.3 H-D models from longitudinal data (III,
IV, V)

Papers III and IV report models for the H-D
relationship of the stand. The models were
estimated by tree species and in applications
the H-D curve of each tree species is predicted
separately. The models apply the mixed model
approach to longitudinal data, which is nowa-
days a standard approach in longitudinal stud-
ies (McCulloch and Searle 2001, p 187-219;
Diggle et al. 2002, p 169-189).

In previous longitudinal studies of H-D
curves, the development of the parameters has
been linked to the stand age (e.g. Lappi 1997).
However, Paper III showed that the develop-
ment rate of an H-D curve of a shade-tolerant
species stratum may differ substantially be-
tween stands of equal age. (See Figure 1 of
Paper III). Two explanations for this were
given: 1) shade tolerant trees may survive for a
long time as an undergrowth in a closed forest
and begin to grow rapidly as the amount of
light increases and 2) the development rate
depends on the site fertility, being slower on
poor sites than on rich sites. Paper IV showed
that the second explanation also holds with
shade-intolerant tree species (Figure 1 of Paper
IV). On the other hand, in stands with equal
DGM, the development rate of H-D curves is
fairly equal, with only a random stand-wise
deviation that seems to be constant over time
(Papers III and IV). Thus, linking the develop-
ment of H-D curves with stand DGM led to
rather simple linear mixed models. while link-
ing the development with stand age would have
required much more complicated models.

In order to provide a suitable model for dif-
ferent situations, five models with different sets
of predictor variables were estimated for each
tree species. The additional predictors used
were stand location (x and y coordinates), alti-
tude, cumulative temperature sum, site fertility,
stand age and basal area. The mixed model
approach makes it possible to localize the mod-
els for a new stand using any number of
measured sample tree heights, as was demon-
strated in Papers III and IV. Thus, if the height
prediction obtained using only DGM of the
stand is not accurate enough, the accuracy can
be improved either by measuring more covari-

ates and using another model or by measuring
sample tree heights and localizing the model.
However, as Fig. 4a of Paper IV demonstrates,
despite the model used, the information of one
sample tree often overrides the effect of addi-
tional predictors. More generally, the use of
sample tree heights is recommended because it
utilizes measured heights, instead of indetermi-
nate correlations between stand variables and
tree height, to improve height prediction.

The longitudinal approach of the model pro-
vides possibilities to carry H-D information
from one point in time to another. For example,
a localized future H-D curve can be predicted
or old height sample trees can be used in local-
izing the H-D model for a given stand. Paper V
showed that an old height measurement im-
proves the accuracy of volume and saw timber
volume predictions. Furthermore, Paper V
showed that the number of height sample trees
has a considerable effect on the accuracy of
volume and saw timber volume predictions in a
forest inventory by compartments and indi-
cated that the number of height sample trees
from one species stratum should be more than
one.

6.4 A system for producing stand descrip-
tion in an inventory by compartments

™

Paper V utilized the results of Papers L, I, III
and IV to construct a system for the prediction
of stand description in a forest inventory by
compartments. An important feature of the
system is that the stand description can be
produced with a varying amount of input in-
formation. The minimum input requirement
includes the estimates of basal area, DGM,
stand age and site fertility class. all of which
can be obtained from the measurement of one
HPS-plot. Additional measurements that can be
utilized are additional HPS-plots, any number
of stem number measurements from fixed
plots, any number of old or new height sample
trees and any number of sample order statistics
(i.e. quantile trees) from the HPS-plots. In
addition, other stand variables that can be de-
rived from the diameter distribution, e.g.
arithmetic, basal-area weighted and quadratic
mean diameters (See Table 1), can be used
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through the adjustment algorithm of Paper II
In addition to the measurements of the stand
variables, the within-stand variance covariance
matrix of basal area, DGM and the other stand
variables used is needed. If only one sample
plot is measured from a stand, a model-based
estimate is required, but if more plots are
measured, the estimate can be based on the
observations of sample plots.

The possibility to use various input informa-
tion makes the system useful in various kinds
of inventories. Examples of these are the inven-
tory of forest planning and the pre-harvest
measurement of a stand marked for cutting.
Furthermore, the measurement efforts can be
directed according to the variable of interest.
For example, when aiming at accurate estima-
tion of the total amount of wood different
measurements can be carried out than when
aiming at accurate estimation of the saw log
proportion.

6.5 Optimizing data collection in an inven-
tory by compartments (V)

The system for producing a stand description
was utilized to estimate models for the ex-
pected variance of total and saw timber volume
given the values of the stand variables and
numbers of stand measurements. The estimated
models show that the most important factor
affecting the accuracy of stand description is
the number of HPS-plots, which provide in-
formation on the total basal area. The second
most important factor is either the number of
height sample trees or the number of quantile
trees, depending on the stand properties and the
aim of the inventory. If the aim is the accurate
estimation of the total volume, the second most
important factor (and the only one in addition
to the number of HPS-plots) is the number of
height sample trees. If the aim is the accurate
estimation of the saw timber volume, the situa-

tion is different: in stands where the DGM is
low, say less than 20 c¢m, the second and third
most important factors are the numbers of
quantile trees and height sample trees, respec-
tively, but in stands with a larger DGM, their
order is opposite (see Fig. 4 of Paper V). This
is because in stands with a small DGM, the saw
timber proportion depends strongly on the
diameter distribution, whose prediction accu-
racy is improved considerably by quantile
trees. On the other hand, in stands with a large
DGM, almost all trees are saw timber trees and
the proportion of saw timber depends on tree
taper, the information on which is provided by
the height sample trees. The measurement of
stem number did not have a significant effect
on the accuracy of total volume nor on the
accuracy of saw timber volume.

Since the accuracy of stand description de-
pends strongly on stand characteristics and the
number of measurements, the measurement
strategy of a stand should depend on stand
characteristics and on the aim of the inventory.
Paper V proposed an optimization approach to
find the optimal strategy for each stand.
Searching for the optimal strategy entailed
solving a general linearly constrained optimiza-
tion problem, where the numbers of different
measurements were used as target variables.
The optimization minimized the expected error
of stand description subject to budget con-
straints. The expected error was a weighted
average of the expected prediction errors of the
total and saw timber volumes. For the defini-
tion of the constraints, time requirements of
different measurements were needed: in Paper
V ad hoc guesses were used. The solution of
the optimization problem included concrete
suggestions about the number of HPS-plot,
height sample tree and quantile tree measure-
ments, which makes the approach convenient
for practical use.
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7  DISCUSSION

7.1 The system for producing a stand de-
scription

This study presented a new system for pre-
dicting stand description in an inventory by
compartments. The system utilizes measure-
ments of HPS-plots, stem number measure-
ments, sample order statistics (i.e. quantile
trees) and sample tree heights. In addition, old
height measurements can be utilized, if avail-
able. The main differences between the pro-
posed system and the systems that are currently
used in Finland (e.g. Redsven et al. 2004) are
the possibility to vary the set of measured vari-
ables and the utilization of measurement error
variances of the stand variables. Thus, the
accuracy of the produced stand description can
be controlled through the number of different
measurements. Furthermore, the measurement
resources can be allocated to those measure-
ments that provide most information about the
variable of interest. The developed system was
found promising in the prediction of stand
description. However, it was not compared
with the systems that are currently used in
Finland and comparisons should be carried out
in the future.

The system produces a static description of
the stand. However, the H-D model of the
system can also be used in predicting the H-D
pattern of the stand in the future, and develop-
ing the system into a dynamic stand develop-
ment model would require only additional
longitudinal models of percentiles and stock
density. Furthermore. all models of the system
could be estimated simultaneously, which
would provide the estimates of cross-model
correlations. These would make it possible to
cross-calibrate the models (Lappi 1991). For
example. height measurement of spruce could
be used in localizing the H-D model of pine in
a spruce-pine mixture. This would make the
use of measured forest data even more effi-
cient.

The longitudinal H-D models (III and IV)
provided a possibility to utilize old height

measurements in the prediction of the current
stand description and Paper V showed that old
height measurements improve the prediction.
As mentioned above, the principle used with
height prediction could be generalized to other
models of the system. For example, estimating
longitudinal models for diameter percentiles
would make it possible to utilize also old
measured percentiles in predicting diameter
distribution. If this approach proves to be use-
ful, old measured information may become
very valuable. Thus, in the near future, atten-
tion should be paid to saving all sample meas-
urements in the database in such a form that
they can be used later, to retaining old meas-
urements in the database and to saving infor-
mation about the origin of the data (measured
or updated with models). For example, instead
of saving only the mean height of the stand
based on a height sample tree, the diameter and
height of the height sample tree should be
saved. Furthermore, all plot specific measure-
ments of basal area and DGM should be saved
in the database, since they are measured sample
order statistics that may be very useful in the
future.

In addition to the measurements of stand
variables, the system developed in this study
utilizes variances of their estimation errors.
Paper V assumed that the forest data was col-
lected with an objective sampling method that
was based on measurements on randomly lo-
cated sample plots. In the objective inventory,
the measurement and prediction errors are quite
controllable. because standard formulas of
random sampling can be applied (e.g. Koi-
vuniemi 2003. V). The current practice in
Finland is, however. to use a subjective inven-
tory method where plots are located subjec-
tively and measurements are based on partly
visual assessments. In the subjective inventory.
the estimation of stand variables is regarded as
more cost-efficient than in the objective inven-
tory. However. processes generating errors in
an inventory of this kind are very unclear and
the errors depend strongly on the person carry-
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ing out the inventory (e.g. Haara 2003, Haara
and Korhonen 2004, Kangas et al. 2004). If the
measurement errors are utilized in calculations,
as they are in the system of this study, the ob-
jective sampling method may be even more
cost-efficient than the subjective sampling
method. Thus, comparisons of subjective and
objective sampling methods should be carried
out in the future.

7.2 The use of sample information

The use of sample information is appealing
because it provides possibilities to control the
accuracy of predictions through the amount of
sample measurements. However, using sample
information alone would be a waste of infor-
mation, because some stand variables (DGM,
basal area, age, site fertility class) are measured
anyway and they include information about the
H-D curve and diameter distribution. This
study used both information on the stand vari-
ables and the measured sample information in
the prediction of the H-D curve and diameter
distribution of a stand. The usefulness of the
sample measurements seemed to be great when
compared to other possibilities to improve the
predictions. For example, Paper V showed that
sample order statistics provide much more
information on the diameter distribution than
measurement of stem number. Furthermore, in
the sample stand of Paper IV (Fig. 4a of Paper
IV) the utility of additional covariates was
marginal when compared to the utility of one
height sample tree in the prediction of the H-D
curve.

The measurement of a sample of diameters
with the measurement equipment that is cur-
rently used is too laborious in an inventory for
forest planning. However. quantile trees might
be measured with little effort. This study found
quantile trees to provide considerable informa-
tion about the diameter distribution of the
stand. This result is, in fact, a generalization of
the result of Kangas and Maltamo (2002).
where the most promising new measurements
were minimum, maximum and arithmetic me-
dian diameter, i.e. the first, last and middle
order statistics of a sample from the un-
weighted diameter distribution.

New measurement equipment (Laasasenaho
et al. 2002) is being developed in order to make

it possible for a single person to measure a
large sample of diameters from a stand rapidly.
The equipment is similar to an angle gauge, but
the slot width can be adjusted and a laser te-
lemeter is included. The diameter of a tree is
measured by adjusting the slot width so that the
tree exactly fills it and measuring the distance
to the tree with a laser. However, the equip-
ment has problems in measuring distances in
branchy stands and in stands with dense under-
growth. The quantile tree approach could pro-
vide a solution to this problem: if the diameter
cannot be measured, the rank of the tree on the
plot could be assessed visually and the ap-
proach of Paper I used in the prediction of the
diameter distribution of the stand.

The method for utilizing the measured sam-
ple order statistics is based on the observation
that a measured sample order statistic is a
measured percentile of the underlying diameter
distribution. The algorithm requires the condi-
tional expectations of the percentiles and the
variance-covariance matrix of the prediction
errors (i.e. stand effects). These are straight-
forwardly obtained when a percentile-based
parameter prediction method is used and thus,
this approach is recommended in the present
study. However, it might be possible to localize
also other distribution families with measured
percentiles, as discussed in Paper 1.

Measurements of quantile trees have not
been carried out in practice, except for the
measurements of the DGM tree from an HPS-
plot, which is carried out by visually determin-
ing the median tree of the plot and measuring
its diameter. The measurement of quantile trees
in the field could be carried out as follows.
Before counting any trees of the HPS-plot, one
selects a tree that seems to belong to the plot
and measures its diameter. When counting the
trees with the angle gauge one determines
visually for each tree on the plot if it is larger
or smaller than the selected tree. However, in
visual assessment measurement errors Occur.
Thus, the measurement accuracy, time con-
sumption and usefulness of measured quantile
trees with visually assessed ranks should be
studied in the future.

A common practice in forestry is to predict
various variables using regression models. This
study utilized an approach where the models
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were localized using sample measurements of
the response variable. The utilized approach
was promising and other studies have also
shown it to be useful (e.g. Lappi and Bailey
1988, Eerikiinen et al. 2002, Calama and Mon-
tero 2004). These observations raise the ques-
tion of whether this principle should also be
used with other models of the forest planning
system. For example, should we begin to meas-
ure the growth of sample trees in order to
predict the growth more accurately than it is
currently predicted. This would require the use
of such a model form and modeling approach
that would make it possible to use sample
measurements that are informative and can be
carried out accurately and rapidly in the field.

7.3 Optimal allocation of stand measure-
ments

As discussed previously, the studies of Eid
(2000), Kangas and Maltamo (2002) and
Holmstrom et al. (2003) indicated that money
could be saved by varying the strategy of forest
inventory from stand to stand. The savings
consist of allocation of measurement time on
the stand level and the area level. On the stand
level, available measurement resources can be
used for measurements that provide the largest
amount of information about the specified
target variable (e.g. total volume or saw timber
volume). On the area level, more time can be
spent on the measurement of those stands from
which the most accurate information is needed,
while in stands where the accuracy requirement
is lower, the measurements can be limited to a
minimum. For example, more time can be
spent on stands that will be harvested in the
near future than on sapling stands.

Paper V gave an operative tool to be used in
finding the optimal measurement strategy for a
single stand in practice. The optimization algo-
rithm could be included in the field computer
used in the inventory. The computer would
carry out the optimization after the measure-
ment of the first HPS-plot and suggest the
combination of additional measurements. Fur-
thermore, the suggestion would be updated
after the measurement of each additional plot.
The area level allocation of measurement re-
sources to different stands was not optimized in
Paper V in the sense that the resources were

distributed between stands in a way that is most
efficient with regard to some criterion. How-
ever, the maximum time requirement can vary
between stands. For example, it can be defined
to depend on stand characteristics.

The target variables in the optimization of
data collection were the errors of total volume
and saw timber volume. These variables were
selected as examples in this study, because they
depend on all components of the stand descrip-
tion, i.e. on the stand density, diameter distri-
bution and H-D curve. If appropriate data are
available, the approach of Paper V can also be
used in the prediction of expected errors of
some other target variables, e.g. pole volume or
growth. In some cases, the interest may not lie
in all three components. For example, the in-
terest may lie in the accuracy of predicted stand
structure, i.e. in the predictions of the diameter
distribution and H-D curve, while the accuracy
of stock density may be unimportant. In this
case, the target variable could be the saw tim-
ber proportion instead of saw timber volume.

If the variable of interest is the diameter
distribution alone, the target variable should be
a variable that gives as much information as
possible about the accuracy of diameter
distribution. In different studies, different
criterion variables have been used in measuring
the accuracy of predicted diameter distribution.
These are, for example, RMSE and bias of
different variables derived from the diameter
distribution (e.g. Maltamo et al. 1995,
Temesgen et al. 2002, Robinson 2004).
Furthermore, Reynolds’ error index (Reynolds
et al. 1988) and different goodness of fit test
statistics and have been widely used (e.g. Liu et
al. 2002, Zhang et al. 2003). All these could be
used as target variables in the optimization.
With basal area diameter distribution, the
number of stems includes a considerable
amount of information about the form of the
distribution (e.g. Siipilehto 1999, Kangas and
Maltamo 2000c). However, the measurement
of stem number is very inaccurate (Kangas et
al. 2004). Thus, Maltamo et al. (2003b)
proposed that instead of trying to use the stem
number in the prediction of diameter
distribution, it could be used as a criterion
variable measuring the accuracy of the
predicted diameter distribution. Thus, if the
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aim of inventory is accurate basal area diameter
distribution, a good target variable of the
optimization could be the RMSE of stem
number.

The aim of forest planning is to search for
optimal management schedules for the stands
of the forest area under consideration. Thus, in
order to maximize the utility of a forest inven-
tory with regard to forest planning, the effect of
data collection on the management suggestions
should be analyzed and the measurement strat-
egy that minimizes the expected sum of costs
and losses should be selected (Stahl et al. 1994,
Eid 2000 and Holmstrom et al. 2003). This
cost-plus-loss approach suggests improving the
accuracy of forest data whenever the costs of

the improved accuracy are lower than the
money saved in optimal harvest decisions. This
study optimized the forest inventory of forest
planning with respect to the accuracy of static
stand description. This approach was selected
because at this stage the study was limited to
static prediction of stand description in the
inventory by compartments. However, as dis-
cussed earlier, a natural extension of the system
is a dynamic system with simultaneously esti-
mated longitudinal models for the stock den-
sity, diameter distribution and H-D curve. With
the extended system, management schedules
could be produced and cost-plus-loss analyses
of forest inventories would be possible.
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8 REDUCING THE COSTS OF THE INVENTORY FOR FOREST PLANNING

This study aimed at responding to the need to
decrease the costs of a forest inventory. Using
the system proposed in this study, the costs
might be decreased in the following ways.

1. By optimizing data collection on the stand
level. A tool for optimization was pro-
posed in Paper V. However, putting it into
practice requires knowledge about the time
requirements of different measurements.
Furthermore, if quantile trees are used,
their measurement accuracy and time re-
quirement should be studied first.

2. By optimizing data collection on the area
level. Because the proposed system makes
it possible to vary the measurement com-
bination from stand to stand, measurement
resources could be allocated to stands
where the accuracy requirement is highest.

3. By utilizing data of the previous inventory.
This study utilized only height data, but
estimation of longitudinal models for basal
area and stock density could provide pos-
sibilities to utilize also old measurements
of basal area and DGM. This requires that
the measurements of sample plots should
be carried out in such a way and saved in
the database in such a form that they can
be utilized later.

4. The proposed system might produce more
accurate estimates than the currently used
system even with the currently used meas-
urement strategy, because the proposed
height model is localized with a method
that has a stronger theoretical basis than
the one currently used. The accuracy of the
current system and the proposed system
should be compared in order to study
which of them produces the most accurate
estimates with the currently used meas-
urement strategy.

If the aim is to improve the cost-
effectiveness instead of reducing the costs of
the forest inventory, one possibility, in addition
to the four mentioned above, would be to im-
prove the accuracy of forest data. If the ex-
pected savings in optimal harvest decisions are
greater than the costs of the improved accu-
racy, the improvement is advantageous for the
forest owner. Furthermore, an additional possi-
bility to make the use of measured data more
efficient would be to carry information be-
tween individual models of the model system.
In particular, in a mixed stand, information
could be carried from one tree species to an-
other, as discussed previously.
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LOCALIZING PREDICTED DIAMETER DISTRIBUTION WITH SAMPLE
INFORMATION

Lauri Mehtétalo

Finnish Forest Research Institute, Joensuu Research Centre, P.O. Box 68, Fin-80101 Joensuu,
Finland.

Abstract. This study presents a new method for predicting the diameter distribution of a stand. The
method utilizes the percentile-based diameter distribution. The expected diameter percentiles are
first predicted using stand measurements. Subsequently, the distribution is calibrated (localized) for
the stand using sample order statistics, which consist of one or more diameters of sample trees and
their ranks on the sample plot(s). These measurements can be carried out rather rapidly in the field,
because the rank can be assessed visually. The sample order statistics can be interpreted as meas-
ured sample percentiles. The expectations, variances and covariances of the measured sample order
statistics are derived using the theory of order statistics. Regression models are utilized to predict
the conditional expectations of predefined percentiles, which are then combined with the measured
percentiles using the best linear unbiased predictor (BLUP). The method was tested in a real dataset
using simulated sample plots. The test showed that even with a small number of sample measure-
ments, the Reynolds’ error index and RMSE and bias of volume could be decreased remarkably.
Furthermore, increasing the number of measurements improved the prediction steadily. The pro-
posed method seems to be a promising tool in the prediction of diameter distributions of various
forms and it seems to work also in complex stands.

Key words: percentile, order statistic, rank, BLUP.
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Introduction

The most natural way of estimating the di-
ameter distribution of a stand is to utilize a
measured sample of diameters. However, the
measurement of a diameter sample is time
consuming and too cumbersome to be carried
out by a single person. Thus, in many invento-
ries, e.g. in an inventory by compartments for
forest planning, there are no resources for
measuring a diameter sample. This study pro-
poses the measurement of sample order statis-
tics as an alternative to the measurement of the
complete sample, i.e. the measurement of one
or more tree diameters and determination of the
ranks of these diameters in the sample. The
main point in measuring an order statistic in the
field is that one needs to measure exactly the
diameter of only one tree and for the other trees
one only needs to know whether they are larger
or smaller than the measured tree. In many
cases, this can be assessed visually without
walking to the base of the tree. Thus, order
statistics of a horizontal point sample plot can
be assessed rather easily by a single person.

There are three approaches used in predicting
the diameter distribution of a stand. The first
approach is based on a sample of diameters,
which may either be smoothed somehow or
used as such to represent the diameter distribu-
tion of the stand (e.g. Van Deusen 1986, Pi-
enaar and Harrison 1988, Droessler and Burk
1989, Nepal and Somers 1992, Lindsay et al.
1996, Tang et al. 1997). In the second ap-
proach, parameters of some presupposed distri-
bution family are predicted with some easily
measurable stand characteristics (e.g. Hyink
and Moser 1983. Rennolls et al. 1985, Kilkki
and Pdivinen 1986, Borders et al. 1987, Bor-
ders and Patterson 1990, Maltamo et al. 2000).
In the first approach. the accuracy of prediction
is good and can be improved by enlarging
sample size, but measuring a sample of diame-
ters is rather time consuming. In the second
approach. on the other hand, the measurements
can be obtained fairly rapidly but the accuracy
is not good enough for many inventories, e.g.
for an inventory for forest planning.

The third approach uses known relations be-
tween stand variables and diameter distribution
to recover the distribution parameters (e.g.
Burk and Newberry 1984). The recovery gives
the only existing compatible solution of the
assumed distribution family. However, the
correct family is not known and thus, the ob-
tained distribution is not the actual one even if
the stand values are correct. The recovery is
possible only for as many parameters as there
are known stand variables related to the diame-
ter distribution. Thus, with distribution families
that have more free parameters than the number
of measured stand variables, only partial re-
covery is possible. In Finland, partial recovery
is commonly used in parameter prediction by
setting the measured median to equal the me-
dian of the assumed distribution (e.g. Kilkki
and Pdivinen 1986, Maltamo et al. 2000): it is
used also in this study.

In the first approach, the sample diameter
distribution converges to the diameter distribu-
tion of the stand as sample size increases.
Hence, if no information is lost when smooth-
ing the sample diameter distribution, the pre-
dicted distribution approaches the actual distri-
bution of the stand as sample size increases.
With the second approach this does not hold:
even if the values of the predictors were known
exactly, the predicted parameters of the distri-
bution would not be the actual parameters of
the stand. Instead, assuming that the model is
right, they are the conditional expectations of
the parameters given the values of the predic-
tors. In other words, they are the expected
values of the parameters in a stand belonging to
the population of stands with the given values
of the predictors. In addition, the residual vari-
ances of the models of the parameters include
information about how much the parameters of
a single stand vary from their expected values.

The aim of this study was to develop a
method that is able to predict the diameter
distribution of a stand using measurements of
stand variables and order statistics of diameter
sample(s). The method combines the first and
second approach presented above. It is shown
that a measured order statistic is an unbiased
estimator of some percentile of the underlying
diameter distribution. Thus, the percentile-
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based diameter distribution (Borders et al.
1987) is a natural selection as the distribution
family in this study. The expectations, vari-
ances and covariances of the sample order
statistics are derived using the theory of order
statistics. The conditional expectations of the
percentiles are first obtained using the second
approach. Subsequently, localized stand-level
percentiles are predicted using the expected
values of the percentiles, sample order statistics
and information about their accuracy. The
predicted expectations of the percentiles are
combined with the sample information using
the best linear unbiased predictor (BLUP). The
usefulness of the method is demonstrated with
a case study that is based on sample plots simu-
lated using real data.

Method

Percentile-based diameter distribution

Let the diameter distribution of a stand be
described with a vector of diameters
d=(d,,d,, ...,d;)’ corresponding to certain prede-
fined values of the diameter distribution func-
tion Fy, say vector p=(p.,p>,...,px)’. For vector
p. /=0, p;=1 holds and the elements d, ..., d;
and p;, ..., px of vectors d and p are in increas-
ing order. Thus, the diameter d, is the 100* p,"
percentile of the diameter distribution Fy. As-
suming that the cumulative distribution func-
tion (c.d.f.) between consecutive percentiles is
linear we get the c.d.f. of tree diameter -

0 v<d,
F(v)=1a+by d <v<d,.i=l..k-1, €))
1 vzd,

where

b, =P 7P ang a=p —bd.
d, —d

i+1 i

This formulation is the percentile-based
diameter distribution utilized, for example, by
Borders et al. (1987), Borders and Patterson
(1990) and Mehtdtalo (2004). Maltamo et al.
(2000) and Kangas and Maltamo (2000a) used
the same distribution except that the

interpolation between consecutive percentiles
was carried out with a spline function. In this
study, however, linear interpolation is preferred
in order to keep the computations simple. Thus,
the resulting distribution can be interpreted as a
piecewise defined uniform distribution (cf. Cao
and Burkhart 1984) or as a finite mixture of -1
uniform distributions (c.f. Liu et al. 2002).
Because of the linear interpolation, many
characteristics of the distribution, e.g.
expectation, variance, median, and quadratic
mean diameter, can be easily derived
analytically (see Mehtdtalo 2004). By
derivation of (1) with respect to y one can see
that the density of the diameter is a constant b;
at each interval [d;d;.;). A distribution with a
c.d.f. of the form (1) is later denoted with
Percy(d).

Diameter distribution is commonly used to
calculate number of stems, volume or some
other stand characteristics between certain
diameter limits. However, it can also be inter-
preted as a probability distribution giving the
probability with which the diameter of a ran-
domly selected tree is between two given di-
ameters. In this case, a random sample of trees
in a stand is regarded as a random sample of
diameters from the diameter distribution of the
stand.

Expectation, variance and covariance of order
statistics

If one has measured the diameter of a tree
and, in addition, knows its rank r in the sample
of size n, the measured diameter is the ™ order
statistic of the sample. This section shows that
the measured sample order statistic is an esti-
mate of certain percentile of the underlying
population, i.e. it is a measured percentile of
the stand. The next section demonstrates how
this measured percentile can be used as addi-
tional information in predicting the diameter
distribution of the stand. The idea is to cali-
brate (localize) the expected percentiles for a
certain stand using the measured sample per-
centile(s). Because the measurements come
from a sample or samples, they include some
amount of sampling error. Hence, to be able to
use the measured sample order statistics in
calibration, we need to know their expectations
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and the variance-covariance matrix of their
sampling error. Here they are derived using the
exact results for distributions of order statistics.

Assume that Y, ..., Y, is an independent sam-
ple with a common distribution function Fy.
Denote the " order statistic of the sample by
Y,... The density of V,., is (Reiss 1989, p. 21,
Casella and Berger 2002, p. 229)

L2 0)=A e £y OE )] [-F 0]

n!
(r=1)Y(n-r)!
tions fy(y) and Fy(y) are the density and c.d.f of
the random variable Y, respectively. It is easy
to see that if ¥ is uniformly distributed between
[0,1], .., follows a beta distribution with the
parameters r and n-r+1.

Next, the diameter distribution of a stand,
Fy(y), is assumed to be known and of the form
(1). Then a sample of diameters, Y;,...,V,. is a
random sample from the distribution Percp(d)
Writing (1) into (2) glves the density of the "
order statistic at the /" interval d, di-;):

where g, (r.n) = and the func-

£ ()= ﬂo(rnb[a+b1]' [l-a-b]". 3)

which is a piece of the beta distribution. The
expectation of V.., is calculated as

E(Y,,)= ﬂo'n)f\f,,,

Dividing the integral into subintervals accord-
ing to the percentile intervals gives

l"w

.[ o (v)dv 4)

=l q

( ﬂo’n

Utilizing the assumption that the distribution
Fy(v) is the diameter distribution of the stand,
its inverse (quantile function) F™'(p). gives
the 100*p™ diameter percentile of the stand
(Reiss 1989. p. 14-15). Thus, the value of the
c.d.f. corresponding to the expectation of the

sample percentile is the value of p satisfying
E(Y,,)=F"(p). which gives the solution

p=F[E,)]. ®)

Hence, the diameter of the " largest tree in a
sample of size », Y., is an unbiased estimator
of the 100*p™ percentile of the stand, assuming
that the c.d.f. of the stand is Fy.

The calculation of the second moment of Y.,
corresponds to formula 4:

( ) ﬂornz:f\ﬂ,, Vv

giving the variance

)-[E(x,)] (6)

var(Y,,)=E(Y,,

rn

The joint density of two order statistics Y,;.,
and Y,,., from a sample of size » from a popula-
tion with the c.d.f. Fy(y) is (Reiss 1989, p. 30-
31. Casella and Berger 2002, p. 230)

Fronreno22) =B, (7 m) fr (1) 1y (0:) %
(00T (A =A™

if y;<y, and 0 otherwise. where r;<r, and

(7)

n!

(n—r ) (r, =1 =1)(r, = 1)! ’

B (r.r.n) =

Writing (1) into (7) gives the joint density in
the case of the percentile-based diameter
distribution within each quadrangle

[dlr dl‘[) [ / I)

Finin (W32)=,(5-12.m)bb, ¢

. P v (8)
(a,+b,y,)"_l(a/+b7y3—a,—b,yl)' ‘ I(l—avj—bjyz) ;

for y<y, and 0 otherwise. To calculate the
covariance between these order statistics we
need to calculate the expectation of their prod-
uct first. Integrating each quadrangle
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[d; d;.)*[d,d;.;) separately for ij=1,....k-1
gives

(YY)
k=1 k=149 .
ﬂl(rl -f:-")zz I J‘"‘]".lj;i nr n'J (,"‘l -}':)dyzdyl
J=1i=l 4, d,

Using this result and the expectation of single
order statistic, (4), the covariance of two order
statistics is calculated as

con(l, 1, BT, )0 )LL) ©)

qntrnon i o

Since the densities (3) and (8) are n-1" and
n-2" order polynomials, respectively, exact
calculation of the integrals may lead to degen-
eration of computing accuracy with large val-
ues of » and need to be calculated numerically
in applications.

Predicting localized percentiles

Assume that models predicting k& diameter
percentiles are available and the 100%p," per-
centile in stand m follows the model
d, =u, +e, fori=1.2.... k Writing all per-

centiles as a vector, the model for the whole set
of percentiles in stand m is

dm = l‘l'm +em * (10)

where d,=(d;,,do . din) s W=(Wimtoms -,
) and e, =(e;, e, ....er,)" Wwith E(e,)=0.
Assuming that the model is correct and the
parameters are known. vector p,, includes the
conditional expectations of the percentiles
given the values of the stand variables, E(d|x,,).
These are later referred to as expected percen-
tiles of the stand. Vector e,, includes the stand
effects of stand m, i.e. the deviations of the
stand-level percentiles from their conditional
expectations. Estimation of the model (Equa-
tion 10) using a simultaneous regression tech-
nique (SUR) produces an estimate of the vari-
ance-covariance matrix of stand-level devia-
tions, var(e,), denoted by Dj.,. Writing the
predefined p-values into vector
P=(p1,p> ---.pi)’. the diameter distribution based

on expected percentiles of stand m can be writ-
ten as Percy, (u,,) and the diameter distribution
of stand m, correspondingly. as Percy(p,, +e,,).
Since the following calculations apply to one
stand, the stand index m is dropped hereafter.

The measured order statistics are used to
predict the vector of stand effects, ej.;., using
the standard linear prediction theory (see e.g.
Lappi 1986, 1991, 1997). Assume that we have
g measured order statistics from a stand in
vector d*=(Y,;.,;, Yioonz ..., Yiging)'.  The meas-
urements follow the model

d*=p*+e*+g, (11)

where the measured diameters are in vector
d*,.,, their conditional expectations in vector
n*,.q, the stand effects in vector e* ., and the
sampling error in vector &,.;. For the random
part of the model E(e*)=E(¢)=0 and
cov(e*, €’)=0 holds. At this stage we assume
that the actual distribution of the stand,
Percy(n +e). is known (I return to this later).
The p-values corresponding to the measure-
ments are obtained using formulas (4) and (5)
and written into vector p*,.;. The conditional
expectations of measurements are then calcu-
lated as p*=F"(p*), where F' is the inverse of
the distribution based on expected percentiles,
Percy(p).

For predicting the realized stand effects of
model 10. the sampling variance-covariance
matrix of order statistics. var(e), denoted by
R,.,. the variance-covariance matrix of the
stand effects of model 11, var(e*), denoted by
D*,., and covariance matrix of stand effects of
models 10 and 11. cov(e.e*’). denoted by Cy.,
are needed. The variances of order statistics are
calculated using formula (6) and written on the
diagonal of R. If one has measured several
order statistics from the same sample plot. their
covariances are calculated using formula (9)
and written in the corresponding cells of matrix
R. The covariances of order statistics from
different plots are naturally zero. Matrices D*
and C are obtained from matrix D by interpo-
lating it for the values of p*.

In localization, the unobserved random vec-
tor e is predicted using the observed random
vector e*+e=d*-p*. For the prediction, we
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Figure 1. The distributions based on the expected

percentiles, p (dashed line) and on the localized

percentiles. pt+e (solid line) obtained using the ob-

servation }3.,3=8.5 cm (A).

need to derive the variances and covariances of
these random vectors using the known matrices
D. D*, C and R. The variance of stand effects
of model 10, var(e), is straightforwardly D.
Since cov(e*, €)=0 and cov(e, €)=0,
var(e*+g)=D*+R and
cov|e,(e*+€)’]=cov(e,e*’)=C. Using the nota-
tion of McCulloch and Searle (2001, p. 247),
these results can be expressed as

o R osal)

The Best Linear Unbiased Predictor (BLUP)
of e is calculated as

é=C(D*+R) ' (d*-p*) (12)
with the prediction variance of
var(é—e) =D -C(D*+R) " C' (13)

(McCulloch and Searle 2001, p. 250). The
stand level diameter percentiles are obtained by
adding the predicted stand effects to the ex-
pected percentiles (see model 10).

The stand-level diameter distribution would
already be needed in the calculation of p* and
R. Since it is the result of the prediction and is
not known when p* and R are calculated, the

solution is searched iteratively. At the first
iteration step, the expected diameter distribu-
tion of the stand, Percp(p), is used as the stand-
level distribution to approximate p* and R.
Subsequently, these approximations are used to
predict the stand-level diameter distribution,

Perc,(n+€), with BLUP. Furthermore, this

prediction is used to calculate new approxima-
tions of p* and R and the prediction of stand
effects is carried out again. Repeating this until
the predicted stand-level percentiles converge
gives the final predicted stand-level diameter
distribution.

In some cases, we may obtain two observa-
tions of the same percentile. This happens
when there are two measurements of the same
percentile from different plots, i.e. the number
of tally trees is the same on two sample plots
from the same stand and diameters with the
same rank are measured from both plots. This
means that the same row (and column) is in-
cluded in matrix D* twice. It is therefore singu-
lar and the calibration cannot be carried out.
The non-singularity of matrix D* can be guar-
anteed by treating the several measurements of
the same order statistic as one measurement in
the calculations. In this case, the mean of
measured diameters is used as the observed
percentile and the elements of matrix R are
calculated using general rules for the variances
and covariances of sums.

Numerical example

This section presents a numerical example of
the calibration algorithm. The model of Kangas
and Maltamo (2000a) was used to predict the
conditional expectations of k=11 percentiles of
basal-area diameter distribution. The predictors
of the model are basal area median diameter
(DGM), age, basal area and soil type. The
models predict the 0™ 10™, 20", 30", 40™, 60",
70", 80, 90™, 95™ and 100™ percentiles. i.e.

p=(0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 0.95 1.0)".

In addition, the known DGM is used as the 50"
percentile. The models have been estimated
using seemingly unrelated regression and the
estimated variance-covariance matrix D was
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obtained from the original SUR-fit (Table 1).
The model of percentiles is estimated on a
logarithmic scale, i.e. the model is of the form
(cf. Equation 10)

In(d)=p+e. (14)

In order to give a numerical example of the
proposed algorithm, the diameter distribution
of a Norway spruce stand was predicted, where
DGM is 20 cm, basal area is 22 m*/ha , stand
age is 64 years and site fertility class is mesic.
The predicted logarithmic percentiles using
these values (i.e. conditional expectations
given the values of stand variables) were

1.63
2.35
2.65
2.79
291
p=|3.08 .
3.15
3.24
3.31
3.38
3.53

In addition to the known stand variables, the
third smallest tree of a horizontal point sample
of 13 trees has been observed to be 8.5 cm in
diameter, i.e. Y343 has been observed to be
In(8.5)=2.140. The expectation of the sample
order statistic Y3.1; of the distribution Percpy(p)
is (Equation 4) E(Ys.3)= 2.595. Equation 5
gives the value p*= 0.182, which means that
the measured order statistic is a measurement
of the 18.2" percentile of the diameter distribu-
tion. The observed percentile has been plotted
onto Figure 1 at the location (2.140,0.182).
Note that we have k=11 percentiles of prede-
fined percentage values and g=1 measured
percentiles. Thus, p*, e*, &, R and D* are sca-
lars and C is a vector with a length of 11.

The next step is to predict the stand effects of
the percentiles, e (Equation 14). In order to be
able to do it, we need the variances of sampling
errors (R), the variances of the stand effects
(D*) and the covariances between the stand
effects of model 14 and the stand effect of the
18.2™ percentile (C). The variance of sampling
error is (Equation 6) R=var(¢)= 0.0577 and the
variance of stand effect is obtained by interpo-
lation of matrix D (Table 1) for the value of
0.182.

Linear interpolation gives D*=var(e*)= 0.0746+(0.0293-0.0746)/0.10%(0.182-0.1)=0.0376. The
covariances (C) are also obtained by linear interpolation of matrix D (Table 1) as

0.0501+(0.0223-0.0501)/0.10%(0.182-0.1)
C-= : =
-0.00903+(-0.00774+0.00903)/0.10%*(0.182-0.1)

0.0274
-0.00798

The stand effects of model 14 are predicted as (Equation 12)

0.0274
é=| ¢ ](0.0376+0.0577) " (0.0274
-0.00798

-0.131
-0.00798)(2.140-2.595) = i |.
0.0381

The localized percentiles are obtained by adding the stand effects to their conditional expectations
(see Figure 1).

the localized distribution and to iterate this
until convergence. However, in this example
the iteration is not carried out.

The next step in the calculations would be to
calculate the values of p* and R again by as-
suming that the sample has been drawn from
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Table 1. The within-stand variance covariance matrix (D) of the percentile models of Kangas and Maltamo
(2000a) for Norway Spruce (Kangas, A., personal communication).

d, d> d; dy ds ds d, ds dy di di
d; 0162
d> 0.0501 0.0746
d; 0.0223 0.0349  0.0293 (symm)
d, 0.0107 0.0156 0.015 0.0142
ds 0.00689 0.00877 0.00935 0.00933  0.0098
ds 0.00021 -0.00269 -0.00265 -0.00153 -0.00093 0.00319
d; -0.00274 -0.0051 -0.00395 -0.00245 -0.00133 0.00301 0.00592
ds -0.00548 -0.00729 -0.00592 -0.00357 -0.00249 0.00296 0.00584 0.00868
dy -0.00655 -0.00814 -0.00656 -0.00447 -0.00328 0.00311 0.00579 0.00835 0.011
djp -0.00672 -0.00818 -0.00699 -0.00479 -0.00351 0.00305 0.00597 0.00837 0.011 0.0135
d;; -0.00982 -0.00903 -0.00774 -0.00541 -0.00366 0.00281 0.00625 0.00863 0.0109 0.0138 0.025

Testing with real data

Arrangement of the test

The calibration was tested in a small dataset
consisting of 43 fixed rectangular sample plots
from mixed Scots pine-Norway spruce stands.
For the test, Norway spruce trees were se-
lected, because the number of Norway spruce
sample trees per stand is much greater (42-222)
in the data than the number of Scots pine trees
(13-168). Furthermore, the Norway spruce data
is more challenging than the Scots pine data,
because it includes various forms of the diame-
ter distribution, including symmetric, skewed,
extremely wide, mound-shaped, bimodal and
multi-modal forms.

The dataset has been originally collected by
Pukkala et al. (1994) for productivity studies
and it has been further used by Kangas and
Maltamo (2000b) and Mehtitalo (2004) in
testing the performance of diameter distribu-
tion prediction algorithms. The size of the
sample plots in the data varied from 600 to
3000 m’, the number of tally trees from 42 to
222, the basal area of Norway spruces from
1.54 t0 24.07 m*/ha and DGM from 5.5 to 33.9
cm. Because of the fairly small number of trees
in each plot, it was assumed that a slightly
smoothed distribution describes the distribution
of the stand better than the actual measured one
(Droessler and Burk 1989, Maltamo and Kan-
gas 1998). Hence, the actual distribution was

smoothed with a Gaussian kernel (Hérdle 1990,
p-15-20) using bandwidth determined by the
function

_w, 6.5

h, = ZIW’

where w,, is the width of the actual distribution
and N, is the number of sample trees in stand
m (see Mehtidtalo 2004). The smoothed tree
stock of the original sample plot is subse-
quently referred to as a stand.

To illustrate the effect of calibration on the
accuracy of the predicted diameter distribution
of the stand, a varying number of horizontal
point samples were simulated in each stand and
two sample trees were randomly selected from
each plot as sample measurements of sample
order statistics. The number of sample plots in
a stand was varied systematically from 1 to 6.
thus resulting in the number of sample trees
from any one stand being 2, 4, 6, 8, 10 or 12.
The trees belonging to a sample plot were se-
lected by generating a uniformly (0.1) distrib-
uted random number for each tree of the stand
and selecting those trees for which the random
number was less than the sampling probability
of the tree. The localized predictions of diame-
ter distributions were calculated by predicting
the stand effects of model 14 using these meas-
urements.

The models of Kangas and Maltamo (2000a)
were used in the test. In this test the exact val-



Localizing predicted diameter distribution 9

ues of the stand characteristics were used in
predicting the expected percentiles to guarantee
an equally accurate predictions regardless of
the number of sample plots. To ensure safe
interpolation of matrix D, l