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Abstract  

Factors  affecting  optimal  stand  management  consist  of  tree growth,  harvesting  

technology  and economics.  In the present  study,  the optimal  harvesting  for  a  

set  of  even-aged  Norway  spruce ( Picea abies f L.]  Karst.)  stands located in 

eastern Finland are  studied using  an individual-tree growth  model. 

The optimal  solutions are  presented  separately  for artificially  and naturally  

regenerated  stands.  The results  show that  two  thinnings,  thinning  from above,  

and later  thinnings,  is  optimal  for  moderate density  stands  (with  initial  density  

about 1900 trees  per  hectare),  at  3% rate  of  interest.  

The optimization  results  show that  high  bare  land values are  connected to 

stands that have large basal areas, tree diameters and dominant heights.  The 

sparser  the  initial  stand, the smaller  the optimal  number of  thinnings.  Typically,  

the higher  the MAI and the fertile the site  quality,  the higher the bare  land 

value. The higher  the number of  thinnings,  the  lower the thinning  intensity.  

The rotation length  in plots  giving  the highest  bare land value is somewhat 

shorter than in most of  earlier studies.  However,  the results  show that optimal  

rotation may vary  considerably  (60-99  yrs)  at  3%  rate  of  interest  depending  on 

the initial stand state. 

In order to  interpret  the underlying  reasons  behind  the optimal  results, 

additional computations  concerning  optimal  solutions at  different rates  of  

interest,  flexibility  of  thinning  type  definition,  and butt  rot  effects  are  studied. 

The optimal  rotation length  decreases  with  an  increasing  rate  of  interest.  MSY 

rotations are about 15 years shorter than rotations based on Forest  Rent. 

Thinning  from below is  more  profitable  when the  interest rate is less  than 2%.  

By  contrast,  thinning  from above is superior  with 3-5% rates  of  interest. 

Increasing  the rate  of  interest  leads to a lower final volume,  a narrower  and 

more  highly  peaked  diameter distribution,  and  a lower mean diameter. Allowing  

flexible thinnings  may increases maximized bare land values and rotation 

lengths.  Increased flexibility  enables thinnings  that  remove trees  strictly  from 

the above.  Butt  rot  has  no  significant  effect  on  optimal  management  at  rotations 

shorter than 90  years.  However,  the butt  rot  effects  shorten the  rotation length  

over 9% at rotations longer  than 90  years and with a lower rate of  interest 

(e.g.,  1%). 

In addition,  the comparison  of  old and new  growth  models in SMA and 

MOTTI programs is studied.  The  slight  differences between SMA and MOTTI 

simulations are  caused by  different specification  of  mortality. There was  also  

some difference in growth. The comparison  of  law,  recommendations and 

optimal  solutions is studied  as well.  The  optimal  solutions are  legal  at lower 

rates  of  interest  (0-2%),  but illegal  at higher  rates of  interest  (4-5%). In the 



present  study,  the optimal  rotation of  Norway spruce  was  20-30 years  shorter 

than the recommendations for  practice.  
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1 Introduction 

1.1 Optimal Forest  Management at  the Stand  
Level  

Valsta  (1993)  divides  the forest management  decisions  into five  different levels  

by  the  scope of  the decisions  and the level  of  available information. These five  

levels  are  tree, stand, forest,  enterprise  and region  or sector. According  to 

Valsta (1993),  most forest economics theory  is based on stand level  

formulations,  and the stand level  offers the first  meaningful  level  of  decision 

making.  The advantages  of such an approach  include its  mathematical 

simplicity  and the generality  and applicability  of  results. 

A stand is  a  geographically  contiguous  parcel  of land considered 

homogeneous  in  terms of  tree vegetation  (Davis  et  al. 2001, p.  65).  An even  

aged  stand generally  has been  defined as  being  composed  of  trees  of  more or 

less the same age (Smith  et  al.  1997).  In practice,  most  private,  industrial,  and 

public  forests are  even-aged,  and  the final clearcut harvests are  followed by  

new plantings  (Davis  et al.  2001,  p.  93). 

Factors affecting optimal  stand management consist  of  tree  growth,  

harvesting  technology  and economics. According  to  Davis  et al. (2001,  p.  97),  

the main decisions in even-aged  management  concern  regeneration  method,  

rotation length  and thinnings.  

Economic research  on  stand management typically  studies  how the chain 

of  management  activities  from planting  and thinning  to clearcut should  be 

timed and scaled in order to maximize the long-term  economic output of  

timber production.  This also  includes  the analysis  of  alternative  purposes of  

using  the forest  land (such  as  agriculture,  conservation or  wasteland),  to  

determine whether it  is economically  reasonable to  sustain  timber  production.  

Stand level economic  research produces  results  on  economically  optimal  

planting  density,  optimal  timing,  intensity  and type  of  thinnings,  and on the 

length of the optimal  forest  rotation period.  This type  of  knowledge  is needed 

directly  in the decision making  of  the 800,000  Finnish  private  forest owners  

and the foresters managing  industrially  and publicly  owned forests.  

Government officials  responsible  for forest  policy,  silvicultural  instructions  

and legal  restrictions  on  forestry  practices  also  need it.  

1.2 A Review  of Previous  Studies  

The first  studies  capable  of  determining  optimal  timing, number and  intensity  

of  thinnings  use  variable-density  whole-stand models (e.g.  Amidon and Akin 

1968, Kilkki  and Väisänen 1969, Brodie et al.  1978, Brodie and Kao 1979, 

Kao and Brodie 1980). These  models contain a few state variables (such as  
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basal area, volume or  number of  trees) that evolve over  time due to  growth,  

mortality  and harvesting.  

Recent Finnish  studies  on  optimal  timber management  use  more  advanced 

descriptions  of  growth (e.g.  Valsta 1992b,  Pukkala  et  al. 1998,  Vettenranta &  

Miina 1999).  These and earlier  studies  do not,  however,  explain  exhaustively  

how the characteristics  of  optimal  harvests  (number,  timing  and intensity  of  

thinnings,  and timing of  clearcut)  depend  on economic parameters,  logging  
conditions or  site  quality  (Hyytiäinen  and  Tahvonen 2002  a).  

Most recent  studies  reveal  that  thinning  that removes  trees from above  or  

from both ends  of  the diameter distribution is  typically  superior  to  conventional 

thinning  from below (Haight  1987,  Haight  and Monserud 1990b, Solberg  and 

Haight  1991,  Vuokila 1977, Valsta 1992  a,  b,  Eriksson  1994, Pukkala et  al. 

1998, Pukkala and  Miina 1998, Vettenranta and Miina 1999).  Instead,  thinning  
from below may be  optimal  in the case  of  the first  commercial  thinning  (Haight  

et  al.  1985),  precommercial  thinning  (Roise 1986)  or valuable broad-leaved 

species  (Rautiainen  et al. 2000).  

Even-aged  forests  have conventionally  been,  and still  are,  thinned from 

below in  many countries (Hyytiäinen  et  al.  2002),  despite  the high numerous  

of  research  results  showing  consistently  the superiority  of  thinning  from above.  

Hyytiäinen  et al.  (2002)  presume that there may be several  reasons  for  slow 

adoption  of  research results  in forestry  extension documents and  in practical  

forest  management.  First,  a recommendation to favor the largest  trees in 

thinning  may be based  on maximizing  volume of  timber production  rather 

than economic. Secondly,  most  present  studies pay scant  attention to the  

underlying  reasons  for  optimal  results  and thus  the results  cannot  be adopted  

more generally.  Thirdly,  it  may be believed  that harvest  specifications  and 

other assumptions  in the present  models are too  limiting  to  give  valid results  

applicable  in practice.  

1.3 Objectives  

The general  objective  of  the study  is  to  analyze  the optimal  harvest  regime for  

a  set  of  even-aged  Norway spruce stands based on an  individual-tree growth  

model. The sample  plots  are  mostly  located in eastern Finland.  Empirical  data 

on two  site  types were studied: Myrtillus  (MT)  and Oxalis-Myrtillus  (OMT).  

Management  of  12 Norway  spruce stands were  optimized,  and the optimal  

solutions were  characterized by  bare land value,  rotation length  and number, 

timing, type  and intensity  of  thinnings.  

The  specific  objectives  of  the study  are:  (1)  to analyze  optimal  thinnings  

and rotation for  a set  of  initial states; (2)  to  find out  how the rate of interest  

affects  optimal  thinnings  and rotation;  (3)  to  interpret  how the  type  of  thinning  

affects  bare land value and rotation  length;  (4)  to discuss  what  kind  of structure  

is  optimal  for  Norway  spruce stands;  (5)  to  examine how the inclusion of 

quality  factors  (butt  rot) affects  the optimal  solutions;  (6)  to study  the 
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differences in  forest growth  as  generated  by  SMA versus  MOTTI  software 

using  a  new generation  of  growth  models;  (7)  to analyze  differences between 

optimal  solutions and  previous  studies, Finnish forest law, and Finnish  

silvicultural  recommendations. 

This paper is organized  as follows: Section 2,  Models for Stand 

Development,  describes  growth  and yield  models.  Section  3,  The  Optimization  

Model,  presents  the methodological  basis  of  optimization.  Section 4 explains  

the  materials and computations.  The  section  titled Results  and Discussion  

gives  the main results  on optimal stand management,  sensitivity  analyses  and 

comparisons.  The recommendations and limitations  are  discussed further  in 

the section titled Conclusions and Limitations.  
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2 Models  for Stand Development 

2.1 Classification  of  Growth and Yield  Models  

Stand management  optimization  requires  a  projection  model to  compute  the 

effects  of  chosen  treatments. Such models  are customarily  called  (stand)  

simulators (Valsta  1993). 

Table 1  gives  the classification  of  growth and yield models based on 

Valsta (1993)  and Davis  et  al.  (2001,  p.  186-187).  

Variable-density  whole-stand models are  still  popular  in forest  economics  

computations,  and form a basis  for many economic extensions.  Besides  

diameter distribution models,  most  whole-stand models  apply  only  to forest  

stands where the economic value of  timber or  aggregate  growth  does  not 

depend  on stand structure  (Hyytiäinen  et al. 2002).  

Numerical methods have been used to solve  whole-stand models (e.g.  

Kilkki & Väisänen 1969, Brodie  et al.  1978) and  increasingly  complex  

individual-tree (e.g.  Roise  1986,  Valsta 1992b),  distance-dependent  (e.g.  Puk  

kala  et  al.  1998,  Vettenranta & Miina 1999) and stage-structured  growth  models 

(e.g.  Haight  1987,  Solberg  & Haight  1991).  Linear optimal  control models 

have been used to derive analytic  solutions to optimal growing  stock  and 

rotation (Clark  1976, Cawrse et al.  1984). Increasing  the complexity  may 

improve  the reliability  of  the results.  However,  it  has  forced researchers  to 

concentrate heavily  on numerical  solution techniques  (Hyytiäinen  and Tah  

vonen 2002  a). 

2.2 Individual-tree  Growth Models  

Davis et al. (2001,  p. 210)  claim  that  individual-tree models give  us  the best  

available tool for  simulating  the way tree communities grow under different 

management  prescriptions.  Individual-tree models work by  simulating  the 

growth  of  each individual-tree in diameter, height,  and crown;  deciding  whether 

it lives or  dies; calculating  its  growth  and  volume;  and then adding  the trees 

together to  get  per  hectare  characteristics,  volumes,  and  growth  rates.  Whether 

or  not an individual-tree lives or  dies and the rate  at  which it  grows depend  on 

its  competitive  position  in the  stand as  determined by  such  attributes  as  relative 

size  or distance to  neighboring  trees.  Both stand and  individual-tree models 

can  use  sample  survey  plot  data as  input,  but only  individual-tree models can  

simulate  the competitive  environment  of  each tree  (Davis  et  al.  2001,  p.  2 11). 

Individual-tree growth  models use  detailed data on  single  trees  gathered  

from inventory  plots  to forecast  how that tree or  class  of  trees  will grow and 

change  in the future under different  management  regimes.  Tree growth is  

initiated with the tree  list  from the current  inventory.  Using  a mathematical 

simulation model,  the future projection  implements  the chosen prescription  
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Table 1. A classification of  growth and yield models. 

Source: Valsta,  L.  1993.  Stand  management optimization based  on growth simulators, 

p.  11-13. Davis  et al. 2001.  Forest Management, p.  186-187.  

Models of  stand development  Definition and description 

Whole-stand models Density-free  models  assume  a 

- Density-free whole-stand  models predetermined stand density  development 

1. Normal  yield tables  
over  the rotation. For  a  given species,  site,  
and  location, stand  development is  a 

2. Empirical yield tables  for  average  function of time only,  and  follows a 
current stands 

predefined trajectory.  

- Variable-density whole-stand  models  For  a  considerable  period of time, these  

1. Predict current  volumes  
models  were the  prevailing  basis  of  stand 

a.  Explicit  models  projection and  they still  are  used  in  practice.  

b.  Implicit  models  (diameter  distribution) A  relationship between  variables  is  implicit 
2. Predict future growth and  volumes  when  the  variables  in  the  equation are  

a.  Explicit  models  defined  and  the  dependent variable(s)  
i. Direct  growth prediction identified, but the  relationship is  not  
ii.  Stand density prediction quantified. When this  relationship is  

b.  Implicit models  (diameter  distribution) specified,  it  becomes explicit.  

Diameter class models The  diameter  class  models separately 

-  Empirical  stand  table  projections  simulate  the  growth in each  diameter  class  

-  Diameter  class  growth  models by  calculating  the  characteristics,  volume, 
and  growth of the  average  tree  in  each  

class  and  multiplying this  average  tree  by 
the  inventoried  number  of stems in each 

class. 

The two diameter  class methods are 

distinguished by  whether  actual  radial  
increment data  collected  from the  subject  
stand are used to model  the trees  or 

whether generalized growth functions  based  

on research  sample data  are  used.  

Age/stage-structured models These  models  are  based  on grouping 

individuals  into  cohorts, characterized  by  
the  age, size,  or  developmental state of an 

individual.  Tree growth is  described  as a 
transition  from one stage  to another.  

Individual-tree models Individual-tree models  are  usually  grouped 

- Distance-dependent into  two  classes:  distance-dependent and  

-  Distance-independent distance-independent, based  on whether  or  
not  they utilize  information  about  the  
locations  of other  trees close  to  the  subject  
tree. 

Process based models Process  based  models  operate on a 

representation  of  the  physiological  

processes  of the  tree.  The  structure and  
resolution  varies  but  typical processes  
included  are  photosynthesis,  respiration, 

allocation, and  decomposition.  
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for  one  growth  cycle  of  1, 5  or  10 years,  or even longer.  At  the start of  the 

cycle,  based on  prescription  and mortality  rules,  each  tree  on  the list  is  selected 

to  be harvested,  to die naturally,  or  to  remain as  a  living  tree  at  the end of 

rotation. Then all remaining  live  trees,  are  grown in height,  diameter, and 

crown to  the end of  the  growth  cycle.  Each simulation cycle  may involve  four 

tree  lists:  the initial  list, a harvest  list, a  mortality  list,  and an ending  list  to  

start the next  cycle  (Davis  et al.  2001, p.  2 11). 

Getz  and  Haight  (1989,  p.  239-242)  explicitly  describe the individual-tree 

growth models using  another name—single-tree  simulators.  All single-tree  

simulators  include  equations  for  diameter growth,  and many include  equations  

for height  growth and tree  crown development.  The growth  equations  are 

functions of  either the location of  the tree  relative  to  its  neighbors  (distance  

dependent  models) or  aggregate  stand  density  variables (distance-independent  

models).  In distance-dependent  models,  each tree  is  described by  spatial  

coordinates that  change  due to  harvesting  or  mortality.  In  distance-independent  

models, each tree record includes a  tree  expansion  factor  that represents the 

number of  trees of  its  kind  in  the stand. The tree factor  is reduced by  harvesting  

or  mortality,  and aggregate  stand attributes are obtained by  summing  the 

products  of  tree attributes  and tree  factors  over  all  tree records.  In general  

single-tree  simulators can  allow for  the projection  of  500 tree  records  or  more 

(Getz  and Haight  1989,  p.  240).  

2.3 Present Models  for  Stand  Development 

2.3.1  The Growth Models  

Tree growth  is predicted  with models for  tree basal  area growth  (measured  at 

breast height),  height  growth  and tree  crown  ratio. Models for  individual-tree 

basal  area growth  and  height  growth,  as  well  as  models for  height  development  

of  dominant trees,  are  based on  data from  the Finnish  National Forest  Inventory  

(Hynynen  et  al.  2002).  

The basal  area growth, ABA is a function of  tree  variables (tree  basal  area 

BA,  number of  trees  n. crown ratio cr and crown  competition  factor ccf)  and 

stand variable  (stand  age t). In addition,  the parameters affecting  growth  are:  

regeneration  method, age at  breast  height,  mean height  of  the dominant trees 

H
dom ,  stand density,  site  quality,  north code,  east  code,  elevation,  temperature,  

sea index,  lake index,  administration  code,  and so on: 

where THIN  denotes the time period  after the previous  thinning;  RDFL 

and RDF  denote within-stand competition;  SI,  SC and TS denote site  properties  

(Hynynen  et  al.  2002).  

The number of  state  variables is  the number of  stand level  variables  plus  

number of  tree  level  variables multiplied  by  number of  tree classes.  The  number 

ABA = / (t.BA,n,cr,ccfH dom,THIN.RDFL,RDF,SI,SC,TS), (1) 
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of  tree  classes  differs  from 9 to 16 in  the sample  plots.  The total number of 

state  variables for the plots  is  varied from 37 to  65.  Stand age, basal  area,  

diameter at breast  height  dbh,  dominant height,  crown  ratio,  and expansion  

factor  are  initially  given  and updated  at each time period.  

Tree  crown  ratio is  defined as  the ratio between the length of  the live  

crown to  tree  height.  Live  crown  base is  determined as  the height  of  lowest  

living  branch  over  which the number of  death nodes is  less  than two  (Hynynen  

et ai.  2002).  For  predicting  tree crown  ratio,  the following non-linear model 

form was  applied:  

where cr,_i denotes crown  ratio at  the end of  the previous  five-year  growth  

period.  The model formulation  restricts  the predicted  values between 0  and 1. 

The effects  of  site,  geographical  location,  and stand and tree  characteristics  

are included in the function f The height  of  the crown  base is  specified  to  

increase over time. 

2.3.2  Mortality  Model  

Individual-tree  survival  rate is obtained with  models predicting  the probability  

of  a tree dying  during  the next five-year growth period  P,ots .
 This can  be 

predicted  with the following  formula by  Hynynen  et  ai.  (2002):  

in which  Pcomps  is the probability  of  mortality  due to within-stand  

competition  and PM> the life-span  mortality.  Within-stand  mortality  function  

is  effective  only for  high  levels  of  basal area and is  due to  self-thinning. 

2.3.3  Auxiliary  Models  

Volumes of  stems are  predicted  by  applying  the polynomial  model for  the  

stem curve  of  Laasasenaho (1982).  The stem  curve is  predicted  using  

information on tree  diameter and height.  Timber categories  are  determined as  

functions of  stem dimensions. The  minimum diameter for  pulpwood  is 6  cm  

and the minimum length  is  2 m. Log  volumes obtained from the timber 

assortment model are  based on  stem dimensions. In practice  this  overestimates  

log  volumes,  because it  ignores  all  the various  defects that generally  appear in 

stems (Hynynen  et  ai.  2002).  

cr,  -  f  (cr,_i,  \-e (2)  

P
toti -1-( 1  ~Pcomps)(  I  -Pold  5), (3) 
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3 The Optimization Mode 

Over  150  years  ago, Martin  Faustmann (1849)  wrote  his  world famous  paper 

on  the 'Berechnung  des  Wertes,  welchen Waldboden,  sowie noch nicht  haubare 

Holzbestände in der Waldwirtschaft  besitzen'  (Calculation  of  the  Value which 

Forest  Land and Immature Stands Possess  for  Forestry).  His  formula evaluates 

forest  land as  a  source  of  permanent  periodic  revenue  from timber sales.  

Assuming  that even-aged  management  would be practiced  indefinitely,  

Faustmann defined forest  value as  the sum of  the present  values of  harvests  

from the ongoing  rotation,  and land expectation  value (LEV),  which is  the 

present  value of  an  infinite  series  of  plantations  (Getz  and Haight  1989,  p.  266). 

The optimization  problem  for  even-aged  Norway  spruce  stands  presented  

here is  based on  Hyytiäinen  et  ai.  (2002).  When stand  development  is  projected  

with an  individual-tree growth  model,  the objective  function for  maximizing  

the  bare land value specified  for  even-aged  Norway  spruce  stands  is:  

subject  to  

where 

V = bare land value,  

u = 1,..., k  harvests, 

i = 1,..., n trees, 

j = timber categories  (sawlog,  j  = 1; pulpwood,  j  =  2),  

k -  the final harvest,  

Z
0 = matrix  describing  the given state of  the stand  at  the beginning  

of  the rotation,  

t„ = stand age at  the u"1  harvest  time,  

Z
tu = matrix  describing  the stand state before the u"'  harvest  at 

stand age tu,  

h„ = n-dimensional vector as the ratio  of  trees  removed in  the u'h  

harvest,  

p, = road-side prices of  timber categories  (€/m 3),  

gj -  harvested volumes of  timber categories  (m 3 ha 1 ), 

c„ = harvest  cost  of  the  u'h  harvest,  

Xl  Xpr  Bj(Z,u,hu)8j(Z,
u

,h
u
)  -

 c„(Z,
u

,h„)l  (l+r)-'«  
-
 c  0(  

max V = 
"=1
 J=l ,(4) 

(h„,f„,w=1,...,£;Z0) j -  (I+r)"'*  

Z,
u+l

 = i{Z,
u
,t

u+ \-tu
Mu), u = 0,...,k-\, (5) 

t
u
<t

u+ 1, u = 1,...,  k-l, (6) 

h„e  (7
tu ,
 u (7) 
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c 0 = establishment  cost,  

r = rate  of  interest (decimal),  

o,
u

 =  the  set of  admissible  thinnings  at stand age t
u

.  

The bare land value in  equation  (4)  is maximized by  changing  the 

harvesting  time and harvesting  ratio  in the condition of  the initial stand  state  

matrix.  Stand structure  is  described  for  n trees. Each tree is  characterized by  

variables reflecting  its  current  dimensions (age,  diameter,  height  etc.)  and  an 

expansion  factor  representing  the  number of  trees of  its  kind  per  hectare or  

other  area  unit  (Getz and Haight  1989).  

The objective  function  is  maximized subject  to the stand dynamics  

equation  (5),  which  defines the stand state before  harvest  at  age tu+l as  a 

function of  stand state  before  the previous  harvest  Ztu ,
 time difference between 

two  harvests,  and intensity  of  the previous  harvest  h„. 

The thinning  rate  equation  (7)  defines  thinning  rates  for  each tree  diameter 

classes.  In the present  study,  the thinning  rate  in relation to  tree diameter is  

defined by  a piecewise  linear function (for  details, see  Valsta & Linkosalo 

1996).  The thinning  rates are  linearly  restricted  depending on  the specified  

number of  thinning  points.  

Figure 1 illustrates  the thinning  type  definition .  Increasing  the number of  

thinning  points  (type  variables)  enables a more detailed specification  of  the 

type  of  thinnings  (thinning  from below/above)  in  the simulation.  Each  number 

of  thinnings  forms  a  different optimization  problem  with different variables  to  

be  optimized.  The flexibility  of  the thinning  type  increases  with the number of  

parameters  (Valsta  1992b,  Valsta &  Linkosalo 1996).  

The optimization  algorithm  is based on  the  direct  search method of  Hooke 

and Jeeves (1961),  which has proved  successful  in solving  complex  non  

differentiable forestry  problems  (see  e.g.,  Haight  and Monserud 1990  a). The 

Figure 1. Thinning rates  in  relation  to tree diameter  in  optimal solutions  in  Valsta  

(1992b) with four different thinning  specifications.  
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Figure  2. Structure of  simulation-optimization  system  (Valsta 1992b &  1993) 

modifications to  the original  algorithm  are  based on Osyczka  (1984),  and are  

explained  in detail by  Valsta  (1 992  b).  The number of  variables Nin  the problem  

of  optimizing  thinnings  and rotation is given  by  N =  k(s  + 1) + 1, where k  

denotes the  number of  thinnings  and,  s  the number of  thinning  type  variables 

(Valsta  1992b).  

Figure  2 shows  the overall structure  of  the simulation-optimization  model. 

The applied  solution procedure  does not utilize the dynamic structure  of  the 

problem  explicitly.  This appears potentially  inefficient  (solving  a dynamical 

problem  without recognizing  dynamics),  but  because of  the complex nature  of  

individual-tree based  stand dynamics  it  has  been a successful  approach,  as  

compared to dynamic  programming  (Valsta  1993). It  also  allows  complete  

flexibility  of the structure  of  the stand simulator,  which is  inside the "black  

box" (Roise  1986).  The optimization  problem  appears to  the  algorithm  as  a  

standard nonlinear programming  problem  (Valsta  1993).  



17 

4 Materials and Computations 

4.1 Biological and Economic  Data  

The  biological  data are collected from 12 sample  Norway  spruce stands.  

Besides  the artificial regeneration  method, four plots  were  established by  the 

natural  method. Figure  3 shows  the  locations  of  the 12 sample  stands.  Most 

plots  are  located on  favorable sites  for Norway  spruce in eastern  Finland, 

except  plots  43 and 45. These two plots  are  located in  the  Kainuu  region,  

where the climate  is  more like  that of  northern Finland. Among  the  sample  

stands,  MT plots  (59,  74,  51,  55, 70 and 25)  are  located more in the south, and 

OMT plots  (100,  83,  78,  61,  43 and 45)  are  located more  in the  north.  

The economic data consist  of  regeneration  cost  and roadside prices of  

Norway spruce sawlog  and pulpwood.  A 3% rate of  interest is  employed  to  

calculate the optimal  solutions.  Sensitivity  analysis  is  carried out  in section  

5.2. 

It  is obvious  that  the regeneration  cost  of  the natural establishment  method 

is less  than the  cost  of  artificial  establishment.  The regeneration  cost  for  the 

artificial method is  assumed to be €672.8 per hectare (including  land 

preparation  cost,  planting  and seedling  cost  and silvicultural  operations),  while 

Figure 3. Locations  of  the  12 sample stands included in  the  biological data 
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the  regeneration  cost  for the natural  method is  €328 per  hectare (including  

land preparation  cost  and tending  cost). In  order to  better  compare with  previous  

studies,  the roadside prices of  Norway  spruce employed  here are  based on 

Hyytiäinen  and Tahvonen (2002  a), and are  43.2 €/m3  and 29.4 €/m3  for  Norway  

spruce  sawlog  and pulpwood,  respectively.  

4.2 Logging Cost  Model 

The  logging  cost  model by  Kuitto  et  al.  (1994)  is  based on  mechanized cutting  

and  forest  haulage  specification.  They  defined the logging  cost  per  hectare Cu 

as  a function of  the volume of  harvested timber category,  gj (where  j -  1 
denotes sawlog  and j  =  2  pulpwood)  and harvest  method,  u (thinnings,  u = 1;  

or  clearcutting,  u = 2),  total number of  removed stems n,  transport distance d 

and terrain class w: 

From  forest  harvesting  point  of  view,  logging  cost consists  of  felling  cost,  

transport  cost  and fixed cost. The  felling  cost  equals  total  volume times  felling  

cost  per hour divided by  felling  productivity  a.  The transport  cost  equals  total 

volumes by  categories  times transport  cost per hour divided by transport  

productivity  /3.  The  fixed cost  of  logging  is €lOO per  hectare. The costs  per  for  

felling  phase  Cf eu  -  47.1 (€/h)  and for  haulage  phase  C,rans  -  61.3 (€/h).  The  

logging  cost  model is  explicitly  described in  equations  (9)-(  11): 

where zi  is  time expenditure  on  shifting  (min/stem),  z2  is  time expenditure  

on  handling  (min/stem);  yj  is  time expenditure  on loading  (min/m 3),  y2  is time 

expenditure  on delay  (min/m3), y3  is  time expenditure  on hauling  load (min/  

m 3),  y4 is  time expenditure  on  driving  without  load (min/m3),  y5 is  time  

expenditure  on unloading  (min/m 3). The details are  given  in Kuitto et al.  

(1994).  

C
u = f(g,u,n,d,w) (8) 

n 2 n n 

uij m/1 Zg.2 
c„  =  C /e/,  • +  Ctrans ■ + +C

fixed, (9) 
a pi Pi 

n 2 

un  •  60 

a = 
,
 (10) 

n ■ +Z2 ■ 1.197 • 1.276 
VV 

60 

A = , (11) 
(yi  +y2  +j3  +  )>4 +  ys) •  1.084 •  1.224 
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4.3 Computations 

Stand Management  Assistant  (SMA)  is a program for  analyzing  silvicultural  

and economic options  for stand management.  Based on deterministic or  

stochastic  optimization,  the program allows the user to  determine optimal  

solutions for  the specified  conditions and view the results  of  optimization  as  

well as the sensitivity  to changes  in  the prescription  (Valsta  and Linkosalo 

1996). Here  the deterministic version is  used. The SMA software is used to 

solve  the harvesting  problem  for the sample  plots, various thinning type  

definitions,  and all  rates of  interest  that yield  a  positive  bare land value.  The 

computer  framework combines stand-level simulation and numerical 

optimization.  

The computations  consist  of  three parts:  optimal  solutions,  sensitivity  

analyses  and comparisons.  The sample  plots  are divided into  natural and 

artificial  groups. Maximum bare land value, optimal  rotation,  optimal  thinning  

frequency,  optimal  thinning  type,  optimal  thinning  intensity,  and timing  of  

thinning  and clearcutting  are  calculated using  a 3% rate  of  interest and three 

thinning  points.  

The butt  rot  effects  are  computed by  the equation  for  butt rot rate:  

where Rml  denotes rate  of  butt  rot.  

1 

Rro,= 
,
 (12) 

1  +5O -exp(-0.023-1)  
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5 Results  and Discussion 

5.1 Optimal Solutions  at  3% Rate  of  Interest 

Tables  2 shows the optimal  solutions at 3% rate  of  interest  for  plots.  The 

symbols are  as  follows: Dg  denotes mean diameter weighted  by  tree  basal 

area in cm; S-trees  (%) denotes the portion  of  small  size  tree  removed;  M  

trees  (%)  denotes the portion  of  medium  size  tree removed; L-trees  (%)  denotes 

the portion  of  large size  trees  removed;  Ro.dg  denotes mean diameter weighted  

by  tree  basal area at the end of  rotation,  in cm;  M.A.I, denotes mean annual 

increment  in  cubic meter  per year; H| oo denotes the dominant height  in meters  

at  the age  of  100  years.  H lOO  corresponds  to dominant height  site  classification 

and illustrates the  growth  potential  of  the stand.  In this  study,  Hioo  was  predicted  

without thinning.  The  advantage  of  the  H| o o  classification  is that it is  more  

precise  and detailed than classification  based on ground  vegetation (OMT,  

MT sites  classification).  

The  analyzed  sample  plots  were  different in initial stand age, site  fertility,  

regeneration  methods, initial density  and geographic  location. In addition,  the 

success  of  prior  management  (silvicultural  activities)  may vary.  However,  the 

bare land values were  calculated assuming  no prior  harvest  revenues  and 

constant  establishment costs. 

The  optimization  results  indicated  that  the bare land values were  associated  

with stands  with  high  basal  area,  tree  diameters and  dominant height.  This 

affirmed that development  of  basal area, diameter and  dominant height  were  

the key  factors affecting  bare  land value. In general,  fertile site  plots  had 

higher  bare land value than infertile sites.  Plots  51 (H !0o  =  29.2)  and 59  (Hioo  = 

30.7)  produced  the highest  bare  land values among all  the plots.  Note  that for 

plot  51 the initial dominant height  was  low,  yet  the plot  ranked second in 

dominant height  at  the age of  100 years.  

Stands that had the  highest  mean annual increment (9.7  m3
/yr/ha  in  plots  

51 and 59) gave the highest  bare land value. Plot 51,  at early  ages, was  

characterized by  a  low initial density  (1400  trees ha ')  but high  growth  of  tree  

diameters,  dominant height,  basal area  and commercial  volume. These lead to  

a  short  optimal  rotation and a  high  level  of  timber production.  There was  only  

one thinning  with 38.3%  thinning intensity  at the stand age of  47.3 years,  and 

the thinning  type was  from above. Low initial density  was  the  reason  why  the 

one-thinning  regime  was  optimal.  The dense stands  (2250-2300  trees  ha 1 )  

involved more thinnings  (4-5).  Thus the sparser  the initial stand, the smaller 

the optimal  number of  thinnings  (see Table 2).  

Naturally  regenerated  plots  (74,  55,  25)  were characterized by  a long  

optimal  rotation,  with the exception  of  plot  61 (see  Table 2).  The  two highest  

bare land values at the  OMT site  were  given  by  plot  61 (natural  regeneration)  
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and plot  83 (artificial  regeneration)  with the same planting  density  (1825  trees  

ha-1)- Hioo  was  higher  for  plot  83,  but  low stand establishment cost  resulted in 

a high  bare land value for  plot  61.  Recall  the assumption  that  a new stand can 

be established  naturally  without shelter  tree  cuttings  before the end of  rotation. 

It  is  also  assumed that there is no  regeneration  delay.  

Figures  4a-h show the stand development  in  plots.  In Figures  4a-b, when 

all plots  reach the age of  40 years,  the highest  average diameter was  twice  as 

high  as  the lowest.  For  dominant height  (see Figures  4c-d),  the difference is 

similar.  This  implies  large  variation in  optimal  rotation length  between  plots.  

Figures  4e-f show that the sample  plots  yielding  the higher  bare land values 

were  characterized by  high  basal area. Before the first  thinning,  plots  51 and 

59  reached  the  highest  basal  area.  This  made fast  growth  of  basal  area possible  

after  thinning.  Then, the optimal rotation length  was  shorter  than that  for  plots  

which still  needed to  achieve  the diameter goal.  

Many factors  can  affect  rotation  age,  such  as  planting  density,  regeneration  

method, and thinning  frequency.  Table 3  compares the optimal  solutions with 

previous  studies.  The  optimal  rotation length  in plots  giving  the highest  bare 

land values for  this  study  was  a  little shorter  compared to  most  of  the previous  

studies.  Möykkynen  et  ai.  (2000)  and Möykkynen  & Miina (2002)  report 

shorter  rotation length  in Norway  spruce  and Scots  pine  mixture  (when  initial 

butt  rot  level  of  the stand  was  0% at  first  thinning,  in winter). Zero  to  two 

thinnings  and a small difference  between sawlog  and pulpwood  prices  (sawlog  

35.3 €/m3
,  pulpwood  30.3 €/m3) might  be the key  reasons  for  short  rotation in 

their studies.  

With the thinning  type  from below, Hyytiäinen  and Tahvonen (2001)  

show that a 5-7  cm larger diameter at  breast height  was  optimal at  the end of  

rotation,  compared  to  most  of  the previous  studies. In  the study  of  Hyytiäinen  

and Tahvonen (2002  a), the optimal rotation periods  were  about 5-20 years 

longer  than those  of  other Finnish  optimization  studies.  

Thinning  removes  some trees  to  give  the remaining  trees more resources:  

space,  moisture,  nutrients,  and sunlight  for  growth.  Thinning  can  increase the 

merchantable volume growth  and can  provide  a number of  other  advantages.  

For  instance,  thinning  can  increase  the quality  of  the remaining  stock,  improve  

the value growth  of  the remaining  trees and,  also yield  income  before rotation  

end (Klemperer  1996, p.  242-243).  However,  higher  fixed harvesting  costs  

decrease the optimal  number of  thinnings  (Eriksson  1999, Hyytiäinen  and 

Tahvonen 2002  a)  and increase  the losses from a nonoptimally  high  number of  

thinnings  in  distant  and small  stands  that  are  costly  to  access  (Hyytiäinen  and 

Tahvonen 2002b).  

Figure  5  shows the relative  bare land value for  plots  at 3%  rate  of  interest  

as  a  function of  the number of  thinnings,  respectively.  The  optimal  number of  

thinnings  was  typically  two.  In a  study  by  Valsta (1 992  b),  the optimal  number 

of  commercial  thinnings  was  two  for 1100 trees per hectare. Three thinnings  

was  optimal for  2200 trees  per  hectare,  and three for  4400 trees  per  hectare 
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Figure 4. Optimal stand development for plots 
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Table 3. Comparison  of published  results  on  optimal  rotation periods  (age  in  
years/average  dbh at  the end of  rotation period  in cm)  for Norway  spruce 
stands  with 3% rate of  interest. 

Note:  All  the  studies  are  based  on  different  optimization  techniques, and  varying economic  
data  on price  and  cost  parameters. Extended  from Hyytiäinen and  Tahvonen  (2001). 

Figure 5. Bare  land values with 1-6 thinnings relative  to the  maximum  at 3% rate  of 
interest. 

(the  first  thinning was precommercial).  In Hyytiäinen  and Tahvonen (2002  a), 

the two-thinning  regime was  optimal for  most Norway  spruce  site  indices  and  

for most of  the rates  of  interest  studied,  and one thinning  for  poor sites  and  

high  (r  > 4%)  rates  of  interest,  as  well as  for the most  fertile site  at medium 

rates. 

The exceptions  were  plots  78  and  74.  For  these,  five  thinnings  was  optimal  

because of  high  initial  densities of  2300  trees  ha 1
.  It  seems that if  two  light  

thinnings  are  combined,  then the economic loss  due to  mortality  is  greater  

than the losses due to  too frequent  thinning.  The effects  of  different numbers 

of  thinning  points  on  results for  plot  74  are  discussed  in section  5.3.  

Figures  6a-d illustrate the proportion  of  trees  removed in optimal  thinnings  

for  four plots  at 3% rate of  interest.  The  thinning type  is  defined with three 

Studies  OMT  MT 

Nyyssönen 1958 70/- 85/- 

Pesonen & Hirvelä 1992 75-80/- 80-90/- 

Salminen 1993a 70/- 80/- 

Valsta 1992b 77/20-22 -  

Vettenranta &  Miina 1999 70-78/- 

Möykkynen et ai. 2000 61/- -  

Hyytiäinen & Tahvonen 2001 75/30 80/29 

Möykkynen  and Miina 2002 61/- -  

Hyytiäinen & Tahvonen 2002a 60-80/- 80-115/- 

Best solutions  in  the  present  study  69/23 60/25.5 

All plots  in the present  study  62-89/23-27 60-99/24-28 
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Figure 6. Removal rates in optimal  thinnings (Ist,  2nd,...)  at 3% rate  of  interest with 
3 thinning  type 

optimized  variables that define thinning  rate for minimum, average and 

maximum diameters.  Thinning  rates  for  other  diameters are  interpolated.  Sparse  

stands  were  typically  thinned from above and dense stands  from the both ends 

of  the diameter distribution in  the first  thinning.  In addition,  for  all  the sample  

plots,  the first  thinning  removed intermediate trees  with 16% or higher  thinning  

rate  (see  Tables 2).  

The results  of  this  study  are in line with those of Valsta (1992b)  which 

suggested  that  thinning  from above was  optimal  in most  cases  for  pure Norway  

spruce  stands.  However,  according  to current  silvicultural  suggestions,  for 

Norway  spruce stands in Finland,  one should  carry  out  two  thinnings,  first  

from  below and then from above (Mielikäinen  & Riikilä 1997, p.  75).  This 

procedure  was  also  optimal in Möykkynen  et ai.  (2000)  and Möykkynen  and 

Miina (2002).  In addition,  Pukkala  et al.  (1998)  report  that it is  optimal  to  

apply  first  thinning  from below and then  thinning  from above for  Scots  pine  

and Norway  spruce mixtures. 

The first  thinning  typically  removed  pulpwood,  with the  exception  of  plot  

51 where the development  of  diameter has  been so  fast  that the largest  trees  

have already  reached  sawlog  dimensions before the first  thinning.  The intensity  

of  the first  thinning  was  40-45% in  the majority  of  the plots (Figure  7).  All 
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Figure 7. Mortality  at MT and OMT sites.  

subsequent  thinnings  removed  mainly  sawlogs.  However,  in Hyytiäinen  and 

Tahvonen (2002  a),  for a  typical  Norway spruce  site  at 3% rate of  interest,  the 

intensity  of the first  thinning  was  26% and the second thinning  74%. 

Self-thinning  due to  high  density  and competition  between individual  

trees  is  one reason  for  the first  thinning.  Small  trees  were removed,  because  

otherwise they  would die  before reaching  sawlog  dimension. For example  

there  was  high  mortality  before the first  thinning for  plot  78 (see  Figure  7b).  

In three dense  stands (plots  70,  74 and 78),  where initial  density  was  around  

2250-2300 trees  ha 1
,
 the  first  thinnings  were early  and removed trees  only  

from the  hauling  roads.  These removed larger  proportions  of  small and large  

compared  to  medium-sized trees (see  Table 2 and  Figures  6a,d).  The optimal  

numbers of  thinnings  of  these three stands  were four or  five,  and the thinning  

rates  were  mostly  low,  i.e. 10-30%. Overall,  the greater  the number of  thinnings,  

the lower the  thinning  intensity.  

After  the first  thinning,  the  subsequent  thinnings  removed  trees  mainly  

from above with typically  quite  light  or  medium thinning  intensities (see 

Table 2 and Figures  6a-d).  The purpose of  subsequent  thinnings  might  be  to  

keep  the level  of  basal area  high,  and to reduce mortality.  

There is  no price  premium for Norway  spruce  sawlog.  Despite  this,  in  

pure Norway  spruce  stands,  the dominant trees  were not  removed soon after  

reaching  the  minimum sawlog  dimensions.  A  study  of  Scots  pine  by  Hyytiäinen  

et  ai.  (2002)  reported  the  contrasting  result  that  the dominant trees  are  removed 

soon after  they reach the  minimum sawlog  dimensions for Scots  pine.  One 

obvious  reason is  that  the ratio of  pulpwood  to  sawlog  price  is  higher  for  Scots  

pine  than for  Norway  spruce.  Figures  Ba-b  show how merchantable stand 

volume was  distributed over  tree diameter at  the end  of  the rotation period  at 
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Figure  8. Cumulative distribution of  merchantable stand volume at 3% rate  of  interest 
at final harvest at MT and OMT sites. 

3% rate of  interest. Vuokila (1985)  and Pukkala  et al. (1998)  describe the 

sawtimber requirements  for Norway  spruce:  minimum dbh 17 cm, minimum 

top diameter of  logs  16  cm, mean log  length  49  dm, and minimum top  outside 

bark  diameter  17.5 cm. The proportion  of  trees  that  fulfill  the dimension 

requirements  for sawlog  trees  (dbh  >lß.l cm)  was  high  for  all  plots  analyzed  

in this  study.  

Figure  9  illustrates  the development  of  stand structure  at  3%  rate  of  interest 

for plot  61.  To  better  illustrate  the differences,  the actual distributions were  fit 

to a 4-parameter  Weibull distribution. In the first  thinning,  large  trees were 

removed,  as  well as  small  and medium trees,  but  the removed proportions  

were  smaller for small  than for  large  trees.  In the second thinning,  only trees 

Figure  9. Stand structure  development  of  optimal  solutions of plot  61 at 3% rate  of 

interest, fit to 4-parameter Weibull  distributions. 
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that  fulfilled the dimension requirements  for  sawlog trees,  over  18.1 cm,  were 

lightly  thinned. In  clearcutting,  there were still  a  few trees under sawlog  

dimension requirements. After each thinning,  the diameter frequency  

distribution was  narrower  than before  thinning,  and then it  wided up to  the 

next thinning and clearcutting.  

5.2 Optimal Solutions  at  Different Rates  of  
Interest 

Table 4  shows  the maximized  bare land  values computed  for  three stands  and  

all  rates  of  interest  that yield  positive  bare land  values.  Three plots  (59,  61 and  

83) were selected because they  had  an initial  density  close to  the  optimal  

planting  density.  According  to  Solberg  and Haight  (1991)  and Valsta  (1992b),  

the optimal planting  density  for  Norway  spruce (Picea abies [L.]  Karst.)  is  

about 1900 trees ha-1 at 3% rate  of interest. The initial  states of the three 

stands were also  similar  in age, dominant height,  basal  area and average  

diameter  (see  Tables 2 and 3). 

Plot  59 (MT,  artificial)  gave the  highest  bare  land  values for 0% to 3% 

rates  of  interest,  plot  61 (OMT,  natural)  gave the highest  bare land values for 

4% to 5% rates  of  interest.  Compared  to  plot  83 (OMT,  artificial), this  implies  

that artificially  established stands  obtain better  bare land value for  0-2% rates 

of  interest,  and naturally  regenerated  stands  obtain better  bare  land value for 

4-5% rates of  interest.  

The  optimal  number  of  thinnings  decreased with  the rate  of  interest  (Table  

5).  It  was  sensitive  to  change  between 1-2%. In  the naturally  established  stand 

(plot  61),  the number of  thinnings  was  sensitively  decreased. But  it  was  not  

sensitive  in  artificially  regenerated  stands  (plots  59 and 83).  

Valsta (1992b)  alleged  that the higher  the  interest  rate,  the shorter  the 

rotation.  In addition,  a  high  interest rate  leads to  earlier,  fewer and  heavier the 

thinnings.  Figure  10 shows how the optimal  rotation length  decreased  with  the 

rate  of  interest.  The  rotation  length was  more sensitive  in the  range of  0-2% 

Table 4. Maximized value of  bare  land at 0-5% rates  of  interest (at  0%  rate  of  interest,  
the values represent  maximized annual net  revenues). 

Rate of  interest (%) 

Maximized value of  bare land (€/ha) 

Plot 59 Plot  61 Plot 83 

0 431  356 379 

1 24813 21030 22108 

2 7598 6718 6829 

3 3081 2893 2768 

4 1310 1375 1149 

5 470 641 369 
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Table 5.  Optimal number of  thinnings  at 0-5% rates  of  interest 

Figure 10. Optimal  rotation  length with  0-5% rate  of  interest  

rates  of  interest,  and from 4% to  5%,  the  slopes  were  almost  flat.  Rotation 

length  was  almost  insensitive  to  the rate  of  interest  for  r  >  4%. 

The  MSY rotation  was  about 15 years  shorter  than Forest  Rent rotation,  

when the maximum number  of  thinnings was  six  (see  Appendix).  In a 

comparison  of  MSY and Forest  Rent by  Hyytiäinen  and Tahvonen (2002b),  

neglecting  all  prices  and costs,  MSY deviated more  from the economic  criterion  

than did the Forest  Rent criterion.  

Valsta (1992b)  shows that  the  optimal  thinning  type was  affected  by  the 

objective  of stand management  and by  stand density.  In the present  study,  

different objectives  clearly  changed  the type  of  thinning  in  plot 61 with  three 

thinning points.  For  MSY  and  Forest Rent,  the thinning  types  were  clearly  

from below (Figures  lla-b). Thinning  from below was  more profitable  with 

interest  rates  less than 2%,  whereas  thinning  from above was  superior  with 

interest rates  of  3-5% (Figure  1  lc).  This  result  is  similar  to  that  of  Hämäläinen 

(1978)  using  Vuokila (1967)  growth  functions for  Scots pine  stands.  

Figure  12a shows  the  basal area development  at 1,  3 and 5% rates  of 

interest  for  plot  61. The rotation length and the  number of  thinnings  decreased 

Rate of interest  (%) 

Optimal  number of  thinnings  

Plot 59 Plot 61 Plot 83 

0 4  5 3 

1 3 4 4 

2 2 3 3 

3 2 2 2 

4 1 1 2 

5 2  1 2 
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Figure 11. Thinning types in plot  61 with  MSY, Forest  Rent  and 1-5% rates  of  interest. 

with  the rate  of  interest.  The first  thinnings  occurred  at  the same time with all  

rates of  interest  (see  Appendix).  At  0-2% rate of  interest,  the first  thinnings  

were  light  (16-20.6%).  At  3-5% rate  of  interest,  the first  thinnings  were  heavier 

with the same thinning  intensity,  42.8%. Similar  results  can be seen for  plots  

59 and 83 in the Appendix.  

Figure  12b  shows  the  diameter  distributions at  the end of  rotation  for  plot  

61 at 1,  3 and 5% rates  of  interest.  To better illustrate  the differences,  the 

actual distributions  were fit  to  the 4-parameter  Weibull  distribution.  Increasing  
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Figure 12. Basal area development and diameter distributions at 1, 3 and 5% rates  
of interest for plot  61 (OMT,  natural).  
Note: In Figure 12b, the actual distributions are fit to the 4-parameter  Weibull 
distribution 

Table 6. Proportion of sawlog and pulpwood  volume at the end of rotation with 1, 3 
and 5% rates  of  interest for  plot  61.  

Note: Vtot =  total  volume, Vlogs = sawlog volume, Vpulpw = pulpwood volume  

the rate of interest resulted  in  a lower final volume,  a narrower  and more 

highly  peaked  diameter distribution,  and a lower mean diameter. 

Table 6 shows  that the proportion  of  sawlog  volume of  total  volume in 

clearcutting  decreases significantly  with the  rate of  interest. By  contrast, the 

pulpwood  volume increased slightly  while sawlog  volume decreased rapidly  

with the rate  of interest. 

5.3 Flexibility  of  Thinning Type  Definition  

Thinning  type  is  characterized by  how many  trees in tree  classes  should be 

removed in  a thinning.  Table 7  shows that flexible thinnings  may increase  the 

maximum  bare land value and the rotation length.  Increased flexibility  enables 

thinnings  that remove  trees  strictly  below or  above  certain  diameter limits.  It 

should be  noted that  the alternative  of  one  thinning  point  was  programmed to 

produce  thinning  from  below. 

Figures  13a-b show how increasing  thinning type  flexibility  changed  the 

type  of  thinnings  in optimal solutions for plot  83.  The intensity  of  the first  

thinning  was  light with two  thinning  points  but heavier (about  45%)  with a 

higher  number of  thinning  points.  Figure  13a  shows that more  large  trees were  

Rate of interest Vtot (m 3ha-
1 ) Vlogs(m 3ha 1 ) Vpulpw(m 3 ha~ 1 )  VIogsA/tot  

1% 654.9 564.3 87.8 0.86 

3% 393.1 255.3 133.7 0.65 

5% 297.9 135.7 157.1 0.46 
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Table 7. Rotation length and bare land value affected by  thinning type variables  for 

plot  83 with 1-3 thinnings. 

Figure 13. The effects  of  optimized thinning  type variables (2-6)  on thinning  rates  in 

plot  83. 

thinned with thinning  type  variables. When applying  the most  flexible  thinning  

type  definition (with  five  endogenous  thinning  type  variables),  the second 

thinning  removed all  trees  above certain  tree  diameters,  and retained all  small  

trees  (Figure  13b). However,  a different result  is  reported  in a study  of  Scots  

pine  by  Hyytiäinen  et  ai.  (2002),  i.e.  the second thinning  removed all  trees  

above and below certain tree  diameters,  and  retained all the  intermediate trees 

when applying  the most  flexible thinning  type  definition. 

Table 8  shows that a  two-thinnings  regime  was  optimal for  plot  74 with 

one thinning  point,  i.e.  when thinning  from below,  and a three-thinnings  regime  

was  optimal  with  two  thinning  points.  Increasing  thinning  points  beyond  three 

with more than five  thinnings  became infeasible because of  computational  

constraints.  

5.4 Butt  Rot Effects 

Figure  14a shows  the  optimal  basal area development in plot  51 in optimal  

solutions with three  thinnings  at 3%  rate of  interest,  with and without butt  rot  

effects.  Before the  age  of  60 years,  the development  of  basal area was  the 

No.  of Thinning type  variables 

thinnings  Optimal  solutions 1  2  3 4 5 6 

1 thinning 

Bare  land  value  (€)  

Rotation (yrs)  

2609.4 

61.8 

2640.5 

66.9  

2744.5 2741.6 2779.3 

70.8 66.8 75.1 

2787.5 

70.9 

2  thinnings  

Bare land value (€)  
Rotation (yrs)  

2585.7 

67.6 

2654.6 

71.7  

2759.7 2817.8 2817.1 

71.0 76.0 76.9  

2834.9 

76.5 

3 thinnings 

Bare land value (€)  
Rotation (yrs)  

2559.9 

67.6 

2641.8 

76.9 

2756.2 2801.3 2816.1 

75.8 76.0 76.6 

2826.8 

76.2 
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Table 8.  Optimal number of  thinnings and thinning points  for plot 74  at 3% rate  of 
interest. 

Figure  14. Basal area development  in optimal  solutions,  with or  without butt  rot  effects  
3% rate  of interest. 

same in both cases.  With  butt rot,  the bare land value decreased by  2.6% (with  

€3459.9,  without €3587.3),  and the rotation length  shortened from  61.3 to 

61.1  years.  This implies  that  butt  rot  affects  only  mature  Norway  spruce stands.  

Thinning points  1 2 3 

Optimal  No.  of  thinnings 2 3 5 

1st  thinning (yrs)  44.5 44.5 44.5 

intensity  (%)  24.0  24.8 21.0 

2nd thinning (yrs)  60.7  58.3 56.1 

intensity  (%)  25.7  18.6 20.4 

3rd thinning (yrs) 69.7 62.4 

intensity  (%)  53.1 12.7 

4th thinning  (yrs)  67.7 

intensity  (%) 11.4 

5th thinning  (yrs)  76.1 

intensity  (%)  45.9 

Rotation (yrs)  78.4 89.8 90.6 

Bare land value (€) 2136.7 2227.3 2335.8 
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According  to Piri  et  ai.  (1990),  mycelium  originating  from old-growth  

stumps  may be viable for up to  60-120 yrs,  and spread after  felling of  butt  

rotted trees (Stenlid  & Redfern 1998).  Frequent  summer  thinnings  without 

stump  treatment  are  the most important  operation  increasing  the  proportion  of 

trees  with butt  rot  at  the  end of  rotation (Swedjemark  &  Stenlid 1993,  Venn &  

Solheim 1994, Vollbrecht &  Agestam  1995).  

In  the  study  of  Möykkynen  et  ai.  (2000),  at  3%  rate  of  interest, the rotation 

was  shortened by  six  years as  compared  to the optimal winter-thinning  

schedule,  if  any  stump  infection occurred (from 61 to 55 years).  The thinning  

rate  under infection risk  was  higher  than in the  first  winter  thinning.  

In the present  study,  the butt  rot  effects  started  from a  stand age  of  about 60 

years.  Thus,  the rot  had no significant  effect  on the optimal management  at  

rotations shorter  than 90 years (Figures  14a-b). In addition, there were  no  big  

differences  for thinning  intensity.  Consequently,  the  butt rot  effects  shortened 

the  rotation length in  plot  83  by  8.9  years (with,  97  yrs;  without,  105.9 yrs)  at  1% 

rate  of  interest (Figure  14c). This  implies that the butt  rot  becomes serious  when 

rotation ages exceed 100 years,  which become optimal  at  a very  low rate  of 

interest. 

5.5 Comparison of  Stand Development when 
Using SMA  and MOTTI 

MOTTI is  a  computer  program for  tree  growth  simulation that  is  designed  and  

maintained by  the Finnish  Forest Research Institute.  In MOTTI,  the latest  

updated  growth  model is used. 

Generally,  the tree  diameter growth  was  not significantly  different  as  

between SMA and MOTTI. For  plot  51,  MOTTI  showed slightly  faster  growth  

than SMA, without thinning  (Figure  15a). In a two-thinning  case  (Figure  

15b),  SMA and MOTTI tended to  the same growth  rate  after the first  thinning  

Figure  15. Comparison of  SMA and MOTTI for plot  51 
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Figure  16. Comparison  of SMA and MOTTI for  plot  83 

(thinnings  controlled by  the same thinning  time and  the same basal  area after  

thinning).  

When extending  the rotation length,  the growth  curves  definitely  differed 

(see  Figure  16). The growth  curves of  MOTTI  were smooth,  both with and 

without thinning.  However, the growth  curves  of  SMA had small  kinks.  These 

were  caused  by  within-stand mortality  (Figure  16a-b).  When rotation  length  

increased to 100 years, there  were two  intersections,  at around 50 and 75 

years.  This implies  that the mortality  functions differ as  between SMA and 

MOTTI  (Figure  16a). In contrast  to  plot  51,  plot  83 grew faster in  SMA than 

in MOTTI, after  thinning (Figure  16b). 

5.6 Comparison of  Finnish  Forest  Law,  
Recommendations  and  the Optima 
Solutions.  

According  to requirements  set  out in statutory  provisions  (Ministry  of 

Agriculture  and Forestry  1997),  a stand must  reach either a  certain  minimum 

average dbh, expressed  in cm,  or  a certain  minimum age  before it  can  be 

clearcut.  For  Norway  spruce, the requirements  are:  stand age  >  70 years or 

average dbh > 25  cm  for  an  OMT site;  stand age > 80 years  or  average dbh > 

24  cm  for an MT site.  The legal  limits  and  recommendations (Tapio  2001 

p.  26,  2002 p.  172) were initially  designed for natural forests,  but they  have 

been  identically  applied  to  artificially  regenerated  forests.  

Besides dbh and rotation,  basal area after  thinning  is  also a leagal 

constraint.  In this  study,  the basal  area constraint was  not  violated at 3% rate  

of  interest  for  any  plot.  This constraint was  also  not  violated for  plots  59,  61 

and 83 at 0-5% rate  of interest.  

Table 9  shows  the length  of  the optimal  rotation period  for  plot  59,  plot  61 

and plot  83 at  0-5% rates of  interest. The optimal solutions were  described by  
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Table 9.  Optimal  rotation length and average diameter at rotation age 

average tree diameter (weighted  with tree basal  area)  and  stand age  at  the end 

of  the  rotation period.  For  plot  59 and plot 83,  the optimal  solutions  at  4% and 

5% were  illegal,  and for  plot 61,  solutions at  3%-5% were illegal.  In the study  

of  Hyytiäinen  and Tahvonen (2002  a),  similar  results  are  obtained:  for  lower 

rates,  the rotations were typically  longer,  and for high  rates  shorter  than 

recommended. 

Most of  the  early  studies reported  that the optimal  rotation can  be shorter  

than the recommendations (see  Table 4).  In the present  study,  the rotation of 

Norway  spruce  can be  20-30 years  shorter than the recommendations for 

practice.  A  similar  result was  obtained in  the growth  and yield  study  of  Vuokila 

(1985)  as well. 

Figure  17a illustrates that all  the  optimal  solutions at  3% interest  rate  for 

an MT site  were  legal.  However,  Figure  17b  shows that the optimal  solutions 

of  plots  45 and 61 were illegal  for  an OMT site.  Note that plot  61 gave the 

highest  bare land value of  all  OMT site  plots.  

Figure  17. Optimal  solution, law and recommendations for MT and OMT sites at  3%  
rate  of interest. 

Plot  59 (MT) Plot  61  (OMT)  Plot  83 (OMT) 

Rate of interest Rotation Dg  Rotation Dg  Rotation Dg  

(%)  (yrs)  (cm)  (yrs)  (cm)  (yrs)  (cm)  

0 143.6 39.2 150.3 40.4 147.5 40.8 

1  101.7 30.0 103.4 30.4 105.9 30.4 

2 77.5 25.5 85.8 26.4 83.2 26.1 

3 73.8 24.5 69.2 23.0 71.0 23.6 

4 61.2 22.1 62.2 21.8 63.8  21.8 

5 59.0 21.1 56.8 20.3 61.8  21.7 

Note: Shaded  solutions  were illegal. 
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6 Conclusions and Limitations 

From this  study  lead some clear  conclusions  can  be  drawn about optimal  stand 

management  of  Norway  spruce  in eastern  Finland. It was  found that two  

thinnings,  thinnings  from above,  postponed  thinnings,  was  optimal  for 

moderate density  stands  (with  initial  density  about 1900 trees  per hectare),  at 

3% rate  of interest. 

With 3% rate  of  interest,  the legal  limits did not restrict  the optimal  

management  of  most Norway  spruce stands analyzed,  but  the legal  limits  

restricted  the average diameter for  an OMT site  in this  study  (see  Table 9). In 

addition, the optimal rotation length  for most plots  in this  study are  shorter  

than in  Valsta (1992b)  and Hyytiäinen  and Tahvonen (2001). 

The  optimal rotation  length  decreased with an  increasing  rate  of  interest.  

The MSY  rotation was  about 15 years shorter  than the rotation based on 

Forest Rent.  Thinning  from below was  more profitable  when the  interest  rate 

was less  than 2%.  By  contrast,  thinning  from above was  superior  with  3-5% 

rates  of  interest.  Increasing  the rate  of  interest  led  to  a lower  final volume,  a 

narrower and  more highly  peaked  diameter distribution,  and a lower mean 

diameter. 

This study was  restricted  by  the availability  of  economic and biological  

data. First  of  all,  the roadside prices of pulpwood  and  sawlog  were  fixed in 

this  study.  In practice,  the market  price  fluctuates with demand and  supply  

over time. Changes  in demand and supply  may also  cause  the  changes  in 

relative  prices  of  timber products  (sawlog,  pulpwood).  This  suggests  the need 

for modeling roadside timber prices.  On  the other  hand,  non-timber values 

also  sometimes affect  decision making.  This may require  further study  as  

well.  In  this  study,  the analyzed  plots  were  different in  initial  age, establishment 

methods and the other  biological  characteristics.  The strong  assumption  was  

made that the naturally  regenerated  stand  gets  seeds  from adjacent  stands  after 

clearcutting.  If  the shelter  establishment method for natural regeneration  is  

employed, the optimal  solutions might  be different.  However,  owing  to  the 

lack of  good  regeneration  models,  it  is  not  possible  to  optimize  the method of 

regeneration  (Pukkala  et  al.  1998).  

Valsta  (1992b)  assumes  that thinnings  that are  late, heavy  or  from above 

may expose the stand to  wind fall or  snow break. Such  natural  hazards and 

logging damage, were ignored  in  the present  study  and  other Finnish  

optimization  studies  (Pukkala  et  al.  1998, Hyytiäinen  &  Tahvonen 2002  a).  

From this point  of  view,  one would need an applicable  model  in which the  

probability  of  natural hazards or  logging  damage  depends  on  logging.  

The  individual-tree  growth  models are based  on  statistical  treatment  of 

extensive  field measurements. This  means  that  the parameter  determination in 

the statistical  models is  based on measurements from present  forests  and 

experiments  and hence these values can be applied  only  within the domain of 
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the  data. Process-based  models enable causal analysis  of  the effects  of  various  

silvicultural  activities  and harvesting  on growth,  since  they  often include a 

description  of  the mechanisms conveying  the effects.  It might  be worthwhile 

to  extend the existing  economic research  on  stand-level forest  management  by  

applying  a process-based  model of  forest growth with forest  economic 

optimization.  
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Appendix  1. MSY, Forest  Rent  and optimal solutions  for plots  

59,  61 and 83  with different rates  of  interest.  

MSY, Forest  Rent and optimal solutions in plot  59 with different rates  of  interest  

Rate of interest (%)  
MSY Forest Rent 1 2  3 4 5 

1st thinning (yrs)  51.6 52.0 52.0 52.0 51.3 46.9 44.4 

Intensity  (%) 7.1 21.0 16.0 25.0 42.3 42.1 42.1 

S-trees (%)  73.7 72.4 16.0 16.0 16.0 16.0 16.0 

M-trees  (%) 1.3 16.8 16.0 16.0 16.0 16.0 16.0 

L-trees (%)  1.2 16.0 16.0 44.4 99.0 99.0 99.0 

2nd thinning (yrs)  64.1 81.4 67.3 61.4 57.5 46.6 

Intensity  (%) 9.9 11.2 15.5 28.8 18.2 17.6 

S-trees (%)  96.9 69.4 1.0 1.0 1.0 1.0 

M-trees  (%) 2.5 11.6 1.26 1.0 1.0 1.0 

L-trees (%)  10.2 2.3 45.1 99.0 99.0 99.0 

3rd thinning (yrs)  84.7 107.3 80.0 

Intensity  (%) 6.9 6.7 28.7 

S-trees (%)  81.3 55.5 1.0 

M-trees  (%) 4.7 3.1 1.0 

L-trees (%)  4.8 8.3 98.9 

4th thinning  (yrs)  97.6 123.3 

Intensity  (%)  10.5 10.7 

S-trees (%)  1.0 1.0 

M-trees  (%) 7.5 1.4 

L-trees (%)  15.7 24.4 

5th thinning (yrs)  112.7 

Intensity  (%) 6.6 

S-trees (%)  1.1 

M-trees  (%) 5.2 

L-trees  (%)  10.2 

6th thinning  (yrs)  123.0 

Intensity  (%) 1.6 

S-trees (%)  1.2 

M-trees  (%) 2.0 

L-trees (%) 1.2 

M.A.I. (m3/year)  12.2 11.9 11.3 10.3 9.7 9.0 8.5 

Rotation age  (yrs)  127.8 143.6 101.7 77.5 73.8 61.2 59.0 
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MSY, Forest  Rent  and optimal solutions in plot  61 with different rates  of  interest 

Rate of  interest (%) 
MSY  Forest Rent  1 2 3  4 5 

1st thinning  (yrs)  44.7 45.2 45.2 45.2 45.2 45.2 45.1  

Intensity  (%) 10.7 20.6 18.2 16.0 42.8 42.8 42.8 

S-trees (%) 62.2 48.2 29.7  16.0 16.0 16.0 16.0 

M-trees (%) 5.6 17.1 17.1 16.0 16.0 16.0 16.0 

L-trees (%) 1.0 16.6 16.0 16.0 99.0 99.0 99.0  

2nd thinning  (yrs)  60.8 65.6 61.1 56.8 61.0 

Intensity  (%) 9.3 9.9 21.5 33.1 14.8 

S-trees (%) 99.0 39.9 7.0 1.0 1.0 

M-trees (%) 1.4  5.5 1.1 1.6 1.0 

L-trees (%) 1.0 8.9 60.6 99.0 99.0  

3rd  thinning  (yrs)  81.9 82.7 73.8 71.7 

Intensity  (%)  10.6 16.2 24.6 20.4 

S-trees (%) 99.0 45.0 3.0 1.1 

M-trees (%) 2.1 4.8 2.0 8.3 

L-trees (%) 12.1 28.5 95.0 99.0 

4th thinning (yrs)  100.5 107.4 89.8 

Intensity  (%) 6.0 7.6 11.5 

S-trees (%) 95.5 3.8 4.2 

M-trees (%) 1.2 4.2 11.9 

L-trees (%) 2.4 14.1 17.2 

5th thinning (yrs)  115.4 120.8 

Intensity  (%) 4.6  12.2 

S-trees (%) 35.5 1.0 

M-trees (%)  1.4  14.8 

L-trees (%) 5.8 9.4 

6th thinning  (yrs)  126.3 

Intensity  (%) 4.0  

S-trees (%)  20.1 

M-trees (%) 3.4 

L-trees (%)  3.3 

M.A.I. (m 3/year) 10.3 9.9 9.6  9.1 8.3 7.9 7.5 

Rotation age  (vrs)  136.9 150.3 103.4 85.8 69.2 62.2 56.8 
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MSY, Forest  Rent  and optimal  solutions in plot  83  with different rates of interest  

Rate  of  interest (%) 
MSY Forest Rent 1 2  3 4 5 

1st thinning  (yrs)  43.5 46.5 46.5 46.5 46.5 46.5 41.2 

Intensity  (%) 9.8 26.9 16.2 16.0 45.1 45.1 44.9 

S-trees (%) 78.1 97.5 16.0 16.0 16.0 16.0 16.0 

M-trees  (%) 1.6 19.9 16.1 16.0 16.0 16.0 16.0 

L-trees (%)  1.0 16.0 16.6 16.0 99.0 99.0 99.0 

2nd thinning (yrs)  62.3 84.6 59.1 57.9 57.7 52.6 50.3 

Intensity  (%) 9.0 14.7 9.5 35.6 18.8 18.4 19.8 

S-trees (%) 99.0 62.0 5.8 1.0 1.00 1.0 1.0 

M-trees (%)  2.5 18.5 2.8 1.0 1.00 1.0 3.0 

L-trees (%)  1.9 3.1 20.9 99.0 99.0 99.0 99.0 

3rd thinning (yrs)  81.3 118.8 66.8 65.0 

Intensity  (%) 7.9 15.6 25.3 18.8 

S-trees (%)  99.0 22.7 2.2 1.0 

M-trees  (%)  5.0 3.2 2.6 1.0 

L-trees (%)  2.5 28.6 70.5 99.0 

4th thinning  (yrs)  97.3 83.9 

Intensity  (%) 7.8 26.5 

S-trees (%) 89.7 3.4 

M-trees  (%) 3.0 3.4 

L-trees  (%)  1.5 97.9 

5th thinning  (yrs)  118.6 

Intensity  (%) 4.3 

S-trees (%) 78.5 

M-trees  (%) 1.2 

L-trees  (%)  1.3 

6th thinning  (yrs)  133.6 

Intensity  (%) 2.1 

S-trees (%) 1.1 

M-trees  (%) 2.7 

L-trees  (%)  1.5 

M.A.I. (m 3/year)  11.0 10.5 10.2  9.5 8.7 8.3 7.9 

Rotation age  (yrs)  134.6 147.5 105.6 83.2 71.0 63.8 61.8 
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