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Abstract  

Domisch,  T. 2002. Effects of  soil  temperature  on  Scots  pine  biomass  

allocation and litter  decomposition  in peat.  Finnish  Forest  Research Institu  

te,  Research  Papers Metsäntutkimuslaitoksen  tiedonantoja  874. 65  p.  +  5  

appendices.  

This thesis  investigates  the effects  of  peat  soil  temperature  on biomass  

production  and allocation in one-year-old  seedlings  of  Scots  pine  (Pinus  

sylvestris  L.)  and on  the decomposition  of  Scots  pine  needle and root  material.  

Two laboratory  experiments  were  conducted to  study  shoot  and root growth  

and biomass  allocation during  the first  half  of  the growing season,  one 

extending  over  9 weeks,  in  which constant soil  temperatures  of  5,  9,  13 and 

17° C  were  used, while the other,  lasting  up to 18 weeks,  tested the  effects  of 

cold  soil  periods  (5°C) of  different  length  and a  subsequent  increase  to 13° C.  

The decomposition  of  needle and root  litter  was  studied in  three experiments  

with  plant  material  obtained from  one and two-year-old  Scots  pine seedlings,  

at  soil  temperatures  of  5,  10, 15 and 25°  C.  In two  experiments  14
C-labelled 

material  was  used in  order  to  trace  the carbon released during  decomposition.  

Decomposition  and  carbon relocation from  the litter  were  monitored for  up 

to 500 days.  The  experiments  were  performed  in  peat  soil  under controlled 

laboratory  conditions  and in  the field.  Pooled  results  from  all  the experiments  

were  used to simulate carbon relocation at elevated soil temperatures.  

Bud break and the start  of  shoot  height  growth  were  not affected by 

the soil  temperature  treatments, whereas the final height  was  clearly  

dependent  on soil  temperature  but  not on  the  length  of  the cold  soil  period.  

Soil  temperature  did not affect  the onset  of root  elongation,  but higher  soil  

temperatures  promoted  greater  root  length at  9 weeks.  The cold  soil  periods  

delayed  the  start  of  new root growth,  but  new roots  emerged  quickly  when 

the  soil  temperature  was  raised to 13° C.  Higher  soil  temperatures  clearly  

increased the biomass  production  of the seedlings,  but  the  highest  total 

biomass  was  observed at 13° C  and  not at  17° C.  A longer  period  of  cold  soil  

reduced the biomass  of  new roots,  but  when the soil  temperature  increased,  

the new  root biomass increased to a level  similar  to that in the treatments 

with  shorter  cold soil  periods.  Biomass  allocation was  not  greatly  affected  

by  the soil  temperature  treatments, although  a  trend  for  greater  allocation 

below ground  at  higher  soil  temperatures  was  observed.  

Mass  losses  from  the needle litter  were  always  higher  than those from 
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the root litter, and  the decomposition  of  needle litter  was  more dependent  on 

soil  temperature.  The temperature  dependence  of  the  decomposition  rate 

decreased with time, so that the mass losses from both needles and roots 

showed a  non-linear relationship  to the accumulated soil  temperature  sum 

and converged  to  an  asymptote,  i.e.  a limit  value for  mass  loss,  which was  

88% for  needles and 46% for  roots. The greatest  part  of  the carbon released 

from the litter  during  decomposition  was  emitted  into  the atmosphere,  80% 

of  that from the needle litter and 70% of  that from the root litter.  A  

considerable amount  of  the carbon released was  retained in  the peat  and 

moss  layers,  approx. 15% for  the needles and 25% for  the  roots,  while smaller  

amounts, 5%  on average,  were  leached into the groundwater.  

The simulations  showed that  on an  average drained peatland  supporting  

a Scots  pine  stand,  when above and below-ground  litter  fall  each accounts  

for 100 g C  mV, the carbon flux  into the atmosphere  from decomposing  

tree  litter  would be 150 g C  m"
2a~', relocation into the soil  would be  around 

30  g C  mV1 and leaching  into  the groundwater  approx. 10 g C  nrV1 .  The  

simulations  also  showed that  an  increased litter  input  into  the soil  at  elevated 

soil  temperatures  could result  in  increased carbon emissions  to the atmosphere  

and leaching  into  the groundwater,  although  carbon relocation into the soil  

would also  increase.  This  could mean greater carbon  accumulation into  the 

soil  of  drained peatlands,  provided  that other  environmental  conditions will  

not counteract.  
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1 INTRODUCTION  

1.1 Carbon cycling  in  boreal  peatlands  

Pristine  peatlands  (mires) are  wetland ecosystems  characterised by  the 

accumulation  of  organic  matter,  which is  produced  and deposited  at  a  greater  

rate  than it  is  decomposed,  leading  to the formation of  peat  (Gore  1983),  

and thus to  the accumulation of  carbon (C)  in  the  long-term.  Carbon is  bound 

from the atmosphere  as  biomass  in  photosynthesis  by  autotrophic  plants  and 

deposited  as  above and  below-ground  litter  (Fig.  1). Due to  the high  water 

table in  pristine  peatlands  throughout  most  of  the year, the  peat  soil  is mainly 

anoxic and thus provides  unfavourable conditions  for  decomposition,  leading  

to  accumulation of  peat.  Peat  accumulation  can  take place  only when net 

primary production  (NPP) exceeds  decomposition.  On average, 2-16% of  

the NPP  is  accumulated as  peat  (see  reviews  by  Päivänen and Vasander 1994 

and Paavilainen and  Päivänen 1995). The highest  long-term  peat  

accumulation rates in the boreal zone of  Finland have been measured in 

raised bogs  and the lowest  accumulation rates  in  minerotrophic  fens (Tolo  

nen and Turunen 1996). 

Peatlands,  particularly  those in  the boreal  zone, are  huge  reservoirs  of  

C and thus a  very  important  factor  in  the global  C  balance.  The  amount of C 

accumulated in  northern peatlands  is estimated  to be  approx. 45  5  Pg  (Gorham 

1991),  which is  about 60% of  the  C  pool  of  the atmosphere  and one  third of  

the  total  C store  found in  soils  (IPCC  1996).  Turunen et  ai.  (2002),  however,  

estimated  the total  C  pool  of all  boreal and subarctic  mires  to be lower,  at  

270-370 Pg.  The greatest  C stores  in Finland can  be found in  peatlands  

(Minkkinen  1999),  which cover  about one third of  the land area, i.e. 10.4 

million ha  (Paavilainen  and Päivänen 1995). Almost  15 million ha  of  

peatlands  are  drained for  forestry  worldwide,  of  which approx. 5.7  million 

ha are  located  in Finland  (Paavilainen  and Päivänen 1995).  Pine mires  are  

the most  common  peatland  sites  drained for  forestry  in  Finland (Keltikangas  

et  al.  1986). 

Drainage  for  forestry  sets  in  motion a  vegetation  succession  in  which 

the plants  typical  of pristine  peatlands  are  gradually  replaced  by a forest 

vegetation  (Sarasto  1962,  Laine and  Vanha-Majamaa  1992, Laine et al.  1995). 

The initial  nutrient status of  the peatland  and the  intensity  of  drainage  are  of  

significance  in  this context  (Laine  et  al.  1995).  The recovery  of tree growth  

after  drainage  differs between minerotrophic  and ombrotrophic  peatlands,  
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in that  the aerated zone suitable for  enhanced root growth  and for  peat  and 

litter  decomposition  is  still  superficial  in  the latter  even  after  drainage.  The 

Sphagnum  peat  itself  does  not provide  favourable conditions for 

decomposition,  due to  its  lowpH  and low  nutrient  availability  (Isotalo  1951,  

Johnson and Damman 1993,  Bergman  et  al.  1999).  

Figure  1. Carbon pools  and fluxes  in a  forested peatland ecosystem.  Boxes  represent 

carbon  pools  or  measurable carbon movements, ovals  represent  processes  changing 

these carbon  pools and arrows  represent the fluxes. Roman numerals refer  to  the 

original papers. 
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The fine  root  biomass  of developing  boreal  coniferous forests generally  

increases  until canopy closure  occurs  (Vogt  et  al.  1983,  Helmisaari  et  ai.  

2002),  and the root biomass  was  also  observed to  increase rapidly  after  

drainage  in  the study  of  Laiho and Finer  (1996)  and to  reach its  peak  after  22 

years. Following  this  rapid  increase,  the absolute  biomass  remains  relatively  

stable  but  the  relative  biomass  (in  relation to  total  biomass)  decreases (Vogt  

et  al.  1987b,  Laiho and  Finer  1996,  Monserud et al.  1996,  Nikinmaa 1996, 

Helmisaari  et  al.  2002),  although  increases  in  absolute  and relative  fine root  

biomass  have also been observed in  Scots  pine  (Pinus  sylvestris)  stands 

throughout  an age sequence of  18 to  212 years  (Vanninen  et  al.  1996).  Canopy  

closure is  also  a  turning-point  for  the rootrfoliage  ratio  (Vanninen  and Mä  

kelä 1999),  the proportion  of  the foliage  biomass remaining  stable or 

decreasing  after a maximum in early  stand development  (Gower  et  al.  1994,  

1995,  Vanninen et  al. 1996,  Helmisaari  et  al.  2002).  After  canopy  closure,  

the absolute allocation of  biomass  to  the foliage  remains relatively  stable  or 

may increase  slightly  with age (Monserud  et  al. 1996,  Vanninen et  al.  1996). 

The total  (above  and  below-ground)  litter  production  of  a  forest  stand may 

thus  be  assumed  to  be  relatively  stable over  time (after  canopy closure)  if  a  

large  enough  area  is  considered (Fig.  2).  

Both above and below-ground  tree  growth  is enhanced after  drainage,  

and consequently  also  the increase of needle and root litter  production  may 

be  significant  (Laiho  and Laine 1996, 1997, Finer  and Laine 1998).  The 

estimated  increases  in above-ground  litter  production  are  up to five-fold  

(Laiho  and Laine 1996)  and that  of  below ground  two-fold (Vasander  1982). 

It  can  not be  concluded that  above-ground  litter  production  increases  to  higher 

levels than below-ground  production,  however,  since  the initial  levels  of  

production  may be  different. The ratio  of the increased litter  production  of  

the tree stand and the decomposition  of  the previously  formed  peat  is  of  

great  importance  (Vompersky  and Smagina 1984,  Cannell et  al.  1993,  

Minkkinen  and Laine 1998a,b).  

Due to  water level  draw-down,  the structure  of  the initially  wet  peat 

collapses  and the peat  surface  sinks  rapidly  (Lukkala  1949). The surface 

peat  dries, and  its  thermal conductivity  decreases (Päivänen  1982),  so  that 

the mean  peat  temperature  drops.  This  is also  accentuated by  the shading  

and snow-collecting  effects  of  the tree stand (Yli-Vakkuri  1960,  Heikurai  

nen and Seppälä  1963,  Hytönen  and Silfverberg  1991,  Minkkinen et  al.  1999),  

which reduces  the depth  of  the insulating  snow  cover  (Päivänen  1973).  The 

lower water content and improved  aeration of  the  surface  peat  increase 
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microbial  activity  (Chmielewski  1991),  enhancing  the decomposition  of  

organic  matter (Lieffers  1988,  Bridgham  et  al. 1991),  but  this  may be  partly  

counteracted by  the lower soil  temperatures  caused by  the lower thermal  

conductivity  of  the  drier peat.  The enhanced microbial activity  is  limited  to  

the  surface  layer,  although  the water table  remains relatively  low during  the 

growing season  (Paarlahti  and Vartiovaara 1958,  Karsisto  1979).  

Figure 2.  Theoretical changes  in  needle or  root  biomass carbon (relatively  stable) 

and  soil carbon (increasing)  within and  between  years. 

Drainage  of  peatlands  for  peat  harvesting  or agricultural  purposes 

changes  them from C  sinks into  sources  of  C (Armentano  and  Menges  1986,  

Nykänen  et  al.  1995),  whereas drainage  for  forestry  has  been found to  increase 

peat  C stores  in  many cases  in Finland,  at  least  for the first  60-80 years  

(Minkkinen  and Laine 1998a,b,  Minkkinen et  al.  1999).  The increases  in 

peat  C  stores  on drained sites  have  been greater  in  Southern Finland  than in 

the North (Minkkinen  and Laine 1998b). 

Although  peatlands  drained for forestry  may  act  as  sinks  for 

atmospheric  C,  the mechanism  of  C  accumulation seems  to  be  different from 

that in  pristine  peatlands.  The latter  accumulate  C through  height  growth,  
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predominantly  from plants  of  the field  and bottom layers  (Sphagna  and 

sedges),  whereas the increased  tree litter  production  above and below the 

ground may be  more  important  on  drained peatlands.  No research  has been 

carried out  earlier,  however,  into the fate of  C released during  the 

decomposition  of  litter  on  either  pristine  or  drained peatlands.  

1.2 Effects  of  soil  temperature on plant growth 

The boreal forest zone is characterised by  low  air  and soil  temperatures  

leading  to  short  growing  seasons  and favouring  the accumulation of  organic  

matter.  Thus cold soils  (i.e.  soils with  sub-optimal  temperatures  concerning  

biological  processes)  are characteristic  of  boreal forests,  especially  at  the 

beginning  of  the growing  season.  This  holds true particularly  for  drained 

peatlands,  since drainage  causes  a  decrease in  mean soil  temperature  (Pessi  

1958,  Heikurainen and Seppälä 1963,  Hytönen  and Silfverberg  1991, 

Minkkinen et ai.  1999). 

Soil  temperature  is one  of  the primary  factors  affecting  plant  growth  

(Cooper  1973, Bowen 1991).  Low soil  temperature  reduces the  growth  of  

tree  roots  (Aaltonen  1942,  Ritchie  and Dunlap  1980, Tryon  and  Chapin  1983,  

Lopushinsky  and Max 1990) and also  impedes  shoot growth  and hampers  

nutrient uptake  (Lopushinsky  and Max 1990,  Marschner 1995). Thus the 

present  restraints  on  tree growth  in boreal forests  represent  the direct  or  

indirect  repercussions  of  temperature,  although  its  role is  somewhat 

controversial  (Briffa  et  al.  1998,  Vaganov  et  al.  1999,  Jarvis  and Linder  

2000).  Increasing  temperatures  resulting  from global  climatic  changes  may 

have direct  effects  on  the physiology  of  the tree, in  that  trees growing  in  a  

warmer  climate  will  fix  more  C,  resulting  in  accelerated  growth. There may 

also  be  indirect  effects,  since a wanner  environment provides  greater  nutrient 

availability,  resulting  in  faster  annual growth  rates (Strömgren  2001).  An 

increase  of  +5°  C  in  soil  temperature  resulted  in  a  very  significant  increase 

in  stem volume growth  in  boreal  Norway  spruce  (Picea  abies)  (Strömgren 

2001).  

The root  growth  of  boreal forest  trees starts  at  a critical,  species  specific  

soil  temperature  in  spring  and reaches  its  maximum  at  around 20°  C (Tryon  

and Chapin  1983, Andersen et al.  1986, Vapaavuori  et  al.  1992).  The soil 

temperature  required  for  maximal  Scots  pine  root growth  has  been shown to 

be 16.5° C  (Korotaev  1989),  whereas root growth  in  the lodgepole  pine  (Pinus  
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contorta)  is  highest  at  20°  C (Lopushinsky  and Max 1990). Scots  pine  root  

growth  has  been reported  to start  at  a  soil  temperature of  3-5 °C  (Korotaev  

1987,  1989), that  of  the lodgepole  pine  at  5°C  (Lopushinsky  and Max  1990)  

and that  of other  boreal conifer  species  between 3  and 6°C  (Lyr  and Hoff  

mann 1967,  Kaufmann 1977, Tryon  and Chapin  1983,  Lopushinsky  and Max 

1990).  In contrast,  a temperature  of  B°C  continued  to suppress  root  growth 

in  the Scots pine  in  hydroponic  culture  and root growth  increased almost  

exponentially  with increasing  soil  temperatures  above B°C (Vapaavuori  et  

ai. 1992).  One possible  explanation  for this  higher  threshold  temperature  

may be that roots respond  differently  in  media  of  different textures and 

compositions.  Also  mycorrhizas,  which are  crucial  for  nutrient uptake,  are  

absent  in  hydroponic  cultures.  The optimal  soil temperature  for  shoot  growth  

in  Scots  pine seedlings  is  known to  be somewhat lower than that  for  roots. 

Vapaavuori  et  ai.  (1992)  and Lyr  and Garbe (1995)  found soil  temperatures  

of  12° C and 15° C respectively  to  lead to  the most pronounced  new shoot 

growth.  

The allocation of  plant  biomass  between the above and below-ground  

parts  is  also  affected  by  soil  temperature.  Within the temperature  range 

prevailing  in  the boreal forest zone, higher  soil  temperature  usually  results  

in an  increased allocation of  photosynthates  and biomass below ground (Lip  

pu 1998),  and nutrient concentrations in plant  material  also  increase  with 

soil  temperature  (Domisch  et  al.  2002).  Results  of  allocation  studies  

conducted  with small  seedlings  cannot necessarily  be  generalised  to larger  

trees  growing  in  forests,  however. 

Future climate  scenarios  predicting  increases in  air  temperature  may 

also  mean a rise in soil  temperature,  enhanced root growth  and perhaps  

increased  below-ground  C  allocation.  The temperature  rise in  Europe  during  

the  last  150 years  has been  mainly  confined to the winter  months,  with no 

warming  during  the  summer  months to be  observed  in  the long-term  records 

(Balling  et  al. 1998).  This  could mean a  warming  in  the spring  and autumn, 

and thus a  prolonged  growing  season,  which could in  turn result  in  higher  

biomasses  of  forest stands  and an  increased allocation of  C  below ground  

and higher  above and below-ground  litter  production.  Forests  may be  subject  

to changes  in species  distribution under changing  climatic  conditions,  

however (Kellomäki  and Kolström 1992,  Sykes and Prentice  1996),  which  

could also have consequences for litter  production,  quality  and 

decomposition.  
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1.3 Effects  of  soil  temperature  on  decomposition  of  

organic matter  

Together  with moisture,  temperature  is  one of the most  important  factors  

affecting  the  decomposition  of  organic  matter (e.g.  Waksman and  Gerretsen 

1931),  and it  is  usually  a  minimum factor restricting  decomposition  in  boreal 

forest  soils  even  during  the growing  season.  Lower decomposition  rates  are 

found at  higher  latitudes  (Mikola  1960, Johansson 1984),  and  this  can  mainly 

be  attributed to climatic  effects  such as lower temperatures  or  actual 

evapotranspiration  (AET)  (Berg  et  al. 1993,  Couteaux et  al. 1995).  

The decomposition  course  generally  follows an asymptotic  curve  

(Olson  1963) with relatively  high  mass  loss  rates  at  the  beginning  (in  the 

first  year)  and a subsequent  slowing  down of  the  process  at  later  stages,  

resulting  in  very  slow or  negligible  mass  loss  rates  (Melillo  et  al.  1989,  Berg 

et  al.  1993).  Aber  et  al.  (1990)  divided  the decomposition  process into  two 

phases,  the first  with a  constant mass  loss  rate  and the  second in  which the 

process  slowed down considerably  and almost  ceased.  They  also  reported 

that  the decomposition  of  different deciduous and conifer  species  litter 

proceeded  in a  similar  manner  during  the second phase  irrespective  of  the 

original  litter  species.  Berg  and Matzner (1997)  divided the decomposition  

of  Scots  pine  needle litter  into  three phases,  the  first  regulated  by  nutrient 

level and readily  available C, the second regulated  by  the  lignin 

decomposition  rate,  and the third  when the decomposition  process  practically  

ceased. Berg and Ekbohm (1991,  1993) suggested  a  decomposition  model 

for  Scots  pine  needle litter  in  which the mass  losses  increase  until  a limit  

value is  reached (maximal  mass  loss).  

Litter  quality  is  the main factor  determining  decomposition.  Easily  

leaching  compounds  disappear  first, and sugars  and starch  are  also  easily  

decomposed,  while lignin  and lignified  compounds  are  more resistant  to 

decomposition  (Naucke  et  al.  1993,  Zech  and Kögel-Knabner  1994), 

remaining  as  residuals  forming  the soil  organic  matter (SOM). Since new 

easily  decomposable  organic  matter is  added to  the system  every  year,  this  

may be  one reason  for  the build-up  of  SOM. Microbes  may not necessarily  

be  forced to  use  lignin  or  other  compounds  which are  difficult  to  decompose. 

Direct  observations on the effects  of  soil  temperature  on the 

decomposition  of  Scots  pine  needle litter  are  relatively  scarce.  Studies  dealing  

with  the effects  of  climate on  the decomposition  of  Scots  pine  needles have  

shown a  relatively  close  relationship  between decomposition  and climatic  
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variables,  decomposition  rates  being  higher  in  climates  with higher  actual  

evapotranspiration,  higher  mean annual temperatures  or  higher  mean July  

air  temperatures  (Berg  et al.  1993,  Johansson 1994).  Summer drought  may 

be a  limiting  factor  for  decomposition,  however. Studies  dealing  with the 

effects  of  soil  temperature  on  the decomposition  of  Scots  pine  root litter  are  

also  rare.  A soil  temperature  of  25°  C increased  mass  losses  from Loblolly  

pine  (Pinus  taeda)  fine  root litter  relative  to 15° C from 57 to 66%  within 

one year in  a laboratory  experiment  (Ruark  1993).  Decomposition  of root 

litter  is known to be less  sensitive  to climatic  and environmental factors  

than to substrate properties  (Johansson  1984,  McClaugherty  et  al.  1984,  

Finer  and Laine 1996,  King  et  al.  1997,  Silver and Miya  2001),  the most 

important factor  explaining  root decomposition  being  the organo-chemical  

constitution of  the litter  itself,  expressed  in terms of  Ca  or  lignin  

concentrations or the initial C/N ratio, whereas latitude,  mean annual 

temperature  or  actual  evapotranspiration  are  less important  (Berg  1984,  Berg  

et al.  1998,  Silver  and Miya 2001).  

Scots pine  needle and root  litter  differ  in initial  chemical  constitution  

(Berg  and Staaf 1980a,b.  Berg 1984,  Johansson 1995), and are  decomposed  

at different rates,  needle litter  usually  more quickly  than root litter  (Berg  

1984, Johansson 1994,  Bryant  et  al.  1998). Mass  losses  from Scots pine  

needle litter  in  Northern and Central Europe  have been reported  to range 

from 11% to almost  50% during  the first  year, depending  on climatic  and  

environmental factors  (Berg  et  al.  1993,  Johansson 1994),  while mass losses  

from Scots  pine  root litter  have been reported  to  be 10-25%,  depending  on 

the diameter of  the roots.  The  differences due  to  root diameter disappeared  

after three years,  however,  when mass losses  were  approx.  40% (Berg  1984). 

The majority  of  litter  decomposition  studies  have employed  the litter  

bag  technique,  which has received some criticism  in  that it  underestimates 

mass losses  from the litter, since,  depending  on the mesh  size,  larger  soil  

animals are  usually  excluded. The role of  large  soil  animals in the  

decomposition  process  in  boreal  coniferous  forest  soils  is a  relatively  minor 

one, however,  since  fungi,  and particularly  soil  bacteria,  are  responsible  for 

most of  the primary decomposition  and nutrient mineralisation  (Persson  et  

al. 1980,  Vogt  et  al.  1986).  This  should  also  be  the  case for  pine  mires  since  

the  abundance of  soil  animals  that are  of  importance  for decomposition  

(Enchytraeidae,  Collembola and Acari)  is lower on  these  peatlands,  even 

drained,  than on  respective  Scots  pine  mineral soil  sites  (e.g. Lohm et  al.  

1977, Standen and Latter 1977,  Hotanen 1986).  Another point is  that air  or  
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oven-dried litter  is  usually  used,  which,  to some  extent, leads to  an  artificial  

decomposition  environment for  soil microbes,  particularly  as  far  as  root  litter  

is  concerned,  as  the soil  microbes  and the rhizosphere  may be  washed away 

during  separation  of  the root material  (Vogt  et  al.  1991).  Also,  the  air-drying  

of  litter  material  may  retard  decomposition  rates  (Taylor  1998). 

Soil  warming  experiments  to study the effects of  increased soil  

temperature  on the decomposition  of  tree litter  in the field have been 

performed  by  McHale et  al.  (1998),  Rustad  and  Fernandez (1998),  Verburg  

et  al.  (1999  a) and Strömgren  (2001),  for  instance.  Increased soil  temperatures  

have generally  been  found to  result  in  enhanced decomposition  rates,  when 

not hampered  by  increased drought  (e.g. Strömgren  2001).  Another factor  

restraining  decomposition  is  the  availability  of  readily  decomposable  C  in 

the soil,  which  may  be  depleted  after  a  relatively  short  time,  as suggested  by  

McHale et  al. (1998)  and Jarvis  and Linder (2000).  

1.4 Soil  temperature  and  carbon  cycling  in  drained  
boreal  peatlands 

At present  the mean soil  temperatures  in  the rooting  zone of  peatlands  in 

Central  Finland during  the growing  season  are 10 to 12° C,  with  values  varying  

between  5  and 20°  C over  time. Weekly  or  monthly  average  soil  temperatures  

seldom reach 15° C even  in  the  surface  layer  of  drained Finnish  peatlands  

(Hytönen  and Silfverberg  1991,  Finer  and Laine 1998).  The decrease in 

temperature  caused by  drainage  has not  been  confined only  to the  soil,  

especially  at  the beginning  of  the growing  season,  but  it  also  affects  local  air  

temperatures  during  the late summer  (Venäläinen  et  al.  1999).  

Future  climate scenarios  for Finland predict  increases  in air  

temperature  of  0.3-3.6°  C within  the next 45 years  (Carter  et al.  1995), 

possibly  meaning  a  rise  in  soil  temperature.  This  may enhance root growth,  

and thus increase below-ground  C allocation,  which can  be of  especial  

importance for  the C sink strength  of  boreal peatlands  (Gitay  et  al.  2001).  

Despite  elevated mean temperatures  and a longer  growing season, soil  

temperatures  may  also  be  subject  to  a decrease in  spring,  i.e.  a  longer  period  

of  cold  soil  may occur.  Altered temperature  and  precipitation  patterns  may 

affect  the time when the  insulating  snow cover  builds  up,  and  whether it  

takes place  before or  after  the occurrence  of  frost (Groffman  et  al.  2001).  

The depth of  the  snow  cover  is  also  crucial  in  this context (Verry  1991).  A  
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later  build-up  of  the  snow  cover, or  complete  absence,  together  with frost,  

may cause  even  deeper soil  frost  and thus colder  soils  for a longer  time in 

spring.  This  may be  the case for  drained and forested peatlands  in  particular,  

as  they  are  already  cold sites  at  the  beginning  of  the  growing season.  

The effects of  forestry  drainage  may be used to represent  possible  

impacts  of  climate  change,  since  the  effect  of  drainage  on  the structure and 

functioning  of  an  ecosystem  is  at  least  to some extent  comparable  to  that 

predicted  after  the drying  of northern peatlands  caused by  climate  change  

(Laine  et  ai. 1996).  The ratio  of  tree  biomass  production  and decomposition  

will  probably  change  under changing  environmental conditions,  and an 

increase in soil  temperature  will  result  in an increase in plant  biomass 

production,  and thus also  an  increase  in  the amount of  tree  litter. Sites  with 

a warmer climate produce  many  times  more  litter  than boreal Scots pine  

stands  (Berg  et  al. 1999),  a  pattern  also  seen  along  the temperature  gradient  

within the  boreal zone (Albrektson  1988,  Berg  and Meentemeyer  2001).  

Decomposition  is  accelerated at elevated soil  temperatures, although  the 

maximal  mass  loss  may  not  necessarily  be  altered.  A  result  may be  a  greater  

acquisition  of  C,  particularly  in boreal peatlands,  provided  that other 

environmental factors  such as precipitation  remain favourable for peat 

accumulation.  This  is  valid  only  in  an  undisturbed system,  however,  since  if  

any  disturbance occurs  (e.g.  fire),  the SOM content will  decrease,  which 

seems  to be  a  natural way  in  the boreal zone to prevent  the entrapment  of  

nutrients  and C  (and  thus of  energy)  in  the soil.  Also  drainage changes  the 

decomposition  and accumulation  patterns  of  organic  matter and C, since 

drained peatlands  are  no longer  organic  matter accumulating  ecosystems,  

although  they  may still  act  as C  sinks.  

Input  of C  into  the soil  takes  place  not  only  through  above and  below  

ground  plant  residues,  but  also  in the form of  root exudates and allocation of  

carbohydrates  to mycorrhizal  symbionts.  Carbon input  into the soil  from 

roots can  be even  greater  than that from  above-ground  litter  (Vogt  et  al.  

1991).  If  we  assume  that  not  all  litter  is  decomposed  immediately  (i.e.  in  the 

short-term)  and not all  C is released to the atmosphere  but some is preserved 

in  the soil, a positive  difference  develops  between the C  uptake  for  biomass 

growth  and the C  release during  the decomposition  of  that same biomass,  

resulting  in  a  positive  C balance  (AC).  The amount of  soil  organic  matter 

increases  if  no disturbances occur  (Fig.  2,  note the similarity  to Janssen 

(1984)  for  agricultural  soil).  It  may be  concluded that  this C  balance may be 

even  more positive,  and thus the amount of  SOM even  greater,  when the 
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amount of litter  produced  increases  due  to elevated soil  temperatures.  This 

will  hold true as  long  as  decomposition  will  not increase  more  than  litter  

production,  and as long  as  relocation of  C  into  the soil  will  not decrease. 

Norby  and Jackson  (2000)  stated  that  "analyses  of  ecosystem  response 

to warming often focus  on  the presumed  increase  in  heterotrophic  respiration  

and the  loss  of  C from  the  system,  and it  is  important  that  the likelihood of  a  

(partially)  counterbalancing  increase  in  C  input  by  roots also  be  considered". 

This,  of  course,  not only  concerns  roots but  the above-ground  litter, too, 

since  part of  the C  from  the latter  may  be  retained in the  soil as well.  

2 AIMS OF THE RESEARCH  

The general  aims  of  this  work  were  to  determine the effect  of  soil  temperature 

on  biomass  production  and allocation of Scots  pine  seedlings,  on  mass losses 

from Scots  pine  needle and root litter, and  on the relocation of  C released 

during  the decomposition  of  Scots  pine litter.  The  intention was  to use  pooled  

results  from these studies to simulate C relocation under conditions  of  

elevated soil  temperature.  

More specifically,  the aims  were:  

1. to  study  the effect  of  different soil  temperatures  on  the dynamics  of  

shoot and root  growth  and the production  and  allocation of  biomass  in 

one-year-old  Scots  pine  seedlings  growing  in  peat soil  under controlled 

environmental conditions (I),  

2. to  investigate  the effects  of  the duration of  low (5°C)  soil  temperature  

during  the  first  half  of  the growing  season  on the timing  of  shoot and 

root elongation  and on  biomass  production  and allocation in  one-year  

old  Scots  pine  seedlings  in  peat  soil  under controlled environmental 

conditions (II),  

3. to assess  the effects  of  soil  temperature  on  the decomposition  of  Scots  

pine  needle litter  in  peat soil  under both field and laboratory  conditions 

(111,  IV  and V),  on  the C dynamics  related to  the decomposition  process  

(III),  and on  decomposition  itself  in two  peat  soils  from  climatically  

different regions  (III),  
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4. to study  the effects  of  soil  temperature  on  the fate of  C  released during  

decomposition  of  Scots  pine  needle and root litter  in  peat  soil  under 

both field and laboratory  conditions (IV  and V),  and 

5. to  simulate  the effects  of  elevated soil  temperature  on the relocation of 

the  C  released during  decomposition  of  newly  introduced  tree litter in 

peat  soil  by  means  of  a model describing  C  pools  and fluxes  under 

conditions of  increasing  soil  temperature,  based on  the results  of  papers 

ItoV. 

It  is  obvious,  however,  that  the results  of  short-term  experiments  conducted 

with small seedlings  may not  be directly  generalised  to older  tree stands,  

and the effects  may be different  if  the responses  are  studied over  longer  

periods  of time. 

3 MATERIAL AND  METHODS 

3.1 Shoot  and root  growth and  biomass  allocation  

One-year-old  Scots  pine  seedlings  were  used in  the  growth  experiments  (I  

and 11,  Table 1), which were  performed  in  a  walk-in  growth  room  (GR  77,  

Conviron Ltd.,  Winnipeg,  Canada).  The growth  medium for paper I  was  

derived from a sedge-pine  fen (classification  after  Laine and Vasander 1996) 

in  Central  Finland (Lakkasuo  mire  complex).  The mire  site  had been drained 

for  forestry  in 1961 and now  supported  a Scots  pine  stand.  Intact peat  cores  

were  placed  directly  into  plastic  tubes of  diameter 12 cm  and length  30  cm 

and transported  to  the growth  room.  Horticultural  peat  (Kekkilä  Ltd., Tuu  

sula,  Finland)  was  used in  paper 11. 

The containerised seedlings  were  grown for  one growing  season  under 

similar  conditions  at  the Suonenjoki  Research  Station  of  the Finnish  Forest  

Research  Institute  from seed originating  from the  same orchard  in  Central 

Finland (62°05'N,  26°10'E),  which  had been established  from sources  located 

between 61°07'N and 64°20'N in  Finland.  The  seedlings  were  planted  in 

plastic  pots  of  volume 5.3  (I) or  3.4  dm 3  (II) and placed  in  insulated water 

tanks with temperature  control  in order  to maintain the desired soil  

temperature  in the pots.  The seedlings  for paper I were  subjected  to a 
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dormancy  period  of  8  weeks air  and soil  temperatures  of  3-4°  C before  the  

soil  temperature  treatments,  while those for  paper II  had experienced  a  natural 

winter  in  the nursery  bed and thus the  treatments were  started  immediately  

after  planting  into  the pots.  

The soil  temperature  treatments consisted  of  9  weeks  at  5,  9,  13,  or  

17° C  (I),  and of  0,  3,  6  or 9 weeks  at  5°C  and subsequently  9  weeks  at  13°  C  

(11,  Table 1). Samples  of  14 seedlings  per  treatment were  taken at  three  

week-intervals  throughout  the experiments.  The light (approx.  20 pmol  m  2 

s"
1)  was  on for  8  hours  per  day  during  the  dormancy  period,  and for  18 hours  

a  day at  an  intensity  of  approx.  400 fimol  nr
2 s"

1  during  the soil  temperature  

treatments. Humidity  was  set  at  80% for  the duration of the dormancy  period  

and at 60% during  the  daytime  and 80% at  night  during  the soil  temperature  

treatments. 

The seedlings  were  watered once  a  week with 0.25 dm
3

 of  deionised 

water  each,  and fertilised  with smgN,2  mg P  and 11  mg K,  together with 

other  nutrients (Superex  5, Kekkilä  Ltd.,  Tuusula,  Finland),  added to the  

irrigation  water every  second week (I).  A 4-fold amount of  fertiliser  was  

added for  paper 11,  since  the growth  medium was  nutrient-poor  horticultural  

Table 1. Descriptions of  the experiments  reported in papers I  to V.  

Paper Duration  Plant 

days material  

Peat  type Environment  Soil Treatment soil  Variables  

temperature temperature measured  

sum, d.d.  

1 63 1 -year-old 

seedlings 

Carex  Growth 

chamber  

5, 9, 13 and  

17°C 

315  (min)— 

1071 (max) 

Production  and 

allocation  

II 126 1 -year-old  

seedlings 

Horticultural  Growth 

Sphagnum chamber  

5 ->  13°C 819  (min)— 

1134 (max) 

Production  and 

allocation  

III 360 Needles  from 

2-year-old 

seedlings 

Carex Growth 

chamber  

5, 10 and  

15°C 

300  (min)— 

5400  (max) 

Decomposition 

IV  500 Needles  and 

roots  from 

1 -year-old 

seedlings 

Carex and 

Sphagnum 

Field  Seasonal  

variation  

1280 (min)- 

3023  (max)  

Decomposition 

and C relocation  

V 240 Needles  and 

roots  from 

1 -year-old 

seedlings 

Carex and 

Sphagnum 

Growth 

chamber  

15and25°C  1800 (min)— 

6000  (max) 

Decomposition 

and  C relocation  
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peat.  A plastic  tube 2  cm  in  diameter was  driven into the peat on one side  of  

the pot  for  removing  any  free water that accumulated,  since  the pots  were  

closed  at  the bottom (I  and II). 

The timing  of bud  break and the dynamics  of  main shoot elongation  

were  recorded. At harvesting,  the  seedlings  were  cut  at  the root collar  and 

the needles separated  from the  stem. The old and new parts  (previous  and 

current season)  were treated separately.  All parts  were dried at 60°  C to 

constant mass  and weighed  and  the pots  containing  the excised  root systems  

were  stored  at  -18°  C  for  later  separation,  when the frozen pots  were thawed 

at 5°C  and the new and old  roots separated  from the peat  soil. The new  roots 

were  separated  from the original  peat  plug and all  the roots  growing out  of  

the  plug  were  considered to  be  new.  All  the new  roots  were  examined with  a 

ScanJet  6100 C/T  scanner  at  a  resolution of  300 dpi  (Hewlett-Packard  Co.,  

Palo  Alto, CA,  USA)  and analysed  with  the WinRHIZO programme (Regent  

Instrumental Inc.,  Quebec  City,  Canada)  for  total  length  and root tips.  

3.2 Needle  and root decomposition  and  carbon  
relocation  

The needle and root litter  was  derived from one-year-old  (IV  and V)  or  two  

year-old  (III) Scots  pine  seedlings  (Table  1) grown in  the same  nursery  as  

those for  the growth  experiments  (I  and II), under similar  conditions and 

from seed originating  from the same orchard  in  Central  Finland. Seedlings  

were  labelled with 14
C (IV  and V)  in  order  to  be  able to  trace the C  released 

from the litter  during  decomposition.  The labelling  was  done at  the beginning  

of  the growing  season  and the seedlings  were  allowed to grow until  the 

autumn, so  that the  label  could be incorporated  into their  above-ground  or  

below-ground  tissues.  The current needles were  taken from  the seedlings  

and  dried  at  60° C  to  constant mass  before the experiment  (111,  IV and V).  

The fine roots  (diameter  < 2  mm)  were  also  separated  out,  washed  and dried 

at  60° C  to  constant mass  (IV and V).  Initial  element concentrations in  the 

litter  were  analysed  in all  cases  (111,  IV  and  V)  and the  organo-chemical  

fractions  and initial  14C-activity  were  analysed  in  subsamples  for  paper V. 

The minerotrophic  Carex  and ombrotrophic  Sphagnum  peat  soils  for  

paper V were  taken from two  sites  on the Lakkasuo  mire complex  in  Orivesi  

(61°48'N,  24°19'E)  that  had been drained in 1961. The minerotrophic  soil  

was  from the same  site  as the Carex  peat  used as a growth  medium for  paper 
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I. The peat  cores  were  placed  directly  into plastic  tubes  of  diameter 15 cm 

and length  60 cm and transported  to the growth  room (GR 77,  Conviron 

Ltd., Winnipeg,  Canada).  The southern Car  ex  peat  for  paper 111 was  taken 

in  a  similar  way  from the same site  on the Lakkasuo  mire  complex,  and the 

northern Carex  peat  from a peatland  in  the rural  district  of Rovaniemi 

(66°29'N,  25°29'E)  that  had been drained in  1956. The plastic  pots  used in 

the  work  for  paper 111 were  of  diameter 12  cm  and length  30 cm, and were  

closed at the bottom.  The experiment  reported  in  paper IV  was  conducted 

on  peatland  sites  near the Helsinki  University  Forestry  Station at  Juupajoki,  

Central Finland (61°50'N,  24°17'E),  two minerotrophic  and two 

ombrotrophic  sites  dominated by  Carex  or Sphagnum  peat, one drained and 

the other  undrained (Table  1). 

The decomposition  of  the litter  (111,  IV  and V)  was  studied  using  the 

litter  bag  technique  with exactly  1 g of  each litter  type  in  one  bag  (mesh  size  

1 mm). The needle litter  bags  were  placed  under the living  moss  layer  (111,  

IV and V)  and the root  litter  bags  2-3 cm deeper  (IV  and V).  The desired  

soil  temperature  was obtained by  placing  the peat  cores  directly  into  growth  

chambers (V),  or  by  placing  the peat  core  pots  in  water tanks  situated in  a 

growth  room  (III).  Soil  temperatures  of  5,  10 and 15° C  (III)  or  15 and 25° C  

(V)  were  used. The 
14C0

2
 flux  from  some of the cores  (V)  was  determined 

weekly  to estimate  the proportion  of  the  litter  C  that was  released into  the 

atmosphere  during  the decomposition  process.  The pots  were irrigated  once  

a  week with  water that  resembled chemically  the rain  water at  the Lakkasuo 

mire  complex  (Sallantaus  1992), in  amounts similar  to  the  real  precipitation  

(111  and IV).  The water  table was  maintained at  30  cm  from the peat  surface  

for  the work  in  paper V, while for  paper 111  all  free water  that  had accumulated  

was  removed through  a tube driven into  the  peat on  one side  of  each pot.  

The litter  bags  for  paper V  were  sampled  at  120 and 240 days,  whereas 

for  paper IV the bags  were  lifted  at  135, 360 and 500 days  (Table  1). In 

paper 111 samples  were  taken every 60  days. The remaining  litter was  removed 

from  the bags  and dried at 60°  C to constant mass  and then weighed  to 

determine the mass  loss.  The respective  peat  cores  were  lifted  simultaneously  

with  the litter  bags.  The cores  were  divided into  the moss  layer  and 0-1 cm, 

1-6  cm,  6-11 cm, 11-31 cm  and 31-51 cm  layers  (V). In the field  experiment  

(IV)  the cores  were divided into the moss  layer,  0-5 cm, 5-10  cm, 10-20 cm  

and 20-25 cm layers.  All  the layers  were  dried at 105° C  to  constant mass  

and weighed,  after  which they  were  milled and homogenised.  The re  

activities  (IV and V) were determined by combustion in an oxidiser  
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(Maricont,  Junitek Ltd.,  Turku,  Finland)  and subsequent  analysis  in  a  liquid  

scintillation  counter (Wallac  1411 Liquid  Scintillation  Counter,  Wallac  Ltd.,  

Turku, Finland).  The remaining  14
C-activity  in  the litter  bag  was  measured 

for  each litter  sample separately.  Three subsamples  were  taken from each 

peat  core  layer  for measuring  14C-activity  and determining  the spatial  

distribution of  the C  released during  the decomposition  periods.  

3.3  Statistical  analyses  

The statistical  analyses  were  performed  with  the SPSS statistical  software  

package  (SPSS Inc.,  Chicago,  IL,  USA).  Repeated  measure  ANOVA and 

two and three-way ANOVA were  used for  testing  the effects  of  the treatments 

and of  time. The treatments blocks  in  the experiments  reported  in  papers  I,  

II  and 111 were  not replicated  at  the  highest  possible  level,  that of  the water 

tank,  as  this  would have been financially  and spatially  impracticable,  but  at  

the  pot  (i.e.  plant  or  litter  bag)  level  within  the temperature  treatments. This  

could mean a  confounding  effect  between temperature  treatment and water 

tank,  which was  partly  avoided by  changing  the spatial  locations  of  the  pots  

containing  the seedlings  or  litter  bags  within  the temperature  treatments every  

week.  

The p  values from experiments  with a confounding  factor may be 

higher  in reality  than those generated  by  ANOVA,  since  the  fundamental 

assumptions  of  ANOVA are  not necessarily  valid  (see  Hurlbert  1984,  Milliken 

and Johnson 1984,  Underwood 1997).  Thus particular  attention was  paid  to 

p  values indicating  significant  differences between treatments, and  these 

were  interpreted  with  caution when the differences  were  not clearly  visible  

from the means and standard errors.  

3.4  Modelling  decomposition  and carbon  relocation  

Trees and understory  vegetation  accumulate  atmospheric  C  as  biomass  by  

photosynthesis  (Fig.  1), the magnitude  of  this  accumulation (INPUT),  given  

a  certain  climate  and soil  fertility,  being  mainly  governed by  temperature  

(TEMP)  and the length  of  the growing  season  (TIME).  Respiration  returns 

part  of  the C into  the atmosphere,  while another part  is  deposited  in  the  soil  

as  above-ground  and below-ground  litter.  Easily  degradable  compounds  (fast  
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decomposing)  in the litter  soon disappear,  whereas  more resistant  ones  

(slowly  decomposing)  remain in  the  soil  for  a  longer  time, forming  part  of  

its  organic  matter,  although  these fractions decompose  eventually.  It  is  

assumed that  the decomposition  of  easily  degradable  compounds  depends  

on time and temperature  (TEMP  + TIME), whereas that of  the slowly  

decomposing  fraction  depends only  on  time (TIME).  The  greatest  amount 

of  C released through  decomposition  is  emitted into the atmosphere  

(atmospheric  carbon),  but considerable amounts are  retained by  the soil  and 

are  protected  physically  or  chemically  (stable  soil  carbon)  or  incorporated  

into  the microbial  biomass.  The ultimate long-term  fate  of  this  C is  not known,  

however,  since  small amounts of  this  stable  pool  may decompose  or  leach 

into the groundwater.  A  small  amount of  the C lost from the  litter  during  

decomposition  is  leached into the ground  or  surface  water  (leached  carbon).  

The release  of  C into  the atmosphere  and leaching  into  the  groundwater  

means  a  loss  from  the system,  whereas accumulation in  the soil  implies  an 

increase  in  C  store of  the system.  

Scenarios and sensitivity  analyses  

The following  five  scenarios  were  simulated for  a  Scots  pine  stand growing  

on a drained peatland  site  (Table  2):  

1. Base scenario,  simulated until  steady  state (0  to 1000 years).  All  fluxes 

are  stabilised within this  time. 

2. Average  soil  temperature  increases  by  +2°  C during  the growing  season, 

while biomass  and litter  production  remain unchanged.  

3. Average  soil temperature  increases  by  +2°  C and both above-ground  

and below-ground  biomass  and litter  production  by  +15%. 

4. Average  soil temperature  increases  by  +2°  C,  above-ground  biomass 

and litter  production  increases  by  +20% and below-ground  biomass  

and litter  production  by  +lO%. 

5. Average soil  temperature  increases by  +2°  C,  above-ground  biomass  

and litter  production  increases  by+lo% and below-ground  biomass  

and litter  production  by  +20%. 

For  the sensitivity  analysis,  scenarios  2,  3,  4 and 5  were  also  simulated with 
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an  increase  of  +4° C  in  the average soil  temperature  and with different rates 

of  decomposition  of  the slowly  decomposable  litter  fraction  (0.5%  a"
1 or  2% 

a"
1

). Scenarios  2  and 3 were  also  simulated with  a decrease of  -2°  Cin  the 

average soil  temperature and a respective  decrease  in litter production  (-  

15%). 

The base  scenario (1)  was  run  for a total of  1000 years,  until  complete  

stabilisation  of  the fluxes  was  achieved.  An  average  soil temperature  of  10° C  

during  a growing  period  of  120 days  was  assumed,  resulting  in a soil  

temperature  sum of  1200 d.d.  The other  scenarios  (2  to  5),  based on  changes  

in  year 1000+1,  were  simulated for another 1000 years until  complete  

stabilisation  of  the fluxes  was  achieved  again.  The average soil  temperature  

increased from the initial  10° C  to  12°  C,  implying  a 20% increase  in  the soil  

temperature sum. Extension  of  the growing season  was  not simulated here 

nor  was  any  attempt  made to  vary  the time within which the increase  in  soil  

temperature  occurred.  

Table 2.  Short descriptions  of  the scenarios  used in the carbon relocation simulations. 

Litter  input  

In scenarios  1 and 2  the above and below-ground  categories  of  litter  accounted 

for  100 g C rrrV  each,  an  average value for drained Scots  pine  mires  which  

can  be concluded from  Laiho and  Laine (1994,  1996)  and Finer  and Laine  

(1998).  Each year  a  new litter  input  of  the same magnitude  was  added to  the 

soil.  In scenario  3,  the change  in average soil temperature  of+2°C,  i.e.  +20% 

of  the soil  temperature sum, was  assumed to result  in a 15% increase in both 

Scenario Soil temperature 

sum, d.d. 

Increase  in  above/below-ground 

production 

Base scenario 1 1200 0 

2 1440 0 

3 1440 15%/15% 

4 1440 20%/10% 

5 1440 10%/20% 
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above and below-ground  production,  based  on the results  of  paper I  

(conservatively  interpreted),  Gowin et al.  (1980),  Vapaavuori  et  ai.  (1992),  

Gower et  al.  (1995)  and Lyr and Garbe (1995).  Scenarios  4 and 5  were  

simulated with  a  different  effect  on  above or  below-ground  production  (+lO% 

or  +20%).  The simulations presuppose that this increase in production  is  

reflected directly  in  the above and below-ground  litter  production.  

Decomposition  

The model of  Richards (1959)  was  chosen  for the decomposition  of  needles 

and roots,  since  when mass  losses  are  related to  soil  temperature  sum in  a  

more  universal  approach,  a  curve passing  through  the origin  is not rational,  

as some decomposition  may take place  even  at  or  very  near  O°C (Bleak  

1970,  Visser  and Parkinson  1975).  Short-term (i.e.  < 10 years)  mass  losses  

could then  be  described with  the  following  equation:  

where 

m, is the  mass loss  at  a certain  soil  temperature sum (T ), 
K)ss 1 v sum-' 7 

a  is the maximal  mass  loss  (asymptote),  

b,  c  and d  are  parameters,  and 

T
sum

 is  the accumulated  soil  temperature  sum  (threshold  O°C).  

Non-linear regression  between the  accumulated soil  temperature  sum and  

mass  losses  from the needle and root litter  (pooled  data from papers  111,  IV 

and V)  provided  the  parameters  for  the models,  which are  the following:  

The limit  value for decomposition  of  the needles would  then be 87.8%,  

similar  to  the figures  observed by  Berg  et al.  (1996).  The limit  value for  

roots  would be 46.0%. 

m
ioss =  a/((l+e b" c* Tsum ) 1/d) (1)  

needles: mloss  = 87.8/((l+e 216-° oon*Tsum

) 1/1
 
973),  

roots:  mloss 
= 46.0/((  1  +e

°

 
7026 -°

 
°° ,4 * Tsum

)
l/0

 
8685 )-  
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Relocation of  carbon 

The model used for simulating  the relocation  of  C released during  

decomposition  was  a  two-compartment-one  consisting  of  rapidly  and slowly  

decomposing  litter compartments  (Fig.  3A)  similar  to those of  Berg  et  al. 

(1998),  Couteaux et al.  (2001)  andThornley  and Cannell (2001),  for  instance. 

It  was  assumed that  the  limit  value is the border  between the fast  decomposing  

litter  fraction, which behaves according  to equation  (1),  and the slowly  

decomposing  fraction,  which decomposes  in a manner independent  of  

temperature.  This  decomposition  was  assumed to  be  linear, with 1% of  the 

preceding  year's  mass  disappearing  each year, so  that it  takes about 500 

years for each litter  cohort  to decompose  totally.  The two-compartment  

model model used here,  with its  continuous flow  of  C,  is  similar  to the 

Rothhamsted turnover model  illustrated  by  Jenkinson (1990),  and can  be 

described as:  

where 

deco(fast)  =  decomposition  described  by  equation  (1),  and 

deco(slow)  =  1% per  year of  [l-deco(fast)].  

Considering  the  C relocation model,  the limit  value is  thus valid only  in  the 

short-term,  since  the decomposition  pattern  of  a  certain  litter  cohort  over  a  

longer  time span follows the  curve  depicted  in  Fig.  38.  The limit  value for 

mass  loss  in  this  model therefore describes  the border between temperature  

dependent  and temperature  independent  decomposition.  

The pathways  of  the C emitted from the  needle litter  were  assumed to 

lead mostly (80%)  into the  atmosphere  (Table  3),  while retention by  the soil 

and moss  layer  was  assumed to be 15% and the proportion  leached into  the 

groundwater  5% (IV  and V).  The respective  values for  root litter  were  70,  

25 and 5% (IV  and V,  Table 3).  These pathways  were  assumed to  be the 

same for  the slowly  decomposing  litter  fraction and not to alter  with an 

increase  in  soil  temperature. 

m
]oss

 = deco(fast)  +  deco(slow) (2) 
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Table 3. Relative pathways of carbon released from needle and root  litter  during 

decomposition. 

Figure  3. The  concept of  the limit value, here representing the border between the 

fast  decomposing  and slowly  decomposing litter fractions (A).  In the carbon relocation 

model,  also  the  slowly  decomposing litter  fraction  disappears in  the  long-term (B),  

although  an asymptote  is  reached in  the short-term.  

Needles,  %  Roots, % 

Atmosphere  80 70 

Soil and  moss  layers  15 25 

Leaching  5 5 
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4 RESULTS 

4.1 Shoot  and root  elongation  

Neither bud break  nor  the onset  or  cessation  of height  growth  was  affected 

by  soil  temperature,  whereas the  final height  of  the  seedlings  nine weeks 

after the beginning  of the growing season  was  affected,  shoot elongation  

being  least  at  the lowest  soil  temperature  (Fig.  1A in  I).  The length  of  the 

low soil  temperature  treatment at the  beginning  of  the growing season,  3 to  

9 weeks  at  5°C  (II), did not affect  the timing  of  bud  break  or  the final  height  

of  the  seedlings  (9 weeks  after  the rise  in  soil  temperature)  (Fig.  1A  in  II),  

although  those growing  without any  cold soil  period  developed  the  tallest  

shoots  (Fig.  1A in  II).  Elongation  of  the shoots  was  complete  after  4  to 5  

weeks  in  both growth  experiments,  and by  that  time the  seedlings  had grown 

45-60  mm  in  height,  depending  on  the  soil temperature  treatment (I  and II). 

Soil  temperature  did not affect  the onset  of  root elongation,  whereas 

the length  of  the new roots at  9  weeks was  clearly  higher at higher  soil  

temperatures  (Fig.  IB in  I).  New root tips  started to develop  in the  first  3  

weeks  in  all  the soil  temperature  treatments.  Root  elongation  was  very  slow 

during  the cold  soil  period,  but  new roots  emerged  quickly  when the soil  

temperature  was  increased  to 13° C  (Fig  IB  in II).  Root elongation  at nine 

weeks  did not differ  between  the 0,  3  or  6 week cold  soil  period  treatments, 

whereas nine weeks  of  cold  soil  resulted  in  markedly  lower root length.  The 

rapid  elongation  of  new roots  did not start  until shoot  elongation  had ceased 

(Fig.  1 in  I  and II). The number of  new root tips  showed  a corresponding  

pattern  to  that  of  new root length,  and was  similar  in  both experiments.  

4.2  Biomass  production  and allocation  

Soil temperature clearly  affected the biomass  production  of  the seedlings,  

and although  no effects  on the total  biomass of  the seedlings  were  observed 

during  the first  3 weeks,  the differences  became obvious  later  (I  and II). The  

total  biomass  increased with time and temperature  after  week 3  throughout  

the experiments  (I  and II)  with the exception  that  at  the end of  the experiment  

reported  in  paper I  the greatest  biomass  was  observed at  13° C and  not at  

17°  C,  the highest soil  temperature.  This  was  due particularly  to the  new 

needle biomass,  since  the  seedlings  grown at  13° C had  higher new needle 
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biomass  than  those grown at  17°  C  (Fig.  2 in I).  The biomass of  new  roots  

did not show this  pattern,  but  was  higher  at  higher  soil  temperatures,  although  

the difference between 13 and 17° C was  not statistically  different.  New root 

biomass  was  very  low at  5°C and did not increase any  more after  3  weeks 

(Fig.  2A in  I).  

The longer  the duration of  the cold  soil  period the lower was  the 

biomass  of  new roots (Fig.  3A in  II),  although  when growing  at  13° C  for  a  

similar  time, the biomass  increased to a level  similar  to that observed  in the 

treatments with  shorter  cold  soil  periods.  The reaction  of new needle biomass  

to the cold  soil  period  was  not especially  apparent,  although  here again a 

trend for  lower biomass  after  longer  cold soil  periods  was  found (Fig.  3  A in 

II).  The relative  allocation of  biomass  was  not significantly  affected  by  soil  

temperature (Fig.  2B in  I),  or  by  the length  of  the cold  soil  period  at the 

beginning  of  the  growing season  (Fig.  3B in II), although trends were 

observed for increased absolute and relative  below-ground  allocation of 

biomass  at  higher  soil  temperatures  and for  an  increase  in  allocation to new 

roots and new needles (I).  The length  of  the cold  soil  period  reduced the 

relative  biomass  of  new roots slightly,  but once  the soil  temperature  had 

increased to 13°  C,  the allocation  to  new roots  also  increased (II). The  new 

needle biomass accounted for ca.  50 % of  the total biomass at week 9 and 

the total below-ground  parts  for about 20-25  %  (I  and II),  and these values 

changed  only  slightly  afterwards  (II). 

4.3 Decomposition  of  needle  and  root  litter  

Mass losses  from the needle litter  were  always  higher  than from the root 

litter  in  the field (IV),  and also  at all  the soil  temperatures  studied in  the 

laboratory  (111  and V).  The decomposition  of  the root  litter  was  only  slightly  

affected  by  soil  temperature  after  the first  year, whereas that of  the needle 

litter  was  clearly  dependent  on soil  temperature  later  as  well  (Fig.  4,  111 and 

V).  The temperature  dependence  of  the decomposition  of  the needles 

nevertheless  also  decreased with  time (Fig.  4).  Other  environmental factors,  

such as  drainage  status  or  peat  type,  had a more pronounced  effect  on the  

decomposition  of needle litter than on that  of  root litter  (IV and V). Mass  

losses  from the root litter  increased with  time in  the field (IV)  and at 15° Cin  

the laboratory,  but  not at  25  °C (V).  Mass  losses  from  the needle  litter  were  

slightly  higher  in  the northern Carex  peat than  in  the southern  variety,  although  
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Figure  4. Mass  losses  from root  litter (in  Sphagnum  and Carex peat)  and needle litter 

(in  Carex  peat) during  the first  2-3 simulated years  at different mean soil  temperatures. 

Individual values from papers  III, IV  and V are  indicated. 

not significantly  so  (III). 

The mass losses  from both pooled  root litter  (all  data) and pooled  

needle litter  (only  Carex  peats)  showed a non-linear relationship  to the 

accumulated soil temperature  sum (Fig.  5,  threshold O°C)  and converged  to 

an asymptote,  i.e.  a limit  value for mass loss,  which was 87.8% (R 2=0.91)  

when fitted  to  the Richards  model. The modified model of  Berg  and Ekbohm  
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(1991,  with time replaced  by  soil  temperature  sum)  gave a  similar  value,  

86.4% (R2=0.86).  The limit  values for  the root litter  were  46.0% (R2=0.90)  

and 46.6% (R
2

=0.90),  respectively.  

Figure  5.  Mass losses from root and needle litter in relation to the cumulative soil 

temperature sum (threshold  0°C).  Different incubation temperatures are  indicated. 

Each point represents  the  mean of  4-6 observations. Regressions  are  obtained from 

the Richards model (solid  curve)  and  the modified equation  of Berg  and Ekbohm 

(1993,  dotted curve).  Data from papers  III,  IV  and V. 

4.4 Relocation  of  carbon  from decomposing  litter 

Soil  temperature  did not greatly  affect  the relative  pathways  of  C  released 

from the  decomposing  litter  (V).  At  the end of  the relocation experiments  

(two  simulated or  factual  growing  seasons)  most of  the C released during  

the decomposition  of  both needle and root litter  was  emitted into the 

atmosphere,  an  average of  80%  of  that from the needles and  70% of that 

from the  roots  (IV  and V). A considerable amount  of labelled C was  also  

found in the peat  soil,  however,  particularly  in  the  peat  layers  immediately 

beneath the litter  bags  (Figs.  3+4  in IV and Figs.  3+4  in  V), which accounted 

for  approx. 10% of  the C  released from the needle litter and about  20% of  

that from the root litter.  Smaller  amounts of  the released C,  an  average of  

5%,  were  trapped  by  the moss  layer  growing  on  top  of  the peat  cores,  and 

similar  amounts  were  leached into  the groundwater,  leaching  being  slightly  

higher  from the root litter  than from  the needle litter.  Retention in  the peat  

soil  increased between 4 and 8  months in  the laboratory  experiment  (V),  but  
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no  changes  were  detected after  one year in  the field (IV). No  significant  

effects  of  drainage  status  or peat  type  (Sphagnum  vs.  Carex  peat) were  

observed in  the field experiment  (IV). 

4.5 Simulation  of  carbon  relocation  at  elevated  soil  

temperature  

Base scenario 

The base  scenario  (scenario  1,  Fig.  6A),  simulating  C  pools  and fluxes  under 

stable  environmental conditions over  a period  of  1000 years  until steady  

state,  implied  that,  if  the above and below-ground  litter  inputs  each accounted 

for  100 g C  m"
2

a"\  the C  emissions from litter  decomposition  to  the atmosphere  

were  approx. 150 g C nr
2a"'.  Relocation of  C into  the soil  would account  for 

30  g C  m"
2 a"

1  and leaching into  the groundwater  for 10 g C rrf 2  a"
1
.
 The 

carbon  pools  in  the  decomposing  litter  would be  nearly  7000 g C  m"
2 (Fig.  

6B).  The cumulative  amount of C retained in  the soil  over  1000 years  would 

be  approx. 29 kg C m~
2 if  no leaching  from already  retained C was  taken into 

consideration. The sensitivity  analysis  showed  that  the time required  for  the 

system  to  stabilise  was  dependent  on the decomposition  rate  of  the slowly  

decomposing  litter fraction,  as  a faster decomposition  rate  would achieve 

this in less  time. 

Figure  6. Simulated annual carbon fluxes into the  atmosphere (g  C m -2a- 1 )  over  a 

period of 1000 years until  steady state according to  the base scenario (A).  Annual 

retention in the soil  and leaching into the  groundwater are  also  presented (A),  as  are  

the  carbon accumulated in the soil  (=  retention of carbon in  the soil  over time) and  

the  amount  of  carbon  stored in  decomposing litter (B).  



35 

Changes  due  to  elevated soil  temperature  and sensitivity  analyses  

Scenarios  2 to  5  (relocation  scenarios  under changed  conditions,  Fig.  7)  

were  run  for  1000 years,  within which the emissions  from the  decomposing  

litter  into  the atmosphere  and also  the retention of  C in  the soil  and its  leaching  

into the groundwater  had stabilised.  

The main results  of  the simulations  were  the following: 

1. If  litter  inputs  are  not increased  at  elevated soil  temperature,  the fluxes  

are increased for  a relatively  short  time (scenario  2,  Fig.  7A),  after  

which stabilisation  occurs  at the same flux  values as before. 

2. Increased  litter  input  at  an  elevated soil  temperature  results  in  increased 

emissions  into  the atmosphere  and leaching into  the groundwater  

(scenario  3,  Fig.  7B),  but the  relocation into  the soil  also  rises,  which 

means  a  positive  C  balance  for  the  system.  The fluxes  show a  short  

peak  and then stabilise  at  a higher  level.  

3. The sensitivity  analysis  showed that  a  higher  increase  in  soil  temperature  

(+4  vs.  +2°  C)  results  in  a  higher  peak  in  the fluxes  (Fig.  7C and D).  A 

higher  decomposition  rate for the slowly  decomposing  litter  fraction 

will  shorten the time within  which the fluxes  stabilise,  but  eventually  

all  the scenarios  (i.e.  different increases  in  soil  temperature  or  different 

decomposition  rates  for the slowly  decomposing  litter  fraction)  end up 

with same values. 

4. If  needle litter  production  increases more  than that  of  root  litter according  

to  scenario  4,  fluxes  into  the atmosphere  and leaching  into  the ground  

water  will  increase  slightly  and retention in  the soil  correspondingly  

decrease,  relative  to  the  values in  scenario  3.  Conversely,  if  root litter  

production  increases  more  than that  of  needle litter  (scenario  5), fluxes 

into the atmosphere  and leaching  into the groundwater  will  decrease 

slightly  and retention in  the  soil  will  increase  slightly.  

5. The sensitivity  analysis  revealed that  a  decrease in  soil  temperature  

(-2°  C)  has  no effect  on the eventual fluxes  if  the litter  input  remains 

unchanged  (Fig.  7E).  A decreased input  at a  lower soil temperature  

results  in  reduced  emissions  into the atmosphere  and leaching  into the 

groundwater,  as well  as  in a  decreased  relocation into  the soil  (Fig.  7F).  

These reductions are  of  the same  magnitude  as the increase  of  the fluxes 

due  to increased litter  input  at  elevated soil temperature (+2°  C).  
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Figure 7.  Simulated carbon relocation over  a period  of  1000 years after a change  in 

soil  temperature (A  and B: +2° C,  see text  for details) according  to  scenarios  2 and 3. 

Initially,  the system  is  in  a steady state. The results of the sensitivity  analyses  are  

also shown (C and D: temperature increase of +4°  C  instead of +2°  C;  E and F:  

temperature decrease of -2°  C). The curves  depict carbon emissions into the 

atmosphere,  retention in the  soil  and the leaching into the  groundwater (g C m-2 a-1).  
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5 DISCUSSION 

5.1 Temperature  control  on  shoot  and  root  growth 

dynamics  

The failure of  soil  temperature  variations to influence bud break and the 

onset of  new shoot  elongation  (I)  was  observed earlier in  Scots  pine  seedlings  

by  Vapaavuori  et  ai.  (1992)  and Lyr  and Garbe  (1995),  and similarly  no 

effects of  artificial  soil  cooling  on  the beginning  or  ending  of  the height  

growth  of  mature Scots pines  growing  on  peatlands  were  observed by  Hui  

kari  and Paarlahti  (1967).  Lopushinsky  and Max (1990)  found only slight  

effects  of  soil temperature  on  the timing  of  bud break  in  two  Abies species,  

but  noticed a very  clear effect  on the  total length  of  the new shoot,  as  also  

observed in  the present  papers I  and  11,  too. Boreal conifers  are  generally  

well  adapted  to variations in  climatic  conditions between years  and during  

the growing season,  e.g.  the start  and cessation of  growth  in  the Scots pine  

are  governed  not only  by  temperature  but  also  by  the photoperiod  (Huikari  

and Paarlahti  1967,  Koski  and Sievänen 1985).  Premature onset of  growth  

(bud  break)  in boreal conifers,  e.g.  the Norway  spruce, may in  any  case  be 

prevented  in  the event  of  climatic  warming,  since  temperature  is not the 

only  determining  factor  (Partanen  et  ai.  1998).  

New root length  growth  started  slowly  and did not differ  between the 

soil  temperature  treatments during  the first  three  weeks  except  at 5°C  (I),  

where it  was  notably  lower  than at  the higher  soil  temperatures.  Root growth  

started  somewhat more  slowly  in  paper 11,  however,  perhaps  on  account  of  

the fact  that the  "winter" in  paper  I consisted of  a dormancy  period  of  8  

weeks  at milder  conditions that  might  have led to more rapid  root 

growth  at  the beginning  of  the growing season,  whereas the seedlings  referred 

to in  paper II  had experienced  a  real  winter  in  the nursery  field. The  start  of  

new  root growth  seems  to be closely  connected with the increase  in soil 

temperature,  but  high  temperature  alone  is  not the only factor,  as  the time 

elapsing  (i.e.  the physiological  stage  of  the  seedlings)  also  seems  to be 

important,  since  no  differences  in root growth  were  observed between the 

soil  temperature  treatments  during  the first  3  weeks  (I).  This  may  lead to the 

conclusion that the soil temperature  sum is a  crucial  factor  concerning  root 

growth.  Pregitzer  et al.  (2000)  found it  conceivable that the initiation of  root 

growth  could be related to  the accumulated soil  temperature  sum, and this  

could explain  the  present  observation that  root  growth  did not start  at 13 and 



38 

17° C,  apart  from the emergence of  new  root  tips,  even  the soil  temperature  

should have been  favourable for  new root growth.  

On  the other  hand,  another factor  affecting  the  start  of new root  growth 

is  shoot growth.  During  shoot elongation  it  is the above-ground  parts,  

particularly  the new needles,  that are  stronger  sinks  for  carbohydrates  than 

the  roots  (Lippu  1998). Since new  photosynthates  are  the main source  of  

new  root elongation  of  conifer  seedlings  (Gordon  and Larson 1970, van  den 

Driessche  1987,  Lopushinsky  and Max 1990,  Horwath et  al. 1994,  Lippu  

1998), new root growth  has to occur  after  shoot growth.  When the  new 

needles have grown enough  to  acting  as  C  sources,  photosynthates  are  also  

translocated below ground,  enabling  new root  growth  to  increase.  The  needles 

are  assumed to  be  C sinks  until  they  have reached 50% of  their final length  

(Ericsson  1978),  which  took place  three  to four weeks  from the beginning  of  

the  growing  season  (I)  and corresponded  with the start of  fast  new  root 

growth.  The  start of  prolific  Scots  pine  root growth  only  after  shoot  elongation  

was  also  observed by  Vapaavuori  et al.  (1992)  and livonen et  al. (1999)  in 

laboratory  experiments,  Lyr  and Hoffmann (1964)  under natural conditions 

in  Central  Europe,  and Makkonen and Helmisaari  (1998)  in  Scots  pine  stands 

in  Eastern  Finland. Finer  and Laine (1998)  similarly  did not observe  a  peak 

in  root growth  in  spring  under field conditions on  peatlands  in  Central  Fin  

land. 

The results  of  the growth  experiments  (I  and II)  are consistent  in that 

the seedlings  with  the warmest  soil  at  the beginning  of  the growing  season  

had the  tallest  shoots  at  the end of  their  respective  treatments,  and also  indicate 

that the start  and cessation  of  shoot  elongation  are  mainly  dependent  on air  

temperature  and are  largely  predetermined  in  second-year  seedlings  and older 

trees  (Cannell  et  al.  1976,  Lanner  1976).  Soil temperature  may nevertheless 

act  as  a factor influencing  shoot length  growth  within the limits  of  the 

predetermined  length.  The low  soil  temperature  treatments (I  and II) had 

similar  effects  on  the start of  rapid  root  growth,  suppressing  new root  growth  

(see  also Lopushinsky  and Kaufmann 1984), but as  soil  temperature 

increased,  root length  growth  started  (II).  A cold  soil  period  (5°C)  at  the 

beginning  of  the growing  season delayed  the development  of  the seedlings  

(here  root  growth;  for  delay  in  nutrient uptake  see  Domisch  et al.  2002),  but  

when soil  temperatures  increased from 5  to  13°  C,  the  differences disappeared  

after  a  few weeks.  Similar  results  were  observed by Lippu  and Puttonen 

(1991)  and Lippu  (1998)  studying  photosynthesis  or biomass  allocation after  

a period of  low soil  temperature  in  spring.  
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Root  elongation  showed an exponential  response to an increase in 

soil temperature  (I  and 11,  see  also  Steele et  al. 1997).  A  slight  or  moderate 

increase  in  soil  temperature  may,  indeed,  result  in  an  exponential  increase 

of  root  growth,  and thus increased below-ground  C  allocation,  but  respiration  

costs  also  increase  with  soil  temperature,  so  that  root  growth  will  not increase 

endlessly  with a rise  in  soil  temperature.  

Stem elongation  ceased  during  weeks  4-5 (I  and II), a  time when the  

accumulated air  temperature  sum was  about 500 d.d. Similar  observations 

were  also  made by  Raulo and Leikola (1974)  with regard  to Scots  pine  

seedlings  under field conditions.  Needle elongation  occurs  over  a  longer  

period  of  time than  shoot  growth  since  the needles do not reach their  final 

length  until  the end of  July  or  beginning  of  August  (Parviainen  1974).  Root 

length  growth  takes  place  over  an  even  longer  period,  since the roots continue 

to grow as  long as  the soil  temperature  is favourable (Prokushkin  1982). 

Root  growth  in  the Scots  pine is  reported  to  cease at  a  soil  temperature  of  5-  

7°C in autumn (Korotaev 1989). 

Low  soil  temperatures  at  the beginning  of  the growing  season  are  a 

natural phenomenon  in  the boreal zone, and the trees  have adapted  to this 

situation.  Prolonged  periods  of  cold soil  due to deeper  frost  as  result  of 

changes  in  snow cover  and soil frost  patterns  (Groffman  et  al.  2001)  could  

delay  the development  of  seedlings  even  more, but  may not greatly  alter  the 

ultimate development  of  planted  seedlings  (II). This  seems  to  hold true only  

as  long  as the soil  is  not frozen,  however (e.g.  Tierney  et  al.  2001).  Also,  the 

fact  that drained peatlands  are  particularly  cold  sites  at  the beginning  of  the 

growing season  does not seem to  be  too critical.  If  planted  seedlings  are  in 

good  condition  and  water and nutrient availability  are  not limiting  factors  

(e.g.  livonen et  al.  1999),  they  will  survive  the time  when the  soil  is cold  but 

unfrozen,  but  the growth  will  be  reduced substantially  during  this  cold  soil  

period.  

5.2 Effects  of  soil  temperature on biomass  production  

and  allocation  

The reason  for  the seedlings  grown  without  any  cold  soil  period  (II)  having  

the  lowest  biomass  at  the  end  of  the treatment seems  to  be  the elapsed  time, 

since  all  the other  treatments (with a  cold  soil  period)  continued for  a longer  

time. Also,  as  shoot growth  is  only  to  a minor degree dependent  on soil  
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temperature,  the plants  in  the treatments with  a  longer  cold  but  unfrozen soil  

period  had more  time to grow their  shoots.  The  root biomass  was  very  low 

during  the cold soil  period  (and  simultaneous  shoot growth  period,  II),  but 

increased rapidly  after  the soil  temperature  was  raised to 13° C.  livonen et  

ai.  (1999)  concluded that  Scots  pine  seedlings  can compensate  for  the harmful 

effects  of  prolonged  low soil  temperature  at  the beginning  of  the growing  

season  by  accelerating  their root  growth  once  the soil  temperature  exceeds  

13° C,  assuming  that nutrient  availability  is not limited.  This  situation seemed 

to exist  in the  experiments  reported  in  papers I and 11, since  additional 

nutrients  had been given  to  those already  in  the peat  soil. 

The  metabolic activity  of  the root system  and its  sink  strength  decrease 

at  low soil  temperatures  resulting  in  reduced below-ground  allocation  of  

photosynthates  (Hurewitz  and Janes 1983) and correspondingly  in  above  

ground  accumulation of  biomass,  whereas at higher soil  temperatures  the 

root system  becomes a powerful  sink for  photosynthates  (Lippu  1998).  The 

biomass  production  of  the seedlings,  particularly  the production  of  new 

needles,  increased with increasing  soil  temperature  (I). The higher  above  

ground  production  of  boreal  conifers  in  a  warmer  climate  has  direct  effects  

on  litter  production,  which is  also  higher  at  sites  with  a higher average 

temperature  (Albrektson  1988,  Berg  et al.  1999,  Berg and Meentemeyer  

2001).  Root production  under natural conditions is  likewise  highly  dependent  

on  mean annual temperature  (Gower  et al.  1994,  1995),  and increasing  

temperatures  result  in  increasing  root productivity.  Finer  and Laine (1998)  

observed  that  fine root production  increased with mean monthly  soil 

temperature  on  peatlands  in  Central  Finland,  from which  it  may  be  concluded 

that  root litter  production  also  increased.  

The allocation of total biomass  between the above and below-ground  

parts  of  the seedlings  was  not  significantly  affected  by  soil  temperature  (I  

and II).  This  was  also  observed by  Lippu  (1998),  although,  using  14
C  as a 

tracer,  he did find a higher percentage  of  current photosynthates  to be 

allocated  to  the root system  at  higher  soil  temperatures  (17°  C compared  to  5  

and B°C).  A slight  trend for  increased below-ground  allocation at  higher  soil  

temperatures  was  observed in  papers I  and 11,  as  also  by Lippu  (1998)  in 

Scots  pine  seedlings.  This  could mean not only  an  increase  in  root production  

at  elevated soil  temperatures,  but  also  an  increased  allocation  to  below-ground  

plant  parts,  strengthening  the role  of  roots  as  a  C sink  within the plant.  

The  allocation of  biomass  to  the needles reported  (I  and II) was  much 

higher  than usually  found in  mature conifers,  and the allocation to  the  stem 
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correspondingly  much lower (Vogt  et  al. 1987b,  Gower et al.  1994,  Helmi  

saari 1995,  Vanninen et  al.  1996,  Laiho  and Laine 1997,  Helmisaari  et  al.  

2002).  All  in  all,  the biomass  allocation  to  below-ground  parts  was  25-30%,  

which  roughly  corresponds  to  the values observed in mature Scots  pine  stands  

(Helmisaari  1995,  Laiho and Laine 1997) or  other boreal conifer  stands 

(Grier  et al.  1981,  Gower et  al.  1994).  The allocation patterns  of  boreal  trees 

may  not  necessarily  change  greatly  in  response to  a  changing  climate  (Raich  

and Nadelhoffer 1989,  Nadelhoffer and Raich  1992,  Callaway  et  al.  1994,  

Gower et  al. 1995,  Berninger  and Nikinmaa 1997,  Gower et  al.  2001).  Fine  

roots  tend to decrease  as a  proportion  of total  biomass  as  the tree grows,  but  

in the Scots  pine  seedlings  considered in  papers  I  and II all  the roots  were  

fine roots,  comprising  roughly  one  third of the total biomass.  The relative  

fine root biomass  allocation decreases with stand age, as shown by Vanni  

nen et  al. (1996)  and Helmisaari  et al. (2002)  with Scots  pine  stands of  

different ages  (15  to  212 years).  Although  the absolute fine root biomass  of  

a tree stand may not  change  greatly  after  canopy closure,  the biomass 

production,  i.e.  annual C allocation to  the fine  roots,  may nevertheless  

increase,  so  that it  usually  represents  well  over  50%  of  total production  in 

mature  conifer  stands  (Agren  et  al. 1980,  Grier  et  al. 1981,  Vogt  et  al.  1987b, 

Helmisaari et al. 2002).  

5.3 Soil  temperature  and decomposition  of  litter  

Since the temperature  dependence  of litter  decomposition  decreased with 

time (Fig.  4),  it  may be  concluded that  the older  the organic  matter becomes,  

the less  sensitive  its  decomposition  is  to soil  temperature, as  suggested  

recently  by  Liski  et  al. (1999)  and Giardina  and Ryan  (2000).  When relating  

mass  losses  to  temperature,  it  is  a usual convention to use  short-term,  i.e.  

first  year-mass losses,  where a linear  relationship  can  be seen.  This  easily  

leads to conclusions  entailing  a continuous linear  effect  of  temperature  on 

decomposition  rates,  which is  not correct. Easily  degradable  compounds  

disappear  during  the early  stages  of  decomposition  and more  resistant  

compounds  remain undecomposed,  so that  the decomposition  rate  will  already  

have declined by the  end of  the first year in  boreal forests.  Elevated soil  

temperatures  or a  prolonged  growing  season  will  definitely  increase  mass  

losses  but these are  unlikely  to  continue linearly,  since  the second-year  mass  

losses  will  already  be much lower  than in the first  year and the proportion  of 
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lignin  and lignified  decomposition  products  will  increase (Berg  et  al.  1981,  

Lähdesmäki and Piispanen  1989).  Berg  and Ekbohm(  1991,1993)  presented  

the concept  of  a  limit  value for  mass  loss, and this  is  supported  by  the results  

presented  in  papers  111,  IV  and V,  where the mass  losses  converged  towards 

an  asymptote,  at  least  in  the short-term  (Fig.  5).  Latter  et  al.  (1998)  similarly  

found an  asymptotic  model best  for  describing  the mass  losses  from Calluna,  

Eriophorum and  Rubus litter  during  a  time span of  over  23  years  in  a  peatland  

in  Northern  England.  

Elevated soil  temperatures  increase  mass losses from organic  material, 

but  decomposition  proceeds  with  time at  lower soil  temperatures,  too. Ladd 

et al.  (1985)  found that the  average decline in  residual  14C  in decomposing  

legume  material  at  sites  in  Southern Australia  matched rather  well  with  figures  

for the  decomposition  of  ryegrass under English  and Nigerian  conditions,  

supposing  that one year  in  Nigeria  equalled  two  years  in Australia  and  four 

years  in  England.  This  interaction  between time and temperature  indicates 

the  significance  of  the temperature  sum, alongside  moisture,  as  a  major  factor  

affecting  decomposition.  The temperature  sum has also  been used earlier  to 

represent  effects  of  temperature  on  decomposition  or  nutrient  mineralisation 

(Andren  and Paustian 1987,  Honeycutt  et  al. 1988,  van  Cleve et al.  1990,  

Douglas  and Rickman  1992, Sparrow et  al. 1992).  

As  observed earlier,  green Scots  pine  needle material has higher  

relative  mass  losses  than has brown litter  during  the early  stages  of  

decomposition.  This  situation is  reversed  later on, implying that the brown 

litter  reaches asymptotes  at  a  higher  level  (Berg  et al. 1995  a,  1996).  Although  

the decomposition  experiments  (111,  IV  and V)  made use  of  green needle 

material,  practically  the same  limit  values  were  observed when calculated 

with  both the  modified equation  of  Berg  and Ekbohm (1993)  and the Richards  

model (Fig.  4)  as  by  Berg  et  al.  (1996)  for  brown  needle litter.  The 

accumulated soil  temperature  sum at  the lowest temperature  in  paper 111,  

5°C, was only  1800 d.d. at  the end of  the experiment,  and an  even  longer 

experiment  would have been needed to  find out whether the decomposition  

process  really  proceeded  to  the same asymptote  at  that  soil  temperature  as  at 

the higher  temperatures  (10  and 15° C).  

Assuming  that  decomposition  in  the field under natural conditions is  

lower in Northern Finland than in the South (e.g.  Mikola 1960), and 

considering  the slightly  higher  mass  losses  in the northern peat  at  15°  C  at  

the end of  the  laboratory  experiment  (III),  an  increase in  soil  temperature  

could have  a proportionally  greater  effect  on  decomposition  in  the North 
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than in  the  South. However,  assuming  that an increase in  soil  temperature  

will not affect  the limit  value for  the decomposition  of  pine  litter  (III), it  

may be  concluded that  the relatively  higher  increase  in  decomposition  in  the 

north  could  accelerate  the process,  particularly  at  the  beginning,  but  will  not 

affect  the maximal  mass  loss  itself  Observations  implying  that  a  temperature  

rise of  the same magnitude  will  increase  mass  losses  more  at high  latitudes 

than at  low latitudes have been  recorded previously  by  Bottner et  al. (2000)  

and Couteaux et al.  (2001).  

Berg  et al.  (1993)  and Johansson et  al.  (1995)  concluded that the 

proportion  of  lignin-like  residual  material  after the same duration of  Scots  

pine  needle decomposition  was  higher when warmer  climatic  conditions 

promoted  higher  initial  mass  losses.  Thus,  an  increase  in  soil  temperatures  

due to climatic  changes  could  result  in  a higher  percentage  of  recalcitrant  

substances in the litter  at  later stages  of  the decomposition  process  and 

eventually  lead to lower mass  losses  (Dalias  et  al.  2001).  Verburg  et al. 

(1999b)  also  came to the conclusion  that  the amount of  refractory  organic  

matter may  increase  at elevated soil temperatures.  The higher  soil  temperature  

in  paper 111 (15  vs.  10°  C)  did not  result  in  a  lower limit  value,  however.  One 

important  factor  affecting  decomposition  is  probably  increased nutrient 

concentrations in  the plant  material  at  elevated soil  temperatures  (Marschner  

1995,  Domisch et  al.  2002)  due to  increased nutrient mineralisation and 

uptake  rates.  This  may  be  reflected in  higher  nutrient  concentrations in  the 

litter  (e.g.  Berg  et  al.  1995b),  which could result  in  increased  decomposition  

rates. On the  other  hand,  concentrations of  metals, with adverse effects  on  

decomposition,  may  also  increase.  Higher  initial  N  concentrations in the  

litter could also  counteract  the enhancing  effects  of  increased soil  temperature  

during  later  stages  of  decomposition.  

The fact that  mass  losses  from  the  needle litter  were  higher  than those 

from the roots  (IV  and V)  could be  attributed to  the different initial  organo  

chemical  compositions  of  these types  of litter.  Also,  the initial  concentrations  

of  Al and Cu,  metals  which are  known to have adverse effects  on the 

decomposition  of  conifer  roots  and  needles (Vogt  et  al.  1987  a,  Berg  et  al.  

1991),  were  many times higher  in  the  root  litter  (V).  The first-year  mass 

losses  (111,  IV  and V)  were  higher  than those reported  for Scots  pine  litter  

on  boreal mineral  soils  (Berg  1984, Johansson  1984,  Berg  and Ekbohm 1991,  

Berg  et al. 1998,  Hyvönen  et  al.  2000),  a situation that  could be  explained  by 

the very  much higher  temperatures  used (IV and V,  15 and  25°  C)  and the 

fact  that  the litter  was derived from nursery-grown seedlings  which had 
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experienced  regular  fertilisation  and irrigation,  resulting  in  different  initial  

chemical  composition  (V)  and nutrient status  (IV and V). Finer  and Laine 

(1998),  using  similar  litter  also  observed similar  mass  losses  to  those reported  

here (111,  IV  and V).  

Although root  litter  decomposition  was  less  dependent  on soil  

temperature  than was  needle litter  decomposition  (V),  it  is  possible  that  soil  

temperature  may affect  the decomposition  of  roots  for  a shorter  time than 

that  of  needles,  and  that  it  was  not  detected,  since  the shortest  decomposition  

period  was  120 days.  Mass losses from Scots  pine  needle litter, at  least  during 

the  first  year,  show a  clearer  dependence  on environmental  factors  (Mikola  

1960,  Dyer  et  al.  1990,  Johansson 1994),  whereas other  factors  become  more 

important  during  the  later  stages  of  decomposition,  e.g.  lignin  concentration 

or  the Ca  content of  the remaining  litter  (Johansson  1994,  Johansson et  al.  

1995). 

The laboratory  experiments  with regular  irrigations  (111  and V)  seem 

to  have provided  favourable conditions for  decomposition,  even  at  a soil  

temperature  of  25°  C,  and featured steady-state  moisture  conditions  in  which 

drought  was  not a limiting  factor.  Soil  moisture may  be  a  restricting  factor  at  

elevated soil  temperatures,  however,  and decomposition  on  mineral  soil may 

be  more  susceptible  to drought  resulting  from higher  soil  temperatures  than 

on  peatlands,  even  if  they  are  drained. When comparing  mass losses  in  the 

laboratory  (111  and V)  with the field results  (IV),  it  can  be seen that the  

needle mass  losses  at  10° C during the first  120 and 240 days  correspond  

fairly well  to  mass  losses  in  the  field during  the first  and second years.  The 

higher  soil  temperature  in  paper  111  (15°  C)  also  resulted in  slightly  higher  

mass  losses,  while  the mass  losses  from root litter  were  to  some  extent  higher  

at  a constant temperature  of 15° C  in  the laboratory  (III)  than in  the field 

(IV). It thus  seems  reasonable to  use  a  laboratory  period  of  120 days  as an 

analogue  for  a  field period  of  one year  (see  also  Fig.  4).  

5.4 Relocation  of  carbon  during decomposition  

Since soil  temperature  did not greatly  affect  the relocation of  C from 

decomposing  litter  to  the atmosphere,  the  soil  or  the ground  water (V),  the 

relative  pathways  of C  released during  decomposition  were  assumed to  be 

constant  in  the simulations.  The greatest  retention in  the soil  occurred  during  

the  first  year (IV), with  no further  increase  in  the second summer. It  cannot 
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be  concluded,  however,  whether relocation in  the soil  had stopped  or whether  

some of  the labelled C moved downward into  the groundwater  and was 

replaced  by  C  released from the  decomposing  litter.  It  is simply  assumed 

that  all  C retained in  the soil  would remain there. Longer  experiments  would  

be  necessary  to investigate  the real  fate  of  the  C  relocated into  the  soil, since  

some may  be leached into  the  groundwater  or  released into  the atmosphere  

during  decomposition.  

The author is  not aware  of  any  earlier  studies  assessing  the fate of  the 

C released during  tree litter  decomposition  on  peatlands.  Charman et  al.  

(1994)  suggested  downward transport  of  younger C in  peat  soil,  a  form of  

leaching  that may extend all  the  way  into  the  mineral soil  under the peat  

layer  (Turunen  et  al.  1999).  Witkamp  (1966),  studying  the decomposition  of 

needle litter  from two subtropical  pine  species,  suggested  a considerable 

transport of  soluble  compounds  and decomposition  products  to  deeper layers 

in  mineral  soil,  and Sorensen (1987)  observed movements  of  labelled C 

down to deeper  soil  layers  during  the  decomposition  of  14
C-labelled straw  in 

the field. 

Vedrova (1997),  studying  the decomposition  of  pine  needle litter  on 

mineral soil  in  Siberia,  observed that  during  the first  two years the upper 2 

cm of  soil  retained 15% of  the C lost  during  decomposition  and 81%  was  

emitted  to the  atmosphere.  The data in  papers IV and V indicate that the 

proportion  of  C retained in drained peat  soil  is in the range of  10-30%, 

including  the moss  layer, which contained approx.  5% of the  labelled C 

released by  the end of  the  experiments.  Comparable  figures  concerning  the  

moss  layer are  quoted  by  Strömgren (2001),  whereas Couteaux  et  al. (2001)  

observed a  much smaller amount of  C  to be  retained in  the soil, and in fact  

did not take the proportion  in the soil  into account  when estimating  the  

initial  C content of  their litter.  

5.5 Simulated  carbon  relocation  at  elevated  soil  

temperature 

Base scenario 

The values for annual emissions  into the atmosphere  (150 g C m"
2 a"

1

),  

retention in  the soil  (30  g C  m"
2 a"

1 )  and leaching  into the groundwater  (10  g 

Cm2 a 1), although  calculated from a rather average value for drained 
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peatlands  supporting  a  Scots  pine  stand,  are  of  reasonable magnitude  (Fig.  

6A).  Silvola  et  al.  (1996  a) reported  soil  respiration  values (CO,-C)  of  320- 

380 g rrf 2
a

1

 at  the site  where peat  cores  for  papers 111 (southern  peat)  and V 

(Carex  peat)  were  taken,  so  that it could be  concluded that  roughly  40-50% 

of  the  soil  respiration  is  derived directly  from tree  litter  decomposition,  

assuming  that no  other litter  input  than that from tree needles and roots  is  

present.  Silvola  et al.  (1996b)  concluded the contribution of  rhizospheric  

respiration  to  the CO, flux  in  drained pine  mires  to  be  35-45%,  whereupon  

the remaining  5-25%  must originate  from other  heterotrophic  respiration  

(e.g.  microbes  or  soil  animals  not  associated  with  tree roots).  

Carbon sequestration  values  for  forested drained  peatlands  are  reported  

to be  45-60 g C nrV (Minkkinen  et  al.  1999), while Tolonen and Turunen 

(1996)  reported  a mean long-term accumulation rate in Finnish  pristine  

peatlands  of  22.5 g  C  mV. The base simulation (scenario  1) results  in  a C  

relocation into the soil  of  approx. 30 C m"
2a"'.  The simulated values for 

leaching  (10  g C  m"
2  a"

1
,  Fig.  6A)  also  correspond  well to  the measured 

leaching  of  C  from drained peatlands,  10-11 g C  rrrV  (Sallantaus  1994),  or  

from forested catchments  with  a  high  percentage  of  peatlands,  on  average  

6.4  gC m  2  a" 1  (Kortelainen  and  Saukkonen  1998).  

In a state of  equilibrium,  nearly  7  kg  C m"
2 would be contained in 

litter  at  different stages  of  decomposition  and nearly  30  kg  Cm
2 would be 

relocated into the soil after  1000 years (Fig.  6B).  This may well be 

overestimated,  since the simulation does not take  account of  losses  of C due 

to fire  or  leaching  from  already  existing  stores  in the soil.  Minkkinen et  al.  

(1999)  measured a peat  C store of  67  kg  C m"
2 at  the  drained site  of  the 

Lakkasuo mire, where the peat  samples  for  the relocation study  (V)  were  

taken (mire  age  4100 years).  No direct  comparisons  with  the  results  of  the 

simulations  can  be  made,  however,  since  the mire site  was  drained only  40  

years  ago and C accumulating  in  pristine  peatlands  is  derived from other 

sources  than tree litter, mainly  Sphagna  and sedges.  

Scenarios  at elevated  soil  temperature  and sensitivity  analyses  

According  to scenario  2,  the soil  temperature  increases  but  litter  input  does  

not,  and the result would be a sharp  increase in C emissions,  although  

stabilisation  to  the same level  as  before  the temperature  increase  would occur  

within 5  to  10 years  (Fig.  7A).  This  can  be explained  by  the fact  that  the 
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amount of  readily  decomposable  material does not increase.  After  a  few 

years  the majority  of  this  fraction  will  be  exhausted and although  new  material 

will  be  added every  year, this  will  not increase  emissions  because the time 

taken for  each litter  cohort to  reach the limit  value,  i.e. the time after  which 

its  decomposition  is  not  dependent  on  temperature,  will  be  shorter  than before.  

Scenario 2  is  based on  unlikely  assumptions,  however,  since  elevated soil  

temperatures  provide  better  environmental conditions for  growth,  assuming  

no restriction  by  drought.  It  is more  probable  that  the biomass  will  increase,  

causing  an  increased input  of  litter.  

Scenario 3,  in  which both soil  temperature  and litter  input  increase,  is  

a  more  realistic  one.  There is  again  a sharp  increase  in  fluxes  after  the increase 

in  soil  temperature,  but  the fluxes  are  now  higher  than in  scenario  2,  because 

the litter  input  increases simultaneously  (Fig.  7B). After  a short peak,  the C 

emissions  into  the  atmosphere,  relocation into  the soil  and leaching  into  the 

groundwater  level  off  slightly  but they  increase  again  to  higher  equilibrium  

levels  when completely  stabilised within  1000 years.  When soil  temperatures  

are  increased by  +4°  C  instead  of+2°C,  the result  is higher  peaks  immediately 

after  the  soil  temperature  increase,  but the flux  levels  after  stabilisation  are  

not affected  (Fig.  7C and D).  This  is  due to  the fact  that  the model assumes  

the apparent  limit  values for  decomposition  to  remain unchanged  and that 

the decomposition  rate  of  the slowly  decomposing  litter  fraction is  not 

affected  by  soil  temperature.  Similarly,  a decrease in  soil  temperature by  

-2°  C  results  in  a  temporary  reduction of  fluxes  when the litter  input  remains 

unchanged  (Fig  7E).  The reduced input  of  litter  resulting  of  a lower soil  

temperature  (Fig.  7F)  decreases the fluxes  to  the  atmosphere  and the ground  

water,  but also  lowers  the relocation of  C  into  the soil,  indicating  a decreasing  

C sink.  In scenarios  4 and 5,  where the allocation patterns  of  above-ground  

and below-ground  production  are  changed,  the  flux  levels  after  stabilisation  

alter,  although  only  to  a  very  minor degree.  

In all  the scenarios  with increasing  soil temperature and litter  

production,  the C emissions  into  the atmosphere  and C leaching  into  the 

groundwater  increase,  but  so does the relocation of  C into  the soil.  The 

difference (AC)  between the C input and  output  may thus increase,  implying  

a more  positive  C balance (see  also  Bonan and van  Cleve 1992).  Basically,  

the results  of  the simulations  at  elevated soil  temperatures  are  comparable  

to  the results  of  Thornley  and Cannell (2001),  whose  simulations with 

elevated soil temperature,  but  unchanged  production,  ended up  with 

accelerated  soil  respiration,  although  the  soil  C  pool  increased in the  long  
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term. Berg  et  ai.  (1995  a) and Liski  et ai.  (1999)  also  estimated increases  in  

mineral soil  C  stores  in  Scots  pine  forests due to increasing  temperatures.  

All  these simulations,  however,  presume  and require  steady-state  conditions,  

a  requirement  which is  seldom met in  nature. Carbon accumulation  in  pristine  

Finnish  peatlands  is on  average  greater  in  the southern raised bogs  than in  

the  northern fens (Tolonen  and Turunen 1996), and the observed increases  

in  C stores  due to drainage for  forestry  purposes have also been larger  in 

Southern Finland (Minkkinen  and Laine 1998b).  A climatic  warming may 

thus  result  in  increased C  accumulation in  boreal  peatlands,  due to  increased 

production  or  changes  in  vegetation.  
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Summary We studied effects of soil temperature on shoot 
and  root extension  growth and  biomass  and  carbohydrate  allo  
cation in  Scots  pine (Pinus  sylvestris  L.)  seedlings at the  begin  

ning of the growing season. One-year-old Scots  pine  seedlings 

were grown for  9 weeks  at soil  temperatures  of  5,9, 13 and  17 
°C  and an air temperature  of 17 °C.  Date of bud burst,  and the 

elongation of shoots  and roots were monitored. Biomass  of 

current and previous  season roots,  stem and  needles was deter  
mined at 3-week intervals. Starch,  sucrose,  glucose, fructose, 

sorbitol and inositol  concentrations were determined in all 

plant parts  except  new roots. The timing of  both bud  burst  and 
the onset of root elongation were  unaffected  by  soil tempera  

ture. At Week  9, height growth was reduced and  root  extension  

growth was much  less  at a soil temperature  of 5 °C than  at 

higher soil temperatures.  Total seedling biomass  was lowest  in 

the 5 °C  soil temperature  treatment and highest in the  13  °C 

treatment, but  there  was no  statistically significant difference 
in total biomass  between seedlings  grown  at 13 and  17 °C.  In 

response  to  increasing soil  temperature,  belowground biomass  
increased  markedly, resulting in a slightly higher allocation of 
biomass  to belowground parts.  Among treatments,  root  length 

was greatest at  a soil temperature  of  17 °C.  The sugar  content of 
old roots was unaffected  by  soil temperature,  but  the sugar  con  

tent of  new needles increased  with  increasing soil temperature. 
The starch  content of all seedling parts  was lowest in seedlings 

grown at  17 °C.  Otherwise,  soil temperature  had no effect  on 

seedling starch  content. 

Keywords:  growth, root,  shoot,  soluble  sugars,  starch.  

Introduction 

The boreal forest  zone is  characterized  by  low air and  soil tem  

peratures and a  short  growing season. Mean soil temperature 
in the rooting  zone during the growing season is 10-12 °C, 
with values  ranging  from  5 to  20 °C.  Mineral soil temperatures 

even in the surface (5 cm) layer seldom exceed 15 °C (Bjor 
and Huse  1987,  Kubin and  Kemppainen 1991). This  is  also  the 

case for  peatlands (Hytönen and Silfverberg 1991, Finer  and 

Laine 1998, Domisch  et al. 2000),  although drainage  of peat  

lands  causes a decrease  in mean soil temperatures,  especially  

at the beginning of  the growing season (Pessi  1958, Heikur  
ainen and  Seppälä 1963, Hytönen and Silfverberg 1991). 

The forests  of  the northern European countries,  which are 

dominated by  Scots pine (Pinus sylvestris  L.) and  Norway 

spruce  (Picea  abies L.  Karst.), are intensively managed, and  

nursery-grown  seedlings are frequently planted to reforest  
harvested  areas. Seedlings are usually planted in spring, when 
the soil is  cold. Successful  establishment of  planted seedlings  

in  reforestation  areas  is  dependent on  both  soil and air temper  

atures,  because  they  affect  carbon accumulation and  water  and  
nutrient  uptake  from  the soil. 

There  is  evidence that root  growth of  boreal  forest  trees  

starts at a critical soil  temperature  in  spring and reaches  a max  

imum rate at about 20  °C (Tryon and Chapin 1983,  Andersen 

et al. 1986,  Vapaavuori et ai. 1992).  The soil temperature  for 
maximal root growth of Scots  pine is 16.5 °C (Korotaev  

1989), and growth  starts at 3-5 °C (Korotaev  1987, 1989),  

whereas  root  growth of lodgepole pine (Pinus contorta Dougl. 

ex Loud.)  starts at 5 °C and is most rapid at 20 °C  

(Lopushinsky and Max 1990). Root  growth of other  boreal  co  
nifer  species  is  reported to start at between 3 and 6 °C  (Lyr  and  

Hoffmann  1967, Kaufmann  1977, Tryon and  Chapin 1983,  

Lopushinsky  and  Max 1990). Despite the large number of 

studies on temperature  and  root growth, relatively few studies 
have  examined the effect  of  low  soil temperature  on  carbohy  
drate content in Scots pine  seedlings. 

Allocation of biomass and photosynthates between the 

above  and  belowground parts  of  a plant  is  affected by  soil  tem  

perature. Over  the range  of soil temperatures  prevailing in the 
boreal forest zone,  temperatures  in the upper  range  usually re  
sult in  an increased  absolute allocation of  photosynthates and  
biomass  below ground, although the relative allocation to  the 

roots  may  decrease  (Lippu 1998,  Hawkins  et al. 1999). 

Future  climate scenarios  for  Finland predict increases  in air 

temperature  of  0.3-3.6 °C  within the next  50 years  (Carter  et  
al. 1995)  that may  be accompanied by  a rise  in soil tempera  

ture,  enhancing root growth and  increasing belowground car  
bon allocation. 

Our  objectives  were to study the effects  of soil  temperature  
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on  (1)  shoot and root  growth and  (2) biomass  and  carbohydrate 
allocation in 1-year-old Scots  pine seedlings  at the beginning 

of  the growing season. 

Material and methods 

Experimental layout and plant growth 

We used  6-month-old container-grown seedlings  of  Scots  pine  
(Pinus sylvestris  L.)  grown from seed originating from an or  
chard  in  central Finland (62°05'  N, 26°  10' E) established with 

material from  sources in Finland between 61°7' N and 

64°20
/

 N. Pots  (5.3  1,  diameter 15 cm, height 30 cm) were 

filled with undisturbed Care:c-peat cores from a  tall 

sedge-pine fen (classification  after Laine and Vasander 1996)  

in  central Finland (Orivesi,  61°48' N, 24°  19' E, 150  m  a.5.1.) 

that had been drained for forestry in 1961 and  supported a 

Scots  pine  forest.  The concentrations of some mineral ele  

ments  in  the peat  used  as the growth medium are reported by  
Domisch et al. (1998).  

The  experiment  was  performed in four  insulated water tanks  

placed  in a walk-in  growth room  (Conviron  GR 77,  Winnipeg, 

Canada).  One  seedling  was  planted in  each  pot  at the end of  the 
first  growing season  (mean  ± S  E heights  of  seedlings in the 
soil treatments were: 5 °C, 12.2 ± 0.13; 9 °C, 12.3 ± 0.13; 

13  °C, 11.6 ±0.15;  and  17  °C, 12.0 ±0.17  cm). Forty-two  pots  

were  placed in each water  tank  and maintained at air  and soil 

temperatures  of 3-4  °C  for  a  dormant period of 8 weeks  before  
initiation of  the treatments. An 8-h  photoperiod was provided 

by  60 W incandescent  lamps (Airam  Ltd., Helsinki,  Finland;  

photon  flux  density of about  20  jamol m"
2
 s" 1 ). Relative  hu  

midity of the air  was set to  80%,  but  fluctuated  between 80 and 

90%.  After the 8-week  dormant period, the air  temperature  

was  raised to 17 °C  and the soil  temperature  increased  to 5, 9, 

13 and  17 °C  by  increasing the water temperature  in the four  
tanks. The  target  water  temperatures  were reached  within 24 h 

and were held constant throughout the experiment. Day  length 

during the soil temperature  treatment was  18  h  and  photon flux 

density ranged  from  370  to 440 m"
2
 s"

1  with a  mean  of 

400  (imol m"
2
 s

-1
 (60  W incandescent  lamps, Airam Ltd., Fin  

land,  and 215 W Cool White fluorescent tubes,  Osram  Sylvan  

ia, Danvers,  MA). Day/night  relative humidity  was 60/80%. 

During the experiment, seedlings were  watered once a week 

with 0.25 1 of deionized water. A 2-cm  diameter plastic  tube 

was inserted  into the peat  on  one side of  the pot  to  remove ex  

cess water as the pots  had no drainage hole. When a  ground  

water table had formed,  the water  was  removed  through the 

plastic tube  some  days after watering.  Additional nutrients 

were given with the irrigation water  every  second week (5  mg 

N, 2  mg P and 11 mg K plus  micronutrients, Superex 5, 
Kekkilä Ltd., Tuusula, Finland)  to minimize any  differences 
in nutritional status among the seedlings caused by  the effects  

of temperature on  nutrient mineralization. The soil tempera  

ture treatments lasted  for  9 weeks,  and  the seedlings  were har  

vested at  3-week intervals.  At each  harvest,  14 seedlings were 
taken  at random from each temperature  treatment except for  
the last  harvest, when seedlings  were  randomized in advance 

for  the height measurements. To determine primary biomass  
and initial contents of carbohydrates, an initial harvest  at  the 

beginning of the growing season was performed on 14 ran  

domly selected seedlings. 

Plant harvest  and measurements 

Height growth was monitored once or  twice  a week through  

out the experiment on the same 14 seedlings. At harvest,  the 

seedlings were cut at the root collar and  the needles separated 
from  the stems,  and the old (previous season)  and new (current  

season)  parts  treated separately. The parts  were dried to  con  

stant mass  at  60 °C and weighed. The pots  containing the ex  
cised root systems  were stored at -18 °C for later separation 

except  for the root systems of two seedlings that were har  
vested for  dry  mass and  carbohydrate analysis  immediately. 
One root  system was used  for  starch  analysis and  the other  for 

soluble  carbohydrate determination. The frozen  pots  were 

thawed at  5 °C  and the new  and  old roots separated from the 

peat.  New  roots were separated from  the original peat  plug and 
all roots  that  grew  out  of the peat  plug were regarded as new 

roots. New roots  were scanned with a ScanJet  6100  C/T 300 

dpi scanner (Hewlett-Packard  Co.,  Palo Alto, CA)  and  ana  

lyzed for total  length (new  roots  per seedling) with the 
WinRHIZO program (Regent Instrumentals Inc.,  Quebec  

City,  PQ, Canada).  All roots were dried to constant  mass at 

60 °C  and weighed for  dry mass  in  the same way  as the above  

ground parts. 
For  soluble carbohydrate  determination, the old and new 

parts  of  all seedlings were pooled by harvest  and  soil tempera  

ture treatment, then milled and homogenized. Soluble sugars  

(sucrose,  glucose  and  fructose)  and sorbitol and  inositol were 

determined by  the methods described by Mason and Slover  

(1971)  and Marc  and Carroll (1982)  with a GC 5890 system 

(Hewlett-Packard  Co.) and a 5973  Mass Selective  Detector 

(Hewlett-Packard  Co.).  Starch was determined spectrophoto  

metrically  (UV-240,  Shimadzu  Scientific Instruments, Inc., 

Columbia. MD)  by  the method described by  Karkalas  (1985).  
New roots  were  not analyzed for lack  of sufficient material. 

Data  analysis  

Treatment blocks  (i.e., water  tanks) were not replicated. The 

locations  of  the seedlings within the temperature  treatments 

were changed every  week.  

The  statistical tests were performed  with the ANOVA pro  

cedures  of the  SPSS 8.0 statistical software package (SPSS 

Inc., Chicago, IL) and included four  temperature  treatments 
and three harvesting dates. The  individual seedlings  within 

temperature  treatments were considered to be replicates.  Re  

peated measure ANOVA was used  to test  soil temperature  ef  

fects  on  seedling height. Soil temperature was used  as a group  

ing  factor, and measuring date as a within-factor variable. 

Results 

Shoot height  and root  elongation  

Timing  of  bud  burst  and  cessation  of  height growth were  not 
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affected by  soil  temperature  (Figure  1 A). There  was a signifi  

cant  treatment effect  on mean height increment  (F=4.520;  P  = 

0.007).  The  significant interaction between measuring date 

and  soil temperature  (F = 2.199;  P = 0.001)  indicated that 
shoot  elongation proceeded in different  ways  at different  soil 

temperatures.  Among  treatments, shoot elongation was least  

at the lowest  soil temperature  (5  °C)  and height of seedlings in 

the 5  °C  treatment at Week 9 was about 75% that of seedlings 

grown at 13 and  17 °C.  Seedlings grown at 9  °C were taller 
than  seedlings grown at 5  °C  but shorter  than the seedlings 

grown at 13 and 17 °C, which  were of  similar height (Figure 
1 A). Shoot growth of seedlings in the 17 °C  treatment lagged 

behind that of seedlings in the 9 and 13 °C treatments until 
Weeks  4  and 8, respectively,  which might have  contributed to 
the significant interaction between measuring date and soil 

temperature.  

Soil temperature  did  not affect  the  onset  of  root elongation, 
but  it significantly affected the length of new roots  (F = 

36.681;  P = 0.001). There  was a significant interaction be  

tween harvest  date and soil  temperature  (F = 11.891; P = 

0.001),  suggesting that root growth rate differed  with soil tem  

perature.  Root  elongation rate was low at 5 °C throughout the 

experiment, whereas  it  increased  linearly at 9 °C  and exponen  

tially at 13 and  17 °C until the end  of the experiment (Fig  

ure IB). Seedlings grown at 5  °C  had a  mean  of  less  than 1 m 
of new roots  at Week 9 versus 14 m for seedlings grown at 

17 °C (Figure IB). 

Biomass and its allocation 

Total seedling biomass  increased  with increasing soil temper  

ature  (main effect  of  soil  temperature:  F  = 18.453;  P  = 0.001).  
The significant interaction between soil  temperature and har  

vest date (F = 11.891; P = 0.001)  indicated that the effect  of 

soil  temperature  on total biomass  differed with harvest  dates. 

No differences in total root  biomass  or  aboveground biomass  

were  observed  between the soil temperature  treatments at 
Week  3 (Figure 2A), but  a  trend  for  higher biomass  at higher  

soil  temperatures  was observed  at Week 6. There  were clear 
differences in seedling biomass  between the soil  temperature  

treatments at Week  9. 

Seedlings  grown at a soil temperature  of 13 °C  had  the  high  

est  biomass  at the end of the experiment, although there was 

no significant difference in seedling biomass  between the 13 

and  17 °C treatments or between the 9 and 17 °C treatments. 

Seedlings grown at 13 °C  had the highest new needle biomass  

and  seedlings  grown at  5 °C  had the lowest  new needle bio  

mass  (Figure 2A). At 5 °C,  root biomass increased  only 

slightly and  scarcely  at all after Week  3. Root biomass  at the 
end  of  the  9-week  experiment was  similar in the 13 and 17 °C 

treatments,  and markedly higher  than in the 9 °C treatment. 
Soil temperature  did  not significantly affect  relative bio  

mass  allocation between the above-  and belowground parts  of 
the seedlings. At  the beginning of  the experiment, 27.3%  of 
the biomass  was in the  belowground parts  (Figure 2B); how  

ever,  by Week 9, there was a tendency  for greater  allocation 

below  ground at higher soil  temperatures  (5  °C: 18.8%, 9 °C:  

Figure  1. (A)  Length  of the terminal shoot (mm)  of  seedlings  grown at 

soil temperatures  of  5,9,13 and  17 °C  for 3,6 and 9  weeks.  Measure  

ments  were  performed  on the same  seedlings  throughout  the experi  

ment.  Means of  14 seedlings  ±  SE. (B)  Length  of  new roots (m)  of 
seedlings  grown at soil temperatures  of  5,9,13  and 17 °C  for  3,6 and 
9 weeks.  Standard errors are indicated. 

20.6%,  13 °C:  21.7  and 17 °C:  24.4%). The proportion  of  new 

needle biomass  also increased  with increasing soil tempera  

ture (42% at  5 °C  versus 58% at 13  °C). 

Carbohydrates 

Soluble  carbohydrates  in  the aboveground parts  of the seed  

lings were  mainly in the form  of glucose and  fructose,  whereas  
those  in  belowground parts  were  mainly sucrose. The sugar al  

cohols sorbitol and inositol usually represented less  than 0.1% 

of  the dry  mass,  except  for  the new stems  where sorbitol made 

up to 0.9% of  the total dry mass  at 17  °C, and  the old roots,  

where  sorbitol comprised 0.3-1.0%  of dry mass.  New needles 

contained  more soluble sugars  at higher soil temperatures  than  

at lower  soil temperatures after  Week 3 (Table  1, Figure 3A), 

but there  were no treatment differences in the other above  

ground parts  or  in the old roots. The soluble sugar  content of 
old roots increased during the first  three  weeks  and decreased  

to  low values thereafter  (Figure 3A). 
Starch  was found in all plant  parts  investigated. Starch  con  
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Figure  2. (A) Total biomass (dry  mass)  of old and new  roots, old and 

new stems and  old  and  new needles of  seedlings  at the start of the ex  

periment  and of seedlings  grown at soil temperatures of 5, 9, 13 and 

17 °C for 3, 6 and 9 weeks. Standard errors  of total above- and be  

lowground  biomass  are indicated. (B)  Relative distribution of  bio  
mass  among the parts of the seedlings.  

tent and concentrations were low at the beginning of  the grow  

ing season (Figure 38,  Table 2), but  increased  in all plant parts  

during the 9-week  experiment. The  temporal  increase  in  starch  
in the aboveground parts  did not show  any  clear  temperature  

dependence, although starch  content was lowest  at the highest 
soil  temperature  (17  °C)  at Week 3. Old roots  contained simi  
lar  amounts of starch at all soil temperatures,  except  that old 

roots  of  seedlings  grown at 17 °C had considerably lower  

starch  contents  throughout the experiment than old roots  in the 

other  treatments (Figure 3B). 
The proportion  of carbohydrates in the new aboveground 

parts  that was in the form  of  sugars  increased  with increasing 

soil  temperature;  however,  this pattern  was less clear in  old 
needles and old  stems. At the end of the 9-week  experiment, 

total soluble carbohydrate content in aboveground parts  was 
lowest  in seedlings in the 5 °C  treatment (Figure  4A). In re  

sponse to increasing soil temperature,  seedlings allocated rela  

tively  more soluble carbohydrates to new parts, especially 

new needles, and less to their  old  parts,  particularly old roots  

(Figure 4B). 

Discussion  

Timing  of shoot and root growth 

Shoot growth of the  Scots  pine seedlings started  rapidly in all  

treatments, and new shoot length  did not differ  between treat  

ments until  Week 3, when shoot  elongation of seedlings grow  

ing  at 5 °C  slowed relative to that of  seedlings growing at  the 

higher soil temperatures.  Timing of  bud  burst  and beginning 
of  root growth were  not affected  by  soil temperature.  Similar 

results  were  obtained  by  Vapaavuori et ai. (1992)  and Lyr  and  

Garbe (1995)  with Scots  pine seedlings. Huikari and  Paarlahti 

(1967) did not observe any  effects  of  artificial soil cooling on 
the beginning or  ending of height growth of mature  Scots pine  

trees growing on peatlands. 

Elongation rate of new roots  was low in all of  the soil tem  

perature treatments during the first  three  weeks,  but  it  was no  

tably lower  in the 5 °C  treatment than in  the other  treatments.  
New root tips emerged in the 5 °C  treatment, as observed in the 
Scots pine seedlings studied by  Vapaavuori et ai. (1992).  Un  

der the temperature  conditions prevailing in boreal forests, 
Scots pine  usually shows seasonal variation in root  growth 

(Laiho  and Mikola 1964, Lakhtanova 1971, Prokushkin  

1982), one peak  occurring before  or  at the beginning of shoot 

elongation and one or  more peaks  occurring when shoot  height 

growth has ceased (Horväth  1958, Laiho  and Mikola  1964). 

We observed  that prolific root growth began  only  after  shoot 

elongation had occurred.  Similar findings have  been  reported 

by Vapaavuori  et ai. (1992) and livonen  et  ai. (1999) in labora  

tory  experiments, and by  Lyr  and  Hoffmann (1964)  under  nat  
ural conditions in central  Europe. Finer  and Laine (1998) did  

not observe  any  peak in root  growth during the spring  in Scots  

pine  growing  on boreal peatlands. 
Current  photosynthates are the primary carbon source for 

new root and shoot  growth in conifer seedlings (Gordon  and  
Larson  1970, van  den Driessche  1987, Lopushinsky  and Max 

1990, Lippu  1998). Once  the new needles have reached  50% 

of  their final length  and can  act as  carbon sources  (Ericsson  

1978), photosynthates are translocated  below ground to sup  

port new root  growth. In our  experiment, this occurred  

3-4  weeks  after  the  beginning of the growing season and coin  
cided with the start of  rapid root growth.  

Soil  temperatures  above 13 °C affected shoot and root  

growth of  our Scots  pine  differently.  Root  elongation  rate in  
creased when the soil temperature  was increased  from 13 to  
17 °C, whereas  shoot elongation rate was  unaffected  by  the  in  

crease in soil temperature.  It  is  known  that,  in  Scots  pine, the 

stem reaches  its  maximum length during the first  half of the 

growing season (Raulo  and  Leikola 1974),  whereas  the roots  
continue to grow for as long as soil temperature  permits  

(Prokushkin 1982). Our  9-week  experiment extended over 
about the first  half of  the growing season, but  the air  tempera  

ture sum (756  d.d., +5 °C threshold)  was about 70% of the 
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Table 1. Concentrations of soluble sugars  and  sugar  alcohols (%  of total dry mass)  in needles, stem, and roots of seedlings  grown  at soil tempera  

tures of 5, 9, 13 and  17  °C.  

Figure  3. Soluble sugars (A) and starch  (B) in the parts  of seedlings  

grown  at  soil temperatures  of 5,9,13 and  17 °C  for  3.6  and 9 weeks.  

mean for the growing season in southern Finland (Atlas  of 
Finland 1988). 

Biomass and carbohydrate allocation 

At Week 9,  total seedling biomass  and  new needle biomass  

were highest in  the 13 °C treatment, which is between  the opti  

mum  soil  temperatures  of 12 and  15 °C found  for Scots  pine by  

Vapaavuori et ai. (1992)  and Lyr  and Garbe (1995).  Soil tem  

peratures  above 13 °C  promoted root growth but did not in  

crease total biomass,  aboveground biomass  being lower at 

17 °C  than at 13 °C, indicating that  the seedlings were  adapted 

to relatively  low  soil temperatures. 
The  distribution of  biomass between  shoots and  roots  of the 

seedlings was not greatly affected by  soil  temperature  (cf. 

Lippu 1998), although there  was a trend for  increased  absolute 

and relative allocations of biomass  below ground with increas  

ing soil temperature. The metabolic activity  of the root  system 
and its  sink  strength decrease  at low  soil temperatures, result  

ing  in reduced  belowground  translocation of  photosynthates 

(Hurewitz  and Janes  1983) and a  corresponding aboveground 

accumulation of  biomass,  whereas  at higher soil temperatures  
the root  system  becomes  a  strong sink for photosynthates 

(Lippu 1998). However,  the results  from  our short-term exper  
iments conducted with small seedlings may  not be  directly ap  

plicable  to older trees;  furthermore, the effects may be 

different if the responses  are studied over longer periods of 
time.  

The  sugar  content of new needles increased  at all soil  tem  

peratures  and  was greatest  at the  highest temperature,  indicat  

ing high metabolic activity.  No clear temperature  effect was 
observed  for the other  aboveground parts.  In old roots,  the 

content of  soluble sugars showed  no temperature  dependence, 
which is in accordance  with the results  of Andersen et al. 

(1986)  who studied the roots  of red  pine (Pinus  resinosa Ait.) 

at soil  temperatures  ranging  from 8 to 20  °C.  

At the end of  the 8-week  dormant period at a temperature  of  

Soil temperature  (°C)  Weeks Needles 

Old New 

Stem 

Old New 

Roots  

Old 

Start  0 20.90 _  10.88 _ 8.03 

5 3 12.37 7.28 10.08 18.46  10.66 

6 11.52 5.63  9.78 15.13 0.33  

9 11.79 6.74 10.93 14.82 0.25  

9 3 14.15 9.82 9.49 34.02 5.05  

6 12.33 8.06 10.33 16.12  0.28 

9 20.61 6.16 10.76 8.49  0.88 

13 3 24.32 14.46 11.50 28.75 10.08 

6 17.49 7.84 5.05 10.36 0.43  

9 16.65 7.26 8.86 13.12  0.21 

17 3 17.30 10.13 16.58 32.59 11.73 

6 21.83 11.71 7.50 12.30  0.33  

9 15.82 11.96 10.98 12.88 0.57 
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Table 2. Concentrations of starch  (%  of total dry mass)  in needles, stem, and roots of seedlings grown  at soil  temperatures of 5,9,13  and  17 °C.  

Figure  4. (A) Total nonstructural  carbohydrate  content (starch  and 

soluble sugars) and (B) relative allocation of total  nonstructural car  

bohydrates  among the parts  of the seedlings. 

3-4 °C, starch  reserves were negligible suggesting that they 

were transformed to soluble sugars during this  period 

(Ericsson  et al. 1996). Starch  concentrations initially in  
creased in  all treatments,  but subsequently  decreased  in  all 

investigated plant parts  other than needles at all soil  tempera  

tures. Decreasing starch  concentrations during the  early  part 
of the growing season have also  been found in 1- and 

2-year-old  Scots  pine seedlings (Sutinen 1985)  and mature 

Norway spruce  trees (Egger  et al. 1996). The patterns  of starch 

concentrations that we observed  in roots  of Scots  pine seed  

lings were similar to those  reported in roots of 20-year-old 
Scots  pine trees (Ericsson  and  Persson  1980). In  the trees,  root 

starch  concentrations decreased  from about 25% at  the begin  

ning of June to around 10%  nine  weeks  later  in trees growing 

on irrigated, fertilized  field plots  (Ericsson  and  Persson  1980). 

Ryyppö et al. (1998)  suggested that availability of photo  

synthate limits root growth at low soil temperatures.  However,  

we found starch  to be  present  in old  roots  at  all soil  tempera  

tures,  which negates  this  hypothesis. 

Lippu (1998)  showed a  decrease in translocation of photo  

synthates  to the roots  at low soil  temperatures  and an accumu  
lation of photosynthates in the aboveground parts  of Scots  

pine  seedlings. This  accumulation of nonstructural  carbohy  
drates  is a  characteristic  response  to low temperatures  and in  

dicates that  growth is more sensitive to  low  temperatures  than 

photosynthesis (Farrar  1988,  Ericsson  et al. 1996). We found 
that the starch  content of the aboveground parts  was  highest at 
9 and 13 °C, whereas the content of soluble sugars  in  the 

aboveground parts tended to be highest in seedlings in  the 13 
and  17 °C treatments,  especially at Week 9. We conclude that 
active  photosynthesis  occurred  at all soil temperatures  and  that 

current photosynthates were mainly sequestered  for growth 
and  maintenance respiration by seedlings in the 13 and  17 °C  

treatments, but mainly stored by  seedlings in the 5 and 9  °C  

treatments. 

Several  authors  have  reported that low soil temperatures  in 

spring may  severely affect or delay the establishment of 

Soil  temperature (°C) Weeks Needles 

Old New 

Stem 

Old New 

Roots 

Old 

Start  0 0.28 _  0.69 _ 0.40 

5  3 9.18 6.07 9.73 6.39  8.32 

6 11.70 7.62 8.57 2.66  8.91 

9 3.07  11.17 4.50 1.36 7.44 

9 3 24.76  8.20  10.97 9.17 15.89 

6 14.73 7.42  4.85 1.24  8.49  

9 20.29  12.99 8.15 2.74  12.97 

13 3 10.20 7.00  7.57 4.48 8.33 

6 4.79  3.07  4.86 1.63 3.57 

9 11.75 7.04  3.36  0.99  6.80 

17  3 13.31 7.13 5.71 4.62 10.07 

6 4.68  1.45 3.37 1.56  2.39  

9 4.56  5.90 1.28 1.00  4.87 
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planted conifer seedlings by  hampering shoot and root  growth 

(e.g., Lopushinsky  and Kaufmann 1984, Vapaavuori et ai. 

1992). Our results  suggest that soil temperature  also  influ  

ences the allocation of photosynthates. We conclude that plan  

tation stress may  not be  a  result  solely of slow root  growth at 
low  soil temperatures,  because  root biomass  growth did not 

depend on soil temperature  during the  first three weeks  of  our 

experiment.  Furthermore,  even at 5 °C  the roots  contained 

considerable  amounts  of starch  and  sugars  that could be  used 

under  conditions favorable  for growth. Shoot growth started 

simultaneously at all soil  temperatures  and was unaffected  by  
soil temperature during the first three  weeks.  Temperatures in 

the upper  soil layers  of  open  reforestation  areas  increase mark  

edly within a few weeks in early summer (Kubin and 

Kemppainen 1991), enabling root growth to start. 
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Abstract 

The effects of  sustained  low  soil  temperature on growth and allocation  of  biomass  and  carbohydrates  in  Scots  pine 

(Pinus sylvestris  L.)  were  studied by  exposing 1-year-old seedlings to soil  temperatures of 5 °C for  0,  3, 6 or 9 
weeks  and  subsequently for  9 weeks at  13 "C.  Growth  at  5  °C  soil  temperature at  the  beginning of the growing 

season reduced  the  height of  new  shoots  but  the length  of  the  cold  soil  period did  not  affect its  final  height. Some  

new root  tips emerged during the  5  °C  soil  temperature period.  Prolific  root  growth did  not start  until  the  soil  

temperature was  increased  from  5 to 13 °C,  but  new root  growth was  scarce during the first  9  weeks  even at  13 

°C,  a clearly  more favourable  soil  temperature than  5  °C.  Seedlings exposed  to  a temperature exceeding 5 °C over  

any  3-week  period during the  first  9  weeks  had  above-  and  below-ground biomasses  that were equivalent,  whereas  

continual  exposure  to  5 °C reduced  shoot  and  root  growth. The  above-ground biomass  of  the seedlings did  not  
increase  any  more  after  Week  12, nor  did  the below-ground biomass  after  Week  15. Biomass  allocation  among  the  
different  parts  of  the  seedlings was  not  greatly  affected by  the  length  of  the cold  soil  period.  Our  results  indicate  that  
the  accumulation  of  above-ground  biomass  is  mainly  dependent on the  air  temperature and  not  soil  temperature. 
Element  allocation  followed  the  pattern of  biomass  allocation, except  for  N.  which  increased  in  the  above-ground 

parts throughout the  experiment,  and  Fe,  which  had  already accumulated  during the  first  3  weeks.  The  seedlings 

grown  for  a longer time  at  low  soil  temperatures contained  lower  amounts  of  starch  but  similar  amounts of  soluble  

sugars throughout the  experiment. 

Introduction 

Soil  temperature is a major factor affecting  plant  

growth (e.g.,  Bowen, 1991; Cooper, 1973). Root  

growth is  particularly  reduced  at  low  soil  temperatures 

(Aaltonen. 1942; Lopushinsky  and Max,  1990; Ritchie  
and  Dunlap, 1980; Tryon and  Chapin, 1983), but  

shoot  growth and  nutrient  uptake may also  be  impeded 

(Lopushinsky and  Max, 1990; Marschner, 1986). 
The boreal  forests of the Nordic  countries  are  dom  

inated  by Scots  pine (Pinus sylvestris  L.)  and  Norway 

spruce  (Picea abies) and  are intensively  managed, 

so that  tree generations are frequently established  by  

planting.  Seedlings  are usually  planted in  spring,  when  
the soil  is cold,  and their  successful  establishment  de- 

* FAX NO:  +358-13-2514567.  

H-inaii: limo.dornisch@mella.fi 

pends  on both  soil  and  air  temperatures, as  these  affect 
carbon  accumulation  and water and  nutrient  uptake 

from  the  soil.  In  the  soil  temperature range  prevailing  

in the  boreal  forest zone, a higher soil  temperature 

usually results  in an increased  allocation  of photo  

synthates  and  biomass below  ground (Domisch et  a!.,  

2001; Lippu, 1998 a;  Hawkins  et  al.,  1999). 

Plants  grown  at  higher temperatures have  higher 

nutrient concentrations  and  contents,  because  ion  up  

take  generally occurs faster  at higher temperatures 

(Marschner, 1986). Elevated  soil  temperatures facilit  

ate the  uptake of  nutrients  by  the  plant  in several  ways:  

by  increasing the  length of new roots,  by  physiolo  

gically improving nutrient  uptake by  the  roots  and by  

accelerating  nutrient  mineralisation  in  the  soil.  

Cold  soils  at  the  beginning of  the  growing  season 

are characteristic particularly  for  drained  peatlands 

since  drainage causes  a decrease in  mean  soil  tem  
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perature,  especially  in  the spring (Heikurainen and  

Seppälä. 1963;  Hytönen  and  Silfverberg, 1991:  Pessi.  

1958).  Future  climate scenarios  for  Finland  predict  
increases  in  air  temperature of' 0.3-3.6 °C  within  
the  next 50 years  (Carter, 1995) which  may also  

mean a rise  in  soil  temperature.  This  might enhance  

root  growth and increase  carbon  allocation  below  the  

ground and  thus  also  litter  deposition, thereby being 
of special importance for  boreal  peatlands which  are 

already significant  sinks  for atmospheric carbon.  Con  
siderable  amounts  of  biomass  production of  Scots pine 

trees  are allocated  below  ground (Finer and Laine, 

1998;  Helmisaari  et ai.,  2002 Boreal  peat  
lands  alone  contain  about one-third  of all terrestrial  

carbon  stores  (Gorham, 1991). 

We  studied the effect of  soil  temperature on shoot  

and  root  growth and  carbohydrate allocation  in 1-year  
old  Scots  pine  seedlings during the  first  9 weeks  of  the  

growing season in  a previous  experiment (Domisch 

et al., 2001) but this was  conducted  at constant 

soil  temperatures. According to  previous  experiments 

(Domisch et  al., 2001; Vapaavuori  et  al., 1992), a 
soil  temperature  of  13 °C  seems  to  be  around  the  op  
timum  for  biomass  growth  in  Scots pine seedlings, 

although not  for  maximal  root  growth. It is  still  un  

clear, however,  how  a cold  soil  period,  and  its  length 
in  particular,  might  affect the  growth of  seedlings and  

the allocation  of biomass  and carbohydrates  during 
the  early  growing season. The  objectives  of  this  study  

were thus  to  investigate  the  effect of  periods of low 
soil  temperature of different  duration  during the  first  
half  of  the  growing season on (1) the  timing of  shoot  

and  root  elongation. (2) carbohydrate allocation  and 

(3)  nutrient uptake and  allocation  in  Scots  pine (Pinus 

sylvestris  L.) seedlings.  

Material and methods 

Experimental layout and plant growth 

Horticultural  peat  (low humidified  Sphagnum-peal, 

pH  3.5, Kekkilä  Ltd., Tuusula, Finland) was  com  

pressed  into  plastic  pots of volume  3.4  L  to a density 

resembling that of natural  Sphagnum-peat (ca.  0.1  g 

cm"-').  The 210  one-year-old Scots  pine seedlings 

used for  this  experiment were container-grown  from  

seed  originating from an orchard  in  Central  Finland  

(62°05'N, 26°I0'W) established  with  material from 

sources located  between  6l°7'N  and  64°20'N  in  Fin  

land,  and  passed their  first winter  in  the nursery  bed.  

Table 1. Experimental  layout. The experiment  consisted of four 

soil temperature treatments: 0. 3.6. or 9 weeks  at 5 C. followed by 

9 weeks at 13 °C. In parentheses  the  number of  harvested seedlings  

per  treatment 

In April,  they were transported to  the  laboratory and  
thawed  for  1 week  at  4  °C.  One seedling was planted 
in each  pot  after filling with  horticultural  peat  and  the  

pots  were placed  into  four  insulated  water  tanks  in  a 

growth  room  (Conviron GR  77,  Winnipeg,  Canada). 
One  soil temperature treatment started  at 13 °C and  
the  others  three at  5°C (Table 1).  The  temperatures in  

the water tanks were raised  at time intervals  of  three  

weeks  so that  the  experiment  consisted  of  growing the 
seedlings for  0,  3. 6  and  9 weeks  at 5 °C after which  

they  were  grown  for  additional  3,6 or  9  weeks  at  a soil  

temperature of  13  °C.  
The  day length was  18 h  (corresponding the  day  

length  in  early  summer  in  Central  Finland)  and the  

photon flux  density ranged from 370  to  440  /*mol ~2 
s
-2,  with  a  mean of  400  /zmol m -2 s -1 (60-W in  

candescent  lamps, Airam  Ltd.,  Finland  and  215-W  

Cool  White  fluorescent  tubes, Osram Sylvania.  Dan  

vers. MA). Day/night  relative  humidity was  60/80%  
and air  temperature 17 °C  throughout the  experiment.  
A 2-cm  diameter  plastic  tube  was  inserted  on one side  
of the  pot to  remove  any  ground water  as the pots  

were closed  at the bottom. The pots were irrigated 

with  0.25  L of deionised  water once a week  and fertil  

iser was  given with  the  irrigation  water  every  second  
week  starting at  Week 1 (20 mg  N. 7  mg  P and  45  

mg  K  among  other  nutrients,  Superex 5,  Kekkilä  Ltd.,  

Tuusula, Finland).  

Harvests  and  measurements 

Height  growth was monitored  once or twice  a week  

throughout the  experiment on the  same  14 seedlings 
of each  treatment.  Harvests  were performed at inter  

vals  of 3  weeks. The stems were cut at  the root collar  

and  the needles  separated from them. Current  (new)  

Week Treatment 1 Treatment 2 Treatment 3 Treatment 4 

<°C> (°C)  CO <°C> 

3 13(14) 5(14) 5 5 

6 13(14) 13(14) 5(14)  5 

9 13(14) 13(14) 13(14)  5(14)  

12 13(14) 13(14)  13(14) 

15 13(14)  13(14) 

IS 13(14) 



3 

PDF  OUTPUT 

10062.tex; 2.07/2002; 9:20; p. 3 

and  previous  year  (old) parts  were separated, as were 
the  new roots  from the old  roots.  The new roots  were 

removed  from  the  original peat  plug and  additionally 

all  roots  growing out  of  the  peat  plug were  regarded as 

new roots.  The stems, needles  and old  roots  were dried  

immediately to a constant  mass at 60  °C. whereas  
the new roots  were stored at —lB °C for later  scan  

ning with  a HP  ScanJet  6100, resolution  .300  dpi, and  

analysis  with  the  WinRHIZO programme  (Regent In  
strumental  Inc., Quebec,  Canada)  for  total  root  length 
and  root  tips  per  seedling. 

For  the analyses  of starch  and  soluble  sugars,  the  

respective  parts  of  the  seedlings (new roots,  old  roots,  

new needles, old needles, new stem, old stem) of 

each  soil  temperature treatment  and each  harvest  were  

pooled together except  those  seedlings of  the  final  har  

vest  of  each  soil  temperature  treatment,  which were 
treated  separately. Soluble  sugars  (sucrose,  glucose, 

fructose,  raffinose  and  pinitol)  were determined  by  

the  methods  described  by  Mason  and  Slover  (1971) 
and  Marc and  Carroll  (1982) with  a  5890  GC  system  

(Hewlett-Packard) and a  5973  Mass Selective  Detector 

(Hewlett-Packard). Starch was  determined  spectro  

photometrically  (UV-240,  Shimadzu  Scientific  Intru  

ments.  Inc.,  Columbia.  MD) by  the  method  described  

by Karkalas  (1985). 

Data  analysis 

The  water tanks, i.e., treatment blocks, were not 

replicated.  Thus, the  experimental design could  be  re  

garded as a pseudoreplication (Hurlbert, 1984). How  

ever,  in  order  to  minimise  possible  confounding ef  
fects between  the water  tank  and  soil  temperature 

treatments  the locations  of  the  seedlings within  the  wa  

ter tanks  were changed once a week.  In a  confounded  

experiment, any  statistically  not  significant  differences  
will  remain  not  significant, but the  P values  indicating 

a significant  difference (P < 0.05) are in  reality not 
the values  generated by  ANOVA but  greater by  an un  
known  degree since  F -values  are greater than  they 
should  be  (Milliken and Johnson, 1984). Attention  

was paid to  P values  indicating significant  differ  

ences between  treatments, but  these  were interpreted 
with  caution  where  the  differences were not  obviously 

perceptible from the  means and standard  errors. 

The statistical  calculations  were performed with 

the  SPSS  statistical  package  (SPSS  9.0  for  Windows).  
All  percentage  values  were subjected to  angular trans  
formation  (.<■' = arcsin ANOVA was used  for 

testing the  effect of  the  length of  the  low  soil  temper  

Figure  I.  Cumulative height  (A)  of the new shoot in the different 

soil temperature treatments during  the experiment  (n = 14). Cu  

mulative length  (B)  of the new roots. Standard errors are indicated 

(n = 14). 

ature treatment  (0, 3, 6  and  9)  by using this  as one 
factor. Repeated-measure ANOVA was used to test  the  

effects of  the  treatments  on the  height  of  the  seedlings.  
Soil  temperature was  used  as a grouping factor  and  the  

measuring date  as a within-factor variable.  

Results  

Shoot  and  root elongation 

The seedlings without any  cold  soil  treatment grew  

the  highest new shoots  (Figure  1  A:  main effect of  soil  

temperature F 867.6. P  < 0.001), being about  
25%  higher than  the  shoots  of  the seedlings with a cold  
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Figure  2. Number  of root tips on the seedlings,  counted by Win- 

RHIZO after scanning.  Standard errors are indicated (n  = 14). 

soil  treatment,  but  the  shoot  elongation of the  cold  
treated  seedlings was  not  dependent on  the  length  of 
the  cold  soil  period. 

The  start  of the  rapid elongation of  the new roots  

was  delayed relative  to  the  growth of  the new shoot 

(Figure IB). New  root  elongation also  occurred  at 

the  soil  temperature of  5 °C, but  was very  slow.  A  

rapid increase  in  root  tips  and  prolific new  root  length  

growth occurred  after soil temperature  was raised  to 
13 °C (Figures 1 and 2).  Increasing the  soil  temperat  
ure  to 13 °C  resulted  in  a rapid increase  in  new root  

length,  which was  not  dependent on the  length of  the  

preceding low  soil  temperature period.  The  seedlings 

undergoing the  longest cold  soil  period had  a  similar  
final  root  length  to  those  grown  for  6  weeks  at  5 °C,  
and  a  greater  root  length than  those  grown  for  only  3 
weeks at 5 °C. 

Biomass 

The  length of  the  low  soil  temperature period did  not  
affect  the  total  above-ground biomass  of the seed  

lings  after the  cold  soil  treatment  and  the  subsequent 
9  weeks  of 13 °C,  except for  the  seedlings grown  in  

the  treatment  without  a  cold  soil  period (Figure 3A).  
which  had  a lower  biomass, both  above  and below  

ground. At Week  9,  all  the  treatments  had  a similar  
above  ground biomass,  except  for  the  seedlings grown 
for all  9 weeks  at 5  °C,  which  had  lower  above-  and  

below-ground biomass.  
The  seedlings grown  for  9 weeks  at  5  °C had a 

lower  new needle  biomass  than  the  seedlings grown at 

5  °C  tor  a  peruni within  the  9  weeks  (F = 5.193:  P = 

0.003):  the  latter  were not significantly  different  from  
each  other. Also,  the  below-ground  biomass did  not 
differ  between  seedlings exposed to  temperatures  ex  

ceeding  5 °C.  When  comparing the biomass  after 9  
weeks  at  13 °C  preceded by different  periods  at  5  °C,  
those  grown  only  for  9 weeks  at 13 

C

C  had  smaller  
biomasses  than  those  grown  for  longer but at  lower  soil  

temperatures, both  above  ground (F 21.52: P < 

0.001) and  below ground (F = 24.77:  P < 0.001). 
New  needle  and  new root  biomasses  in  particular were 

lower, whereas  the  mass  of  old  needles  was  equal  in  

all  treatments.  

The  greatest part  of the  biomass increase  within  
the  seedlings was  due  to  the  new needles, since  about  
50% of  all  biomass  was allocated  to the  new needles, 

and this  pattern no longer  changed after Week  9. The  
allocation  between  the  parts  of  the  plants  did  not  differ 

between  the  treatments, although a slight  increase  in  

the  proportion of  new roots  was  observed  over time  

(Figure 3B). 

Element  content and allocation  

The  N,  P and  Ca  content increased  only  slightly  dur  

ing the  first  3  weeks  of  the  experiment (Figure 4), and  

was mainly above-ground, but  the A 1  and Fe  content  
had  already increased  at  Week  3,  mainly  below-ground 

(Figure 5). The  total  above-ground N  content  differed  

significantly  between  the  soil  temperature treatments  

at  the  end of  each  treatment (F = 111.0: P <0.001). 

The  more time  elapsed, the  higher the  N  content  of 

shoots.  The  below-ground N content also  increased  
with  time  {F 35.56; P < 0.001), except  for  the 

treatments with  6 and  9 weeks  at  5 °C, where  the 

below-ground N  content did  not  vary  (post  hoc  Tukey 

test: P = 0.989). This was not the  case with the  other  

elements  studied (P, Ca, A  1  and Fe),  the above  and 

below-ground content of  which increased  from  9  to  12 
weeks  but  not thereafter.  

The  above and  below-ground element  allocations  

within  the seedlings  did  not  greatly differ  at  the end  of 
each  soil  temperature  treatment  (Figures  4  and 5).  the  

greatest part  of above-ground content  being found  in  
the  new needles, while  the below-ground content  was  
divided  evenly between  the  old  and new roots.  About  

50% of  the total Al and  70% of the total Fe was found  

in  the  below-ground  parts  of  the seedlings,  whereas  

the  percentages  for  N,  P  and Ca  were 20-38%.  
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Figure 3. Biomass  of the  different parts  of  the  seedlings  (A)  and its  allocation  within the  seedlings  (B)  during  the experiment.  Standard  errors  
are indicated (n = 14). 

Carbohydrates  

The  starch content increased  both at 13 and 5 °C 

and  was  highest at 12 weeks  in  the  seedlings that  re  

ceived 3 weeks  of the cold  soil  treatment  (Figure 6).  

The lowest  starch content between the  treatments  was 

observed  in those seedlings which were exposed to 

cold soil  for  9  weeks.  The  soluble  sugar  content was  

relatively low at the  beginning of the growing sea- 

son (Figure 7).  but  the  above-ground sugar  content 
increased  rapidly, and  from  Week 12 onwards  there 

were no differences between  the  soil  temperature treat  

ments. The  below-ground changes  were small  until  
Week  9,  when  the  highest sugar  content was  found  in  
those  seedlings without  cold  soil  treatment. A shorter  
cold  soil  period had  a  uniformly positive effect on 

sugar  content of  the  roots  (Figure 7).  
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Figure 4. N  (A).  P(B)  and Ca  (C)  content of  the  different pans  of  the  seedlings  and allocation during  the  experiment  in  the  different soil 
temperature  treatments in - 14 where standard errors are indicated, otherwise n I). 
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Figure  5. Al (A) and Fe  (B) content of the different parts  of  the  seedlings  and allocation during  the  experiment  in the  different soil temperature 
treatments in  = 14 where standard errors  are indicated, otherwise n I). 

Discussion 

Shoot  and  root  elongation 

Bud  burst  and  the  start  of new shoot  elongation was 

not  dependent on the  soil  temperature  treatment, in  

dicating that  these  growth processes  are mainly de  

pendent on air  temperature. Similar  observations  on 

Scots  pine seedlings  have  been  reported by  Vapaavuori 

et  al.  (1992). Lyr  and Garbe  (1995) and  Domisch  et  

al.  (2001). On the  other  hand,  the  length  of  the  cold 
soil  period did  not  affect the  height  of  the  new shoot.  

Higher soil  temperature at  the  beginning of the  grow  

ing season increased  the  height of  the  new shoot but 

did  not affect the  length of  the  new roots  until  Week  9. 
There  was  some root growth, both  length and  bio  

mass,  during the  cold  soil  treatment  in  our experiment.  
Landhäusseret  al. (2001) reported also  some new root  

growth of Picea  glauca at  a soil  temperature of  5  
°C.  The  recovery  of root  length growth was  remark-  
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Figure  6. Starch  content (A)  and its  allocation within  the seedlings  (B)  during  the experiment  (n=14 where  standard emirs  are  indicated, 
otherwise n =1).  

able, even after 6  or 9 weeks  at  a soil  temperature 
of 5 °C  and  a subsequent  rise  in  soil  temperature  to 

13  "C the seedlings had  similar  root  lengths. Scots  

pine  root  growth  begins at soil  temperatures  of  3-5  
°C.  with  maximal growth at  16.5  °C (Korotaev.  1987, 

1989). Domisch  et al.  (2001) and Vapaavuori el al.  

(1992) found  maximal  root  growth at  the highest soil  

temperatures they  investigated, i.e..  17 and  20  °C,  re  

spectively.  Our results  indicate  that  a prolonged period 

of low  soil temperature mainly  delays the  commence  

ment  of  new root  growth, but  does  not  affect the length 

of new roots. 

New  root  growth in  boreal  conifer  seedlings is  de  

pendenl on carbohydrates from  current  photosynthesis  

(Lippu, 1998b:  van den  Driessche,  1987).  Rapid  root  

elongation in  our experiment  was not observed  until  

rapid  shoot  elongation had finished  (Figure I). al  

though the  soil  temperature was favourable  for  root  
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Figure  7. Total soluble sugar content (A) and  its allocation within the seedlings  (B) during  the experiment  (n = 14 where  standard errors are 

indicated, otherwise  n = 1). 

growth. Translocation of current  photosynthates to 

below-ground parts could  not  start  until  shoot  elong  

ation  had  ceased since  during shoot  elongation the 

above-ground parts  are a greater  sink for  photosyn  
thates  than the  below-ground parts  (Gordon  and Lar  

son. 1968, 1970; Gower  et al.. 1995) Indeed.  Scots 

pine often  shows  two  peaks  in  root  elongation: one 
before  shoot  elongation and  one after (e.g.. Hor-  

väth, 1958; Laiho  and  Mikola, 1964). On the other  

hand, other  growth rhythms, including no peak in  root  

growth before  shoot  elongation, have also  been  found  

(Domisch et  al., 2001:  livonen  et  al„ 1999; Lyr  and  
Hoffmann.  1964). These  experiments began abruptly 
in  spring,  however,  so that  no root  growth was  possible  
before  shoot  elongation. Thus,  the  delay in  root  elong  
ation  at  (he  beginning of  our experiment might be  an 
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inherent  phenomenon in  Seols  pine seedlings of north  

ern  provenances  and  not  necessarily  a consequence  of 
the  low  soil  temperature in  spring.  

Biomass  

The duration  of the  cold  soil  season did  not greatly af  

fect  the  total  biomass  of  the  seedlings at  the  end of the  

temperature treatments.  At  Week  9,  all  the treatments  
led  to  similar  above-ground biomasses  irrespective of 
the  soil  temperature, indicating  again that  the  accumu  
lation  of above-ground  biomass  is  mainly  dependent 

on air temperature but not  on soil  temperature at  the 

beginning of  the growing season.  Unlike  shoot  elong  

ation,  therefore, the  growth of  new roots  during spring 
and  summer  depends particularly  on the  soil  temper  

ature  and  not  on air  temperature (e.g.,  Ericsson  et al.,  

1996). 

A shorter  period of  low  soil  temperature did  not  
result  in  higher biomass  or increased  below-ground 
allocation.  One  reason for  the  fact  that  the  seedlings 

grown  without any  cold  soil  treatment  had  the  lowest  

biomass  at  the  end  of the  treatments  seems to be  time,  

since  they were grown  for  only  9  weeks,  whereas  all 
the other  treatments  continued  for  a longer time, and  

as shoot  growth is  only  dependent on soil  temperature 

to  a small  degree, the  treatments  with  a cold  soil  period 

provided more  time  for  shoot  growth. Although shoot  

elongation ceased  during the  first  9  weeks,  the  above  

ground accumulation of biomass  did  not stop and  

needle  elongation still  continued  (Parviainen, 1974; 
Raulo  and  Leikola,  1974). Fertilisation  may  be  an  

other  reason for the  higher biomass  of  the  seedlings 

that  were  grown  for  a longer time;  the longer the seed  

lings  were grown,  the more nutrients  they  received, 
and the more nutrients  could  have  been  released  via 

mineralisation  of  the peat  soil.  

The  root biomass  stayed at  a very  low level  dur  

ing the  cold  soil  period but  it  increased  rapidly  after 
soil  temperature rose  to 13 °C.  Scots  pine seedlings 

apparently  can compensate  for  the inhibitory effects 
of  prolonged low  soil  temperature  periods at  the  be  

ginning of the  growing  season by  speeding up  their  

root  growth  when  the soil  temperature increases  over 
13 °C,  provided the  nutrient  availability  is  not  limited  

(livonen et  al., 1999). This  seems to  be  applicable to 

our experiment. 

It  seems  that  in  boreal  forests the  above-ground 

parts  naturally grow  first  at  the beginning of  the grow  

ing season, when low  soil  temperatures occur, and  
the  below-ground parts  start  to  grow  later  when  the  

soil  temperature has  increased.  This  is  confirmed  by  

the  observation  of  the  temporal order  of  growth in  the  

parts  of  Scots  pine: first  shoot  and  later  roots.  

Eleilleni  content anil  allocution  

The  significant  increase  in  the N  content  of both  the  

above-ground and  below-ground parts  of  the  seedlings 

after Week 9 seems to  be connected  with  the onset 

of fast root  growth. Another  factor  may  be  fertilisa  

tion, since  the seedlings grown  for a longer time  also 

received  more N  through fertilisation.  Although  the  

seedlings also received  more of the other elements  

through fertilisation, nutrient  contents  did  not  increase  

after Week 12, with  the  exception  of  Fe  in  the new 

roots,  where  an increase  was  observed  throughout the 

experiment. 

Soil  temperature certainly affected the nutrient  up  

take  of  the  seedlings,  in  that  those  grown  at  5 °C for  

the longest time  had  taken  up  the  least  N  in  relation  to 

that  given by  fertilisation  at  Week  9,  and  this trend  was  
still  seen at Weeks 12  and  15. Nutrient  uptake at  lower  
soil  temperatures  could  be  reduced  through the effects 

of temperature on metabolic  processes  (Bowen, 1991)  

or  impaired  membrane  function  (Ryyppö  et  al.,  1998), 

resulting in  lower  nutrient uptake rates at low  soil  tem  

peratures. Quick  recovery  in  nutrient  uptake after an 
increase  in  soil  temperature indicated  that  metabolic  
effects were dominant.  

The allocation of nutrients  between  the above- and 

below-ground parts  of  the  seedlings at  the  end  of  each  

soil  temperature treatment  was  not  significantly  influ  

enced  by  the  length  of  the  cold  soil  period,  and  no 

significant effects of soil  temperature  on the  relative  

allocation of nutrients  were observed  in our earlier  

experiment (Domisch  et  al., 2002). 

Carbohydrate allocation  

The low starch  content and concentration  at the be  

ginning of the  experiment seems  to  be  a normal  phe  

nomenon since  reserves are used  during the  winter  

(e.g.,  Jiang  et  al., 1994). We also  found  a  negligible 

amount of  starch  in  Scots  pine seedlings at  the  begin  

ning  of  the  growing season in  our previous  experiment 

(Domisch et  al., 2001). The  highest starch content  

at  Week 12 was observed  in  those  seedlings which  

were grown  for  3  weeks  at 5  °C.  This  treatment  may 

most closely  mimic  the  course of soil  temperature  

prevailing in  nature. 

A clear  trend could  be seen for the starch concen  

trations in  the needles  and  the old  roots  to be higher 
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the longer the  seedlings were  exposed to  the  cold  soil  

(data  not shown). The  accumulation  of non-structural  

carbohydrates in  above-ground plant parts  is  a char  
acteristic  response  to low  soil  temperatures, while  the  

metabolic  activity  of the  root  system  decreases  at  low 
soil  temperatures, resulting in  reduced  below-ground 
translocation  of photosynthates (Hurewitz  and Janes.  

1983). Another  reason is  that  photosynthesis is  not  as 
sensitive to  low  soil  temperature as growth (Ericsson  

etal.,  1996; Farrar,  1988). 

COi  uptake remains  relatively  stable  over a certain 

range  of air  and  soil  temperatures (5-15  °C;  Pelkonen  

et ai.,  1977). Thus  the accumulation  of the main  

product  of photosynthesis, soluble  sugars,  seemed  
here  to be  less  influenced  by  soil  temperature. The  

amount of  soluble  sugars  did  not differ  between  the 
soil  temperature  treatments after 12 weeks,  but, the  
total  amount of starch in  the  seedlings  was  much  lower  
in  those seedlings which  were exposed to  a 5 °C  soil  

temperature for  a longer time. 

Starch  is  a carbohydrate reserve and  its concentra  
tion  and amount  increases  in  new needles until  Au  

gust and  subsequently decreases  drastically  (Sutinen,  

1985). We  obtained  similar  results,  particularly  re  
garding the  allocation  of  starch  to the  new needles, 
which  decreased  after Week 12, corresponding to  

the  middle  of August. Allocation  to the  roots  lasted  

longer, but  eventually decreased  as well  (Figure 6A).  

One  other  factor  affecting  the  carbohydrate status  of 
the  roots is  the photoperiod. The  carbohydrate content 
of,  e.g., maize  increased  with  a longer  photoperiod 

(Marschner.  1986). However, light  exposure  remained  

unchanged throughout our experiment and  did  not 

vary  among treatments, either. Thus  the  decrease  in  

starch  content must  be  due  to other factors, mainly 
the  duration  of  the  cold  soil  period to which  seedlings 

were exposed.  In  this  context,  a shorter  period  of  low  
soil  temperature in  the spring  may  be  beneficial.  

Conclusions  

Our  results  indicate  that  the  prolonged  cold  soil  treat  

ments  did mainly shift  the  development of the seed  

lings a little  later  except  for new shoot  height which  is  

mostly predetermined.  Thus, increasing soil temper  

atures  in  spring due  to global climatic  changes may  

not change greatly  ultimate  development of planted 

seedlings but  may  advance  development events.  
The  results  also  indicate  that  Scots  pine seedlings 

establish  quickly  in  spring after a relatively long cold  

soil  period. Thus  drained  peatlands that  are cold  sites  

during spring might  not be  critical  tor  seedling  devel  

opment  as seedlings in  good  condition  will  survive the 

time  of  cold  soil. This  study,  however, did  not  assess 
the effect  of  a prolonged period of frozen  soil,  which  

might be  a prospect  for  future  research.  
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Abstract 

Soil  temperature is  a  major factor  affecting  organic  matter  decomposition and  possible  increases due  to global 

climatic  changes  may accelerate decomposition although it remains  unclear  whether the effects  will be  similar in  

climatically  different  regions.  The  effects  of  soil  temperatures of  5,  10  and  15°  C  on the  decomposition of  Scots 

pine (Pinus sylvestris  L.)  needles  were assessed  in  a one-year  growth chamber  experiment,  the  10°  C  treatment  

corresponding to the  soil  temperature accumulation  over three  growing seasons under  middle  boreal  conditions  

in  Southern  Finland.  Intact peat  cores from two  climatically  different  peatland sites  (in  Southern  and  Northern  

Finland)  were  used as the incubation environment.  Needle  litter from two-year-old Scots  pine  seedlings  was 

incubated  in litter  bags  beneath  the  living  moss  layer,  and  mass  loss  and  N  concentration  were  determined  at  60-  

day intervals.  Soil  temperature had  a clear  effect on the  rate  of  mass  loss  from  the  litter, which  was significantly 

lower  at  5°C than  at  the higher temperatures. On  the  other  hand, mass losses  were higher at 15° C  than at  10° C 

only  between  days 180  and  300, when  the  soil  temperature sum  had  reached  1800  to 3000  d.d.  in  the  10° C 

treatment and  2700  to 4500  d.d.  in  the  15°  C  treatment. During this  period the  decomposition rate  was  higher in  

the  northern  than  in  the  southern  peat at  15°  C.  Nitrogen was released from the  litter  only  when the  accumulated 

mass  loss  was between  50  and  60%  and  the  C/N  ratio  had  decreased  from  50  at  the  beginning of  the  experiment 

to 25-25. Accumulated  mass  loss  and  N  release  were  clearly  related  to the  accumulated  soil  temperature sum. 

The limit value  for  mass  loss  was  approximately 88%.  As a result,  it  seems that  increasing soil  temperatures may  

result  in  slightly  higher rates  of  needle  litter  mass  loss  and  consequent N  release  in  northern  peat  than  in  southern  

peat even though the  limit  value  may  not  change. 

Keywords: Climate  change; Mass  loss;  Needle  litter; Nitrogen; Peatland; Scots  pine;  Soil  temperature 
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Introduction 

Boreal  peatlands contain about  one-third of all  terrestrial  carbon stores  (Gorham 1991) and  the  greatest part  of 

the  carbon stores  in  Finland can  be  found  in  peatlands (Minkkinen 1999). Drainage of  peatlands for peat 

harvesting  or agricultural  purposes  changes them  from carbon  sinks  into  carbon  sources (Armentano and  Menges 

1986,  Nykänen  et ai.  1995),  whereas  in  many  cases  drainage for  forestry has  been  found  to increase  carbon  

stores, at  least  for  the  first  60-80  years  (Minkkinen &  Laine  1998ab, Minkkinen  et  ai.  1999). The  increases  in 

peat  carbon stores  at  drained  sites  have  proved to be  greater  in  Southern  Finland  than  in  Northern  Finland  

(Minkkinen  &  Laine 1998b).  

Although peatlands drained  for  forestry may  act  as  sinks  for  atmospheric  carbon, the  mechanism of  

carbon accumulation seems  to be  slightly  different from that  in pristine  peatlands, as the  latter  accumulate  carbon  

through height growth,  predominantly from plants  of  the  field  and  bottom  layers  (Sphagna and  sedges),  whereas  

the  increased  tree  litter  above  and  below  the  ground seems to be more important on drained  peatlands. Drainage 

also  enhances  the  decomposition processes  via  improved aeration  of  the  surface peat and  the  resulting increase  in  

microbial activity  (Lieffers 1988, Bridgham et  al.  1991, Chmielewski 1991). The  relation  of the  increased  

decomposition to the  input of  new  litter  is  very  important in  this  context,  and  it  is  this  that  determines  the  carbon  

balance in the drained peatland. 

Future  climate  scenarios  for  Finland predict  increases in  air temperature of 0.3-3.6°  C within  the  next  50  

years  (Carter et  al.  1995), which may  also  mean a rise  in  soil  temperature and  a draw-down  of  the  water  level,  

enhancing root  growth  and  increasing below-ground carbon allocation  (Finer &  Laine 1998). This  can  be  of 

special importance for  the  carbon  sink strength  of  boreal  peatlands (Gitay  et  al.  2001). 

At present the  mean soil  temperature in the  rooting  zone of  peatlands in  Central  Finland during the  

growing season is  10 to 12° C,  with  values  ranging temporarily from 5  to  20° C  (Flytönen &  Silfverberg  1991, 

Finer  &  Laine  1998, Domisch  et  al.  2000). Drainage of  peatlands has  caused  not  only  a  decrease  in  mean soil 

temperatures, especially at  the  beginning of  the  growing  season (Heikurainen &  Seppälä 1963, Hytönen &  

Silfverberg  1991) but  also a decrease in  air  temperatures during  the  late  summer  (Venäläinen et  al.  1999). 

It  is  known  that  an increase  in  soil  temperature results in  higher microbial  activity  and  thus  increased  

rates  of  mass  loss  from  plant  litter.  It can be  concluded  from the  results  of our earlier  experiments  (Domisch et  

al. 1998,  2000) that  soil  temperature affects  the  decomposition of  Scots  pine needle  litter  more than that  of  root  

litter,  but  these  experiments  were conducted  in  the  same climatic  region and  the  response  of  decomposers from 

climatically  different  regions to rising soil  temperatures has  not been  studied.  

Although the  fact that  lower decomposition rates  found  at  higher latitudes  within  the  boreal  region  

(Mikola 1960.  Johansson  1984) can  be  mainly attributed  to climatic  effects such  as  temperature and  moisture  

(Berg et  al.  1993, Couteaux  et  al. 1995), the  question remains  as to whether  the  decomposition processes  would  

be slower  in  northern  than  in  southern  boreal  peats if  the  environmental  factors,  such  as temperature and  

moisture, were  standardised.  Microbial  populations in  northern  climatic  environments  may  be adapted to 

relatively  low  soil  temperatures, and  a possible  increase  in soil  temperature may  or  may  not  result  in a faster  

decomposition process (Bottner et  al.  2000). 

The  objectives  of  the  present  work  were  (1)  to assess  the  effect of soil  temperature on  the  

decomposition of Scots  pine needle  litter  in  peat  soil,  (2)  to investigate the  effect of  temperature on the  

decomposition of similar  litter  in  two peat  soils  from climatically  different  regions, and  (3)  to study  the  C  and  N  

dynamics  related  to the  decomposition process.  



3 

Material and methods 

Litter  material  and  experimental  design 

The  needle litter  was derived from 2-year-old  nursery  grown  seedlings of  Scots pine (Pinus sylvestris  L.).  the  

current  needles  of  which  were harvested  at  the  end of  the  second  growing season and  dried  at  60°  C  to a constant  

mass. Initial  element  concentrations  in  the  needle  litter  material  were N  10.16, P 1.42. K  6.75, Ca  2.92, Mg 1.36. 

Mn  0.32,  Fe  0.065, A  1 0.080,  Cu  0.0042  and  Zn 0.036  mg  g" 1 dry mass.  

Intact peat  cores,  including the moss layer,  from drained sedge pine fens  (classification after  Laine &  

Vasander  1996) in  Southern  Finland  (Orivesi.  61°47'N, 24°18'E. ca.  150 m a.5.1., mean annual  temperature 3°C 

and  precipitation  700  mm)  and  Northern  Finland  (Rovaniemi rural  district. 66°29'N, 25°29'E, ca. 100 m  a.5.1., 

mean annual  temperature O°C and  precipitation  535  mm) were placed  directly  into plastic  pots  of  volume 3.4  

litres  (diameter  12 cm,  height 30  cm,  closed  at  the  bottom). Sedge pine fens  are the  most  common peatlands 

drained for  forestry  in  Finland  (Keltikangas et  al.  1986). The  pots  containing the  intact  peat  cores were  

transported to the  laboratory.  The  element  concentrations  (mg  g"
1  dry  mass)  in  the  surface  layer  of  the  peat  are  

shown in Table 1. 

Table 1.  Concentrations (mg g-1 dry  mass)  of  certain  elements at  the  sites  from  which  the  peat  samples  were 
taken. Concentrations  at the  southern  site were measured  in  the  0-10  cm  and  those  at the  northern  site  in  the  0-5  

cm layer.  

A  total  of  216  litter  bags  were used  for  the  experiment, 6x6  bags  for  each  treatment.  Exactly  1g of  the  

needle litter  was put in  each  bag.  and  the  bags were placed  under  the living moss layer,  1-2  cm  from  the  surface, 

in  the  plastic  pots  containing the  peat  profile.  Finally,  the  pots  were  placed  into  water  tanks  at temperatures of 5,  

10 and  15° C. 

The  pots  were  supplied  once  a weak with  water  that mimicked in its amount and  composition the 

average  rain  water  received  by  the  southern  site  (Sallantaus 1992). A  plastic  tube  was driven  into the  peat  at  one 

side  of  the  pot for  removing any  free  water,  since  the  pots  were closed  at  the  bottom.  The  water  tanks  were 

situated  in  a  walk-in  growth  room (Conviron GR  77,  Winnipeg. Canada) in  which  the  air  temperature was  

maintained  at  15° C  throughout  the  experiment.  The  photon flux  was  ca.  400 imiol  m'V (60 W incandescent  

lamps,  Airam  Ltd.,  Finland,  and  215  W Cool  White  fluorescent  tubes. Osram Sylvania, Danvers.  MA)and the  

day/night relative  humidity  of  the  air  was 60/80%.  The  water  tanks,  i.e.  treatment blocks,  were  not  replicated,  

and  in  order  to minimise  a possible  confounding interaction  between  the  water  tank  and soil  temperature 

treatment, the  locations  of  the  pots  within  the  tanks  were  changed  once a week. 

mg  g
1  Southern  Northern  

N 16.8 14.3 

P 0.67 1.59 

Ca 3.41 1.96 

K 0.40 0.63 

Mg 0.41 0.44 

AI 0.68 1.1 

Fc 7.2 24.7 

Cu 0.004 0.005  

Zn 0.033  0.019  
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The experiment  was  carried out  for 360  days.  The soil  temperature sum over 120  days in  the 10° C 

treatment corresponded to the sums observed  in the  field  during one growing season near the  southern  site  in  

Orivesi  (Domisch et  al.  2000). The  two other  soil  temperatures, 5  and  15° C  had been  chosen for  comparison.  A 

sample of  6  litter  bags was taken  from each  soil  temperature treatment  every  60 days, and  the  residual  litter  

removed  and  dried  at  60°  C  to a constant  mass  and  subsequently weighed to determine  the  mass  loss.  After  that, 

all  6  samples  representing each temperature treatment and period  were  pooled and  ground in  an A  10 IKA 

analytical  mill  for  chemical  analysis.  

Chemical  analyses  

Total  C  and  N  concentrations  in  the  litter  samples  were determined  with  a Carlo-Erba  elemental  analyser  (model 

1106) and  the  concentrations  of  other  elements in the  litter  material  at  the  beginning of  the  experiment with an 

atomic absorption spectrometer (Perkin-Elmer  5000) after  dry  ashing and  dissolving in hydrochloric  acid,  except  

for  P,  which was analysed spectrophotometrically  (Perkin-Elmer Lambda  11) by  the  hydrazine-molybdenate 

method.  The  mineral  element  concentrations  in  the  surface  peat  of  the two sites  from which  the  peat  cores had  

been  extracted  (Table 1)  were determined  with  an  ICP-spectrometer  (ARL 3580  OES,  Fison  Instruments,  

Valencia, CA) after  dry  ashing  and dissolving  in hydrochloric  acid.  Nitrogen concentrations in the  peat  were 

analysed with a LECO CHN  600 analyser  (Leco Corp.  St. Joseph, MI).  

Statistical  tests  and calculations  

The initial C  and  N  contents  in the  litter  were obtained  from pooled material  and  were  thus  common to all  the  

treatments.  At the  end  of  each  decomposition period  the  corresponding  contents in the  residual litter in the  

retrieved bags  were  calculated from  the  mean concentrations  and  the  respective  mean masses  in  each  treatment. 

The  losses of  mass,  C  and  N  from  the  litter  bags were calculated  relative  to their  initial  mass  or content and all  

the  mass  loss  percentages were subjected to angular transformation  (x'=arcsin\x)  before  the  statistical  tests.  

Repeated measures ANOVA was used to test  the  effects of  soil  temperature, climatic  region and  length 

of the  decomposition period on the  mass  losses.  Soil  temperature (3 levels)  and  climatic  region  (2 levels)  were 

used as grouping factors, and  the  length of the  decomposition period (6 levels) as a within-factor.  The  individual 

observations  regarding each  combination  of  treatments  were  used  as replicates  (6).  Contrast  analyses  were 

performed as post-hoc tests  (effects of region at given temperatures and  effects  of  temperature in  given regions). 

Two  alternative  models  were employed to  analyse  the  relationship between  soil  temperature sum and  

accumulated  mass  losses  from the  litter:  the  slightly modified  exponential model  with  an asymptotic  level,  

presented by Berg & Ekbohm  (1991): 

and the  sigmoidal  growth function of  Richards  (1959): 

where  

rni oss  is  the  accumulated  mass  loss  at  a certain  temperature sum  (T slim )  

a is  the  asymptote (limit  value  for mass  loss)  

b,  c  and  d  are parameters 

T
sum  is  the  soil  temperature sum (O°C threshold). 

m loss=a*a-e
b'T^a

). (1) 

m
loss=a/((l+e'^'num >)"' d>

). (2) 
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The  model  of  Berg  &  Ekbohra  (1991) generally fits  well  but has  the weakness  from  our point  of view  

that  it  is  forced  to  pass  through  the  origin whereas  some decomposition may  take  place also  at  or  very  near O°C 

(Bleak  1970.  Visser  &  Parkinson  1975). The  Richards  growth function has  often been  used in  forestry  to model  

tree growth. Both  models  were first  fitted individually  to the  southern  and  northern  sets  of mass  loss  data, but  

since  the  curves were not statistically  different  (asymptotic  level  of  each  curve within the  95%  confidence  level  

of  the  other), the  data  were pooled and  treated collectively.  The  statistical  analyses  were  performed with  the  

SPSS statistical  package (SPSS for  Windows  9.0,  1999). 

Results 

Mass  losses  from the  needle  litter  

Mass  losses  from  the  litter  increased  with  time  (Fig.  1; within-subject  effect of  decomposition period: F  = 190.7: 

P  < 0.001) The  interaction  between  climatic  region and  decomposition period  was not statistically  significant, 

whereas  that  between  soil  temperature and  decomposition period was (F = 13.25; P <  0.001),  indicating that  the  

mass  losses  did  not vary  between  the  regions but were greater at  higher soil  temperatures. The  mass  losses  at  5°C 

were  lowest  over  the  whole  experiment in  the  material  from  both  climatic  regions, and  the  losses  recorded  on 

days  180  to 300  were higher at  15°  C  than at  10°  C  (Fig.  1). Over  this  interval  the  soil  temperature sum increased 

from  1800 to 3000  d.d. in  the 10°  C treatment and from 2700  to  4500  d.d. in  the  15° C treatment. 

Contrast  analysis  revealed  that the  mass  losses  were higher in  the  northern  peat  only  at  temperatures of 

10 and  15°  C.  No  differences  between  the  peats at temperatures of  10  and  15° C  were  observed  at  the  end  of  the  

experiment,  on day 360, however, whereas  the  mass  losses  at  5°C  were notably lower.  The  mass  losses  increased  

with  time in both  peats and  at  all  soil  temperatures, although at  different speeds (Fig.  1). The  mass  losses did  not 

increase  significantly  after  300  days.  

The  mass  losses  in  all  the  temperature treatments showed  a similar  non-linear  relationship to  the  

accumulated soil  temperature sum (Fig.  2).  The  limit value for  mass loss  in the  pooled data  was 88.0%  when  

Figure 1. Accumulated  mass  losses  from  the  needle  
litter  during the  experiment at  soil  temperatures of  

5,  10  and  15° C  in the  southern  and  northern  peat. 

Standard  errors  are indicated (n=6). 

Figure 2.  Relationship  of accumulated  mass  losses  

to accumulated  soil  temperature sum during the  

experiment.  Values  are  means of 6  observations. 
Fitted curve calculated  with the Richards  model. 

Asymptote at  88%, R
2
=0.95. 
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fitted to  the  Richards  model  (R2

=0.95),  and  the  equation proposed by Berg  and  Ekbohm  (1991) gave  practically  

the  same value, 88.2%  (R
2

=0.89). 

The  carbon  concentration  in  the  litter  increased  from  about  initially  50%  to 52-53%  on day  180. and  

decreased  thereafter  almost  to the  initial  concentration  (Fig.  3A).  The  carbon loss  from  the  litter  (Fig.  3B)  

showed  the  same pattern as the  mass  loss.  

Changes in  N status  

The initial  mean N  concentration  in  the  needle  litter  was  1.0% of dry  mass,  increases  to 2-3% being recorded by  

day 180  (Fig.  3C)  and  decreases  thereafter.  At 5°C the  concentrations  increased  throughout the  experiment. 

The N  content of  the  remaining litter  was relatively  constant  during the  first 120-180  days (Fig.  3D), 

but  decreased  thereafter  at 10 and  15°  C.  No  changes  were  observed  at  5°C. The  N  losses  at  10 and  15° C  were 

slightly  higher  in  the  northern  peat.  

Figure 3.  Concentrations  of  carbon  (A)  and  nitrogen  (C)  and  amount of  carbon  (B)  and  nitrogen (D)  in  the  

remaining litter  during  the  experiment at  soil  temperatures of  5,  10 and  15° C  in the  southern  and northern peat. 

Values  for  pooled samples  (n=l). 

The  C/N  ratio  of  the  needle  litter  was  50  at  the  beginning of  the  experiment (Fig.  4A) and  decreased  to 

20-25  by  day 180 at  all  soil  temperatures. During  the  first  120  days the  ratios  were higher the  lower  the  soil  

temperature, but  no  clear  differences between  soil  temperatures could  be  observed  from day 180 on. 
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When  comparing the  changes in  N  concentrations and  contents  with  the  accumulated  mass  losses,  

relatively clear patterns were observed  (Fig.  5).  The  N  concentration increased  until  a mass loss  of  50-60%, 

whereupon it  decreased  (Fig.  SA),  while  the  N  content did  not change much  until  a  mass  loss  of  50-60  %, from 

which  point  it  decreased  linearly  (Fig.  5B).  The  C/N  ratio  of  the  litter  also  decreased  until  a mass  loss  of  50-60  

%, but  then  increased  slightly  from  somewhat  above  20  to  nearly 30  (Fig. 4B). 

Like  the  mass losses  from  the  litter, the  N concentrations  and  contents  also  showed a non-linear 

relationship to  the  accumulated soil  temperature sum (Fig.  6).  The  N  concentrations  in  the  needle litter  increased  

until  a  soil  temperature sum  of  approx.  2000  d.d.  and  thereafter  decreased  slightly  (Fig.  6A),  whereas  the  N  

content decreased  markedly  after  a soil  temperature sum of  approx.  2000  d.d.  (Fig. 6B). simultaneously  with  the  

culmination  of the  decrease  in the  C/N  ratio  (Fig.  6C).  

Figure 4.  C/N  ratio  at  soil  temperatures of  5,  10 
and  15° C  in  the  southern  and  northern  peat  in  

relationship to time  (A) and  accumulated  mass 

loss  (B).  Values  for  pooled samples (n=l). 

Figure  5.  Concentration  of  nitrogen (A)  and  amount 
of  N  remaining  in  the  litter  (B)  in  relation  to 
accumulated  mass  losses  during the  experiment at  

soil  temperatures of  5. 10 and  15° C  in the  southern  
and  northern  peat.  Values  for pooled samples  (n=l). 
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Discussion 

Mass  losses 

As  in many  studies  with  different litter  material, we found that  after an initial  high rate  of  mass  loss,  

decomposition slowed  down  asymptotically  towards  a  limit  value  (maximum mass  loss)  specific  to  the  litter  type 

(see Aber et  al.  1990, Berg &  Ekbohm  1991, 1993, Berg  &  Matzner  1997,  Latter  et al.  1998, Berg  2000). The  

limit  value  for  our  litter  was  approx. 88  %, similar  to the  figures presented by Berg  et  al. (1996) for  brown Scots  

pine needle  litter  in mineral  soil.  The  mass  loss  is  regulated  by  nutrient status,  readily  available  carbon  and the  

lignin content of the  litter  (Berg &  Staaf  1980, Mellilo  et  al.  1982, Berg &  Ekbohm  1991,  Berg &  Matzner  1997, 

Berg 1998). Our results  indicate  that  under  steady  moisture conditions, the  accumulated  soil  temperature sum 

determines the  time required to reach  the  limit value  for  a  particular  litter  type (see  also  Andren &  Paustian  

1987, Honeycutt  et  al. 1988, Van  Cleve  et  al.  1990, Douglas &  Rickman  1992, Sparrow et  al.  1992,  Domisch  et  

al. 2000). 

Figure 6.  Relationship  of  N  

concentration (A),  amount of N  

remaining in  the  litter  (B)  and  C/N  ratio  

of the  remaining litter (C)  to  the  

accumulated  soil  temperature sum  during 
the  experiment  at  soil  temperatures of 5,  
10 and 15° C  in the southern  and northern  

peat.  Values for  pooled samples  (n=1). 
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In  our experiment  the  mass  losses  probably  reached  the limit value  at  the  soil  temperature of  15°  C, 

whereas the limit was  just  about  to  be  reached at  10° C.  The mass  losses  at  5°C  definitely  did not  reach  the  limit  

value during the  360  days.  The  accumulated  soil  temperature sum at  5°C  was only  1800  d.d. at  the  end  of  the  

experiment,  and  an even longer experiment would have  been  necessary  to find  out whether  the  decomposition at  

that  soil  temperature will  really proceed to  the  same limit  value  as at  the  higher temperatures. 

Decomposition  proceeded somewhat  faster  in  the  northern  peat  than  in  the  southern  peat  for part  of  the  

incubation time  (Fig.  1).  Similarly.  Bottner  et  al. (2000) observed  higher mass  losses of  up  to 10%  from  labelled 

litter  material  after 3 years when  northern  boreal  soil  was translocated  southwards  to an extent  corresponding to 

a mean annual  air  temperature increase of  2.5°  C.  Couteaux  et  al.  (2001) and  Giardina  &  Ryan  (2000) concluded  

that  the  stabilised  fraction  of  the  litter  may  be  insensitive  to  climate  variations,  but  carbon mineralisation will  

occur  earlier at  warmer  southern  sites  than  at  colder  northern  ones. Our  results  support these  conclusions, since  

our northern  data  indicated a higher limit  value, although this  difference was not significant.  An  increasing  limit  

value would  be  in  contrast  with  the  conclusions of  Berg et  al.  (1993) and  Johansson  et  al. (1995)  that  the  

proportion of  lignin-like  residual material in  Scots  pine needle  litter  at  similar  stages of  decomposition may  

increase  when climatic conditions promote higher  initial  mass losses,  which  seems to be  applicable to elevated  

soil  temperatures. Indeed, Verburg et  al. (1999) and  Dalias  et  al.  (2001) observ  ed  that  the amount of refractory  

organic matter  may  increase  at  elevated soil  temperatures. A  higher limit  value  would  indicate  that  the  

decomposer community  in  northern  peat  would  be  more efficient  in  utilising  the  recalcitrant  lignin and  lignin  

like  end  products  in  the  decomposition process  under more favourable  temperature conditions.  

N status 

The  concentration  of  N  in  the  remaining litter  increased  with  time, as is  commonly observed  (Berg  &  Staaf  1980, 

1981, 1987, Berg et  al.  1987, Titus &  Malcolm 1999, Hyvönen et  ai. 2000), but  in  contrast  to this,  the N  content 

of the  residual  needle  litter  remained  relatively unchanged at  first and  decreased only  during the  later  stages  of 

the  decomposition process  (Figs 3 C.  D).  Increasing  N  concentrations  and  steadily  decreasing N  contents  during 

a time  span  of  4-7  years  were observed  by  Berg  et  al.  (1987)  when  studying  the  decomposition of  nitrogen  

fertilised  Scots pine needle  litter  and  by  Titus &  Malcolm  (1999) studying Sitka  spruce needle  litter  (initial  N  

concentration  7-8 mg  N  g" 1 and  12  mg  N  g" 1 ).  Berg  et  al.  (1987) observed  an unchanged N  content  during a  - 

year  experiment to study  the  decomposition of  nutrient-poor  Scots  pine  needle  litter  (initial  N  concentration  ca. 4 

mg  N  g"
1

),  while  Berg & Staaf  (1981) observed  first  an increase  in  N content  after  a short  leaching  period and  the  

a steady release  phase after  two years,  pointing out  that one important factor  determining whether  accumulation  

will  take  place  or not  is  the  initial  N  concentration in the  litter. We studied  green  needles  with  a relatively  high 

initial  N  concentration, which  could  explain  the  somewhat  unchanged N  content during the  early  stages of 

decomposition. 

Our observation  may  be  explained by the  fact  that  more easily degradable compounds, such  as water  

soluble  compounds and  cellulose  having low N  concentrations,  disappear first (Naucke 1993), and  lignin. which  

contains  a  considerable amount of  the  N  in Scots  pine needle  litter  (32 43  % of total  N,  Berg  &  Staaf 1980) 

decomposes  much  more slowly.  A  further  reason may  be  the  binding of  N  to the  lignin fraction and  humification 

products  during  decomposition  (Berg &  Staaf 1981, Berg  &  Theander  1984). No  N  release  from the  litter  took  

place before  an accumulated  mass  loss  of  about 50-60  %, a C/N  ratio  of  20-30  or  a  soil  temperature sum  of  ca  
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2000  d.d.,  which  were in  many  ways  turning-points in  the  N  dynamics  of  the decomposition process  (Figs.  5 and 

6). 

Conclusions  

Our  results showed  that  litter  decomposition rates  in  the  higher soil  temperature treatments  were slightly higher 

in  the  northern  peat, as also  was the  limit  value, although  not significantly  higher than  in  the  southern  peat. Both  

mass  loss  and  N  release  from decomposing litter  had  a clear  non-linear  relationship to  the accumulated soil  

temperature sum.  We are inclined  to link  the  observed  dynamics  of  N  release  to the  mass loss  dynamics  related 

to the  sequential decomposition of  organic compounds. 
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Abstract 

A field experiment  was  carried out to  validate the results  of  a previous  laboratory  experiment  showing that  part  of  the carbon 
released  from  decaying Scots  pine  (Pinus  svlvestris  L.)  needle and  fine root litter  was  retained  in  the  peat  soil. 

I4
C-labelled litter 

was  incubated for  up to 1.5 years  in  pristine and drained peat  soils. During  this  period. 40-60% of  the initial 
14

C-activity  was  
lost  from the litter and 10-30% of the  lost activity was retained in the soil. Needle litter  decomposed  faster  than fine root litter. 

On  average,  drainage  increased the  mass  and  
,4

C  losses  from  the  needle  litter in Carex-peat but  not in  Sphagnum-peat. Losses  
from the  fine root litter  were  not clearly  affected  by drainage.  Drainage  did not  significantly  affect  the relative  proportion  of 14C  

activity  found in the peat. The results  support  the earlier hypothesis  that a flow of  organic  C from decaying  tree litter 
contributes to  C storage in drained peatlands.  © 2000 Elsevier  Science Ltd. All rights  reserved.  

Keywords: Carbon relocation; Decomposition; Drainage; Needle and fine root litter; Peatland; Pinus svlvestris 

1.  Introduction 

Pristine  peatlands serve as  sinks  for  atmospheric  car  

bon.  Most of the litter in  these  peatlands is produced 

by  plants of the field  and  bottom layer (Sphagna and  

sedges). Pine mires are the most  common peatlands 

drained  for forestry in Finland (Keltikangas et  al.,  

1986). Drainage of pine mires promotes  a shift  in bio  

mass production from the field and bottom layer to  
the tree layer (e.g., Reinikainen et al.,  1984; Sakovets  

and  Germanova, 1992)  so that Scots pine litter is the  

most abundant  litter type on these mires.  Along with  

the increased  tree stand productivity following drai  

nage,  the above ground detrital input from trees  

increases,  and probably also the below ground input 

(Laiho  and Finer,  1996; Laiho and Laine,  1996). 

*  Corresponding author. Tel.: +358-13-2513541; fax: + 358-13- 

2514567. 

E-mail  address:  timo.domischuf metla.fi (T. Domisch). 

Drainage of peatlands for peat  harvesting or agricul  

ture evidently turns  them into  net  sources of carbon 

(Armentano and Menges, 1986; Nykänen et  al., 1995), 
but the  consequences  of forest drainage are not that  

obvious (Vompersky et al.,  1992;  Martikainen  et al., 

1995). Studies comparing the bulk  densities  and car  

bon stores  of natural  and drained  peatlands in Finland 

(Minkkinen and Laine,  1998  a, 1998b; Minkkinen et 

al., 1999)  have  shown that even 60 years  after drainage 

for forestry  most  peatlands have not developed into  

carbon sources. This might be due  to the increased  lit  

ter production by the tree layer, since  the ratio  

between litter input through increased  tree layer pro  

duction and  decomposition of previously formed peat  

is crucial in  this respect  (Vompersky and Smagina, 

1984; Cannell  et al., 1993; Minkkinen and Laine,  

1998b). 

Results  of our previous laboratory experiment indi  

cated  that part of the  carbon  released  from decaying 
litter  is  retained in the peat  soil  (Domisch et al., 1998)  
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and may thus  contribute  to the increased  peat  carbon  

stores  observed  after drainage for forestry.  

The  general aim here was to create a field  control  

for the results  of the previous  laboratory experiment  

(Domisch et  al., 1998). More specifically, the objectives  

were (1)  to determine  the differences between  Scots  

pine needle  and fine  root  litter decomposition, (2) to 

investigate differences  in the decomposition of the  litter  
between Sphagnum- and Carex-peats, both  drained  

and pristine, (3) to assess the fate of the carbon lost  

from the litter,  and (4) to study the  vertical  distri  

bution  of the  carbon  retained  in  the peat  soil.  

2. Materials and methods 

2.1. Litter material  

The  
14

C-labelled Scots  pine needle  and fine  root  lit  

ter material  for the litter bags  used  in  the decompo  

sition  experiment was produced in the same way as 

described  by  Domisch  et  al. (1998), since  this exper  

iment  was intended  as a  field  validation  of the  previous  

laboratory experiment. Scots pine seedlings were 
labelled with 

14
C and were grown for  one growing sea  

son. After that, current needles and fine roots were 

harvested  and  used  for  the  decomposition experiment. 

Samples of 1 g  dry mass were placed  in  10  x 10 cm
2 

polyester litter bags (mesh  size 1 mm).  The element  

and initial  
14

C-activity analyses  and  fractionation  of 
the litter material were performed as described  by  
Domisch et al. (1998).  

2.2. Experimental design  

The  experiment was planned to assess the effects of 

three factors, litter type, drainage status and peat  type,  

at two  levels,  and that of one factor, decomposition 

period, at three levels.  The experiment was conducted  

near the University of Helsinki  Forestry Station at 

Juupajoki. Central  Finland  (61°50' N, 24"  17' E, 150  m 

a.5.1.). Four plots were chosen to represent  both  

drained and pristine sites  of  the same pre-drainage 

nutrient regime (Table I). One pair of sites had  miner  

otrophic Carex-peat and the other ombrotrophic 

Sphagnum-peat. Three  blocks  with  two  needle  and  fine  

root litter bags for each block  and decomposition 

period were established  on each  plot. 

Plastic  tubes  of length 30 cm  and diameter  15 cm  

were driven into the peat  and a litter bag was placed 

in each  tube  at the beginning of  June  1996.  The  needle  

litter bags were  placed horizontally directly below the 

living moss layer  and the fine root  litter bags 2-3  cm  

deeper. The  first decomposition period (period I) lasted  

4.5 months, until  the end  of  October 1996, the  second 

(period II) lasted 12 months, until the beginning of 
June 1997, and the third (period III) lasted  16.5 

months, until  the end of October 1997.  

The  element  concentrations  of the  peat layers on the  

plots (Table 2) were  determined with an atomic 

absorption spectrophotometer (Perkin-Elmer 5000) 

after dry ashing  and dissolving in hydrochloric acid 

except for P which  was analysed  spectrophotometri  

cally (Perkin-Elmer Lambda 11) by  the hydrazine  

molybdenate method. N was determined by the Kjel  
dahl method. 

Climatic  variables  were monitored  continuously with  

a data logger (Campbell CR-10) on Plot 4 (Fig. 1). 

Data  regarding the depth of the snow cover (Fig. 1) 

and the temperature  sums (952 C in 1996  and 1151 (  

in 1997,  threshold  -  5°C)  were obtained  from the  Hyy  
tiälä Forestry  Station  1.5 km from  the  furthest Plot 4.  

On the other plots, water level  and soil  temperature  

were measured  manually two to  three  times a week  

during the summer of 1996. Regression  models  were 

then developed for  calculating the  monthly soil tem  

peratures and water levels  for  Plots 1, 2 and  3 in 1996 
and 1997 using continuous  monitoring data from Plot 
4 as a  basis  (Table 3). 

2.3. Measurement of  mass  loss and  remaining 
14 C  

activity 

At the end of each  decomposition period, the  litter 

bags in the corresponding blocks  were taken  from the  

soil, their  contents dried  to constant  mass at 60° C and 

weighed to  determine mass  loss.  The litter  in each litter  
bag was combusted in  an oxidiser  (Maricont, Junitek. 

Turku, Finland)  and analysed in a liquid scintillation 

counter (Wallac 1411 Liquid Scintillation  Counter,  

Wallac, Turku, Finland) for remaining 
14

C-activity.  
The peat  cores  from inside the tubes  were lifted  from  

Table 1 

Characterisation of the plots used in the experiment.  The site type classification refers to Laine and Vasander (1996) 

Plot Drainage  status Nutrient status Peat  type Site type 

1 Pristine  Minerotrophic  Carex Tall sedge pine fen 

2 Ombrotrophic Sphagnum  Dwarf-shrub  pine bog  

3 Drained Minerotrophic  Carex  Tall sedge pine fen 

4 Ombrotrophic  Sphagnum  Dwarf-shrub  pine  bog  
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Table 
2

 Element

 
concentrations

 
(mg

 
g-1

 
dry

 
mass),
 pH (CaCl

2
) and bulk density (Db, kg m~
3

) in the surface peat on the 
plots.

 
The

 
values

 
are

 
means

 
of

 
three

 
observations

 
the soil and cut into layers starting from the surface  

(moss  layer,  0-5 cm, 5-10 cm,  10-20 cm and 20-25 

cm). The layers were dried to constant  mass  at 105° C  
and subsequently milled  and  homogenised. Three  sub  

samples from each layer of  every  core were  then  com  

busted and  analysed  in  the  same manner as the  litter 

samples. 

2.4. Calculations  and statistical tests 

The  losses  of 
w

C-activity  from the  litter were  calcu  

lated relative to the initial activity  levels  determined  in 

the subsamples  at the beginning of the experiment. 
The  

I4

C-activity  lost  from  the system  was estimated  in  
terms of the difference  between  the initial  activity  and 

that found in the  remaining litter and  in the moss and  

peat  layers. 
The statistical tests  were  performed with the  SPSS  

statistical package (SPSS for Windows 8.0. 1998). 

Repeated measures  ANOVA was used to test  the  

effects of drainage status, peat  type  and  litter  type  and  

decomposition period. Drainage status, peat  type and  

litter type were  used as grouping factors, and de  

composition period as a within-factor.  For  each treat  

ment the  average of the two  litter bags of each block  

was calculated and the blocks  (three for each treat  

ment)  were  then used  as replicates. 

Fully factorial  ANOVA was used  to test  the vertical 

distribution  of 
I4

C-activity  between  the  different  layers 

in the  peat  for each  decomposition period separately. 

Drainage status, peat type and  litter  type were  used  as 
factors.  All percentage  values were subjected  to angu- 

Table 3 

Mean soil temperatures  at given depths, and  water levels on the 

plots  from the beginning  of June to the end of October, 1996 and  

1997 (±SD)  

Plot  

Depth 
(cm)

 

N 

P 

K 

Ca 

Mg 

Fe 

Al 

Cu 

pH 

D
b

 

1 

0-10 

7.24 

0.48 

1.30 

1.82 

0.46  

4.60  

0.43 

0.0061 

2.85 

24.23 

10-20 

12.16  

0.63  

0.40  

2.21  

0.41  

5.80 

0.67  

0.0081  

2.91  

31.16  

20-30  

18.63  

0.60  

0.17  

2.82  

0.25  

9.96  

0.70  

0.0050  

3.02  

46.11  

2 

0-10 

14.35 

0.44  

0.77  

2.08  

0.47  

0.94  

0.61  

0.0050  

2.60 

48.12 

10-20 

10.39  

0.47  

0.29  

1.36 

0.41  

0.77 

0.59 

0.0027 

2.47  

61.42  

20-30  

8.28  

0.29  

0.06  

1.10 

0.32  

0.58  

0.26  

0.0021  

2.47  

50.70  

3 

0-10  

15.53 

0.85 

0.83 

2.48 

0.50  

6.93 

1.19 

0.0090 

2.80 

60.44 

10-20 

19.03  

1.00 

0.33  

1.18 

0.15  

10.15  

2.78  

0.0089  

2.83  

107.16 

20-30 

18.59 

0.77 

0.10 

1.95 

0.12 

12.24 

3.81 

0.0111 

3.07 

124.53 

4 

0-10  

12.18  

0.59  

0.63  

2.50  

0.45  

0.79  

0.78  

0.0065  

2.67  

65.25  

10-20 

14.72  

0.64  

0.21  

1.45 

0.34 

0.86 

1.42 

0.0039 

2.50  

71.41  

20-30  

14.45  

0.50  

0.11  

1.28 

0.22  

0.48  

1.98 

0.0052  

2.58  

98.73  

Plot Depth  (cm)  1996 1997 

Soil temperature 

1 5 10.3  ±2.4 13.2 ±3.7 

15 10.9  ± 1.7 12.0 ±2.8 

30 10.4  ±20 11.2 ± 1.9 

2 5 11.0 ± 2.1 12.0 ±3.2 

15 9.6 ± 1.8 10.7 ±2.9 

30 8.9  ± 1.4 9.7 ±2.2 

3 5 9.9  ±2.3  10.3 ±3.5 

15 8.6  ± 1.7 9.7 ±2.7 

30 6.7  ± 1.1 7.5 ± 1.8 

4 5 8.9  ±2.7 10.3 ±4.1 

15 8.0  ±2.0 9.2 ±3.3 

30 7.1 ± 1.7 8.2 ±2.6 

Depth  to water table (cm)  

1 9.8 ±8.7  4.1  ± 1.7 

2 26.0  ± 14.2 16.4 ±2.7 

3 35.3 ± 19.6 22.7 ±3.8 

4 45.5 ± 19.8  29.8 ±3.8 
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lar  transformation (,v' = before the statisti  
cal calculations. 

3.  Results 

3.1. Mass  and  14 C-activity  losses 

Mass  losses  were significantly higher from needle lit  
ter than from fine root litter (F = 40.920; P< 0.001). 
On  average, the fine  root litter lost mass at the same 

rate  in both Sphagnum- and Care.v-peats. No signifi  

cant effects of drainage status on mass losses  from fine  

root  litter could  be observed.  On  average, drainage 

increased  mass losses  from needle  litter in Carex-peat 
but  not in  Sphagnum-peat. 

Decomposition time was statistically significant for 

mass  losses  from both litter types (F  = 259.984;  
P < 0.001). The significant interactions  between de  

composition time and litter  type  (F = 10.732; P = 

0.005)  and  between decomposition time, litter  type and  

peat  type (F = 6.698;  P = 0.020) indicated that mass 
losses  from needle litter with time increased  more  than 

those from  root litter and that  this was more pro  
nounced in Carex-peat (Fig. 2).  

The activity losses  from needle litter were  higher 

than those from fine root litter (F=  53.057; 

P <  0.001). Drainage increased  the  activity  losses from 

needle  litter but  not from root litter (F 19.310; 

P<  0.001). On  average, drainage increased  activity  
losses  from  the needle litter in Care.v-peat but not in  

Sphagnum-peal. The losses  of 
I4

C-activity  from both  
fine  root  litter and needle  litter increased  significantly 

with decomposition time (F = 95.540; f <O.OOl,  

Fig. 2).  
Mass  losses  during the first summer were 32-52% of 

the initial  mass. Mass losses during the winter  were  

equivalent to 5-10% of  the initial  mass  for  both  litter 

types, while  the  losses occurring during the second  

summer were notably lower than those  during the  first  

summer, around 5-15% of the initial mass. 

3.2. Relocation of  
14

C-activity  

Most  of the initial 
14

C-activity  was still found in the 
remaining litter after decomposition period I (June  

1996-October 1996). The peat  and moss layers in  the 

fine  root litter cores retained  on average slightly more 

of the  lost  
14

C-activity  than  those  in  the needle litter  
cores, especially in the case  of drained peats, although 
this was not  statistically significant due  to high varia  

bility (Fig. 3). After periods II and 111 the  peat and  

moss  layers  retained  the  same amounts  of lost  14C-ac  

tivity  from the root and needle  litter. 

The moss and peat  layers  retained  12-24% of the 
14

C-activity lost from the fine  root litter after de  
composition period I.  19-32% after period II and 21- 
26% after  period 111 (Fig. 3). More of the 

14

C-activity  
lost from the root litter was found in the moss  and  

peat layers  on the drained  peats  than on the pristine 

ones after period I, but no effect of drainage status 

could be observed  after periods II and  111. The corre  

sponding percentages  for the  needle  litter  were 9-13%,  
15-32% and 14-28%. On  average,  the  amount of 14C  
activity found in the  Sphagnum-pedt and originating 
from needle litter increased  from period I to period II 

more than  it did  in Care.v-peats  (Fig. 3). No increases  

Fig.  1. Air temperature (at height  2 m), soil temperature (at depths 5, 15 and 30 cm), daily  precipitation  and depth of water level on  Plot 4 

through  1996-1997. Snow depth  measured at the Hyytiälä weather station 1.5 km from the plot. 
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of 
I4

C-activity  were observed from period II to  period 

111. No significant effects of  drainage status were 
observed  on the relocation of activity  from the needle 

litter. 

3.3. Vertical distribution  of C-activity  

The  uppermost  layers, i.e., the  living moss layer and  

the  5-cm peat  layer below  it, retained  most  of the  l4C  
activity  lost  from the  litter  that  was detectable  in the  
soil  profile (Fig. 4). The 5-10 cm layer also retained 

noticeable  amounts  particularly in the  fine root  litter 

cores. No significant differences between  the drained  

and pristine moss and peat layer samples were 
observed in these uppermost layers. On  average, the  

deeper layer of  the  drained  peat  (10-20 cm) contained  

more  I4C-activity  lost  from the  litter than  did  the  re  
spective layer of the pristine peat (Fig. 4). The fine  

root  cores contained  more activity  in  the deepest layer 

(20-25 cm) than the needle  litter cores although all 

these  differences  were not statistically significant due  to 

high variability. The  drained  Sphagnum-peal in the 

deepest layer  examined (20-25  cm) also retained more 
I4

C-activity  on average  than the drained Carex-peat, 
but  no statistically significant differences  could  be  
observed  due  to the  low  I4C-activities  and  high varia  
bility. 

4. Discussion  

4.1. Mass  and 14 C-losses  

The losses  in mass were  greater  than those  observed  

for needle  and fine root  litter of Scots pine on boreal 
mineral soil sites by Berg  (1984, 1986) and  Berg et  al. 

(1995). One possible explanation may be that  the litter 

used  here  was derived  from nursery-grown  seedlings 

that  had been  irrigated and  fertilised  regularly and  had  

higher concentrations  of nutrients,  e.g.  N, than litter  
from old trees  (Berg and Staaf, 1980  a, 1980b; Paavilai  

nen, 1980; Helmisaari,  1990. 1991). Finer  and Laine  

(1996), who used litter similar to that used here,  
observed mass losses  similar to that  observed  by  us. 

The percentage  of  water-soluble compounds in our 

needle  litter, 38%, was considerably higher than  the 5- 

20% reported by Johansson  (1995), which  may be 

another  reason for the relatively high mass losses  from 

our needle  litter. The distribution  of 
14

C-activity  
between the soluble, cellulose  and hemicellulose frac  

tions in the fine  root  litter material  was fairly similar 

to that of the  initial inorganic-chemical composition 

found in Scots pine root  litter by Berg (1984), and this 

may explain that the I4C-losses from our root  litter 
were similar  to the  mass losses reported by Berg 

(1984). 
Since the nitrogen concentrations in the fine root  

Fig.  2.  Mass  and 14
C activity losses  from  line root  and needle litter  in  the Sphagnum-  and  Care.v-peats  at  the end of  the  three decomposition  

periods. Standard errors  are indicated ( n = 3). 
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Fig.  3.  The relative distributions of 14
C activity lost  from the needle 

and fine root litter bags between the loss  from the system, moss  layer  

and peat at the end of the  three decomposition  periods  on  plots  

representing  undrained and drained Sphagnum-  and Care.x-peats  

(n = 3). 

and needle litter material were similar,  it would appear 
that the differences in decomposition rates were caused 

by  other factors, e.g. the considerably higher concen  

trations  of Al,  Cu  and  Zn in  the fine  root  litter  (Dom  

isch  et al., 1998). High Al concentrations  and low  Ca 

and  Mg concentrations  are assumed  to slow  down the 

rate  of decomposition of fine root litter (Vogt et al., 

1987). Elevated concentrations of heavy  metals such  as 

Cu and  Zn have been found to  reduce  the  microbial  

biomass in soil and slow  down the decomposition of 

its organic matter (Witter. 1996; Kupermann and Car  

reiro,  1997). 

The  observation  that the decomposition of fine  root  

litter  was less  affected by  peat  type  and  drainage status  

than that of needle  litter confirms to earlier  reports  

that the early stages  of  root  litter decomposition are 

influenced  less  by  environmental  factors than  by  sub  

strate properties (Johansson. 1984; McClaugherty et  

al., 1984; Finer  and Laine,  1996; King et al., 1997). 

Climate  and  site  properties seem to be  more  important 

factors explaining decomposition rates  on a wider geo  

graphical scale than in a  climatically more or less  hom  

ogenous  area,  even at early  stages  in  decomposition 

(e.g..  Dyer  et al.. 1990; Johansson,  1994). 

It is  important to bear  in mind  that  the relative  dis  

tribution  of I4C-activity  in  the organic fractions  of  our 
litter material  did not correspond precisely to  their  

mass distributions.  This  is probably  the main  reason 

why the corresponding mass and I4
C-activity  losses 

measured  from the data  may  differ. The  losses  in 14C  
activity from  the  needle  litter used here were almost 

always lower than the corresponding mass losses, 

although not  always significantly so. Relatively more 

mass than I4

C-activity was in soluble  substances, 
which are known  to decompose first. Both  the  mass 
and 14

C-activity  losses  from the  fine  roots  during the  
first summer correlated  fairly well  with  the proportions 

of water and alcohol-soluble organic fractions  in the 
litter material  (Domisch  et al.,  1998), and thus  the  first 

year mass losses  from the  fine  root  litter may  also  be 

mainly due  to  losses of soluble compounds, as was 

also found for root litter by McClaugherty et  al. 

Fig. 4. Vertical distribution of 14
C  activity lost from the litter bags  

and retained in the peat and moss  layers,  expressed  in percentages  of 

total activity detected in these layers  at the end of the  three de  

composition periods (n =  3). 
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(1984) and needle litter by Mikola  (1954) and Mälkö  

nen (1974). As more  of the I4C-activity  is  found  in the 
cellulose  than  in the  more  soluble fractions, 

14
C-losses  

probably increase  relatively more later  on than do the 

mass  losses.  

4.2. Relocation  of  14  C-activity  

Based on the results  of  the previous laboratory ex  

periment (Domisch et al., 1998) it can be concluded  

that  also  in  this  field  experiment the  biggest proportion 
of the  

14

C-activity  lost  from the  system  was emitted to 
the atmosphere and that only a minor part was lea  

ched  in  deeper layers than  examined  in this study or 

leached  into  the ground water. At the end of the ex  

periment. the peat  layers  examined  retained  3-10% of  

the  initial  14
C-activity  which  corresponds to  9-31%  of  

that lost from the litter during decomposition. The  

amount of 
4

C-activity  found  in  the peat  increased  
during the  winter  (period II) in  particular. Decompo  

sition  during the winter  has been observed  to take 

place even at low  soil  temperatures (Heal et al., 1978: 

Brakke and  Finer,  1990; Finer and Laine.  1996). The  

percolation water in autumn and spring (meltwater 

from snow)  may be responsible for  the movement of  
I4

C-activity  down the peat  profile. The 
14

C-activities  
retained in  the soil no longer increased  during the sec  

ond summer. It cannot be deduced  from the present  

results  whether  the relocation  of 14

C-activity in the  

peat  had  ceased, or whether some  had passed into  the  

groundwater and  had  been  replaced  by 
I4

C-activity  
from the litter  decomposing during the second  summer  

(period III). 
The fact that the root  litter released  more  I4C-ac  

tivity into  the  deeper layers (5-10 cm and  deeper) than 

did the needle  litter may be connected with  the  lo  

cation  of the decomposing litter:  The needle  litter was 

placed directly under the living moss layer but the root  

litter a few  cm deeper in the  peat.  
The  retention of the 

14

C-activity  in the peat  profile 

may  be in connection with formation of colloidal  

metal-organic complexes (e.g.. De Vries and 

Breeuwsma,  1987). This  may be an important process  
for  precipitation of  organic anions  in decomposition 

processes.  Peat soil matrix is typically characterised  by  

a  high proportion of small  pores  (e.g.. Päivänen,  1973)  
and  a very heterogeneous pore structure  (Loxham, 

1980)  resulting from plant residues  in various stages  of 

decomposition. Thus  the  peat soil  matrix may facilitate  

the  retention  of  formed  colloidal  complexes. 

Vedrova  (1997) studied  the decomposition of  Scots  

pine needles and the redistribution of carbon  between 
the  two main pathways of  decomposition, the soil and  
the atmosphere, under different conditions (non  

forested mineral  soil  in Siberia), but the results  were 

rather  similar.  The  upper 2  cm of soil  fixed  15% of the 

carbon lost from  decomposition during a period of 

about 2  years  and 81 % of the  lost  carbon  was emitted 

into  the atmosphere. In our experiments 10-30% of 

the 
I4

C-activity  lost  from  the  litter  was found  in the  
moss and  peat  layers. 

The  present  results  indicate  that both pristine and 
drained peatlands may be  sinks  for carbon  released  

from decaying tree litter, but  as  peatlands drained  for 

forestry obviously produce more tree litter than pris  

tine  peatlands, the absolute  retention of  carbon  from 

its decomposition will  be  many  times  greater. C0 2-flux  

from the  surface  peat  may increase  by  about  100% im  

mediately after drainage (Silvola et al., 1996). Assum  

ing that the  peak in CO2 production is  relatively short, 

levelling off later on, the newly introduced tree litter 

and the carbon  released  from  the decaying litter and 

retained  in  the peat soil may  play a significant role  in  

compensating for the  loss  of carbon  into  the  atmos  

phere from the mineralised  surface  peat  layer. 

Recent studies (Minkkinen and Laine  1998  a. 1998b; 

Minkkinen  et al., 1999)  have shown, that  even after a 
time span of 60 years,  the  carbon  balance  of drained  

peatlands  may still be positive.  This balance depends 

on the C budget of 'old'  and 'new' litter. The change 

in  the decomposition rate of the 'old',  pre-drainage, 

peat  caused  by  drainage has  not actually been  quanti  

fied. 

4.3. Comparisons with  the laboratory experiment 

This  field  experiment was not a closed system as  the 

amount  of 14
C-activity  that  percolated into the 

groundwater was not  measured. The  results  were 

nevertheless  fairly similar compared to the previous  

laboratory experiment (Domisch et  al., 1998), although 

the laboratory experiment entailed  constant  environ  

mental  conditions  and  the  soil  temperature  in the  field 

experiment was  low during the first summer  and the 

water table  relatively high during the  second (Fig. 1, 

Table 3). Mass  losses from the fine roots  both  in  

Sphagnum- and Carex-peats were 39-46%  in the lab  

oratory experiment at 15° C simulating two growing 

seasons, compared with  37-46% in the field  exper  
iment after two real growing seasons and one winter. 

The respective  percentages  for the  needle  litter were 
58-74% in the laboratory and 49-67%  under field 

conditions.  If we compare these  mass losses  in  the  lab  

oratory experiment to  those  in  the drained  peat  in  the 

field  experiment, it may  be  speculated that temperature  

and decomposition time may  only be factors of sec  

ondary importance. If only a  certain  temperature  sum 
is reached,  mass losses  seem  to be similar (Fig. 5). The 

asymptotic regression curves of the form y = a(  1 hx

)  

are also shown. For all cases the coefficients  of deter  

mination  (F. 2 )  of the  curves  were over 0.95.  

The  total  amounts of activity  retained  in  the differ  
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Fig.  5. The relationship between the temperature sum of  the soil at depth 5 cm (threshold 0°C) and respective  mass  losses  from needle and fine 

root  litter  in Sphagnum- and Carex;-peats  observed  in the laboratory  at constant 15° C and 25° C soil  temperatures (Domisch et al., 1998) and in  

the field. Concerning  the field data, mass  losses are shown  only for the drained peats.  

ent  peat  layers were comparable to the amounts found  

in  the laboratory experiment. Only  the  moss layer 

yielded less  
I4

C-activity  in the field experiment,  poss  
ibly  for technical  reasons. The laboratory experiment 

was  carried out  in  growth chambers,  so that the  
I4

CC>2  
emissions  may have lingered for  a while before leaving 

the  chamber,  thus allowing the moss layer to retain 

more 
14

C-activity  than  under  field  conditions,  where  
the  14COi  might  have been able  to  escape  more  easily.  

5. Conclusion 

The results  indicate that in peat  soil,  environmental  

factors such as nutrient  or drainage status of the peat 

influence  the decomposition of fine  root litter  less  than 

that  of needle litter. They also  show that the  possible 

increase  in carbon  storage  in  pine  mires after forest  

drainage may  be caused at  least  to some extent by  the 

decomposition of newly deposited tree litter and  the 

retention of carbon  lost  from the decaying litter by  the 

peat  soil. 

Possibly, boreal  peatlands drained  for forestry act as 

sinks  of atmospheric carbon  as do pristine peatlands.  

at least  for the first rotation period (Minkkinen  and  

Laine. 1998b). However,  the origin of carbon and the 
mechanism involved seem to be different between  pris  

tine  and drained  peatlands. Carbon accumulation  in  
drained peatlands may thus continue analogously to 

'root peat'  formation  in sedge-dominated vegetation 

communities.  
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Summary—Recent findings have  indicated that the carbon density and store in peat soil may increase  
after  drainage for forestry,  even if soil  respiration has  clearly increased.  This  is caused  by  the increased  

organic C flow from tree  stands into  soil and consequent  retention in the peat  matrix.  Relocation  of 
I4

C-activity  released  from the labelled  needle and fine root litter  during 4-  and 8-month incubation ex  
periments  showed  that, on average,  only  60-80% of the  activity  lost  from litter was emitted to the at  

mosphere. The proportion retained  in the moss  layer was  from  7 to 14%, in the peat  soil  from 7 to 
18% and in the water percolated through the peat  from  <  1 to 8%. The results  thus  support  the  hy  

pothesis that organic C flow may contribute to C storage  in drained  peat  soils.  © 1998 Elsevier Science  
Ltd.  All rights reserved  

INTRODUCTION  

Most of the  organic matter accumulated  as peat in  

pristine boreal  mires  derives  from plant material 

deposited below  the  mire  surface, i.e. Carex  roots  

and the lower  parts of Sphagnum mosses. The  

decay of organic matter takes  place mainly in the 

surface  peat  layers (e.g. Clymo, 1965). Besides  an 

insufficient  supply of oxygen,  the  slow  decay rate  in  

deeper layers  may be partly  attributable to the  
effects of temperature, pH.  and  mineral  nutrients  

(Dickinson, 1983). 

After drainage for forestry and  the  consequent 

water level  drawdown  the  thickness of the aerated  

surface  peat  layer  increases.  The  wetter  the  site  orig  

inally.  the  more significant  is  the  change in  growth 

conditions  caused  by  drainage. Mire  plants  adapted 

to wet conditions  decline  rapidly, and  secondary 

vegetation succession  towards more forest-like  com  

munities begins (e.g. Laine  et ai. 1995). Biomass  

production is thus  largely  directed to the  tree  stand  

(Reinikainen et al., 1984; Sakovets  and  Germanova,  

1992). This results  in  increased  tree  stand biomasses  

(Laiho and Finer, 1996; Laiho and Laine.  1997) 

and increased  above-ground (Laiho and  Laine.  

1996) and probably also below-ground litter pro  

duction  (Finer and  Laine.  1996b). 

Improved aeration  increases the populations of 

aerobic  decomposers (e.g. Chmielewski, 1991) and  

thus  enhances the decay  of organic  matter (e.g. 
Lieffers, 1988; Bridgham et  al., 1991). However,  the  

*Author for correspondence. 

enhanced  activity  is  located  in  the  superficial  layer  

(0-10 cm) even when water tables remain  below  

50  cm  during most  of the  growing season (Paarlahti 

and Vartiovaara.  1958: Karsisto,  1979). Results  

from cellulose  decomposition in  field  experiments  

show,  however, a  positive  correlation  between  mass  

loss at greater depths and water table  level  

(Karsisto, 1979). 

Drainage for agriculture or  peat harvesting  
has been  found to change a mire from a sink  

to  a source of  C to the atmosphere (e.g. 
Armentano  and Menges, 1986; Nykänen et al.. 

1995). The consequences  of forest drainage are 

not as obvious  (e.g. Vompersky el al., 1992;  
Martikainen  et ai, 1995). It can be concluded  

from Vompersky and  Smagma (1984); Cannell  et  
al. (1993); Martikainen et al. (1995) and  

Minkkinen  and  Laine  (1996) that the change in  

the C balance  of both the soil and the whole  

ecosystem largely depends on the relation  

between  the rates  of C input via  the  tree stand  

and decomposition of previously accumulated  

peat  C. 

Recent results  indicating increased  C accumu  

lation  into  soil after drainage (Minkkinen and 

Laine, 1996)  are contradictory  to  previous  findings 

(e.g. Armentano  and  Menges. 1986;  Silvola. 1986). 

The  increased  accumulation  may  be  explained by  a 
combination  of increased  litter accumulation on the 

mire surface  (Laiho and  Laine.  1996) and  increased  

organic C flow  into  soil  and  retention  in  the  peat  

matrix, as discussed by Minkkinen et al. (1996). 

However,  the  potential of the peat matrix to retain 
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Table 1.  Total  initial 14C-activity  (n = 80)  and its  distribution in 
the organic fractions (n = 6) of the litter material. Mass distri  

bution of the organic fractions is  also shown. The  values are 

means ± standard deviations 

Table 2. Initial element concentrations of the litter material 

(mg  g-1 dry mass)  

organic C from decomposing litter  has  not been  

evaluated and  quantified. 

I4
C-litter  material  has  been  used  in  decompo  

sition  studies  to  estimate  the  C  loss  by trapping the  

evolving 14

C02 (e.g. Nyhan, 1975; Jones and  

Darrah,  1994; Nelson  el at., 1996). In our study  

labelled  needle  and  fine  root litter was  utilized to 

assess the relocation  of  carbon, released  in the de  

composition processes,  in the atmosphere-soil  

water-system. 

Our objectives were (1) to determine  the  decay 

rates  of  needle  and  fine  root  litter  in  a peat  environ  

ment under  controlled  conditions, (2) to show the 

temporal pattern of the  14
CO: emission,  (3) to 

assess the fate of the carbon lost from the litter and 

(4) to  study  the  vertical  distribution of the  carbon  

retained  in  the  peat soil.  The  study  was part  of the  

research  project Carbon  Balance  of Peatlands  and  

Climate  Change within  the  Finnish  Research  

Programme on Climate  Change. 

MATERIAL AND METHODS 

The litter material  

The litter  material  used  derived  from 600  nursery 

grown  Scots pine (Pinus svlvestris  L.l »ecdiings 

labelled  with  I4COt in  a plexiglass chamber.  The  
I4C was given as a 14C-bicarbonate,  which was 
released  to  the chamber  atmosphere by reaction  

with  hydrochloric acid.  The  seedlings  were kept  for  

2 h in  the chamber placed in  full  sunlight. An  ac  

tivity of 6.66  MBq was  used  per 100 seedlings. 

After labelling, the  seedlings  were grown  for one 

growing season using a standard  irrigation  and  fer  

tilization  regime. 

Litter  material, i.e.  current  year  needles  and  fine  

roots,  was harvested  and  dried at 60° C to constant  

mass. Fine roots were defined as roots less than 

2 mm dia; in  this  case all  lateral  roots of the seed  

lings.  Samples with  a dry mass  of exactly  1 g  were 

placed in 10x10  cm
2 polyester  litterbags with  a 

mesh size  of 1 mm. 

The initial  14
C-activity  <>f both litter types 

(Table 1) was measured  fr >m 80 random sub  

samples. The  organic comi  -.ition  of both  litter  

types (Table 1) was determined  from  six samples  

which were divided  into two  subsamples. The frac  

tionation  of the  litter  into  water, alcohol  and acid 

soluble  components and the acid-insoluble  com  

ponent (Klason-lignin) was done by  sonicating the  

milled  samples first in  water,  then  in  alcohol  and  
last in  72% H2SO4, according to Berg and  

Lundmark (1985) and  Johansson  (1994). 

The mineral  nutrient concentrations  in the litter 

(Table 2) and  in  the peat used  as incubation  cores 

(Table 3) were analyzed with an ICP-spectrometer 

(ARL 3580 OES, Fison  Instruments, Valencia,  CA)  

after dry ashing and  dissolving  in  hydrochloric acid. 
C, H and  N concentrations  were analyzed with a  

Leco  CHN  600  analyzer (Leco Corp., St. Joseph. 

MI). All  determinations  were done with  duplicate 

samples. 

The  incubation  experiment 

The  study was carried  out as a fully  factorial  ex  

periment containing four  factors (litter type,  tem  

perature. peat type,  incubation  time) at two levels.  
The  incubation  period started on 25  January.  1995. 
Half  of the cores were incubated  for 4 months and  

the rest  for 8 months.  The incubation  temperatures  

used  were 15 C and 25"C. 

Table 3.  Concentrations of some  mineral  elements (mg  g -1 dry mass),  pH(CaCl2)  and bulk  density  (D b, kg  m -3) of  the peat  types  used  in 
the experiment 

Fraction  

Root litter Needle litter 

activity mass  activity mass  

Total activity (MBq  g"') 14.16 ±5.22 53.04 ± : 11.16 

Water soluble (%)  10 ±0.7 26 ±2.3 18 ±0.8 38 ±  1.3 

Alcohol soluble (%)  9 ±1.2 5 ±0.3 8 ±0.6 6 ±0.3 

Acid  soluble (%)  54 ± 2.0 57 ±  2.6 55 ±0.9 46 ±  1.5 

Acid  insoluble (%)  27 ±1.3 12  ±0.3 19 ±0.7 10 ±0.4 

Element Root litter  Needle litter  

C  532.7 ±  4.6 536.3 ±8.5 

H 58.0 ±  0.4 61.8  ±0.2 

N 11.0 ±0.2 11.8 ± 0.1 

P 3.9 ±0.3 2.8 ±0.2 

K 7.4 ±0.5 11.5 ± 0.4 

Ca  5.1 ±0.3 2.9  ±0.03 

Mg 1.6 ±0.1 1.7 ±0.01  

Mn 0.064 ±0.021 0.26 ± 0.04 

B 0.0076 ± 0.0003 0.018 ±0.001 

Fe 0.79 ± 0.08 0.11 ±0.001 

A1 0.22 ± 0.02 0.067 ±0.01 

Cu 0.21 ±0.01 0.0064 ±0.001 

Zn 0.12 ±0.01 0.093 ±0.01 

Peat type Depth  N P K Ca  Mg Fe A1 pH Dh 

Sphagnum  0-20 8.1 0.572 0.580 2.64 0.455 0.990 0.592 2.6 69.9 

20-40 8.9 0.338 0.140 1.47 0.343 0.780 0.267 2.7 56.1 

50-75 7.3 0.269 0.109 2.16 0.339 1.169 0.203 2.9 57.9 

Carex  0-20 23.8 0.783 0.250 2.42 0.170 3.407 0.726 2.9 96.1  

20-40 24.3 0.536 0.100 2.31 0.257 3.622 0.868 3.2 75.5 

50-75  23.4 0.483 0.051  2.69 0.240 2.099 1.283 3.5  72.5 
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Fig. 1. Schematic  presentation of a peat  core used in the 

experiment. The needle litterbags were placed directly 
under the living moss layer and the fine root  litterbags 2-  
3 cm deeper. The layers for measuring the vertical distri  
bution of 14 C at the end  of the experiment are  also shown 

The  two  peat  types used  in the  experiment were 

dominated by  either  Sphagnum or Care.x  residues,  

the  first representing ombrotrophic nutrient  status  

and  the  second  minerotrophic level.  The  peat cores 
with undisturbed  structure, containing also the 

moss  layer  (i.e.  living mosses and  litter), were taken  
from the  Lakkasuo  mire  complex in  Orivesi,  central  
Finland  (61 48'N, 24 19'  E. 150 m above sea level).  

The  peat  cores were directly taken  into  plastic  tubes  
of 12 cm  dia  and  60  cm  in  length and  transported 

to the  laboratory. 

Four  weeks  before  the start  of the  experiment the 

peat cores were placed into  the growth chambers 

(CONVIRON PGW36.  PGR 15) to adapt  to their  

new environment.  The water table was  maintained  

at 40  cm depth in all  peat cores.  The initial  water  
table was obtained  by  filling the  buckets  containing 

the  peat  cores up to the  desired  height with  distilled  

water (Fig. 1). The cores were watered  once a week  

with water which  mimicked  the  amount and  chemi  

cal  composition of  the local  rain  water at the  

Lakkasuo  mire. The  water  table  was kept  at  a con  

stant level  by  removing any  excess amount in  the 

bucket  after percolation and  the  water  was  stored 
for analyses.  

At the  beginning  of the  incubation  one litterbag 

was placed horizontally  in  each  peat core.  The  nee  

dles  were placed under  the  1-2 cm thick  living moss 

layer and  the  roots  were placed 2-3 cm  deeper. 

The relative  humidity of  air  in  growth  chambers  

was kept  at  80%  during the  day (8.00-18.00) and  at  
90% during the  night (18.00-8.00). The  lights  were  

switched on from 8.00 to  16.00. The light intensity 

was kept  constant at 650-720 itT
2 s-1 

throughout the  experiment. 

Measurement  of  the 14
C-activity  

The  measurement of the  14
C-activity  was done by  

combustion in  a  Junitek-oxidiser  (Junitek Oy)  in  
which  the  samples are totally combusted  into  water  
and  carbon  dioxide.  The I4C0 2 was  trapped in a 
Wallac  Lumasorb  II trapping agent and  a Wallac  
Carboluma  liquid scintillation  cocktail  was added  

automatically after which the  sample was  measured  

for  14

C-activity  in  a Wallac  1411 liquid scintillation  
counter. 

After the  experiment, the  litterbags were taken  

from the  peat. The remaining litter  was carefully  

removed  and  dried  at 60 C to a constant mass. The 

mosses were harvested  and dried at  60C to a con  

stant mass. The  peat cores were cut  into  layers 0-  

lcm, 1-6 cm, 6-11 cm. 11-21 cm. 21-31  cm, 31-  

41 cm  and  41-51 cm  (Fig. 1) and  dried  at 105 C  to 

a constant  mass. Three subsamples (100-400 mg, 

depending on  peat type  and  layer) were  taken  from 
each layer. The 14

C-activity  of the samples  was 
measured  as described  above.  

After both  incubation  periods the  water  in the  
bucket  and the stored "excess" water were com  

bined.  The  14
C-activity  in  the water  was measured  

from  a subsample (4  ml), into  which  the  scintillation  
cocktail  (Wallac Optiphase "Hisafe") was added.  

By knowing the  total  amount of  percolated water  

and  the I4
C-activity  of the  subsample, the  14C-ac  

tivity  leached  from the  peat  could  be  estimated.  

The I4C-activity  loss  to the  atmosphere was esti  
mated  as the difference  between  the  average  initial  

activity and  the  total  activity  found  in  each peat 

core after the incubation,  i.e. the activity  in  the lit  

terbag, the  moss and  peat layers, and  the percola  

tion water. 

The 14C0 2-flux  from 32 cores (four of  each  treat  
ment) for the 8 month incubation  period was ana  

lysed  weekly to study the dynamics of the  C0 2 

emission. A cuvette with a transparent top was 

placed over the  peat cores, and  pressurised  air was 
directed  through the  cuvettes  and  C02 was trapped 
with  Wallac  Lumasorb II (Fig. 1). 
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Fig. 2. 14C0 2
-flux from needle and  fine root  litterbags 

during 8 months at 15° C and 25° C  incubation tempera  
tures.  The  weekly  14C-fluxes  are  expressed  as  percentage  of  
the initial 14C-activity.  Note the different scales  in  the y  

axes 

Calculations  and  statistical  tests  

All  statistical  tests were performed with  the  

SYSTAT statistical package (SYSTAT for  

Windows, 1992). For all  percentage values, an 

angular transformation  was made  before  statistical  

testing (x' = arcsin y/x).  Fully  factorial  ANOVA 

was  used  in  testing the  factor  effects. In the  tests  of 
the  emissions  into  the  atmosphere sampling time  

was  used  as a repeated measure. 

RESULTS 

14 C02-emission into the  atmosphere 

The  14C0
2
-flux  from the  labelled  litter into  the  

atmosphere showed  a sharp increase  during the  first 

few  weeks of  the incubation  but levelled  off" after 3 

to 4 weeks  (Fig.  2).  The  initial  increase  was highest  

at  the  25° C  incubation  temperature in  the  needle  lit  

ter material (significant interaction between  

sampling time, litter type and temperature,  
F  = 2.59, P < 0.001), where  about  8% of the  initial  
I4

C-activity  was  trapped during the  first  week.  After  
this, the emissions  were rather similar from all  

treatments. Table  4 shows  the  average  proportions  
of  the  initial  activity  emitted  to the  atmosphere and  

trapped during the 4 and 8 month incubation  

periods. 

Mass and  14 C-activity  losses  from litterbags  

The mass  losses were significantly higher 

(F = 542.4, P <  0.001) from the  needles  than  from  

the fine  roots  at both  incubation  temperatures 

(Table 5). The needles decomposed faster at 25°  C 

than at the lower  temperature (F  = 21.49,  

P < 0.001). No temperature or peat type  effects 

could  be seen for fine root litter. The mass losses  of 

both litter  types were significantly higher (F = 8.40, 
P = 0.005) after 8 months  than after  4  months only  

at 15° C.  

The same significant  effects were observed for  the  

activity  losses,  except  that  the  activity  loss  contin  
ued after 4  months  also  at the  higher temperature 

(F  = 11.22, P = 0.001). An  almost  significant  effect 

was found  for the  peat  type  (F  = 3.61,  P = 0.060). 

From 60  to 70% of  the  initial  activity  was still  
found  in  the  fine  root  litter  bags  after  8 months'  in  

cubation, and from 15 to 60% in  the needle  litter  

bags. 

Relocation  of 14 C-activity  released  from the litter  

Most of the  14
C-activity  lost  from the  litterbags 

was released  to the  atmosphere:  approximately  80%  
from the cores incubated  for 4 months, and 55-  

75% from the  cores incubated  for 8 months, esti  

mated  as the  difference  between  the  average  initial  

activity  and the activities  found  from the  other  

components  (Fig.  3). The relative  proportion was  

significantly  smaller  after 8 months' incubation  

(F=  6.23, P = 0.014). 

The moss layer  contained, on  average,  7-14% of 
the  14

C-activity lost  from the  litter  and  no signifi  

Table 4. 14
C-activities  emitted to the atmosphere  during 4 and  8 months in the different treat  

ments. Activities  are  percentages  of the initial activity in the litter.  The values are means  ± s.d. of 

four trapped incubation cores 

l4
C-activities 

Litter type  Temperature  (°C) Peat type 4 months 8 months 

Fine roots 15 Car ex  21.0 +  6.5 31.3 ±5.9 

Sphagnum  24.7 ± 11.0  34.3 ± 12.2 

25 Carex  31.7 ± 13.0  47.9 ± 19.3 

Sphagnum 28.4 ±  14.4  41.5 ±20.6 

Needles  15 Carex  28.2 ±3.6 43.5 ± 3.5 

Sphagnum 24.7 ± 1.2 39.9 ± 1.4 

25 Carex  54.7 + 4.9 73.3 ±6.1 

Sphagnum  53.4 ±7.6 71.8 ±9.2 
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Table  5.  Mass  and 14
C-activity  losses  during  the incubation periods.  Losses  are percentages  of  the initial mass  and the average  initial Re  

activity, respectively  

cant factor (P  > 0.05) effects were found  (Fig. 3).  
The peat retained  7-12%  of the  I4C-activity  lost  
after 4 months and 8-18% after 8 months 

(F = 6.23, P = 0.014  for the  incubation  time effect) 

but  no other  significant factor  effects were found.  

The  water  percolated through the  fine  root  incu  
bation  cores contained, on average, 1-2% of the  

lost I4
C-activity  after 4 months and  5-8% after 

8  months.  From  the  needle  litter  cores  the  respective  
values  were < 1% and  ca. 1%. The incubation time  

effect was  statistically  significant (F  = 54.90, 
P  < 0.001). Significantly highest amounts were 
found in the water from  Sphagnum-peat cores 

(F = 7.95, P = 0.006  for  the  peat  type  effect)  con  

taining fine  root  litter  (F  = 44.80, P < 0.001  for  
the  litter  type effect). The significant  interactions  
between  litter  type and  incubation  time  (F  = 20.62,  

P < 0.001) as well  as peat type,  litter  type  and  incu  
bation  time  ( F  = 3.95, P = 0.049)  indicate  that  the 

relative  proportion of  14

C-activity  found in the  

water  was highest after  the  longer  incubation  period 

from  fine  root  litter  in  Sphagnum-peat. 

Vertical  distribution  of iA C-activity  found from the  

peat  

Much of the  14
C-activity  released  into  the  peat  

soil  from the fine  root  litter  bags was found  in  the 

deeper layers, whereas  in  the needle  litter  cores 

most of the activity  remained  even after 8 months  

in  the  uppermost 1 cm peat layer,  i.e. immediately 
below  the  litter  bag  (Fig.  4). There  was some ten  

dency towards  increasing  proportions in  the  deepest  

layer during the  longer incubation  period, especially  

in  the  Sphagnum-peat cores (Fig. 4). 

DISCUSSION 

Reliability of  the  results 

The fact that it was not possible to measure the  

initial I4
C-activity from each  litterbag used  in  the  

experiment,  gives the  results  some uncertainty  and a 

high variability. However,  the reliability  of the  

results could  be ascertained from the submaterial  

(32  incubation  cores) from which the  14C-flux  into  

the  atmosphere was trapped and  measured, and  
thus the actual  initial  activity  in  the litterbag could  

be  calculated.  The  comparison of the  measured  ac  

Fig. 3. The relative distribution of 14
C-activity  lost  from 

needle and  fine root litterbags after  4 and 8  months at 

15°  C and  25°  C incubation temperatures  

Incubation time  

Litter type Temperature  ( C) Peat type (months) Mass  loss  (%)  Activity loss  (%) 

Fine roots 15 Carex  4 38.7 ±3.8 30.4+15.4 

8 47.0 ±3.6 44.0 ± 16.3 

Sphagnum  4 40.0 ± 2.4 33.4 ± 14.7 

8 45.5 ± 1.3 38.2 ± 15.9 

25 Carex  4 44.3 ± 7.2 38.6 ± 12.7 

8 44.5 ±4.0 40.8 ±9.9 

Sphagnum  4 43.4 ± 4.9 33.4 ± 12.6 

8 47.0 ± 1.3 38.6 ± 19.1 

Needles 15 Carex  4 68.4 ± 13.1  59.8  ± 17.2 

8 75.5 ± 12.2 72.6 ± 20.6 

Sphagnum  4 57.6 ±6.5 40.2 ± 11.5 

8 73.6 ± 7.4 63.0 ± 9.4 

25 Carex  4 84.4 ± 7.9 76.5  ± 12.7 

8 81.4 ±7.8 81.1 ± 11.4 

Sphagnum  4 82.2 ± 14.0 72.9 ± 18.8 

8 86.3  ± 11.0 84.9 ± 12.7 



1534 T. Domisch el at. 

Fig. 4. Vertical  distribution  of 
14

C-activity  lost  from nee  
dle and fine root litterbags, found in the peat soil,  

expressed  as  a  percentage  of the lost  activity  

tivity  losses  based  on the  actual  initial  I4C-activities  
showed  a significant  correlation  (r  = 0.936) with  
the  activity  loss calculated  from the  average  initial  

activity.  

The  litter material  used  in this study differed 

from natural  litter  since  it  originated from 1-y-old  

seedlings  and  the  needles  and  fine  roots  were har  
vested  alive.  On average,  the  water-soluble  mass  
fraction  in  our needle  litter  material  was relatively  

higher and  the acid-insoluble  (lignin) fraction  smal  
ler  than  in  Scots  pine needle  litter  reported by Berg 
and  Staaf (1980a.b) and Johansson  (1995). 

However, the  I4
C-activity  distribution  in  the or  

ganic fractions (Table I) was nearer to their  mass  
distribution.  

In our fine root litter material  the distribution  of 

mass  in  the  organic fractions  was similar  to that  

presented by Berg (1984) and  Berg and Lundmark 

(1985),  but there  was relatively less  I4
C-activity,  

than mass,  in  the water-soluble  fraction and  more 

activity  than mass in the alcohol-soluble  fraction. 

The N, P and K concentrations  in both  our needle  

and  fine  root litter  materials  were clearly larger 
than the values  reported by Berg and Staaf 

(1980a,b); Berg  (1984) and Johansson  (1995). 
As the  rate  of  decomposition at a given site  is  lar  

gely dependent on the  substrate  quality (e.g. Berg 

and  Staaf, 1980b). it is  obvious  that  the  decompo  

sition rate  in  our material  may  be  faster than  it  

would  have been  with natural  litter. The needle  lit  

ter  results  by  Berg and  Lundmark (1985)  confirm  

this  assumption but similar  fine root litter  has  

decomposed in  field  conditions  at about the  same 

rate (Finer and Laine, 1996 a)  which  indicates  that  

the  experimental conditions  were  relevant.  

14 CO 7-flux  from the litlerbags 

The pattern  of  14C02-emissions into  the  atmos  
phere found  in  our study  probably correlated  with  
the  oxidation of  different organic  compounds in  the  

litter. The  peak of the  C0 2-flux  at  the  beginning of 
the  incubation  may have  resulted  from the oxi  
dation of water and  alcohol  soluble  compounds 

(Berg, 1984). Later  on, the  C-emissions  are mainly 
due to the oxidation  of cellulose  and hemicellulose  

(i.e. H 2
SO4-solubles) (Berg, 1984). The  higher initial  

emissions from needle  litter  in  our data  (Fig.  2)  

may  be  attributed  to a larger water soluble  fraction  
in  this  litter  type  (Table 1).  

Mass and activity  losses  after 4 and 8 months 

The  mass  and  activity  losses  from  the  needle  litter  

bags correlated  very  well  with  each  other, whereas  
for the root  litter  no significant  correlation  was 
found  which  may  be  caused by  the  higher variabil  

ity in  the  distribution of  the  I4C-activity  in  the  fine  

root  litter  and  the  very  narrow range  of mass loss  

variation  in  this  litter  type (35-50%). This  may  in  
fluence the interpretation of the I4

C-activity loss  
results of the fine  root litter. 

As  there  was no significant  difference  in  the  mass  
loss between the 4 and 8 month incubations  

(Table 4), the  results  indicate  a fast  decomposition 

process  at  the  beginning and  a slowing  down  in  the  
later  stages found  also  in  earlier  studies (e.g. Berg, 

1984, Ruark, 1993; Berg el al„ 1995). 
The  litter  type, needle  vs fine  root,  was the  most  

important factor  determining the  rate  of decompo  
sition.  The  higher mass losses  from the  needle  litter  

may  be  due  to the  differences  in  the  organic and  

inorganic composition of these  litter  materials.  The  

root litter  material  contained  less water-soluble  and 

more acid-insoluble  compounds, and had  higher 
concentrations  of heavy metals  and  A  1 than  the  nee  
dle  material  (Tables 1 and  2).  High A 1 concen  
trations  have  been  suggested to slow  down  the  

decomposition of  fine  roots (Vogt et  al„ 1987). 

Relocation  of C-activity  after the  experiment 

Part of the activity  retained  in the moss layer, 

may be attributed to photosynthesis of liverworts  
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and  algae, especially  in  cores in the  higher tempera  

ture treatment where  mosses had  clearly  suffered  

during the  incubation. However,  Tolonen  et ai.  

(1992) have  estimated a similar  fraction (ca. 20%) 

of soil  C0 2 taken up by  Sphagnum, when  using 

high resolution  I4C dating in  locating the  ,4C peak  
from nuclear  bomb  tests  in  the  surface  peat  profile. 

The observed  higher retention of  14
C-activity in  

the  uppermost layers  of the  Carex  peat profiles  may  
be  connected  to the higher Fe and  A 1 concen  
trations m this  peat type (Table 2).  

Correspondingly, in  the  Sphagnum peat  profiles  

clearly  more activity  was found  in  the  deepest peat 

layers with the highest Fe concentrations.  

Formation  of colloidal  metal-organic complexes 

(e.g. De  Vries  and  Breeuwsma.  1987) may  be  an im  

portant mechanism  for precipitation of organic  
anions  released  in  decomposition processes.  

Peat  soil matrix  may facilitate  the  retention  of 
formed  colloidal  complexes  as it  is  characterized  by  

a high proportion of small  pores  (e.g. Päivänen.  

1973) and  a very  heterogeneous pore  structure  de  

rived  from plant residues  in  various  stages of de  

composition. According to Loxham  (1980). six 
different pore categories can be identified: large, 

multiple and simply connected  open pores,  dead  
end  pores,  completely isolated  pores  and  pores  in  
cell  structures.  The structure  of the peat matrix  thus 

elicits  a  retention  environment  very  different  to  that  
of the  granular porous structure of  mineral  soils.  

Concluding remarks  

Despite the  high  variability in  the  material,  our 
results support  the  conclusions  in  Minkkinen  and  
Laine  (1996) and  Minkkinen  et ai. (1996), who  

found  increased  peat bulk  densities  and carbon 

stores on peatlands drained  50-60  y  earlier, in  com  

parison to pristine peatlands. In an average  drained  

peatland forest stand  (nutrient content  as in  our 

minerotrophic peat, Scots pine stand, stem volume  

ca. lOOm^ha
-
')  in southern  Finland  the  above  

ground litter  production has  been  reported as ca. 
150 g C irT~a~' (Laiho and Laine.  1996) and 

below-ground litter  production approximately 100  g 
Cm""a~' (Finer and  Laine.  1996b). If  fine  root  lit  

ter mass losses  on these  sites  were 32% (Finer and  

Laine,  1996 a),  and  the respective mass losses  from 

needle  litter  45% (unpublished data from the  
Lakkasuo  mire) during the  first year  of decompo  
sition, nearly  200  g CirT

2 a~'  would  remain  in  the  

litter  and  the  amounts  retained  deeper in  the  soil,  in  
conditions less favourable for  further oxidation, 

would  be  10 to  15  g  C  itT 2  a~'  according to  the dis  
tribution  of the activity loss from litter in this  

study. 

Earlier  decomposition studies  presupposed, that  
the  loss  from the  litterbags is also  entirely a loss  of 
carbon to  the atmosphere. Our findings of this  

study show,  however,  that those  results  should  ree  

valuated.  Not  all the  carbon  lost  from the litterbags 

was lost  to the  atmosphere, but  a small  but  signifi  

cant amount was found  in  the  peat cores after 4 
and  8 months  incubation: the relative  proportion 
retained  in  the soil  being even higher after the  

longer incubation.  
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