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Abstract  

Viiri,  H.  2002. Interactions between host  trees  and fungi  associated  with the spruce bark 

beetle (Ips  typographus ).  The Finnish Forest Research Institute,  Research Papers  864. 

ISBN 951-40-1 846-X.  ISSN  0358-4283. 

Among  the European  scolytids  the spruce  bark  beetle, Ips  typographus,  is  the most  

important  species  in conifers. Some of the fungi  associated with spruce bark beetles 

have a  role  in overwhelming  the resistance  of  vigorous  Norway  spruce,  Picea abies. The 

species  composition of ophiostomatoid  fungi associated with I. Typographus  was 

investigated  at different population  levels of beetle in Finland and France. The fungal 

flora varied at different study  areas.  In Finland the most frequent ophiostomatoid  

species  were Ophiostoma  penicillatum,  O.  piceaperdum  and O. bicolor. In France, in 

addition of O.  bicolor and O.  penicillatum,  Ceratocystis  polonica  and Ceratocystiopsis  

minuta were frequent  species. The frequency  of highly  pathogenic  C. polonica  was  

lower  in Finland than in post-epidemic  areas  of spruce bark  beetle in France. 

Interactions between the host and the pathogen  were studied after artificial 

inoculation of  Norway spruce with C.  polonica,  the most  pathogenic  fungus  associated 

with I. typographus.  In experiment,  plots  of  mature  Norway  spruce were  fertilized with  

nitrogen,  phosphorus  or  combination of nitrogen,  phosphorus  and  potassium.  One year 

after fertilization the trees were artificially  infected with C. polonica.  Changes  in the 

main secondary  compounds  of Norway  spruce, the stilbenes and terpenes, and soluble 

carbohydrate  concentrations of  phloem  were studied in relation to  the nutrient status of 

trees.  

The response of stilbenes to fungal  inoculation was  qualitative.  The  concentration 

of  stilbene glycosides  in the phloem  decreased. Corresponding  stilbene aglycones  were 

more frequent  inside the reaction lesion. Fungal  inoculation caused a strong quantitative  

response in terpenes. The total  terpene concentration of  the phloem  increased to  almost 

100 times greater near the inoculation site compared to the constitutive values.  

N fertilization significantly  reduced  the total terpene and  total stilbene aglycone  

concentrations near  the inoculation sites.  Thus, N fertilization may reduce the ability  of 

Norway  spruce to defend itself against  fungal  pathogens.  

The concentration of total soluble carbohydrates  in the outer  border of the lesion 

was  significantly  decreased in P-fertilized trees  compared  to corresponding  unfertilized 

trees. However, changes  in soluble carbohydrate  concentration caused by fungal  

inoculation were more pronounced  than changes  caused by  fertilization. The main 

soluble carbohydrate  was  sucrose.  Near the site of  fungal  inoculation the concentration 

of total soluble carbohydrates  decreased significantly  compared  to  corresponding  

values in unwounded phloem.  N and NPK fertilization treatments increased radial 

growth  of the stem and the vigour indices. Despite  the increased radial growth of the 

stem, the only  indication that enhanced growth  might reduce the level of resistance  was 

the modest positive  correlation between lesion length  and radial growth  of  the stem. 

Key  words:  Ceratocystis, induced defense, monoterpenes, Ophiostoma,  phenolics,  

Picea abies,  soluble  carbohydrates,  stilbenes 

Author's address: Heli Viiri,  The Finnish Forest Research Institute, Suonenjoki  

Research Station,  Juntintie 40, FIN-77600 Suonenjoki,  Finland. Tel. +358 17 5138 219, 

Fax:  +358 17 513 068. E-mail: heli.viiri@metla.fi. 



Tiivistelmä  

Viiri, H. 2002. Kirjanpainajan  (Ips  typographus)  seuralaissienten ja kuusen väliset 

vuorovaikutussuhteet. Metsäntutkimuslaitoksen tiedonantoja  864.  ISBN 951-40- 

1846-X. ISSN  0358-4283. 

Kirjanpainaja  (Ips typographus)  on kuusella esiintyvä  tuhohyönteinen,  joka  kuljettaa 

mukanaan puuhun  patogeenisiä  värivikaa aiheuttavia sieniä.  Tässä työssä  tutkittiin 

kirjanpainajan  pyydystysmenetelmien  vaikutusta seuralaissienilajiston  rakenteeseen 

(osajulkaisu  I), seuralaissienilajistoa  Suomessa  ja Ranskassa  (osajulkaisut  I ja II), 

sekä patogeenisen  seuralaissienen (Ceratocystis polonica)  aiheuttamia muutoksia 

kuusen terpenoidien,  stilbeenien ja liukoisten hiilihydraattien  määrissä erilaisilla 

lannoitetasoilla (osajulkaisut  111  ja IV).  

Sienilajisto  vaihteli eri  tutkimusalueilla. Suomessa  kirjanpainajan  endeemisellä 

esiintymisalueella  yleisiä  seuralaissieniä olivat Ophiostoma  penicillatum, O. 

piceaperdum  and O. bicolor. Ranskassa  kirjanpainajaepidemian  jälkeen  O. bicolor, 

O. penicillatum,  Ceratocystis  polonica  ja Ceratocystiopsis  minuta olivat yleisiä 

seuralaissieniä. Erittäin patogeeniseksi  todettu C. polonica  oli harvinaisempi  

Suomessa kuin Ranskassa.  

Isäntäpuun  ja patogeenisen  sienen välisiä vuorovaikutussuhteita tutkittiin 

ymppäämällä  keinotekoisesti C. polonica  sientä eläviin  terveisiin kuusiin.  Koepuita 

oli lannoitettu vuosi  ennen sieni-infektiota typellä,  fosforilla tai NPK-lannoitteella. 

Rungon  sekundääriaineista stilbeenit reagoivat  sieniymppäykseen  kvalitatiivisesti,  

mutta terpeenit  kvantitatiivisesti. Terpeenien  määrä lisääntyi yli  100-kertaiseksi 

lähellä sieni-infektion kohtaa vioittamattomiin puihin verrattuna. Stilbeenien 

glykosidien  määrä aleni lähellä sienen ymppäyskohtaa  merkittävästi. Lisäksi  

stilbeenien aglykoneita tavattiin merkittävästi useammin lähellä sienen 

ymppäyskohtaa  kuin vioittamattomassa nilassa. Typpilannoitus alensi 

kokonaisterpeenien  ja stilbeenien aglykonien kokonaismäärää infektiokohdan 

läheisyydessä,  mikä osoittaa,  että typpilannoitus  voi heikentää kuusen kestävyyttä  

tuhonaiheuttajia  vastaan.  

Sieniymppäyksen  aiheuttamat muutokset liukoisissa hiilihydraateissa  olivat 

merkittävimpiä kuin lannoituksen aiheuttamat muutokset. Lähellä sienen 

ymppäyskohtaa  liukoisten hiilihydraattien kokonaismäärä aleni merkittävästi 

verrattuna vioittamattomien puiden nilaan. Yleisin liukoinen hiilihydraatti oli 

sakkaroosi. Typpi-  ja NPK-lannoitukset lisäsivät rungon paksuuskasvua  ja puiden  

elinvoimaisuusindeksiä. 

Avainsanat: Ceratocystis,  fenoliset yhdisteet, indusoitunut puolustus, kuusi, 

liukoiset hiilihydraatit,  monoterpeenit,  Ophiostoma,  stilbeenit 

Tekijän osoite: Heli  Viiri,  Metsäntutkimuslaitos, Suonenjoen  tutkimusasema, 

Juntintie 40, 77600 Suonenjoki.  Puh. 017-5138 219,  Fax  017-513 068. Sähköposti:  

Heli.Viiri@metla.fi. 
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List of abbreviations used in the  text, presented  in alphabetical  order.  

Journal names are mainly  abbreviated according  to instructions  of  the 

ISI Journal Abbreviation Index,  http://www.nal.usda.gov/indexing/  

lji99/ and the International Organization  for Standardization, 

International Serials Data System,  CIEPS Paris 1985, ISBN 2-904938- 

02-8. 

Symbol: Description:  

BA! cross-sectional  area  of  the current  annual ring  

BAySA vigour  index, the ratio of the cross-sectional area  
of  the  current  annual  ring and the sapwood  basal 

area  at breast  height  

C-based carbon-based 

CHN  analyser carbon-hydrogen-nitrogen  elemental analyser  

CNB hypothesis carbon/nutrient balance hypothesis  

C/N ratio carbon/nitrogen  ratio 

CBSCs carbon-based secondary  compounds  

DBH diameter at breast height  (1.3 m)  

de novo novus  = new,  de novo  synthesis  of organic  

compound  in biochemical  reaction 

DF,  df degree  of freedom 

e.g. exempli  gratia, for example  

GC gas chromatography  

GDB hypothesis growth/differentiation  balance hypothesis 

ICP-AES inductively  coupled  plasma  emission spectrometer 

in vitro outside the living  organism  

MS mass spectrometry  

MT-type Myrtillus-type  in the Finnish forest 

soil-type classification 

N nitrogen  

n sample  size  

N-based nitrogen-based  

NPK nitrogen-phosphorous-potassium  

P phosphorous  

PAL phenylalanine  ammonia lyase  

PP cells polyphenolic  parenchyma  cells 

SA sapwood  basal area  at breast height  (1.3 m) 

SD standard deviation of series 

s.s. sensu stricto 
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Introduction  

Phloem-feeding  bark  beetles are  destructive  pests  in  coniferous 

forests.  They breed sub-cortically  in trees, thus utilising  a wide 

range of  dead and dying  trees to healthy  trees. There are  about 

2.000  beetle (Coleoptera)  species  in Finnish  forests;  and about 

800 of  these species  are  saproxylic,  depending  upon dead trees 

(Siitonen  1998).  Only  a few bark  beetles do attack  healthy  trees. 

The Eurasian spruce  bark  beetle,  Ips  typographic  L.  (Coleoptera,  

Scolytidae),  is  one of these  and is  a serious  and widely  distributed 

pest  on Norway  spruce, Picea abies (L.)  Karsten.  Adults  and 

larvae  live  under the thick  bark,  usually  in  dying  and weakened 

trees.  While constructing  breeding  chambers and galleries  in  the 

phloem,  beetles distribute spores  of  fungi  to  their hosts.  As they  

grow, fungal  hyphae suppress water transportation,  cause  

discolouration of  wood and help  the beetles  to  kill  trees.  Each  new 

generation  of  beetles transports  the fungi  to new host  trees. All  

aspects  of  symbiotic  relationship  are  not  well understood. Among  

these  features is  that the  fungi  seems  to  make host  carbohydrates  

available to  the  beetles as nutrition. 

Many  species  of fungi  have been reported  to occur  in 

association  with Scolytidae.  Most  of  them belong  to the genus 

Ceratocystis  sensit  stricto  ( s.s.)  Ellis  & Halstedt,  Ophiostoma  H.  

& P. Sydow,  Ceratocystiopsis  Upadhyay & Kendrick and 

anamorph  genera such as  Pesotum  Crane & Schoknecht and 

Leptographium  Lagerberg  & Melin (Rumbold  1931,  Mathiesen-  

Käärik  1960,  Upadhyay  1981,  Whitney  1982,  Solheim 1986,  

Schowalter and Filip  1993, Okada et al.  1998, 2000).  This 

economically  important but taxonomically  controversial  group 

has  been referred to as  the  "ophiostomatoid  fungi"  (Wingfield  et 

al.  1993). These fungi  are adapted  for dispersal  by  insects:  

elongated  ascocarps  bear  ascospores  at  the apices  of  their necks,  

which may be  protected  by  a  gelatinous  matrix.  The bark  beetles 

transport  spores  both laterally  and in the digestive  tract. 

A  main aspect  of  the symbiosis  between bark  beetles  and their 

associated  fungi is  their joint action to  overcome  the resistance  

mechanisms of  their  host trees.  The symbiosis  between bark  

beetles and their  associated  fungi  has  been reviewed extensively  

(Mathiesen-Käärik  1960, Francke-Grosmann 1963, Whitney  

1982,  Beaver  1989,  Paine et  al.  1997).  In several  investigations  

Ophiostoma  bicolor  Davidson & Wells,  Ophiostoma  penicillatum  
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(Grosm.) Siemaszko,  Ophiostoma  piceae  (Munch) H. & P.  

Sydow, Ophiostoma  piceaperdum (Rumbold)  Arx  and 

Ceratocystis  polonica  Siemaszko have been found to be 

associates of  Eurasian spruce bark  beetles (Siemaszko  1939,  

Solheim 1986,  Harding  1989,  Krokene and Solheim 1996). C.  

polonica  is the  most pathogenic  of  these fungi  and when mass  

inoculated into Norway  spruce,  is  able to  kill  even  healthy  trees 

(Horntvedt et al. 1983, Christiansen 1985b). Although  O. 

piceaperdum  can  also  invade the phloem  and  sapwood  and  disrupt  

the  water-conducting  system  (Harding  1989),  mostly C.  polonica  

is thought to play  a  special  role in the bark  beetle -host  tree 

interaction (Solheim  1993, Krokene and Solheim 1998). 

Exploitation  of  healthy  trees as  breeding  material and a 

nutrition base causes  inevitable difficulties to bark beetles. 

Conifers have several  constitutive mechanisms for  protecting  

themselves against  pests  and pathogens,  e.g.  thick  bark,  needle 

waxes  and sticky primary  resin.  Conifers also  have induced 

defensive mechanisms,  e.g. the hypersensitive  reaction  against  

infection by  pathogens  (Berryman  1969).  The pathogen  is  sealed 

off  from living  tissues  of  the host by  a rapidly  expanding,  

controlled necrosis  (Berryman  1969, 1972).  Several secondary  

metabolites are  antifungal  and antiherbivory,  thus preventing  the 

growth  and reproduction  of  fungi  and insects.  After  wounding,  the 

content and quantity of  the terpenoid compounds,  resin  acids,  

monoterpenes  and sesquiterpenes  in resin change  and become 

more toxic. Similar changes  occur  in phenolic  compounds  like  

stilbene derivatives.  In  spite  of the constitutive  and induced 

responses that work together  to protect  the tree, in some 

circumstances  fungi  and beetles  can  escape  from the  entrapping  

lesion (Berryman 1982). Variation in the qualitative and 

quantitative  production  of  secondary  metabolites is an essential 

factor  in  modifying  plant-herbivore  interactions.  
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Aims  of  the study 

The main aim  of  this  work  was  to  study  interactions  between the 

host tree, the pathogen  and its bark  beetle vector  as  well as  to 

identify  factors  that  influence the resistance  of  Norway  spruce  to 
infection by  C.  polonica.  

The first  section  is  methodological  and considers  whether the 

spruce  bark  beetles collected (i)  individually,  (ii) with  pheromone  

traps  using  an  insulating  material  in  the collecting  bottles  and (iii) 

in  pheromone  traps  without insulating  material  differ  in frequency  

and abundance of  associated  fungi. 

The second section includes identification of the 

ophiostomatoid  species  associated  with  I.  typographus  at  different 

populations.  The  hypothesis  was  that there are  no  differences in 

frequencies  of  fungi  collected  at different geographic  locations in 

low and higher  population  level  of  beetles. 

The third section  covers  interactions between the host and the 

pathogen.  Changes  in the main secondary  compounds  of  Norway  

spruce,  terpenoids  and stilbenes,  were studied  in relation to 

carbon allocation and to the nutrient status of trees after  artificial  

inoculation  with C.  polonica.  
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1 Spruce  bark  beetle-fungi  
host  tree interaction  - a  review  

1.1 Spruce  bark  beetle  

1.1.1 Damage  

Large-scale  outbreaks of  spruce bark  beetles  can  cause  severe  

damage  throughout  spruce forests  over  areas covering  tens of  

thousands of  square kilometres.  In central  Europe  severe  damage  

has  been  recorded since  the  1700's. The damage was  most  serious 

immediately  after the Second World War, when throughout  

Central  Europe  about 30  million  m  3  of  spruce  died. During  recent  

years  the spruce  bark  beetle has killed  millions  of  cubic  metres of  

spruce annually  e.g. in Germany,  France,  Austria and Japan  

(Boutte  1993,  Klimetzek  and Yue 1997).  In Japan,  the related 

species  Ips  typographies  japonicus  (Niijima)  is a destructive pest  

on  Picea  jezoensis  (Siebhold  and Zucc.) (Yamaoka  et  al.  1997). 

In Fennoscandia in 1971-1982 there was an extensive  

epidemic,  which followed windfall  and dry summer periods  

(Austarä  etal.  1983,  Bakke  1983,  Worrell  1983, Risberg  1985).  In  

Norway,  the damage  reached its  peak  in  1978-1980,  when about 

one  million cubic metres of spruce were  killed annually  

(Christiansen  and Bakke  1988).  In  Sweden 1.7-2.8 million  m?  of  

spruce died during  this epidemic.  In Denmark, the damage  was  

slight  up  until  the 1960's but  drought and windfalls  favoured bark  

beetles' reproduction  in the 1970-1980's (Ravn 1985).  Also in  

Finland, the  spruce bark  beetle is  the  most  damaging  scolytid  on 

Norway  spruce.  However,  during  the recent  period  of  intensive 

forest  management, bark  beetle populations  have  not risen  to  high  

levels.  In  Finland,  compared  with  the other  Nordic  countries,  both 

damage  and population  levels  of  the spruce  bark  beetle have been 

modest (Saalas 1919, 1949,  Löyttyniemi  and Uusvaara 1977,  

Löyttyniemi  etal.  1979,  Weslien  etal.  1989,  Valkama etal.  1997).  
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1.1.2 Ecology 

As  breeding  material,  spruce bark  beetles usually  favour  weak and 

dying  trees, windfalls and snow breaks. When more suitable  

breeding  material is available,  the population  size  starts  to  

increase rapidly.  If  the population  level  is  high,  the spruce  bark  

beetle can successfully  attack  even healthy  trees  (Bakke  1983,  

Mulock  and Christiansen  1986). Damage  is  considerable because 

these beetles favour large spruce trees; and once started, an 

outbreak can  continue for  several  years.  

In  Fennoscandia the beetles  disperse  in May-June,  when the 

beetles emerge  from their hibernation sites  in the forest litter.  

Small  numbers of beetles also  overwinter  under  the bark  of  felled 

trees  or  in the lower trunk of standing  trees.  Timing  of  the flight 

period  has been investigated  in several studies (Annila  1969, 

1977,  Bakke  et al.  1977  a).  The most significant  regulators  of 

flight  have been found to be  an  air  temperature  and thermal sum. 

Most  individuals  become sexually  mature and swarming starts  

when the air  temperature  reaches +2O °C.  In southern and central  

Finland the dispersal  period  normally occurs  between the end  of 

May and early  June,  and in  northern Finland in  the  middle of  June 

(Annila  1969,  1977). New generations  emerge from trees  into  the 

forest in late July  or  early  August.  In  Fennoscandia and at  high  

altitudes,  only  one generation  is produced  per  year, while in  more 

favourable areas  in  southern Europe  normally  two, or  even  three,  

generations  occur  each year. 

Spruce bark beetles have a chemical system of 

communication that helps  them to  select  suitable host  trees and 

allows  the beetles  to  colonize them  effectively  (Bakke  1983).  The  

beetles' pheromone  system  co-ordinates the intensity  of the 

attack,  causing  rapid aggregation  of  large  numbers  of  beetles 

(Bakke  et al.  1977 a, Birgersson  et al. 1984, Schlyter  and 

Birgersson  1989). In Ips species,  the male beetles initiate 

construction of  an entrance tunnel and gallery  by  producing  

mainly  the components  of  aggregation  pheromone  (Bakke  et  al.  

1977b). In I. typographus
,
 the aggregation  pheromone  is  

composed of  two  primary  components;  methylbutenol  is  a  short  

range attractant that  promotes  landing  and entering  of  holes,  while 

the heavier and less  volatile c/s-verbenol also  promotes landing  

but acts  over  a  longer  distance (Bakke  et  al.  1 977  b, Schlyter  et  al.  

1987). Conspecifics  of  both sexes  are  attracted  to  the site;  males 

initiate their own  nuptial  chambers,  and one  to  four  females arrive  

to the completed  chambers to mate  with the resident male 

(Christiansen  1988).  After mating,  the female  starts to  excavate  
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longitudinal  egg  galleries  in the phloem  and  the male helps 

remove  from the gallery the dust produced  by  boring.  

The pheromone  production  of  bark  beetles is  linked to  the  

secondary  metabolism of  the  host  tree. The resin monoterpenes  

can have contrasting  effects  as  bark beetle repellents  and 

as pheromone  precursors.  C/s-verbenol  is synthesized  by  

hydroxylation  of the exogenous monoterpene  of the tree,  

(-)-a-pinene.  The synthesis  of  this  compound  is  regulated  by  the  

availability  of  the precursor  (-)-a-pinene  (Ivarsson  1995).  Since  

spruce produces  (-)-cx-pinene  to defend itself, the beetles can  

produce  m-verbenol and attract  more individuals to the tree  

(Birgersson  1989, Ivarsson 1995).  The spruce  bark  beetle can  

synthesize  methylbutenol  de novo  via  mevalonate,  independently  

of  precursors  from the host  tree  (Lanne  et  al.  1989).  In addition,  

yeasts  associated with spruce bark beetles can  convert cis  

verbenol to verbenone (Leufven  et al. 1984). Furthermore,  

verbenone and ipsenol  act  as antiaggregation  pheromones  

regulating  breeding  density  in trees  (Bakke  1981, Birgersson  et  al.  

1984). 

During  gallery construction,  many bark  beetles transport  

various micro-organisms  to the phloem  and cambium: yeasts,  

bacteria  and fungi  that help  the beetles establish  galleries  and 

begin  to oviposit  as well as  aiding  digestion (Whitney  1982,  

Leufven and Nehls 1986, Furniss  et al. 1990). In some bark 

beetles slimy  secretions  may be  produced  to  preserve  ascospores  

and  conidia from desiccation and UV-light  (Dowding  1969).  

Many  species  of  bark  beetles have special  organs, known  as  

mycangia, in which spores are transported.  In general,  the 

mycangia  have a  similar  basic  structure:  tubes, pouches,  cavities  

or  pits  associated  with  glandular  cells  (Beaver  1989). The spruce  

bark beetle,  however,  does not  have mycangia  and  it transports  

fungal  spores  mainly  laterally  on  the posterior  half  of  the pronota  

and in pits  scattered  over  most of  the surface  of  the elytra.  Small  

numbers of  spores  are also  transported  in the digestive  tract and 

on phoretic  mites  associated  with the beetles (Moser  et  al.  1989,  

Furniss et  al. 1990).  Either I.  typographus  has slimy  excretions  in 

the pits,  where the spores  occur  or  the spores  may be  covered  with 

wax  (pers. comm. E.  Christiansen  and H.  Solheim). Thousands of  

ascospores and conidia may  be found on the surface  of  each 

beetle,  but the number of  spores transported  by different 

individuals varies greatly.  Neither ultrasonic cleaning  nor  

chemical sterilizing  agents  have successfully  eliminated fungal  

spores  from adult  beetles (Harding  1989,  Furniss  et al.  1990).  
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1.2  Associated  fungi  

1.2.1 Ecology  

Ophiostoma  and Ceratocystis  fungi  are  well  adapted  for  dispersal  

by  insects:  elongated  ascocarps  bear  ascospores on  the apices  of  

their necks;  these ascospores  may be  released in a slimy  matrix. 

The fruiting  structures  of  the fungi  are  formed in beetle galleries 

and under bark  flaps  on  the  phloem.  Since spores  lose  their  vitality  

and dry  in sunshine,  rapid  insect  dispersal guarantees  reliable 

inoculation of  the fungi  to a suitable habitat  (Dowding  1969).  In 

addition, the  conidia  of  ophiostomatoid  fungi  may accumulate  in 

sticky drops at  the apex  of  conidiophores.  The cirri  of  some 

ophiostomatoid  species  disperse  in conifer  resin  rather than only  

in  water  (Whitney  and Blauel  1972).  According  to  Wingfield  et al.  

(1993),  species  with short  ascomatal necks  tend to have long  

ascospores  and vice  versa.  In spite  of  that,  variation in  the length 

of  necks  or  the presence of  ostiolar  hyphae does not correspond  to 

the probability  of successful  dispersal  at  the species  level.  

Many  ophiostomatoid  fungi  associated  with  bark  beetles are 

highly  pathogenic  and also cause  sap-stain,  which is a  grey,  black 

or  bluish discoloration of  sapwood  caused by  the optical  effect  of  

pigmented  fungal  hyphae  (Wingfield  et  al.  1993).  It  is  quite  often 

referred to as  blue-stain;  thus the word "blue"  for  describing  the 

discoloration can in many cases be misleading.  There is a 

continuum from truly  pathogenic  sap-staining  fungi  that  occur  in 

living trees  to  pathogenic  fungi  that grow  on weakened trees  to  

truly  saprobic  fungi  that  utilise  dead trees  (Wingfield  et  al.  1993).  

Typically,  discoloration is  spread  over  a wide area of  the stem, 

(more rapidly  longitudinally  than radially)  causing  deep  staining  

throughout  the sapwood.  Hyphae  grow mainly  in tracheids and  

ray  parenchyma  cells,  preventing  water  transport,  and  can  kill  

living tissues far  from the  beetle galleries  (Wong  and Berryman  

1977, Horntvedt et  al.  1983).  No actual  staining  of  the cell  walls  

occurs  (Wingfield  et  al.  1993).  Despite  the fact  that tangential  

growth  and radial growth in  the xylem  ray  system  are minor,  fungi  

can reduce the commercial  value of  the lumber considerably.  

However,  the main  harmful  effects  of  pathogenic  ophiostomatoid  

fungi  are visible  in the forest  when trees  are  dying.  

Common associates  of  the spruce  bark  beetle during  a beetle 

epidemic  and immediately  following  are  C.  polonica,  O.  bicolor,  

O.  penicillatum  and Pesotum species  (Table  1).  These species  are  

frequent  in the area  of  visible  staining  (Solheim  1986,  1992a,b).  

When the population  level of  beetles has been low,  the same 

species  have occurred;  but  the frequency  of  C.  polonica  has  been 
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lower than during  epidemics  (Harding  1989, Solheim 1993).  It 

has been proposed  that C.  polonica  may be replaced  by  other 

species  during  periods  when the population  level  is  low and the 

beetles infest dead trees and timber (Solheim  1993).  During  

epidemics,  however,  living  trees  are  attacked  and the frequency  of  

C.  polonica  may increase  (Solheim  1993, Wingfield  et  al.  1993).  

C.  polonica  is  the most aggressive  species,  being  able in 

inoculation experiments  to  invade sapwood  and kill  healthy  trees 

(Horntvedt  et al. 1983, Christiansen 1985b, Solheim 1988, 

Kirisits 1998, Krokene and Solheim 1998). It tolerates low 

oxygen levels  and grows extensively  in  the phloem  and sapwood  

(Solheim  1991),  while other ophiostomatoid  fungi  cannot grow 

well  in  such  low levels  of  oxygen.  

Table 1. Ophiostomatoid  species  associated with the spruce bark beetle 

I. typographus  with their anamorphs.  

*Note: Dubious  validity of species according to Jacobs  and  Wingfield (2001) 

References:  I=Davidson  et al. 1967, 2=Grosmann  1931, 3=Harding 1989, 
4=Kirisits  1996, s=Krokene  and Solheim  1996, 6=Mathiesen  1951, 

7-B=Mathiesen-Käärik  1953,1960, 9=Savonmäki 1990, 10=Siemaszko  1939, 

11-14=Solheim  1986, 1992a,b, 1993 and 15=Yamaoka  et al. 1997. 

Species Anamorph Reference  

Ceratocystiopsis  minuta  

(Siemaszko) Upadhyay & Kendrick 

Hyalorhinocladiella 3,4,6,9,11-15 

Ceratocystis  polonica Siemaszko  Thielaviopsis 1,3-7,11-15 

Ophiostoma ainoae  Solheim  Pesotum 3,11-15 

0. bicolor  Davidson  & Wells Hyalorhinocladiella 1,3-5,9,11-15 

0. cainii  (Olchowecki & Reid) 

Harrington Pesotum 3 

0. cucullatum  Solheim  Pesotum 3,4,11,15 

0. japonicum Yamaoka  & 

M.J. Wingfield Pesotum 15 

0. flexuosum  Solheim  Sporothrix  3,11 

0. penicillatum (Grosm.) 

Siemaszko  Leptographium 1-9,11-15 

0.  piceae (Munch) H. & P. Sydow Pesotum 2-5,7-9,11-15 

0. piceaperdum (Rumbold) Arx  

=  0. europhioides (Wright  & Cain)  Solheim  

Leptographium 1,3,4,11-15 

0.  piliferum  (Fries)  H.  &  R  Sydow Sporothrix 9 

0. pluriannulata (Hedgcock) 

H. &  P. Sydow Sporothrix  7 

0. stenoceras  (Robak)  Melin  &  Nannfelt  
= O. albidum  Mathiesen-Käärik  Sporothrix 7 

0. tetropii 
*
 Mathiesen  Sporothrix  6,9,11,13 
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1.2.2 Taxonomy  

Most  of the fungi associated with bark beetles that cause  

discoloration belong  to  the ascomycetes  or  the  fungi  imperfecti.  

Important  and economically  significant  associates  belong  to the  

family  Ophiostomataceae  and in particular  to the genera 

Ceratocystis  and Ophiostoma  (Table 1). Ceratocystis , 

Ceratocystiopsis  and Ophiostoma  are differentiated according  to 

properties  of ascospore morphology,  development  of the  

ascomatal  centrum, carbohydrate  content  of the cell  walls, 

conidial stages  and  conidia. Order,  family  and several  species  

have  been a source  of  taxonomic controversy.  The families  

Ceratocystis  s.s., Ceratocystiopsis  and Ophiostoma  have 

generally  been accepted.  Most species  in the genus 

Ceratocystiopsis  share common characteristics  with species  in 

Ophiostoma,  and it  has been proposed  that the species  form a 

monophyletic  group (Wingfield  et al.  1993,  Viljoen  et  al.  2000).  

Many  bark  beetle associates  formerly  considered to  be in the  

genus Ceratocystis  are now placed  in the genus Ophiostoma 

(Wingfield  et  al.  1993,  Hawksworth et al.  1995,  Viljoen  et al.  

2000).  The  main species  in  this  thesis,  C.  polonica,  was originally  

described as  O.  polonicum  and has lately  been transferred to 

Ceratocystis  (Visser  et al. 1995,  Harrington  et al. 1996).  

Furthermore,  based on  the morphology  of  the  perithecia,  Jacobs et  

al.  (2000)  concluded that  O.  europhioides  and O.  piceaperdum  are  

indistinguishable  thus supporting  the synonymy  O.  piceaperdum  

proposed  by  Upadhyay  (1981).  In the interest  of  consistency,  

throughout  this  review O.  europhioides  is  called  O.  piceaperdum.  

The members of  the genus Ceratocystis  s.s.  contain no  

cellulose  or  rhamnose in the cell  walls, and traditionally  the 

asexual  stage  has  been Chalara Corda (Weijman and De Hoog  

1975,  Upadhyay  1981, De  Hoog  and  Scheffer 1984).  Recently  

Paulin-Mahady  et al.  (2002)  transferred  anamorphic  Chalara 

species  to the genus Thielaviopsis  Went. Within  these 

Ceratocystis  species,  antibiotic cycloheximide  in the growth  

media prevents growth,  which has been used as  a taxonomic 

characteristic  of the genus (Harrington 1981). Other  

characteristics  are  darkly  pigmented  (nearly  black)  perithecia  and  

hyaline  ascospores  that vary  in shape  but  are  not  falcate  (De  Hoog  

and Scheffer 1984). Ophiostoma  and Ceratocystiopsis  species  

have cellulose  and rhamnose in the cell  walls, which  may be the 

reason  for their tolerance to  cycloheximide  (Harrington  1981). 

The perithecia  are almost  glutinous,  and the ascospores  vary  

in shape.  Ceratocystiopsis  species are otherwise similar  to  

Ophiostoma,  but the  ascospores  are  elongated  or  falcate and  are  
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surrounded by  a hyaline,  gelatinous  ascospore  wall (previously  

defined as  a sheath)  (Upadhyay  and Kendrick  1975,  Upadhyay  

1981,  De Hoog and Scheffer 1984). 

Ophiostomatoid  fungi  can  have several  asexual  forms  or,  in 

some species,  only the asexual form is known. The family  

Ophiostomataceae  has contained as many as 16  asexual forms 

(Wright  and Cain 1961,  Upadhyay  and  Kendrick  1975, Upadhyay  

1981, Wingfield  et al.  1993).  Asexual forms are classified  

according  to  the  morphology  of  the conidiophores  or  by  the form 

of  the conidia. The conidiophores  can be mononematous  like 

Leptographium  or  form synnemata  like  Pesotum. Synnematous  

anamorphs  of  Ophiostoma  species  were  quite  recently  placed  in 

the  genus Graphium , although  Graphium  species  are  considered 

to be anamorphs  of  the Microascales  (Okada et al.  1998).  

However,  the synnematous  anamorphs  of  Ophiostoma  species  are  

phylogenetically  unrelated to Graphium s.s.,  and should  be 

currently  referred to  the anamorph  genus Pesotum (Okada  et al.  

2000).  The genus Verticicladiella  is  considered to  be a synonym 

for  Leptographium  (Wingfield  1985,  Schowalter  and Filip  1993).  

Most of  the asexual forms  of  the Ophiostoma  species  can be 

classified  to the genera Pesotum (Okada  et al.  1998, 2000),  

Leptographium,  Hyalorhinocladiella  or  Sporothrix  (Harrington  

1987, Hausner et al.  2000).  

The taxonomy  of  the family  Ophiostomataceae  and its  genera 

still  needs clarification.  In recent years,  several  new fungi  that 

cause  wilting  and discolouration on trees have been described. 

Unknown species  complexes  probably  exist  even in fungi  that 

have worldwide distribution and a wide host  range, for  example,  

C.  fimbriata,  for  which related species,  C.  albofundus  Wingfield,  

De Beer and Morris  have lately been found (Wingfield  et al.  

1996). Morphological  similarities  in teleomorph and anamorph  

structures of phylogenetically  distinct Ceratocystis  and 

Ophiostoma  have apparently  developed  as an adaptation  to  an 

insect-associated  habitat (Visser  et al.  1995,  Hausner et al.  2000).  

1.3 Host  tree 

1.3.1 Vigour  

Measurements of  tree  vigour  have been used to  determine the risk  

of  attack  by  bark beetles and as a substitute for the term 

"resistance"  (Waring  and Pitman  1983,  Mulock  and Christiansen 

1986).  The tree  vigour  index is defined as the  ratio  of 

the cross-sectional  area of  the current annual  ring  (BAj)  to the 
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sapwood  basal area (SA) at breast  height  (Waring  et  al. 1980,  

Munster-Swendsen 1987). The basic  assumption  is that good  

growth  generates  high  vigour.  The  index is  based on  the pipe  

model theory  and on  the assumption  that  the relationship  between 

the cross-sectional  sapwood  area  and the weight  or  area  of  leaves 

supported  by  the conducting  sapwood  within a tree  species  is  

linear. 

The number of  beetle attacks,  their distribution on the trunk 

and their  timing  determine the effectiveness  of  the bark  beetle -  

fungi association  complex  in  overcoming  the resistance  of  a tree  

(Berryman 1972,  1982,  Raffa  and Berryman  1983, Christiansen 

1985a,b).  The spruce bark  beetle can colonise standing  healthy 

Norway  spruce trees  if  the number of attacking  beetles is  large 

enough  to overcome  the resistance  of  the trees.  In experiments,  

attacks  of 150-200 beetles  or  artificial  inoculations of  C.  polonica  

have killed the trees (Christiansen  and Horntvedt 1983, 

Christiansen 1985b).  During  an epidemic  in nature, hundreds or  

even  thousands of  spruce  bark  beetles  can  attack  a single  mature 

tree. Bark beetles both co-operate  in overwhelming  the host 

defense due to pheromone mediated mass-attack and 

simultaneously  compete  for  the  available resources.  

Stand and climatic  conditions  often reduce  plant  assimilation  

and may consequently  lower a  tree's ability  to resist  the attack  of  

bark beetles and associated fungi.  Changes in herbivore 

abundance have often been correlated positively  with 

unfavourable environmental factors.  On the other  hand,  the ability  

of a  tree to defend itself  is  linked to its  overall  vigour  and to  the 

amount of  carbohydrates  that  can be  used as a source  of  energy for 

synthesising  defensive compounds  (see  reviews:  Berryman  1972,  

Christiansen et  al.  1987,  Paine et  al.  1997).  This is  especially  

important in mature  conifers,  which have reduced ability  to 

replace  damaged structures. 

1.3.2 Constitutive  defense  

Conifers protect  themselves against  attack  by  bark  beetles and 

associated  fungi  with constitutive  defense,  based mainly  on  pre  

formed primary  resin,  and by  production  of  secondary  resin  in  the 

induced wound response.  Constitutive defense is found especially  

in  trees  with well-developed  pre-formed  resin  duct systems,  such 

as Pinus.  Primary resinosis  is  a  continuous defense system  against  

generalists.  It  is  particularly  important  during  the early phases  of  

the beetle-fungus  colonization as  an  agent  that  cleanses  the wound 

(Berryman  1972) and enables activation  of  the induced defense. 
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Primary  resin is  under turgor  pressure  in the vertical  and 

horizontal resin  ducts and  blisters  and depends  on  the water 

potential  of  the tree. The resin  starts to exude  when the tree is  

wounded, e.g. by  the boring  activity  of  beetles.  The flow and  the  

crystallization  of  the  primary  resin  are  sometimes sufficient  to 

deter beetles  soon  after  they  initiate  construction  of  galleries  (Reid  

et  al.  1967,  Hodges  et  al.  1979).  In addition, pre-formed  primary  

resin  inhibits  the growth  of  ophiostomatoid  fungi  (Cobb  et al.  

1968). During  a mass  attack  by  bark beetles the resin  system  is  

often  exhausted  due to simultaneous exudation  of  resin  in  separate  

wounds that lead to successfully  constructed  galleries.  In  spruce,  

constitutive  resin is carried  primarily in  vertical  resin  ducts in  the 

bark,  and the  amount  of  resin  content depends  mainly  on the 

storage  capacity  of  the duct system  (Christiansen  and Bakke  

1988).  Thus, in  Norway spruce  exudation of  primary  resin  varies  

considerably  between individual trees (Christiansen  and 

Horntvedt 1983).  In addition to resin,  lignified  stone  cell  masses  

(lignin)  provide  an important  pre-formed  system  of  defense in 

living  trees by  preventing  both construction of bark beetle 

galleries  and oviposition  (Wainhouse  et  al.  1998). 

1.3.3 Induced  wound  response  

The induced wound response  plays  an essential  protective  role  in 

conifers  that lack  a well-developed  pre-formed  system  of  resin 

ducts, e.g. species  in  the genus Picea. The induced wound 

response has been thought  to protect trees  against  host-adapted  

pests and pathogens.  Fungal  cell-wall  components  and bark  beetle 

feeding elicit  a metabolically  active  induced  wound response in 

the phloem and  sapwood  (Miller et al.  1986,  Lieutier and 

Berryman  1988).  Living  cells  in  the reaction zone  die  and  form a 

necrotic  area,  thus preventing  fungal  nutrition. Berryman  (1969)  

described this  controlled  necrosis  as  the hypersensitivity  reaction 

which is  an  active  metabolic process  affected  by  the physiological  

vigour  of the tree.  Soluble nutrients and carbohydrates  are  

mobilized from  tree  storage reserves  to  produce  toxins  in  tissues 

near  the point of  infection;  the amount  of  soluble  carbohydrates  

decreases and the content  of  secondary  metabolites increases  and 

becomes more toxic  (Reid  et  al.  1967,  Wright et  al.  1979,  Cook 

and Hain 1985, 1987, Delorme and Lieutier 1990, Raffa and 

Smalley  1995).  Thus the reaction zone fills  with resinous and C  

based compounds.  Monoterpenes,  sesquiterpenes,  resin  acids  and 

phenolic  compounds  repel  beetles and inhibit  the growth  of  fungi  

or  bark  beetle larvae (Shrimpton  and  Whitney  1968,  De Groot 
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1972,  Bordasch and Berryman  1977, Raffa  et  al.  1985, Bridges  

1987, Woodward and  Pearce 1988, Delorme and Lieutier 1990, 

Solheim 1991,  Klepzig  et  al.  1996,  Lindgren  et  al. 1996,  Evensen 

et  ai.  2000).  Secondary  resin,  as  well  other  secondary  metabolites,  

is  produced  by  ray  and phloem  parenchyma  cells.  In addition,  

callus  and wound periderm  develop  rapidly  in tissues  surrounding  

the wounded area  (Reid  et  al.  1967, Berryman  1969,  Wong  and 

Berryman  1977).  A  reaction zone is  formed  to  separate  wounded 

tissues  from healthy  wood. 

Fungal  inoculation tests and resin  toxicity  tests  with bark 

beetles have shown that the rate of accumulation and the 

concentration of  secondary  metabolites  in the reaction zone are  

crucial  for  successful  protection.  The components  of  primary  and 

secondary  resin vary qualitatively  and quantitatively  between 

individual trees, species,  age, season  and  type  of  resin (Russell  

and Berryman 1976,  Raffa  and Berryman  1982, 1983, Toscano 

Underwood and Pearce 1991, Lindberg  et  al.  1992).  In general,  

non-host resins  are  more  toxic  to insects  and fungi than resins 

from the host  species;  and the induced resins  are  more toxic  than 

the pre-formed  resins.  Formation of  the reaction  zone and terpene  

synthesis  represents  two  independent  activities  during  the wound 

response, necrosis  proceeding  more  rapidly  than terpene  synthesis  

(Raffa  and  Berryman  1982).  Thus,  the fungus  is  first  contained by  

the removal  of essential  nutrients from the entry site, and  only  

secondarily  by  resinosis  (Wong  and  Berryman  1977,  Raffa  and 

Berryman  1982,  Christiansen  and Ericsson  1986). 

In woody  plants  the induced wound response  is considered to 

be a non-specific  response to  wounding.  However,  it  has been 

detected that concentrations of  monoterpenes increase as  the 

virulence of  the fungal  species  increases  (Cook  and Hain  1985,  

Poppet  al.  1995). On the other  hand,  it  is a  competitive  advantage  

for many pathogenic  fungi  to tolerate stilbenes better  than non  

pathogenic  species  do (Hart  1981).  When inoculated into  a  tree,  a 

pathogenic  fungus  causes  a typical  reaction  zone in  the phloem,  

the size  of  which  depends  on  variation in  fungal  growth,  virulence 

or  elicitor  production.  

The phloem of Norway spruce contains so-called  

polyphenolic  parenchyma  cells  (PP cells)  and traumatic resin 

ducts. These cells and ducts react  to fungal  inoculation and 

wounding,  which indicate involvement of  both constitutive  and 

inducible defense  responses  (Franceschi  et  al.  1998,  2000).  Pre  

formed and induced wound responses are separate,  but  

overlapping,  dynamic  phases  of  wound reaction;  the pre-formed  

reaction consists mainly  of  processes  ending up  to visual  

symptoms,  and the induced wound response consists  more  of  
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biochemical  changes  at  the cell and tissue  level.  Induced defense, 

in particular,  is energy-demanding  response involving  de novo 

synthesis  of  secondary  compounds  and new tissue. Despite  the 

fact  that the constitutive  and induced wound responses  work  

together  to  protect  the tree,  in  favourable circumstances  fungi  can  

escape  from the entrapping  reaction  zone. 
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2 Methods  

(For  details, please  refer  to  the original  articles  I-IV) 

2.1  Isolation  and identification  of  fungi 

Living  beetles were inoculated into  fresh  logs in order  to  isolate 

the associated ophiostomatoid  fungi (I,  II).  The inoculation 

method was  originally  described by  Wright  (1933)  and has  been 

used widely  in corresponding  studies.  Beetles were  placed  with 

forceps  into  the  hole made  by a  cork-borer,  and the bark  plug  was  

then reinserted. Empty  holes made by  a cork-borer  but without 

beetles  were  used as  control inoculations. The aim of  the control  

inoculations  was  to  detect  fungi  that  had become established  in  the 

phloem  or  bark  before inoculation or  invaded trees  during  the 

inoculation  phase as  contamination. To kill  air-dispersed  spores,  

the surface of the logs was sterilized with ethanol before 

inoculations.  After  3  and 4 weeks incubation, samples  were  taken 

from bark,  phloem  or  sapwood.  

Malt-agar  media suitable for most  ascomycetes  were  used in 

culturing.  To promote  fungal  sporulation,  wooden chips were  

occasionally  added to  the growth  media. The growth  media were  

not  optimised for the growth  demands of any special  fungi, 

because the  aim  was  to  isolate  all  possible  ophiostomatoid  fungi.  

Identification concentrated on ophiostomatoid  species,  and  thus 

other species  that did not produce  teleomorph  were mostly  

ignored. The  only anamorph  of  Ophiostoma  and Ceratocystis  

species  identified to species level was  Leptographium  

penicillatum  Grosmann. There are  several  discrepancies  among 

the anamorph  descriptions,  so  in  many cases identification would 

have been uncertain without a teleomorph (Wingfield  et  al. 1993).  

Following  cultures  from the collections  of  the Norwegian  Forest  

Research Institute were used as reference material in 

identification:  O.  penicillatum  (80-91/54),  C.  polonica  (80-53/7),  

O. piceae  (80-92/34),  0. europhioides  (80-91/9),  (). ainoae 

(80-85/37),  O.  tetropii  (80-113/9)  and  Graphium sp.  (80-52/24).  
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2.2  Fungal  inoculations  in  living trees  

Low-density  inoculations  were  made in  a Myrtillus-lype  mature 

spruce forest  in  Vesijako,  southern Finland (111, IV). Four plots  
were  marked,  and in  May  1993 fertilization  treatments (N,  P  and 

NPK) were applied to the plots  to manipulate  the defensive  

potential  of the trees. The  control treatment  was a non-fertilized 

plot. From each plot,  30 trees that were  free of  visible  wounds,  a 
total of 120 trees, were  selected. In June 1994 a Finnish culture 

(origin  Tuusula)  of  C.  polonica ,  on malt-agar  in petri dishes was  

inoculated with a cork-borer  into ten trees per fertilization  

treatment. Each wounded tree received  four  inoculations,  one at 

each of  the cardinal  points  of  the compass,  at  1.3 m  above ground  

level.  For mechanical wounding,  the  trees  were  injured  with a 

cork  borer  in  the same way  as  inoculation,  but  without the fungus.  

Ten trees per  fertilization  treatment  were  wounded mechanically.  

After a two-month incubation period  around each  fungal  

inoculation site,  phloem  samples  were  taken with  the borer  to  the 

level  of the cambium. One sample  was  collected  from the distal  

ends of  the visible  reaction lesion (later  called the "far"  samples)  

and one  each from the areas  immediately  above and below the site  

of  inoculation (later  called the "near" samples).  Two samples 

were  taken from near the site  of  mechanical wounding,  one above 

the inoculation site  and another below the inoculation site.  

Unwounded phloem  from non-bored trees was  used as the 

unwounded control. 

2.3  Chemical  analyses  

Chemical analyses  were  conducted  in  the  Central  Laboratory  of  

the Finnish Forest Research Institute,  Vantaa Research Centre. 

Phloem samples  were  ground in  liquid  nitrogen  and  analysed  for 

their terpene, stilbene and carbohydrate  composition.  To obtain 

sufficient  amounts  of  compounds  for gas chromatography  (GC) 

analysis,  organic  solvents  were used for extraction.  Stilbenes,  

carbohydrates,  mono- and sesquiterpenes  were  analysed  in  a  GC  

mass  spectrometry  (MS)  system  with a capillary  column. The  

degradation  of  stilbene  compounds  was  reduced by  silylating  the 

samples.  Stilbene glycosides  were quantified  according  to the 

response  of  rhapontin,  and stilbene aglycones  were  quantified  by  

using  the response factors  of  diethyl  stilbestrol  and resveratrol.  

Monoterpenes  were  identified using  the retention and mass  

spectral  data of authentic  model compounds.  Sesquiterpenes  were  

identified according  to  the method of Pohjola  (1993)  and 
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quantified  according  to  the response factor for  caryophyllene.  

Due to  the complexity  of  the  compounds  analysed,  both retention 

and MS data were used for identification. In identification of 

compounds  previously  published  data were  also  used (Mannila  

1993,  Pohjola  1993).  The enantiomers of  chiral  monoterpene  

hydrocarbons  were not separated.  For quantification  of 

compounds,  calibration with  both internal  and external  standards 

was  used. When possible,  commercial substances  were used as  

reference compounds.  

The needles of  the same trees were used for analysing  

nutrient concentrations with an inductively  coupled  plasma 

emission spectrometer  (ICP-AES).  The total C  and N  in  needles 

were  determined by  dry  combustion with  a  CHN analyser.  
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3  Results  and  discussion  

3.1 Fungal  flora  

Species  Ceratocystis  polonica,  O. ainoae,  O. bicolor, O.  

piceaperdum,  O.  penicillatum,  O.  piceae and O. tetropii  and 

asexual  forms of  Leptographium  spp.  and Graphium spp.  were 

found to be associated with spruce bark beetles in Finland 

(Paper  I).  These species  correspond  to  the fungal  flora previously  

found to  be associated with galleries of  spruce bark  beetle in 

southern Finland (Savonmäki  1990).  In addition,  C.  polonica ,  O.  

ainoae and O. piceaperdum  were found as new species.  

Furthermore, in France  were  found C.  minuta and O. cucullatum  

Solheim.  The  frequency  of  C.  polonica  was  lower in  Finland and  

France  than  in  Norway  (Krokene  and Solheim 1996).  Whether the 

frequency  of  pathogenic  C.  polonica  as  an associate  of  spruce 

bark  beetle would be  more  common during  an  epidemic,  could not  

be clearly answered here. Nevertheless, low frequency  of  

associated  pathogenic  species  is  not contradictory  to  low level  of  

damage  in Finland.  In French  study  areas,  the spruce  bark  beetle 

population  were  in  the post-epidemic  phase.  Also elsewhere,  the 

high  frequency of  C.  polonica  has been sporadic  and irregular 

(Harding  1989, Kirisits  1996,  Yamaoka et  al.  1997,  Kirisits  et  al.  

2000).  

In French  isolations  C.  minuta was  frequent, but  it  was  not  

detected in Finnish isolations.  Lack  of  C.  minuta in the Finnish  

samples  may be partly  due to  difficulties  identifying  the mixed 

unsporulated  strains  (I). On the other  hand,  C.  minuta perithecia  

were abundant and easy  to  identify from the French  primary  

isolations  containing  even  several  species  (II).  Also  elsewhere the 

association  of  C.  minuta with I. typographus  has been inconstant  

(Solheim  1986, Kirisits  1996,  Kirisits  et al.  2000).  

Previously  no specific  importance  has been ascribed  to  O.  

piceaperdum,  but my  results  suggest  that the role of  this  species  

may vary  (I,  II). O.  piceaperdum  is  frequently  found in  Denmark 

and Austria, invading  the sapwood  of  Norway spruce and 

disrupting  the water-conducting  system  (Harding  1989, Kirisits  

1996). It  is  not  able to  grow as rapidly  as  C.  polonica  (Harding  

1989), but it causes  long  broad  lesions in the phloem  (Kirisits  

1996,  1998).  Results  concerning  the ability  of  O.  piceaperdum  to  

cause sapwood  discoloration are  conflicting;  in Denmark the 
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species  has  caused as  extensive  desiccation as  C.  polonica ,  but  in 

Austria the desiccation observed after  artificial  inoculation was  

slight  (Kirisits  1998).  

O.  piceaperdum  has  been found in  several  conifers  in  Europe 

(Davidson  et al.  1967)  and in North America (Wright  and  Cain 

1961,  Davidson and Robinson-Jeffrey  1965).  Recently  the species  

was found to be a constant  associate  of  the Douglas-fir  beetle,  

Dendroctonus pseudotsugae  Hopkins  (Solheim  and Krokene 

1998).  Because  of  the revised status of  O.  europhioides  and O.  

piceaperdum,  the pathogenicity  and distribution of  the O.  

piceaperdum  complex  needs further investigation  in  different  host 

trees  throughout  its  broad geographical  range.  

O.  penicillatum  is frequently  associated  with I.  typographus  

(I,  11,  Grosmann  1931,  Siemaszko  1939,  Mathiesen-Käärik 1953,  

1960,  Harding 1989)  and has  been isolated  from the  phloem  near  

visible  stains  (Solheim  1986,  1992 a). O. penicillatum  does not 

grow deep  into the  sapwood,  and thus it  has  been speculated  that  

this  species  is not able to kill  a  tree without the  beetle (Horntvedt  

et al.  1983,  Solheim 1988, Harding  1989).  The  large  internal 

variation in morphological  characters  supports  the expectation  

that the pathogenicity  of  this species  is  variable (Mathiesen-  

Käärik  1953, 1960). 

O.  bicolor  occurs  with C.  polonica  in the beetle galleries,  

especially  in the early  phase  of  attack  (Solheim  1986,  Harding  

1989).  It  is  a fast  growing  species  (Solheim  1986,1991);  but  not,  

according  to  the inoculation experiments,  as  aggressive  as C.  

polonica  (Solheim  1988,  Kirisits  1998).  Most  likely  O.  bicolor  

can  overcome  the resistance of  a tree with  other  fungi, but  alone it  

is  not  able to  kill  a  healthy  tree.  O. bicolor has  been isolated from 

//«-infested  spruce  both in  Europe  and in western parts  of  North 

America. 

Among the ophiostomatoid  species,  O. bicolor
,
 O.  

piceaperdum  and C.  minuta were  easy  to  identify.  In the Finnish  

isolates  of O. piceaperdum ,  perithecia  formation was very  

abundant and stable. There were  no  signs  of  degeneration  that  

might  have influenced its  frequency  of occurrence.  French  

isolates  produced  noticeably  less  perithecia,  thus suggesting  intra  

specific  variation. However,  the ability  of  O. piceaperdum  to 

produce  perithecia  seemed to  be more stable  than that of  e.g.  O.  

bicolor  (I,  II). C.  polonica,  O.  ainoae  and O.  bicolor degenerated  

rapidly  after two transfers,  producing  only  sterile mycelia.  

Degeneration  of axenic  cultures  and loss  of  pathogenicity  has  also  

been noticed by  Kirisits  (1996)  and Krokene  and Solheim (2001).  

In  old cultures,  after  several  months incubation and storage at  

+4  °C,  O.  ainoae produced  few perithecia  (I). O. piceae  colonies 
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can  also be hard to maintain in normal  condition on  artificial  

media,  and some colonies do not form perithecia  (Davidson  

1953). Here on malt-agar  some O.  piceae  colonies formed  only  

light  brown sectors  or grey dots with few coremia and no 

perithecia.  It  has  lately  been reported  that  the O.  piceae  complex  

forms  a monophyletic  group of nine recognized  insect-dispersed  

species,  delimited by  synnemata  morphology,  growth  rate, mating  

reactions and sequences of  the internal transcribed  spacer  (ITS)  

region  of the rDNA operon  (Harrington  et al.  2001).  

The large  numbers of  Leptographium  sp. can be partly 

ascribed  to  the ability  of  O.  penicillatum  to  degenerate  on  artificial  

growth  media when retained for  long  periods  (I,  II).  After  several 

transfers  the species produces  few perithecia  and only  

occasionally  (Davidson  et al.  1967). According  to Kendrick's 

(1962) extensive review of Leptographium  species,  the 

Leptographium  sp.  found in  study  (I) appears to be  very  similar  to  

L.  penicillatum.  Leptographium  spp.  may contain asexual  stages  

of  both O.  penicillatum  and O.  piceaperdum,  so asexual  stages  

were  not used as the main characteristic  in identification. All 

synnematous  anamorphs  were included in  the group of  Graphium 

spp. in Paper I  and Pesotum  spp. in Paper  11, which group 

probably  includes several  different species  since  there was  great 

variation in  width,  length  and colour  of  the synnemata. 

Some species  produce  few  or no perithecia  on artificial  

growth  media,  and  some  reproduce  more abundantly  in wood 

(Furniss  et al. 1990). Most species  of  Ceratocystis  and  

Ophiostoma  vary  widely  in  colony  growth,  formation of  asexual  

and sexual  structures  and sporulation,  which makes  it  difficult  to  

produce  sexual  stages  on  artificial  media. Ophiostomatoid  fungi  

need adequate  nutrients  and high  C/N  ratios to  produce  perithecia  

on artificial  growth  media (Mathiesen-Käärik  1960).  Progressive  

sub-culturing  favours  vegetative  growth at the expense of  

reproductive  structures.  Moreover,  after  two or  three transfers  (I, 

II) some species  produce  only sterile  mycelia.  

When fungi have been isolated from attacked trees,  

inoculated logs  or  directly  from beetles,  significant  differences  

have been detected in the fungal  flora (Yamaoka  et al.  1996, 

Solheim and Krokene 1998). The most reliable method for 

identifying  ophiostomatoid  fungi  is  to isolate  them from recently  

hatched insects. However,  after  hibernating  in  the ground,  

dispersing  beetles are covered with soil microbes. Here 

inoculations  of  insects  (I,  II) into wooden logs  prevented  mostly  

other fungi  and microbes from affecting  isolation of  associated  

fungi.  On the  other  hand, the isolation technique  used here favour 

pathogenic  fungi.  Fungi  isolated from control  inoculations had 
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become  established in  the phloem  or bark  before the inoculation 

or invaded trees during  the inoculation  phase  as contaminants. 

Some  of  the same species,  such  as  Nectria sp„  were  isolated  from 

the true inoculation. In the  control  inoculation there might  have 

been fungi  belonging  to  the genus Ophiostoma,  e.g. O.  piceae  or  

O.  piliferum, which  can also disperse  by air.  But  surface  

sterilization  of  logs  (I,  II)  was  enough  to  kill  air-dispersed  spores.  

Furthermore, there was  no evidence of  cross-contamination from 

other  beetles due either to  the presence or to  the abundance of  

fungal  species  when fungi  were isolated  from beetles  collected 

with different  methods (I). 

Morphological  plasticity,  conidia production  for partitioning  

conidial stages,  and degeneration  of  conidiophores  on artificial  

growth  media during  storage  and subculturing  have led  to  large  

numbers of conidial stages in ophiostomatoid  fungi.  

Ultrastructural  studies  and ribosomal DNA sequencing  have been 

used to explore  species  characteristics  and taxonomic 

relationships  within  the genus and between genera (Van  Wyk  and 

Wingfield  1990, 1993, Jacobs et  al.  1996, Hausner et  al.  2000, 

Okada et  al.  2000, Harrington  et al.  2001,  Paulin-Mahady  et  al.  

2002).  Genera  that are  indistinguishable  with light  microscopy  

may differ  in ultrastructural  morphology,  and  phylogenetic  and 

some  ascosporic  characteristics  observed  in light  microscopy  

studies  can even  be misleading.  These aspects  must  be  taken into 

account  when these results  are  considered (I,  II). To clarify  the 

discrepancy  between the results  of  different  investigations,  the 

pathogenicity  of  different strains  of  C.  polonica,  O.  penicillatum  

and O.  piceaperdum  needs to  be  tested. 

3.2  Induced  responses  and  allocation  of  
resources to  defense  

Inoculation  of  C.  polonica  caused extensive  lesions around the 

inoculation site  varying  in length  from 0.5 to  38 cm.  Changes  in 

CBSCs were  more  pronounced  with  fungal  inoculation than with 

fertilization treatments (III). The further lesion  formation and 

induced response had progressed  (wounding,  fungus  inoculation),  

more total  soluble carbohydrates  were  utilized to  prevent  fungal  

invasion (Figures  1-3). It  has been proposed  that the induced 

phenolic  response  of  Norway spruce  phloem consists  of  activation 

of  the  phenolic  pathway,  finally  leading  to production  of  tannins 

and  insoluble polymers (Brignolas  et al.  1995, 1998).  Present  

results  agreed  with  these previous  findings;  detection frequencies  

of  stilbene glycosides  decreased in  phloem  inoculated  with  fungi  
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Figure 1.  Relationship  between total  soluble carbohydrates  and total 
stilbene glycosides  (µg  mg - 1 fresh phloem)  in  Norway  spruce.  For  sampling  

and compounds  see  Papers  III, IV. (Near,  Wounded,  n=38;  Far,  

Unwounded,  n=39). 

Figure  2. Relationship  between total soluble carbohydrates  and total 

stilbene aglycones  (µg  mg-
1  fresh phloem)  in  Norway spruce.  For  sampling  

and compounds  see Papers  111,  IV. (Near, Wounded,  n=38; Far, 

Unwounded,  n=39).  
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but remained high or at  initial concentrations in unwounded 

phloem  (see Fig.  3 in Paper  III). However,  in this study  the 

corresponding  aglycones  were also  detected in small  amounts  

near  the point  where  the fungus  had been inoculated. As  suggested  

by  the results  of  (III) and those of  Woodward and Pearce  (1988  a),  

the stilbene aglycones  might  play  a  more  central  role in fungus  

challenged  tissues  than the corresponding  glycosides  do. Thus the 

newly  synthesized  stilbenes  might be incorporated  into stilbene  

aglycones  and partly  into  tannins (Figures  1-2). This could 

explain  why  in  the studies  of  Brignolas  etal.  (1995,1998)  stilbene  

glycosides  accumulated at  higher  levels  in  the susceptible  clone  

than in the resistant  clone. However, the  results  of Evensen et al.  

(2000)  contradict  those of  Brignolas  etal.  (1995,1998)  and do not 

support  stronger  induction  of  the flavonoid pathway  than of  the 

stilbene  pathway.  

Changes  in  glycosylation  of  the stilbenes may  be located in 
the PP cells  on  the basis  of their high  phenolic  and PAL 

(phenylalanine  ammonia lyase)  content and to dynamic  changes  

in  the cells  after  wounding  (Franceschi  et  al.  1998, 2000,  Nagy  et 

al.  2000).  PAL,  a key  enzyme in  phenolic  synthesis,  is also  present  

in  ray  parenchyma  cells.  The PP cells  are  the most abundant living  

cells in  the  secondary  phloem  and are  thus the most  probable  site  

of  PAL synthesis.  In Norway  spruce the  terpenoids  are  stored 

mainly  in  the resin  ducts,  whereas phenolic  compounds  and PAL 

are stored in the vacuoles of PP cells (Franceschi  et al. 1998, 

Krekling  et  al.  2000).  Release of  phenolics  or  metabolites from 

the vacuole phenolics  and traumatic formation of  resin ducts 

provides  inducible and sustained  release of  defensive  compounds  

away  from the initial  site  of  wounding  or  invasion (Franceschi  et 

al.  1998,  2000,  Krekling  et  al. 2000,  Nagy  et  al.  2000).  In this 

study,  the accumulation of  terpenes  near  the inoculation point  was  

extensive;  the total concentration of  terpenes was  almost 100 

times  higher  than that  in  unwounded trees  (III). Due to the large  

volume of  accumulated terpenoids  near  the  inoculation point  

(Figure  3),  in addition  to  de novo  energy-demanding  biosynthesis  

at  the site,  it  is  possible  that  photosynthates  were  also  translocated. 

The relationship  between host resistance  and  carbohydrate  

status  in the phloem  may be more  complex  than a simple  source  

and  sink relationship.  CBSCs cannot be synthesized  without 

substrate,  but the presence of  substrate  does not  necessarily  lead 

to  high  synthesis  level  of  CBSCs.  Variation in the responses  of  

CBSCs to  fertilization  might  also  be  caused by  differences in  their 

biosynthesis  (Haukioja  et al.  1998,  Koricheva  et  al.  1998)  or  the 

storage,  transport  or  maintenance of  defenses (Gershenzon  1994). 

Sesquiterpenes  and triterpenes  are biosynthesised  via the  
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Figure  3. Relationship  between total soluble carbohydrates  and total  

terpenes µg  - 1 fresh phloem)  in Norway  spruce. For  sampling  and 

compounds  see Papers  III, IV.  (Near,  Wounded,  n=38; Far,  Unwounded,  

n=39). 

mevalonic acid pathway and monoterpenes,  diterpenes  and 

tetraterpenes  are  biosynthesised  via  the pyruvate-glyceraldehyde  

3-phosphate  pathway.  Meanwhile,  phenylpropanoids  and  defense 

proteins  are synthesised  via the same pathway  and share a 

common  precursor,  PAL. Protein-pathway  may compete  for 

excess  carbon out  of  the reach  of  phenolics,  while the mevalonic 

acid and pyruvate-originated  pathways guarantees  more 

"a private"  synthesis  routes  for  terpenoids.  

A recurring  theme in  defense allocation theories  is the 

assumption  that there is  a  trade-off  between growth  and defense 

(see  Herms  and Mattson 1992).  This  has  led to  numerous  attempts  

to find a trade-off between plant fitness and the level of 

constitutive  and induced defense (Haukioja  et  ai  1998,  Koricheva 

et ai.  1998, Warren et ai. 1999).  The CNB hypothesis  predicts  that 

fertilization  will  increase  growth at  the expense of  C-based  (e.g.  

phenolics  and terpenoids)  production  of  secondary  metabolites 

(Bryant  et  al.  1983,  Herms and Mattson 1992).  In this  study,  the 

results  support  the CNB theory  in  induced defense reactions  of  N  

fertilized trees,  but not in unwounded trees and with other 

fertilizations. Estimation of  the cost of the defense reaction 
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involves  several  unknown aspects;  in many organisms  the costs  

can  be partly  the costs  for  traits  that are  strongly  correlated with 

defense but  are  not  themselves  defensive. The currency  used,  

individual carbohydrates  or  total soluble carbohydrates,  may not 

be  representative  either  (IV).  In mature  trees,  which have already  

passed  the most active growth phase,  it  is difficult  to  relate  minor 

changes  in  current  growth  rate  to  defense reactions.  Difficulties  in 

quantifying  and detecting  the costs  of  constitutive  defense from 

induced defense are also relevant.  The phloem probably  

represents  the accumulation of  photosynthates  over  a longer  

period  of  time,  about 15-30 years  of  growth.  Hamilton et al.  

(2001)  have  argued  that CNB theory  should be  replaced  with a  

new  theory  based on  hypotheses  that have an evolutionary  

underpinning  that presupposed  an adaptive  value of  any  trait.  In 

the  long  run  we  will  see  whether limitations  in the predictive  tool 

of  CNB hypothesis  will  lead to  the final  formulation of  the new 

theory  that  successfully  predicts  concentrations of  defense-related 

secondary  compounds.  

The question  of  whether  N  fertilization  decreases defense due 

to increased growth was  partly  answered. Vigour  indices and 

diameter  growth  were  higher  in  N-fertilized  treatments  than in the 

control  and with P fertilization  (IV).  Diameter growth  and  the 

vigour  index correlated positively  with the  length  of  the lesion 

caused  by  C.  polonica  inoculation. Because fertilization  increased 

the diameter of  the experimental  trees,  density  of  the resin  duct 

may  have decreased as a result  of  increased cell division.  This 

may partly  explain  why  the total terpene  concentration of  

N-fertilized  trees was  lower  than  in  the control  (III).  Interestingly,  

fertilization did not affect  total concentration of soluble 

carbohydrates,  although  with fertilization the growth of  

experimental  trees improved significantly  (IV). Thus the 

differences  in carbohydrate  composition  after wounding  are 

supported  by  the histological  observations  of  Nagy  et  al. (2000).  

When the two-month incubation time and the low density  of  the 

inoculations are taker into  account,  short lesions probably  

indicate  successful  defease with minimum loss  of  energy  and 

resources.  Overall, when tested on  artificial  media, many 

Ceratocystis  species  are  able to utilise  various  nitrogen  sources 

(Mathiesen-Käärik  1960). Accordingly  in  the present  study,  

carbon resources  probably  were not the restricting  factor in 

defense reactions.  
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3.3  Beetle-fungi-host  tree  interaction  

Various morphological,  chemical  and behavioural modifications in 

bark beetles  and the ophiostomatoid  fungi ensure a close 

association.  Spruce  bark  beetles are  among the phloem-feeding  

insects  that benefit  from association  with  fungi  mainly  because 

fungi  reduce tree resistance,  thus increasing  the breeding  success  

of  the beetles.  Although  the first  beetles in an attack  may be 

overwhelmed  and killed  by  the secondary  compounds  of  the host 

tree, they  may inoculate the tree with fungi  that may linger for  a 

long time. The fungi  are dependent  on the bark beetles for 

transport  and for inoculation into suitable habitats.  The potential  

of  the fungi  to  weaken and predispose  trees to subsequent  attacks 

has  been considered important,  especially  when the density  of  the 

beetle population  has  been low and there have not  been enough  

beetles  to  mount  successful  mass  attacks  (Berryman  1982).  

As  the vigour  of  Norway spruce  increases,  experimental  trees 

tolerate an increasing  number of spruce bark beetle attacks 

without being  killed  (Mulock  and  Christiansen 1986).  According  

to  Reid  and  Robb  (1999),  trees  killed  while  growing  vigorously,  

such as  those felled by  windthrow,  may contribute significantly  to  

initial  increases  in  population,  leading  from endemic to  epidemic  

populations  of  bark  beetles.  They  suggest  that the importance  of  

phloem quality  might  be the key  determinant of  bark  beetle 

performance. Bark beetle-fungal  infection is only  slightly  

inhibited by  constitutive  compounds;  thus the induced response of  

the host  is elicited  and is essential  in  stopping  invasion (Klepzig  et 

al.  1996).  In  an elegant  series  of  bioassays,  Klepzig  et  al.  (1996)  

showed that beetle responses to induced reactions could be a 

component  of  the host selection  process.  The beetles probably  

discriminate between susceptible  host  trees and vigorous  trees  

capable  of  mounting  an  effective  defense.  

The above-mentioned ideas have been united by  

characterization of  the important  role  of  fungal  infection in 

activating  PP cells quickly  throughout  several cell  layers  and 

launching  a  systemic  induced defence reaction far  away  from the 

original  site  of  infection (Franceschi  et al.  2000).  Some recent 

results  have also  supported  the  idea that mechanical stress,  rather 

than associated  fungi,  plays  an  essential  role in induction and 

development  of  the response of trees  to  bark  beetles  (Lieutier  et 

al.  1995).  Mechanically  made control  wounds  were  here  cleaned 

effectively  and  sealed with  constitutive  resin,  whereas only  fungal  

inoculations caused induced accumulation of secondary  

compounds  (III). However,  both mechanical wounding  and 

fungal  infection of  Norway spruce have resulted in enhanced 



Heli Viiri 35  

resistance to subsequent  mass  inoculation with C.  polonicci  

(Christiansen et al.  1999). 

One artificial  inoculation cannot be  considered to correspond  

to  one bark  beetle attack  because artificial  inoculations lead more 

surely  to fungal  infection  of  the phloem than  to  bark beetle attacks 

(Christiansen  1985b).  The number of  spores  in one  inoculum,  5  

mm diameter slant of  the colony  of  Ophiostoma  fungus,  can 

contain  1.5 x  106  spores  (Lieutier  etal.  1989).  In  natural infection,  

gallery  construction  by  the beetles will  spread  the fungal  spores 

more  efficiently  over a larger area than artificial  point 

inoculations do. In  addition,  in  natural  bark  beetle attacks,  growth  

conditions are  probably  more  favourable for  fungi.  Occasionally,  

the  attacking  beetles may not carry  enough  fungal  spores for 

infection (Bridges  and Moser  1983).  Thus,  the inoculation density  

might  be  more  important  than  the fungal  load per  inoculation. An 

increase  in  the density  of  inoculations above  a certain  level has 

been reported  to result in decreased resinosis  (Raffa  and 

Berryman  1983, Christiansen 1985  a).  

In low-density  inoculations  the ultimate reason  for  the long  

reaction  zones may be the aggressiveness  of fungus  or the 

weakness of the host. Lesion length may vary  depending  on  the 

season  when trees are inoculated and  on the length  of  the 

incubation period (Raffa  and Smalley  1988, Parmeter  et  al.  1992).  

As used here, an incubation period  of 8-10 weeks probably  

provides  data from near the endpoint,  i.e. when all defense 

reactions elicited  by  wounding  are  completed  (Parmeter  et al.  

1992, 111, IV). According to Solheim (1988),  C.  polonica  

produced  slightly  shorter lesions than the less  aggressive  O.  

penicillatum  did. According  to  Poppet  al.  (1995),  large lesions  

with a high  monoterpene  concentration in secondary  resin  also 

reflect  greater fungal  virulence rather than greater host  resistance.  

Thus,  lesion length alone may not  be a good  measure  of the  

aggressiveness  of  fungi  or  the resistance  of  trees.  Lesion  length  

should be considered a  supporting  and  descriptive  parameter,  not 

a main parameter  judging  solely  the resistance  (111,  IV).  With  low  

inoculation level,  a tree saves  energy and allocates  resources  to  

defense by forming  a reaction zone that is  just  large  enough  to  

prevent  the growth of  fungi.  However,  with low inoculation  

density,  resin  exudation  is  expected  to be powerful,  since  the tree  

response is not exhausted immediately.  

Different  bark  beetles  can have specific  fungal  associates,  

which occur  only  with their  host species  (Jacobs  and Wingfield  

2001).  Both ophiostomatoid  fungi  and spruce bark  beetles can 

exist  and  develop  without their  associates,  but  in  nature  they  are  

commonly  found together;  the relationship  is nearly  symbiotic.  
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C.  polonica,  C.  minuta, O.  bicolor  and O.  penicillatum  were 

constant associates  of  I.  typographus  (I,  II). C.  polonica  has  been 

isolated  mainly  from  spruce bark  beetles (Solheim  1986,  Kirisits  

1996,  Krokene and Solheim  1996, I,  II) whereas the rest  of  the 

ophiostomatoid  species  mentioned here occur together  with 

several  bark  beetles  and some of  them also  spread  by  air.  Species  

were  classified  here  according  to their  frequency  of  occurrence  

(Table  2).  Some fungi  can  be  classified  as  constant associates  of  I.  

typographus,  while others are  common or  casual  associates.  

Nevertheless,  it  is difficult  to decide whether  the symbiosis  

between beetles and specific  fungi  is  obligate.  The success  of  

rearing  sterile  adult  beetles  alone  does not rule  out  the presence of  

a symbiotic  association. It  is possible  to rear  generations  of  sterile  

bark  beetles  in  vitro with  species  that  normally  are  associated with 

fungi  (Grosmann 1931,  Harding 1989).  Thus,  the presence of  

fungi  is  not  a  prerequisite  for larval  nutrients  and establishment  of  

the spruce bark beetle,  in spite  of  all  the evidence  pointing  to  a 

symbiotic  relationship  between the beetle and fungi.  Also in 

natural conditions successful bark  beetle infestations have  been 

found without a constant  fungal  associate,  like  Dendroctonus 

frontalis Zimmermann infestations  without  Ceratocystis  minor 

(Hedgcock)  Hunt  (Bridges  et  al.  1985). 

In  addition,  different associated fungi  can  have a  variable role  

in different interactions and under different environmental 

conditions (Harding 1989,  Lieutier et al.  1995).  According  to  

Paine  et  al.  (1988), mycangial  fungi  did not trigger  the induced 

wound response in host trees  compared  with sterile  wounding,  

whereas the less adapted  or less  specialized  non-mycangial  

C. minor did induce lesion formation. The virulence of 

ophiostomatoid  fungi  may differ geographically,  and the 

resistance of host trees  may  vary in different environments. 

Recent  investigations  (Stout  et al.  1998)  point  out  that induced 

resistance  responses  show variation in  elicitation  specificity  and 

the organism  involved. To understand the interaction between 

variable defensive reactions against  stress factors and how 

physiological  processes  affect  these responses, studies  that take 

into account  the specificity  of  induced responses  are needed. 

Investigations  are  also  needed to evaluate different strains  of 

ophiostomatoid  species;  thus variation in sporulation  ability  and 

frequency  (I, II)  and virulence (Kirisits 1996,  1998)  indicates 

variation within the current  species  concepts.  
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Conclusions  

The species  complement  of  fungi  associated  with I.  typographies  

was  not affected  by  collecting  method of  beetles  (I). However,  the 

species  composition  of  ophiostomatoid  fungi  varied according  to 

the geographical  region.  The species  considered to  being  most 

pathogenic,  C. polonica
,
 occurred  with low frequency,  regardless  

of  the population  level  of  spruce  bark  beetle (I,  II). Benefits  from 

the relationship  for  the bark  beetles or  disadvantages  for  the host 

trees  are  more complex.  Trees responded  extensively  to  fungal  

invasion (III), and the extent  of  this  response was  dependent  on 

carbohydrate  reserves  (IV).  Fertilization enhanced stem growth,  

but the total  amount of  soluble carbohydrates  near  the inoculation 

site  was not  affected.  Resources  for stem  growth  were  not taken 

from defense (IV).  Paine et  al.  (1997)  have called  the strategy  of  

this interaction "exhausting  tree resistance" rather than tree 

killing.  On the  base of  the present  results,  extensive terpenoid  

accumulation in induced defense response seems more like 

exhausting  tree  resistance. However, interactions  should always  

be viewed together  with all  partners, fungi  -  bark  beetle  and host 

tree. 
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Abstract:  Ips  typographies transports  spores  of  various  sapwood-staining fungi, mainly in  the  pits  of the pronota and  

elytra. When  pheromone trapping is used  to  collect beetles, the  spores  of  fungi from different  beetles  may  mix.  Therefore,  
the  species  composition of fungi associated  with  I.  typographies was  investigated in  eastern  Finland  using beetles  caught 

by  different  trapping methods.  The  beetles  were collected  individually by  hand  or  in  pheromone traps with  or without  
vermiculite  used  as  insulating material  in  trap  containers  to  prevent  surface  contamination  between  beetles.  The  beetles  
were inoculated  into  Norway  spruce  logs  with  a cork borer  and  the  frequencies of  fungi  were determined  by  isolation  
of fungi  from  bark  and  sapwood. The  most frequent ophiostomatoid species  were O. penicillatum and O. europhioides. 
Other  common fungi were Graphium and Leptographium species.  The  species  that  were  isolated  occasionally  were O. 

ainoae,  O. bicolor,  O. piceae, O. tetropii and  C. polonica. Relationships between  fungal observations  were  analysed one 

by  one. In pairwise comparison of pheromone trapping and  individually  collected  beetles, the  frequencies of fungi 

isolated from beetles  differed  significantly. However, when  all  trapping methods  were compared simultaneously, the 

differences were not significant.  

1 Introduction 

Many  species  of fungi have  been  reported to occur  in  
association with  Scolytidae,  the  most numerous group  

belonging to the  genera  Ophiostoma H. and P. Sydow, 

Ceratocystis  Ellis  and  Halsted, Ceratocystiopsis Upad. 
and  Kendrick  and  related anamorph genera  such  as 

Graphium Corda  and Leptographium Lagerb. and  Melin  
(Mathiesen-Käärik,  1960; Upadhyay, 1981; Whitney, 

1982; Solheim, 1986; Harrington, 1993).  This econ  

omically  important but taxonomically controversial  

group  of fungi has  recently  been  named  the  'ophios  

tomatoid fungi' (Upadhyay, 1993). 

While  constructing  breeding  chambers and  galleries 
in  the phloem, beetles disseminate  fungal  spores.  Many 

species of beetles have  special organs,  mycangia, in 
which  spores  are transported; and  in  some species  slimy  

secretions  are  produced that  preserve  spores from desic  

cation and UV-light (Mathiesen-Käärik, 1960; 

Francke-Grosmann, 1963; Dowding, 1969). Ophio  

stomatoid fungi are adapted  for dispersal by  insects:  

elongated ascocarps  bear  mucilaginous  ascospores in  
their  necks,  which may  be  further  protected by  gela  

tinous sheaths  (Malloch and  Blackwell, 1993); and  

the cirri of  some  Ophiostoma and  Ceratocystis  species  

disperse, not in water,  but in  conifer resin  (Whitney 
and  Blauel, 1972). 

The  Eurasian spruce  bark  beetle, Ips  typographus L., 

transports spores  of  fungi laterally  on the posterior  half 
of  the  pronota, in pits  throughout most  of  the elytra  
and  in the  digestive tract  (Furniss  et  al.,  1990).  Spores 

have also  been  observed on phoretic  mites  associated 

with  beetles (Moser  et al., 1989). In  I. typographus no 

slimy excretions  have  been  described  in  the  pits,  where  

spores  occur; but  the  spores  may  be  covered with  wax 

(E.  Christiansen and H.  Solheim, pers.  comm.).  Thou  

sands  of ascospores  and  conidia may  be  found on the 
surface of  each  beetle, but  individuals vary  greatly  as  to 

the number  of  spores  transported (Furniss  et  al., 1990). 

Neither  application of  ultrasonic  cleaning nor  chemical  

sterilizing  agents have  completely eliminated fungal 

spores  from adult I. typographus beetles. On  the other 
hand, in spite  of  all  the evidence  pointing to a mut  

ualistic relationship between  I. typographus and  ophios  
tomatoid  fungi, the  presence  of fungi is  not  the pre  

requisite  for establishment  and  successful  reproduction 
of  I. typographus (Harding, 1989 c).  

In several investigations  Ophiostoma bicolor David  

son  and Wells, O. penicillatum  (Grosm.) Siem., O. euro  

phioides  (Wright  and  Cain) Solheim, and  C.  polonica 
(Siem.)  Moreau  have  been  associates  of  I. typographus. 
C.  polonica,  which  is  consistently associated  with  I. typo  

graphus, is pathogenic  and can kill healthy Norway 

spruce  trees  ( Picea  abies L. Karst.)  when  mass  inocu  

lated  into  trees  (Horntvedt et al.,  1983; Christiansen, 

1985). In addition, O. europhioides is  able  to invade  

the sapwood of  Norway spruce  and  disrupt the  water  

conducting system (Harding, 1989b). C.  polonica and  

O. europhioides,  in  particular,  may  play  a special  role  in  

the population dynamics of  the  beetle.  Frequencies of 
associated fungi  are  potential explanations  for both  
changes in  the  beetle population and forest  damage 
(Harding, 1989a,b; Solheim, 1993; Krokene  and  

Solheim, 1996). Nonetheless, fungal frequencies are not 

independent observations if  beetles  have  been  in close  

contact in  the  collecting  containers of  traps and  fungal 

spores  may  have  mixed.  
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This  study was  designed to examine  how methods of  

trapping beetles affect on species  of  fungi  found  on I. 

typographies. The  aim  was  to determine whether  beetles 
collected  (i)  individually  (ii)  with pheromone traps using 

vermiculite as an insulating  material in the collecting  

bottles and (iii)  in pheromone traps without insulating 
material  differ  in  frequency and  abundance  of fungi.  

2 Materials and  methods 

2.1 Beetle  collection  

I. typographies  beetles were collected  in Liperi (N 62°31'; E  
29°17'), eastern  Finland, during the flight period (23 May-2 

June  1992)  on a forest  area that had  been clearcut  the  previous 

winter. The surrounding stand was Myrtillus-type with 
mature Norway spruce. Most of the beetles  (60 individuals) 

were caught with  a drain-pipe trap (model, 1979) without 

a funnel  (Bakke  et al., 1983) with  commercially prepared 
IPSLURE® plastic bag  dispensers containing 1500mg 

methylbutenol, 70  mg cis- verbenol  and 15mg ipsdienol. In 

each  group of traps, four  traps  were placed  in  a  2m x 2m 

square.  The  three  groups  of traps (Liperi 1,  Liperi 2  and  Liperi 

3)  were located  50  m  from the  edge of the  forest  and  150  m 
from each other. 

Every  second day the traps  were emptied and  the  container  

bottles sterilized  with 70% alcohol. Before each collection  

period the containers  in trap  group Liperi 2  were filled  with  
moist sterile  vermiculite.  Vermiculite  was used  in  the trap 

containers  to prevent  possible mixing of fungal spores.  Trap 

groups Liperi 1 and  Liperi 3 were identical,  and  the  containers  

remained  empty without  insulating material.  Twenty  beetles  

from each  trap group  were chosen as sample  beetles.  In 
addition  to pheromone trapping, 20  beetles  were collected  
individually by  hand  with  sterile  forceps from the  outer sur  

faces  of the traps  and  from adjacent  spruce  logs at the forest 

edge.  Of the beetles  caught, an equal number  of  females  and  
males were selected.  Until  used  in  inoculations, they were  
stored  individually at +4°  C  in sterile  Eppendorf-test  tubes  

containing a strip of  filter  paper  moistened  with sterile  water. 

2.2  Inoculations  and isolations  

Sample beetles, most  of which  were alive,  were inoculated  

into lm  long logs (15 cm  diameter) cut from freshly felled, 

uninfected  Norway  spruce  according  to the  method  of FuR-  

Niss  et al.  (1990). The  logs were brushed  gently and  washed 

with  0.5%  8-hydroxyquinoline sulphate-70% alcohol before  

the  beetles  were inserted.  The  unwashed  beetles  were placed 

20  per  log in  a spiral  pattern. Twenty control  inoculations  
without  beetles  were made  in  a similar  pattern.  To prevent 

evaporation, the  ends  of the  logs were dipped in  melted  pa  

raffin. 

After 4 weeks  of  incubation  at room temperature,  fungi 

were isolated  from the inner  bark  and  sapwood. The  reaction  
lesion in  the phloem usually consisted  of an inner dark area 
and an outer  lighter area, which  was longer  than wide.  Within 

the  reaction  lesion,  three samples were taken from both  inner  
bark  and sapwood. One  sample was  taken  at  the  top of the 
light area of  the  lesion,  one near the  point of  inoculation  and 
one in  the  middle  of the lesion  area, at the  centre of the 

previous  samples. A total of  480  tissue  samples  were isolated  
and subcultured  on 2% malt 1.5% agar  to which  0.02% 

streptomycin had  been added.  

2.3  Statistical analysis 

Frequencies of ophiostomatoid species from bark  and  sap  

wood  samples were analysed either  separately or combined, 

depending on the hypothesis  tested. The  combined  frequencies 
were formed from  the  frequencies of  bark and  sapwood sam  
ples  by  counting the  occurrence of a given  species  only  once 
from one beetle.  With  data sets that were too  large for  exact  

calculation  of P-value, the  Monte-Carlo  estimate of the P  

value  was  formed  by  generating 100000  tables.  The  level  of 

significance applied in  tests  and  Monte-Carlo  estimates  was 
P  <  0.05.  The  data were  analysed  by  StatXact™ Version  2.11  
software  (Mehta and  Patel, 1989, 1991). 

3 Results 

3.1 Fungal composition 

The  most  frequent ophiostomatoid species  in  both  sap  

wood and bark  were O. penicillatum  and O. euro  
phioides.  Other  common fungi were  Graphium  and  Lep  
tographium species  (table 1). O. ainoae  H.  Solheim,  O. 
bicolor, O. piceae (Munch) H.  and  P. Sydow, O. tetropii 

Mathiesen and  C.  polonica were  isolated  occasionally.  

Among the  species  other  than  ophiostomatoid fungi, 
Nectria spp.  and Bjerkandera adusta  (Willd.  ex.  Fr.)  
Karst. were  common  in isolations  from both  beetles  and  

controls. Penicillium spp.,  light  and dark  sterile mycelia  
and  several  unknown  species were  isolated  from control  

inoculations.  However, no ophiostomatoid  species  were  

isolated  from  control inoculations. 

3.2 Total  number  of  fungal species  

One  to three species  were isolated from 93% of the  

sapwood samples,  and  no more than  five  species  were  
ever present  on any  one beetle  (table 2).  The  Kruskal-  
Wallis  test  for sapwood samples  indicated  that  the num  
ber  of  fungal  species  collected by  different methods  did  
not differ (x 2 = 1.160, DF 3, asymptotic  P-value = 

0.7625). 85% of  the  bark  samples contained  one to three  
species and  the  most species isolated from one beetle 
was five (table 2).  The  test  for bark  samples also  sup  

ported the previous  result  that there  was  no variation 
in  the  number  of  species  (x2 = 2.315, DF 3, asymptotic  
P-value = 0.5097). 

3.3 Occurrence  in  bark  and  sapwood 

To  test  whether  individual  ophiostomatoid species  were  

more  likely to occur  in  bark  or  sapwood, contingency 

tables were  used. An  analysis  series  of  2  x  2  tables  con  

sisted of  calculation of  the odds ratios for all  tables and  

a  homogeneity test  that  the odds  ratios  are  the same for 

all tables (table 3).  In  the  homogeneity test  (x 2 <  0.0001,  
DF 6)  the  Zelen exact  P-value  was 0.3867. The  Monte-  
Carlo  estimate  of  P-value  gave  a similar  result. The  

hypothesis, i.e.  that  seven contingency tables  formed  

from the  occurrences  of  ophiostomatoid species  in bark  
and sapwood samples  share a common odds  ratio, was  

accepted.  For  estimation  of  the  common  odds  ratio, the  

Mantel-Haenszel method was  used,  which gave  a value  

of 0.9356.  

3.4 Associations  among  the fungi 

A homogeneity test  was  used  to test  the hypothesis  that  
some  species  are more likely  than  others to occur  

together.  All  possible  pairs  formed  from the seven  
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Table 1. Frequencies of  fungi in  bark  (B)  and sapwood (S)  samples  isolated from Norway spruce  logs inoculated 
with  I. typographus collected  in  Liperi,  eastern  Finland.  Beetles were collected  in  pheromone traps with  (Liperi  2)  

or without vermiculite  (Liperi  1; Liperi  3)  in  trap containers  or individually  by  hand using sterile forceps ( individually 
trapped). (C  = combined  frequencies; n = 20  beetles in  each trapping method)  

Table  2. The  total  number  of  fungal species  and  groups  isolated  from I. typographus beetles inoculated  in  Norway 

spruce  logs.  Isolation points are B =  Bark  and S = Sapwood 

Table  3. Empirical  odds ratios  (OR) with  their 95% 

confidence  intervals  (CI)  for occurrence  of  ophios  

tomatoid species  in  bark  and  sapwood of  Norway  spruce  

after  inoculation  with  I. typographus 

species  of  ophiostomatoid fungi were  included in  the 

test.  The Breslow-Day  asymptotic  P-value  <O.OOI 

(■/
2  = 110.8, DF 20) was  significant  at the  0.1% level  

and  the  null  hypothesis,  that  there  is  a common odds 
ratio across  21  pairs  of  fungal species,  was  rejected.  

3.5 Comparison of frequencies of fungi with  different  

trapping methods  

Based  on the  previous  analysis, combined frequencies 

of  bark  and sapwood  samples  were  used  in  the  Kruskal-  

Wallis analysis  of  variance to  test  the  effect  of  trapping 

method  on frequencies of fungi.  When the  individually 

collected beetles and  those caught in  traps  were com  

pared simultaneously, the differences were not sig  
nificant (table 4).  Furthermore,  when  trapping methods  

were compared and  one trap  group or the  individually 

collected beetles were  omitted, one at the  time, from the  

comparison, none of  the  P-values  were  significant.  In 

pairwise comparison of  trapping methods, however, the  
differences  were significant.  

4 Discussion 

4.1 Abundance of fungi 

All  ophiostomatoid fungi found  in  this  study have  been  

identified elsewhere as  associates  of  I. typographus (Sie  

maszko,  1939; Harding, 1989 a; Solheim, 1986, 

1992a,b, 1993; Krokene  and  Solheim, 1996).  Almost  
all occurred  at lower  frequencies than  in  non-epidemic 

areas  of  I. typographus in Denmark  and Norway (Har  

ding,  1989 a;  Solheim, 1993). A  common species  in  this 

study,  O. penicillatum,  is  also  common in  other  Nordic  
countries  (Harding,  1989 a;  Solheim, 1993; Krokene  

and  Solheim, 1996). The relatively  frequent occurrence  

of  O. europhioides is in  agreement only  with  the results  

Trapping method Liperi 1 Liperi 2 Liperi 3 Individually trapped Total 

Isolation point  B S C B S C B S C B S  C B S C 

C.  polonica 0  0 0 1  1 1 0 0 0 0 1 1 1 2 2 

0. ainoae 0  0 0 0 0 0 0 0 0 1 3 3 1 3 3 

0. bicolor 1 0 1 2 0 2 0 1  1 3 1 4 6 2 8 

0.  europhioides  3 4 6 3 1 3 3 1 4 1 1 2 10 7 15  

0.  penicillatum 6  4 8 2 2 4  4  4 7 1 1 2 13 11 21 

0.  piceae  0  2 2 0 2 2 1 1  2 1 1 2 2 6 8 

0. tetropii  1 0 1 0 0 0 1  0 1 0 1 1 2 1 3 

Graphium spp. 9  9 9 5 6 10 8 8 13 8 9 11 30 32 43 

Leptographium spp. 9  5 11  6 2 6 5 3 6 8 5 10 28 15 33  

Nectria spp. 6  4 7 2 2 3 7 3 8 4 1 4 19 10 22  

B. adusta 2  1 3 2 0 2 2 1 3 4 4 8 10 6 16  

Light sterile mycelia  8 7 12 8 6 10 10 6 12 5 7 8 31  26 42 

Dark  sterile mycelia 2  1  2 1  6 6 3 3 6 5 4 8 11 14 22  

Unknown 4  8 8 7 9 11 1  5 2 7 6 10 19 28 31 

No. of isolations 51  45  70 39 37 60 45 36 65 48  45 74 183 163 269 

Amount of  species 1 species  2 species  3 species  4 species  5 species Number of 

Isolation point B S B S  B S B S B S beetles 

Liperi 1 7 6 3 7 6 5 4 2 0  0 20 

Liperi  2 5 7 11 9 4 4 0 0 0  0 20 

Liperi 3 5 7 5 8 6 5 4 0 0  0 20 

Individually trapped 5 8 7 4  4  4 3 3 1 1 20 

No.  of fungal species 22 28 26 28 20 18  11 5 1 1 80 

Species OR 95% CI 

C. polonica  2.026 1.71, 3.13 

0. ainoae 3.078 1.16, 3.41 

0. bicolor  0.3162 0.48, 2.78 

0. europhioides  0.6712 0.62, 1.42 

0. penicillatum  0.8216 0.67, 1.07 

0.  piceae  3.162 0.48, 2.78 

0. tetropii 0.4937 1.71, 3.13 

_J  
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Table  4. Frequencies of  ophiostomatoid species  isolated 
from spruce  bark  beetles caught with  different trapping 
methods  compared by  Kruskal-Wallis analysis  of  vari  
ance. Trapping  methods are:  L1  = Liperi  1, L2 = Liperi  

2,  L3 = Liperi  3,1= Individually  trapped) 

of Danish  investigation (Harding, 1989 a) but  differs 
from Norwegian results  where  O.  europhioides has been  
found to be rare  (Solheim, 1986, 1993). The  low fre  

quency of pathogenic C. polonica  associated with I. 

typographus in the present  study  is  consistent with  the  
low  level  of damage by beetles  in  eastern  Finland.  In 

Norway the  frequency  of  C.  polonica has been  low  dur  
ing endemic periods when  beetles utilize  dead  trees  and  

timber, whereas the frequency  has  been  higher during 
the epidemic  phase when  living trees  are attacked  

(Solheim, 1992  a, 1993). 

When  the  number of  fungal  species  was  investigated, 
neither  asymptotic  P-values  for  bark  nor  sapwood sam  

ples  were  significant  at the  5% level;  nevertheless, all  
Monte-Carlo  estimates of P-values  were close  to the  

asymptotic  P-values (not  shown).  These  observations 
indicate  that the  asymptotic theory still  worked  despite  
the  obvious  sparseness  of  the  data. According to these  

results,  the  total  number of fungal  species  did  not  vary  
within  trapping  methods,  thus  allowing further analysis.  

4.2 Occurrence  in bark  and  sapwood  

Odds  ratios  of  less  than  one suggest  that  the  odds  of  the 
fungi being successful  are less  in  sapwood than  in  bark  
samples,  while  values  greater  than  one indicate  that  the  
odds  of success  are  greater  in  sapwood. The odds  ratios 
for O. bicolor

,
 O. piceae and  O. tetropii  were  not within  

the  95% confidence intervals, but  other  odds ratios were 

within  fairly  narrow limits.  The  most  abundant species.  
O.  europhioides and O. penicillatum,  seemed to colonize  

sapwood rather  than  bark.  Due  to the  low  frequency of 
C.  polonica, the  adaptation of species to invade  the  

sapwood cannot be  further analysed here, although in  
several  investigations  this species  has  been  reported to 
be  the  primary  invader  (Harding, 1989 a; Solheim,  

1992 a,  1992b). Until  now the frequencies of ophios  
tomatoid fungi  isolated  from different points  have not  
been  analysed in a statistically  reliable way.  Odds  ratios 

were found to be  suitable  for this purpose  because  there  

is  no need  for  normal  distribution  assumptions,  which  
are difficult to obtain  from fungal  species  that demand 
different growth conditions.  

According to the  homogeneity test,  ophiostomatoid 

species  occurred  equally  in  bark and  sapwood, thus 

allowing the  frequencies from two different sampling 

depths to be  combined. The  estimate  of the odds  ratio  

was nearly one, which also  supported the previous  
observation.  

4.3 Associations  among  the  fungi 

Based  on the  comparison  of  odds  ratios,  certain pairs 

of  species  were  more likely  than  others  to occur  to  

gether; but  considering the scarcity  of  some species  in 

the data, speculation can  be made only for the most 

frequent species.  With O. europhioides and  O. penicil  

latum, the  presence  of  one species  seemed  to explain  the  

occurrence  of another, which supports the presence  of  
a fungal  complex.  On the  other  hand, it is  known  that 

these species  are related  (Solheim, 1986). Other  pairs  of  

ophiostomatoid species  appeared to occur  occasionally.  

5 Conclusions 

A major question was  whether frequency  distributions 

of  ophiostomatoid species  differed  significantly  depend  

ing on the method  used  to collect  the  beetles.  The fre  

quencies of fungi differed significantly  only  when  fungi 
isolated  from beetles  collected  in  traps without  ver  

miculite and  those  collected  individually were com  

pared. Thus, it can  be  seen  from these data  that  with  

even slightly  different  sample sizes  the  frequencies of  

fungi arising  from beetles might  vary  more. Previously 
there  has  been  no support for this  kind  of  speculation 
about  fungal  frequencies; for example,  Wright  (1935) 
found no differences in  frequencies of  Trichosporium 

symbioticum n.sp. isolated from Scolytus  ventralis 
LeConte collected  individually  and  together. 

Despite  the  fact that there is  no unambiguous evi  
dence of cross-contamination  from other beetles  due  

either  to the presence  or  to the  abundance  of  fungal 

species,  this  investigation shows that before  further con  
clusions can be drawn  from data collected  with  cor  

responding methods, the  independence of  the  fungal 

frequencies should  be  tested. When  beetles  have  been 
used  for  studies of  fungal flora,  the probability  of  cross  
contamination  by  spores  has  not  previously been  ana  

lysed  in  detail.  With the  protocol  presented here, pos  
sible  sharing  of fungal spores can be  analysed reliably  
both  one  by one and  statistically.  
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Abstract 

The species  composition of ophiostomatoid  fungi associated with Ips  

typographus  was  studied in the Vosges,  Alps  and Massif Central  regions  of  

France.  In  each region,  damage  caused by  bark  beetles  has increased during 

recent  years. For  this  study,  beetles  were  collected individually  by  hand from  

freshly  attacked trees and crushed in healthy  Picea  abies logs.  Fungi  were  

isolated from log phloem  and sapwood,  and  identified. The most  frequently  

found species  were  Ophiostoma  bicolor,  O.  penicillatum , Ceratocystiopsis  

minuta and Ceratocystis  polonica.  Results  are  discussed  in  terms of  differences 

between locations and in relation  to previous  investigations  in which 

populations  of  spruce bark beetle have  been sparse.  The potential  role of  

associated fungi  in the population  dynamics  of  the spruce bark  beetle is  

discussed. 

Key  words:  associated  fungi  /  Ceratocystis  /  Ips  typographus  /  Ophiostoma  
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1 INTRODUCTION  

European  spruce  (Picea  spp.)  forests  suffer  regularly  from extensive  outbreaks 

of  the spruce  bark  beetle Ips  typographus  L. (Coleoptera:  Scolytidae).  Eurasian 

spruce bark  beetles  together  with  associated pathogenic  fungi  have killed  

millions  of  cubic  metres  of  spruce  in  western  and central  Europe  during  recent  

years.  In  north-eastern France  alone,  damage  has  been  as  high  as  100,000 m  3  in  

1991,  212,500  m  3  in  1992 and 113,000  m  3 in  1993 (Boutte  1993,  Nageleisen  

1994, 1995).  Severe beetle damage  often follows heavy  storm damage  and  

windfall,  e.g.  as  a  result  of  the severe  windstorm  in  December 1999. 

Adults of  the spruce bark  beetle transport  spores of  blue-staining  fungi  

both in  the pronota  and elytra  and in  the digestive  tract  (Furniss  et  al.  1990).  
When building  breeding  chambers and galleries,  spruce  bark beetles  introduce 

the spores of  Ophiostoma  and Ceratocystis  species  into the  phloem and  

cambium of  Norway  spruce,  Picea abies  L.  Karsten.  Together with  associated  

fungi,  spruce  bark  beetles  can  overcome  the resistance  of  vigorous  spruce  trees.  

In the most harmful  species,  Ceratocystis  polonica  (Siemaszko)  Moreau,  

pathogenicity  is  based on  its  ability  to  grow  rapidly  in  moist  wood through  the  

tracheids and to  disrupt  water  transport  in the tree, finally  leading  to high  

mortality  (Horntvedt  et  al.  1983, Christiansen 1985,  Solheim 1988,  Krokene 

and Solheim 1998, Kirisits  1998). 

The main aim of  this investigation  was  to  describe the ophiostomatoid  

fungi  associated with  /.  typographies  in a  locally  high  population  level  of  spruce  

bark  beetles.  As  further aim  was  to  compare the fungal  flora associated  with  

spruce bark  beetles collected from different regions.  This information will  

provide  us  with useful  elements for  understanding  the role  of  associated  fungi  

as  possible  regulators  of  bark  beetle  epidemics.  

2 MATERIAL  AND METHODS  

2.1  Study  areas  

Beetles were  collected  at the beginning  of  the  main swarming  period  of  the first  

generation,  in late May and  early  June 1996, from three  regions  in France:  

Vosges,  Alps  and Massif Central (Figure  1, Table I). Two locations in each 

region  were selected  on  the basis  of  previous  large  populations  of beetles,  and 

50 beetles were collected at  each location. At all  locations,  extensive  spruce  

bark  beetle damage has  occurred  in 1990-1995 (Boutte  1993,  1994).  In  Vosges,  

where two generations  occur  each year,  the volume of  dead Norway spruce  

varied between 1,200 and 5,900 m 3  in  1991-1995. In 1995, beetles were 

collected  in  pheromone  traps  and the total  catch  for  three  pheromone  traps  was  

2,219  spruce bark  beetles,  thus indicating  a declining  trend (Office  National 

des Forets,  Raon l'Etape).  In Massif  Central,  at the Mezenc collecting  site,  the 
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high  altitude reduces  reproduction  and only  one generation  of  spruce bark  

beetles  occurs  annually.  In Meygal,  depending  on weather conditions,  1-2 

generations  occur  per year.  

Fig.  1. Location of  the I. typographus  collecting  areas.  1 = Vai de 

Senones,  2 = Vologne,  3 = St  Pierre de Belleville,  4 = St Michel de 

Maurienne,  5  = Meygal,  6  = Mezenc. 

Table 1. Study  areas  used  for collection of 1. typographus.  

Location Forest Elevation 

(m.s.l.)  

Stand age 

(yrs) 

I.Col de Praye,  Vosges  Val de Senones 910 130 

2.Tete de Nayemont,  
Vosges 

Vologne  840 130 

3. St  Pierre de  Belleville,  

Savoie 

St Pierre de 

Belleville 

1350 150 

4. St  Michel de  Maurienne, 
Savoie 

piles  450 150 

5. Boussoulet,  Haute  Loire  Meygal 1300 120 

6.  Mont d'Alambre, 
Haute Loire 

Mezenc 1480 120 
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2.2  Collecting  beetles 

At all  locations,  except  St Michel de Maurienne,  beetles were collected 

individually  by  digging  out adult  females and  males  with a knife and forceps  

from windblown Norway  spruce  trunks  lying  in the forest.  In St  Michel de 

Maurienne, beetles were  collected in the Norway  spruce trunks  lying in a 

timber yard. Beetles were  placed  individually  into  sterile  Eppendorf-test  tubes. 

The equipment  used for collection was  sterilized  after extraction  of  each 

individual.  The  logs  had fallen during the previous  winter  and the  beetles  had 

just  started to build  galleries  in them. Mostly  the construction of  nuptial  

chambers was  completed  and  the  mother galleries  had been initiated.  However, 

the mother galleries  were  less  than 4 cm  long. The collected  beetles  were  stored 

individually  at +4 °C in Eppendorf-test  tubes for a maximum of  three days 

before they were introduced into  logs.  

2.3  Inoculation,  isolation  and  identification  of  fungi 

Fungi  were pre-cultivated  in  fresh uninfected Norway  spruce  bolts (one metre 

long,  diameter 15 cm)  according  to  the method described previously  by Furniss  

et  al.  (1990).  The bolts  were  brushed and the surfaces  wiped  with  70  %  alcohol.  

To prevent  drying,  the ends  of  the bolts  were  dipped  into  melted paraffin.  Then 

25 beetles were  introduced individually  into  each log  through  holes  (5  mm 

diameter)  bored previously  with  a cork-borer  at  the level of  the cambium. After 

the beetle was  introduced,  the bark  plugs  were  replaced  and the beetles  were 

crushed gently.  In each log  two control  holes without  beetles were made and 

treated similarly.  

After  21 days  of  incubation at  room  temperature  (+2O  °C)  reaction zones  

formed with phloem around  each  inoculation point.  These reaction zones  were  

then cut  from the logs,  wrapped  in foil  and stored  at  +4  °C  for  two  weeks  until 

used for  isolations. Two phloem samples  (50-60  mm
3) were  taken  from inside 

each necrotic  zone, one at the border  of the visible reaction and one at a 

distance  of  15 mm. Two samples  were  also  taken from a  depth  of  Imm in the 

sapwood.  When the reaction zones  were less  than 20 mm  long,  all  four samples  

were  taken from the edge  of  the visible  reaction zone. When reaction zones  

were  more than 150 mm long, six  samples  were taken, four  from the phloem  

and two  from the sapwood.  A  total of  1,221  primary  samples  were  taken around 

the inoculation points.  Samples  were  cultivated  in  petri dishes (2  % malt  and 

1.4 % agar medium) at room temperature.  Occasionally,  pieces  of  fresh 

autoclaved phloem  or  sapwood of  Norway  spruce  were  added to  the  dishes to 

promote  formation of  sexual  stages.  A  type  specimen  of  each ophiostomatoid  

fungi  was  purified  by  transferring  mycelium  or  spores  from individual colonies 

to fresh malt agar medium. 
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Reproduction  structures of  the fungi were  prepared  with lacto-fuchsin,  

lactic  acid  or cotton blue for identification.  Fungal  structures  were  compared  

with  the species  descriptions  given in  the literature  (Siemaszko  1939. Davidson 

1953, Mathiesen-Käärik 1953, Wright  and  Cain 1961, Kendrick 1962,  

Davidson et  ai  1967, Upadhyay  1981,  De  Hoog  and  Scheffer  1984,  Solheim 

1986, Kirisits  1996,  Yamaoka et al.  1997).  

2.4.  Statistics  

Frequencies  of  ophiostomatoid  species  were analysed  with  the Kruskal-Wallis  

test. Due to  the sparseness  of the observed frequencies,  the data were  analysed  

with StatXact™ Version 2.11 software,  a statistical  package  for exact 

nonparametric  inference (Mehta  and Patel  1989,  1991).  Since the data sets  

were  too large for  exact  calculation  of  p-value,  the Monte-Carlo estimates  of  

the p-value  were  computed  by  generating  100,000 tables. The level of  

significance  in the tests  was  p  <  0.01. 

3 RESULTS  

The most common and consistently  occurring  species  were Ophiostoma  

bicolor Davidson & Wells, O. penicillatum  (Grosm.  Siemaszko),  

Ceratocystiopsis  minuta (Siemazko)  Upadhyay  & Kendrick  and C. polonica.  

Other frequently  isolated species  were  O.  piceaperdum  (Rumbold)  Arx  and O.  

ainoae Solheim (Table  II). O. piceae  (Miinch)  H. &  P. Sydow  and O.  

cucullatum Solheim were  isolated occasionally.  There was  no  visible  staining  

on  any  of  the  control  inoculations,  and no  ophiostomatoid  fungi  were  detected 

in the control inoculations.  

Furthermore,  an  unidentified strain of  ophiostomatoid  species  was  isolated 

which differed from known species  by  having  perithecia  formed in  mixed 

cultures  within the malt  extract substratum,  perithecia  black, 160-230 |im in 

diameter, necks 3,840-4,800  pm long, tapered,  dark brown to  black,  40-50 (I m 

wide at the base,  20 (xm wide at the apex, and  ostiolar  hyphae  absent.  

Ascospores  were  cucullate  with a hyaline  wall,  released in  a  slimy  mass.  No 

conidia or  conidiophores  were  seen. 

When the frequencies  of  nine ophiostomatoid  species  were  compared  

simultaneously  at  six  beetle-collection  locations,  the Kruskal-Wallis  analysis  

of  variance indicated a highly significant  difference  between locations (% 2  = 
29.04, df = 8,  asymptotic  p-value  = 0.0003). When the five  most  frequent  

species  (C. minuta
,
 C. polonica,  O. bicolor

,
 O. piceaperdum  and ().  

penicillatum)  were  compared,  there was  also  a significant  difference between 

locations (locations  (%
2
= 16.86,  df= 4,  asymptotic  p-value  = 0.0021).  
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Table 2. Frequencies  of occurrence  of  ophiostomatoid  fungi associated  with 

I.  typographus  collected  at  six  locations  in  France.  Locations presented  in  Table  1. n  =5O  

beetles per  location. 

4  DISCUSSION  

The blue-stain fungi  Ceratocystis  polonica,  Ophiostoma  bicolor, O.  

europhioides  Wright  &  Cain (Solheim)  and O.  penicillatum  have been reported  
to  be associated  with I. Typographus,  occurring  with varying  frequency  in 

different environmental conditions and investigations  (Solheim  1986,  1992,  

1993,  Harding  1989,  Krokene  and Solheim 1996,  Viiri  1997).  O. europhioides  

was recently  synonomised  with  O. piceaperdum,  since they  cannot be 

distinguished  on the basis  of morphology  (Jacobs  et al.  2000).  Some 

characteristics  of  the long-necked  ophiostomatoid  species  isolated here are  the 

same as  the species  characteristics  of  O.  piceaperdum,  but  possible  synonymy 

needs to  be clarified  in more  detailed studies  of  teleomorph  and anamorph  

morphology.  

The most  common and consistently  occurring  fungus  in this  study  was  O.  

bicolor,  which was  recovered in Vologne  from 74  % of  the bark  beetles 

examined.  At nearly all  locations,  C.  minuta, O. ainoae, O. bicolor,  O.  

penicillatum  and O.  piceaperdum  occurred at  higher  frequencies  than  recorded 

Vosges  Alps Massif Central 

Senonne Vologne Belleville Maurienne Meygal Mezenc 

C. minuta 62 36 36 30 28  24 

C. polonica 40 32 22 50 42  30 

0. ainoae 2 10 28 12 24 10 

0. bicolor 54 74 26 44 66 42 

0. cucullatum 0 0 0 0  2  0 

0.  piceaperdum 20 34 30 10 16 28 

0. penicillatum  40 40 24 26 60 40 

0. piceae  8 12 10 12 8 2 

"Long-necked"  2 0 6 4 8 0 

Pesotum spp. 36 28 46 46 50 58 

Leptographium  

spp. 

2 2 0 0 0 0 

Primary  
isolations 

204 204 202 202 205  204 
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from the low population  density  areas  of  I.  typographus  (Solheim  1993,  Viiri 

1997). The following  ophiostomatoid  species  have  been reported  to  be 

associated with  Ips  sexdentatus Boern in France:  C.  minuta,  O.  bicolor,  O.  

brunneo-ciliatum Mathiesen-Käärik,  O. europhioides,  O. Ips  (Rumbold) 

Nannf.,  O.  piceae  and O.  minus  (Hedgcock)  H.  & P. Sydow  (Levieux  et al.  

1989, Lieutier et  al.  1989, 1991).  Correspondingly,  the species  found to  be 

associated with  Ips  acuminatus Gyll  are  O.  brunneo-ciliatum
,
 O. Ips, O. minus 

and Ceratocystiopsis  minima (Olchow.  and Reid)  (Lieutier  et  al.  1991). 

According  to surveys  made in previous  years,  in all  sampling  areas,  

especially  in Vosges  and Massif  Central,  the population  levels  of  the spruce 

bark  beetle were  high.  This  resulted  in numerous  spontaneous  attacks  on  spruce 

trees  in these areas.  Pheromone trapping,  although  done only in Vosges,  

showed declining  population  size  already  during  the year of  beetle sampling.  

Thus the isolated fungal  flora constantly  corresponded  to  a beetle population  in 

the post-epidemic  phase.  According  to  Weslien et  al.  (1989),  fewer than 15,000 

spruce  bark  beetles in  a  group of three traps  corresponds  to a low population  

level.  Hiibertz  et  al.  (1991)  caught  3,400-12,000  individuals  and Valkama et  al.  

(1997)  at  highest  14,000  individuals per  season  with a group of  three traps  

during  a  period when the beetle population  was  low. 

According  to Yamaoka et al.  (1997),  the technique used to isolate 

ophiostomatoid  fungi  from various  niches  can  greatly  affect  the frequencies  of  

occurrence.  Thus when results  are compared  to those of other authors,  

discrepancies  in fungal  frequencies  may be partly  due to differences in 

methods of  sampling  and isolation. In this  study, however,  the fungal  flora 

differed significantly  between locations.  

Both C. polonica  and  O.  piceaperdum  have been suggested  to  play  a 

special  role in the population  dynamics of  the spruce bark beetle (Solheim 

1993, Harding  1989).  It  has  been  proposed  that  during  endemic periods  when 

beetles utilise  dead trees and timber for  breeding,  pathogenic  species  can be 

replaced  by  less  harmful ones.  In Norway,  the frequency  of  C.  polonica  has 

been low during periods  of  low population  level  when beetles use  dead trees  

and timber,  whereas the frequency  has  been higher  during  the epidemic  phase 

when living  trees are  attacked (Solheim  1992,  1993,  Krokene and Solheim 

1996).  The  previous  finding  that the  frequency  of  the pathogenic  species,  C.  

polonica  (Viiri  1997),  in  the  endemic  population  of  spruce  bark  beetle is  low 

does not  conflict  with  the fact  that associated  pathogenic  fungi  can  regulate  the 

damage  by  spruce  bark  beetles.  Our  results  are thus  in agreement  with those 

suggesting  that pathogenic  species  can  be replaced  by  other species  during  

endemic periods.  Furthermore,  they support  the idea that the role of  the 

associated fungi  may vary  under different environmental conditions.  

The success  or  failure of  bark  beetle attacks  on living  trees is  ultimately  

determined by  the  beetle-fungus-host  tree  interaction. Owing  to  conflicting  

results  concerning  frequency  and pathogenicity,  genetic  variation within the 
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species  O.  piceaperdum  and C. polonica  needs to  be  clarified  (Harding  1989,  

Kirisits  and Angelberger  1999,  Krokene and Solheim 2001).  The pathogenicity  

of  geographically  different strains  of  O.  piceaperdum  and C.  polonica  should 

be tested.  
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Abstract  In  conifers, attacks by  bark  beetles  and  associ  
ated pathogenic fungi cause an  induced  wound  response,  
which  is  characterized  by accumulation  of antifungal 

compounds and  morphological changes that  aid  wound  

healing. In  this  article  the  stilbene  and  terpene concentra  
tions of  Norway spruce  phloem were monitored  as  

symptoms of induced  wound  responses  in  relation  to 

changed nutrient  conditions  caused by  fertilization.  Plots  
of mature Norway spruce  were fertilized  with  N,  P or 
NPK. One year  after  fertilization  the  trees  were artificial  

ly  infected  with  Ceratocystis  polonica ,  a pathogenic fun  

gus  associated  with  the  bark  beetle  Ips  typographus. The  

response  of stilbenes  to fungal inoculation  was  mainly  

qualitative. The concentration  of stilbene  glycosides  in  
the  phloem decreased, and  in  the  immediate  vicinity of 
the  site  of fungal inoculation, stilbene  glycosides were 
less  frequent than  in  mechanically wounded  or un  
wounded  phloem. Corresponding stilbene  aglycones  
were most  frequent inside  the  reaction  lesion. The  con  
centration  of  total  stilbene  aglycones near the inoculation  
site  was  significantly  lower  in  N-fertilized  trees  than  in  
unfertilized  trees. Fungal inoculation  caused  a strong 

quantitative  response  in  terpenes. The  total  terpene con  
centration  of the  phloem increased significantly,  to  al  

most  100 times greater near  the  inoculation  site  com  

pared to the  constitutive values.  N  fertilization  signifi  

cantly  reduced  the  total  terpene and  total  stilbene  agly  
cone concentrations  near the inoculation  sites. Thus, N 

fertilization  may  reduce  the  ability  of Norway  spruce  to 
defend  itself  against fungal pathogens. 
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Introduction  

Many bark  beetles  distribute  spores  of fungi laterally  or 

internally  in  the  digestive  tract  while  constructing  breed  

ing chambers and  galleries in  the  phloem of their  host  
trees. As  they  grow,  fungal hyphae suppress  water  trans  

portation in  the  host,  causing discolouration  of  wood  and  

helping the  beetles  to kill  the  trees.  New  generations of 
beetles transport  fungi to  new host  trees.  For  many  spe  
cies  of  fungi, transmission  by  insects  is  vital,  and  special  
associations  have  arisen  between  insects  and fungi. Most  

fungi associated  with  the  Scolytidae  belong to  the  genus  
Ceratocystis  sensu stricto  De  Hoog and  Scheffer, Ophio  

stoma H.  and  P.  Sydow and  their  anamorph genera  

(Wingfield et al. 1993; Krokene  and Solheim 1996).  
These  fungi are adapted to  dispersal  by  insects:  elongat  
ed ascocarps  bear  ascospores at  the  apices  of  their  

necks,  which  may  be protected by  a  gelatinous matrix  

(Wingfield et al. 1993). 

From the  human  point of  view,  a major  part of the  

symbiosis  between  bark  beetles  and  associated  fungi is  
their  joint  action  to overcome the resistance  mechanisms 
of their  host  trees. Some  fungi are pathogenic and,  when  

mass  inoculated  into  trees, are able  to  kill  healthy trees 
(Christiansen 1985). When  phloem is infected  by bark  
beetles  and  associated  pathogenic fungi, a resistance  re  
action  may  be  initiated  that is  characterized  by  rapid des  
iccation of cells and necrosis  around the site of the 

wound  (Berryman 1972). The  lesion surrounding the at  
tacked  site  is  impregnated with  secondary  metabolites, 
i.e.  phenolic and  terpenoid compounds, and  isolated  by  
the  formation  of wound  periderm,  callus  tissue  and  trau  
matic  resin  cavities  at the  cambium-sapwood interface  

(Reid  et  al. 1967; Berryman  1969; Woodward  and  Pearce  
1988  a, 1988b: Delorme  and Lieutier  1990). The co  

determinants  of conifer  resistance  to bark  beetle-fungus  
attack have  been  tentatively identified  as the  primary, or 
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resident, resin  canal system  and  the hypersensitive  reac  
tion, which  functions  as  wound  cleansing, containment  
of infection  and  wound  healing (Berryman  1972). In  
duced  wound  responses  can start as a result  of  mechani  
cal wounding, but  formation  of traumatic  secondary 

compounds and  extension of the lesion  require fungal  in  
fection  or  boring activity  by  beetles  (Lieutier et  al. 1989;  
Franceschi  et al. 1998).  

Accumulation  of monoterpenes in  high concentrations  
is  characteristic  of  the  defensive  response  in  several  coni  

fers;  a-pinene. (3-pinene, myrcene,  terpinolene, sabinene, 
A-3-carene  or limonene, in  particular,  have  been  shown  to 
increase  in response  to  inoculation  with  fungi (Russell  and  

Berryman 1976; Raffa  and  Berryman 1982 a;  Gershenzon  
1994). This  resinous  material  is  stored  in  specialized resin  
ducts  or  granular  cells  (Berryman 1969; Franceschi  et  al.  

2000; Nagy et al.  2000). Monoterpenes prevent  growth of 

pathogenic fungi (Cobb et al.  1968; Delorme  and  Lieutier  
1990) and  repel or kill  bark  beetles  (Raffa et  al.  1985; 

Bridges  1987;  Raffa  and Smalley  1995). Thus, a change in  

any  of  these  compounds may be  important for  the defence  
of the  tree against beetles  and  fungi. 

The  bark  of  many  conifers  also  contains  antifungal phe  
nolic  compounds, i.e.  stilbenes  and  flavonoids.  In healthy 

phloem of Norway spruce,  Picea  abies  (L.) Karst., stil  
benes  typically  occur  as  glycosides  (Brignolas et  al.  1995). 
The  main  constitutive  stilbene  glycosides in  the  bark of 
Picea  species  are astringin  and  isorhapontin (Woodward 
and  Pearce  1988 a;  Solhaug 1990; Toscano  Underwood  and  
Pearce  1991 a,  1991b; Lindberg  et  al.  1992). In  vitro these  

compounds have  antifungal properties (Woodward and  
Pearce  1988 a). Rapid accumulation  of stilbenes in  

response  to  injury  or  fungal infection  is considered  to  be  an 
active  defence  response  (Nicholson and  Hammerschmidl  
1992; Schultz  et al.  1992). Phenolics  are formed in situ  

from carbohydrates  in  phloem  parenchyma cells  (Hart 
1981;  Franceschi  et  al. 1998) via  the  shikimate/phenylpro  

panoid-acetate pathways. The  proportion and  type  of syn  
thesized  stilbenes  (Brignolas et  al. 1995, 1998) and  other  

secondary compounds are controlled  by  the  plant geno  
type. However, physiological  conditions  also  affect  the  

ability  of trees  to produce  secondary compounds (Raffa 
and  Berryman 1982b; Klepzig et  al. 1995). 

Brignolas et al.  (1998) proposed  that  the  induced  re  

sponse  in spruce  phloem after  fungal  inoculation  involves  
two  phases.  The  first of these is  the  tree's response  to 
wounding,  which  is  characterized  mainly by  both  an in  
crease in the (-t-)catechin concentration  and  a  slow de  

crease  in  the protein-precipitation capacity  of wound  ex  

tract  (or  tannins). Thereafter,  a  violent  fungus-dependent 
reaction  occurs,  which  is  characterized  by  a  strong de  
crease in  the  stilbene  glycoside concentration, delayed 

appearance  of  the  corresponding aglycones  and  a strong 
decrease  in  both  the  (+)-catechin  concentration  and  the  

capacity  to  precipitate  protein.  This  agrees with  the  non  

specific healing model  proposed by Woodward  and  
Pearce  (1988b). In their  model, stilbene glycosides,  

coupled  with  terpenes, provide  the  first line  of  defence  af  

ter  the  bark  surface is  breached.  The  action  of p-glycosi  

dases produced by  the  fungi close  to the  wound  releases  
stilbene  aglycones,  thus  inhibiting the  growth of most  
pathogens. The  stilbenes  and  terpenes  provide  the  first bar  
rier  to  invasion,  allowing time  for  the  formation of  necro  

phylactic  periderm and  isolating the  necrotic  tissues.  
Balanced  availability  of  nutrients  is  assumed  to  affect  

the  vigour of  trees  and  their ability  to resist attack by  
bark  beetles  and  associated  fungi. As  hypersensitivity  is  
an active metabolic  process, the  reaction  capacity  and  

speed  must  be  affected  by  the  physiological  vigour of  the  
tree  (Berryman 1972).  The  number  of  bark  beetle  attacks 
on a tree  may  also  modify  the resistant  response.  Each  
attack severs resin  ducts, causes the expenditure of  ener  

gy in  hypersensitive  reaction,  and  reduces  the  area  of 
functional  phloem and  sapwood (Berryman 1969, 1972).  
The  growth/differentiation balance  hypothesis predicts  a  

physiological  trade-off  between  plant growth and  differ  
entiation  processes.  When  environmental  conditions  are 
favourable,  resources  are generally allotted  by giving 

priority  to vegetative growth over  secondary metabolism  
and  storage (Herms  and  Mattson 1992; Lerdau  et al. 
1994). Even  moderate  shortages  of nutrients or water  
slow  growth processes  considerably.  Net  photosynthesis,  

however, is not as sensitive to limitations  in  resources 

(Chapin 1980). Thus, when  a  moderate  nutrient  deficien  

cy  imposes sink  limitations  upon  growth, the  growth  is  
limited more by  nutrient  availability  than  by  photosyn  
thate  production.  Therefore, carbohydrates accumulate  in  
"excess"  of  growth requirements and are allocated  to the  

production of C-based  secondary metabolites, e.g. phe  
nolics  and  terpenoids (Gershenzon 1994). If growth is  
stimulated  more  strongly  than  photosynthesis,  then  con  
centrations  of carbohydrates and C-based  secondary 
compounds decline  and  the  production of N-based  com  

pounds  increases.  These  predictions are known as the  
carbon/nutrient  balance  hypothesis  (CNB).  More  specifi  
cally, concentrations  of C-based  secondary  metabolites  
are positively  correlated  with  the  C/N  ratio  of the  plant 
(Bryant et  al.  1983; Herms  and  Mattson  1992). 

The aim  of the  present  experiment was to test for  
changes in  the C-based  secondary  compounds, such  as  
stilbenes  and terpenes,  in  Norway spruce  after  mechani  
cal  wounding and  artificial  inoculation  with  Ceratocystis  

polonica Siem.  Moreau, a  pathogenic fungus transmitted  
by  the  spruce bark  beetle  Ips  typographus L. (Solheim 
1988; Krokene  and Solheim  1996). In addition, the  ex  

tent and  formation  of induced  wound  responses  were 
studied in relation  to increased  nutrient concentration  

and growth caused  by  fertilization  treatments.  Results  

concerning carbohydrates and  growth of experimental 
trees  are reported in  a companion paper. 

Materials  and methods  

Experimental  area and trees 

The study area was located in a Myrtillus-type spruce  forest  in 
Karttavuori,  Vesijako. southern Finland. The stand was of  natural 
origin  and the selected trees were mature (age  ca.  80 years) Nor  
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way  spruce. Four  plots  of 0.5 ha were marked,  and fertilization 
treatments were randomly applied to the plots. There  was a 10- to 
15-m-wide buffer zone between plots. Fertilizers N (173  kg ha-1  
year 1;  NH

4
-N  13.5%; NO

r
N 13.5%; Ca 3%; Mg 1%; S 3%; B 

0.02%).  P (41  kg  ha-1 year l;  total P 9%; water-soluble  P 8%; Ca 
20%; S 11%) and NPK  (800  kg  ha- 1 year l;  NH

4
-N 11%; NO

r
N 

7%; total P  5%; water-soluble P 3.6%; K 10%; Ca 3%; Mg 0.5%;  
S 3%; B 0.02%;  Se 0.001%)  were spread  by  hand at the  beginning 
of  the growing season in May 1993.  The control treatment was an 
unfertilized plot. Due to space limitations, we used a single plot 
for  each fertilization treatment and one control. Thus,  our experi  
mental design was  pseudoreplicated (Hurlbert  1984); this is  taken 
into account in the interpretation  of results,  where fertilization 
treatments are compared with the control,  not with  each other.  
From  each plot 30 trees that  were free of  visible wounds,  a total  of 
120 trees, were selected. Trees  were chosen so that there were 97 

dominants,  22 co-dominants and  one intermediate tree. Two trees 

that were infected with root-rot and two  that  had been attacked  by  
1. typographus were omitted from the  analysis.  At the  end of the 

experiment, the  sample trees  averaged 34±0.5 cm in  diameter at 
breast  height and 28±0.2 m in  total  height. 

Fungal  inoculations 

In June 1994 a culture  of blue-stain fungus, C.  polonica, on 2% 
malt extract  agar in Petri dishes was inoculated  into ten trees  per  
fertilization treatment. The fungal strain had been isolated  from 

Norway spruce that had been infected naturally with  I.  typo  
graphus in Tuusula, southern Finland. The fungus  was inoculated  
into the phloem with a cork-borer  (diameter  5 mm), and the bark  

plug was  re-inserted  into the hole. Each  tree  received  four  evenly  

spaced inoculations made at the cardinal points  of the compass  
1.3 m  above ground. For  mechanical wounding, the trees  were in  

jured with a cork  borer  in the same way  as for  inoculation, but 
without the fungus and  malt agar.  Ten trees per  fertilization treat  
ment were  wounded mechanically. 

In  the middle of August, after  a 2-month incubation period, the 
dead rhytidome  was  removed carefully with a sharp knife around 
each inoculation point so that the reaction  lesion was visible. The 
vertical length of the lesion and  the bark,  sapwood and phloem 
thicknesses,  were measured.  Lesion length includes only  the area 
outside the bark  plug. Around each fungal inoculation site, four  
phloem samples were taken  with a cork-borer  (diameter  15 mm)  to 
the level of the cambium: two from the  distal ends of the visible 

reaction lesion (henceforth  called "far"  samples) and two immedi  

ately  above and below the site of inoculation (henceforth  called 
"near" samples). Two samples were taken from around the site  of 
mechanical wounding, one above the wounding site and the  other 
below the wounding site. In cases  where there was visible lesion 
formation around  the mechanical wounding (necrotic  area more  
than 3 mm at the upper and lower  side  of the  inoculation site, 
«=11), these  necrotic  tissues  were included  as part  of the samples.  
Two  samples per  tree of  phloem from intact trees were used as  un  
wounded controls. All samples were immediately placed  on dry 
ice  and stored at -20°  C until analysed. The fungus was not re-iso  
lated from  inoculation sites,  but  all reaction  lesions were visually  
distinct from each other. 

Extraction  and analysis of  stilbenes 

Phloem samples were ground in liquid N. Then 100 mg ground 
phloem powder was extracted with 2 ml of  80%  v/v  EtOH.  As in  
ternal reference compounds, 50 |il (10,000  ppm) rhapontin and 
50 fil (5,000  ppm) diethyl stilbestrol (Sigma) were added to the 
extracts.  The extraction  liquid was placed in an ultrasonic  bath  for  
45 min,  after  which the liquid was extracted  overnight. The extract 
was shaken on an orbital  shaker  and then centrifuged (4,332  g; 
20 min -1 ); 500 (il  of  supernatant  was evaporated to dryness in a 
stream of  N.  Dried samples were silylated  for 2 h  at room temper  
ature with 400 |jl silylating reagent  prepared from 100 ml dry pyri  
din and 21 ml trimethylsilyl-imidazole (Fluka) and preserved in 

complete dryness  over  silica gel. The silylated samples were shak  
en and  preserved  at -20°  C until analysed. 

Stilbenes were analysed with a gas chromatography (Hewlett-  
Packard 5890)  mass spectrometry (Hewlett-Packard  5988  A)  

system with a HP-5  (Hewlett-Packard)  capillary column 
(25 mxo.2 mmxo.3 pm). Split injection was used.  The carrier  gas  
was helium;  the column  head  pressure  was 100 kPa  and  the split  
flow was 25 ml min-1 . The initial temperature  of the oven was 
110°  C,  increasing  at 10° C min -1 to a final temperature  of 300°  C. 

Stilbene glycosides were quantified by  the response  of  rhapontin. 
and stilbene aglycones  were quantified by  using  the  response  fac  
tor of diethyl stilbestrol and resveratrol.  Identifications of com  
pounds were confirmed by  mass spectra. Results  are expressed  as  

micrograms of  stilbenes per  milligram of  fresh  phloem. 

Extraction  and analysis  of mono- and sesquiterpenes  

One hundred milligrams of phloem  powder obtained by  grinding 
the phloem in liquid N was extracted  with  2 ml hexane. The hex  
ane contained 200 ppm each of the following three  internal stan  
dards: ClO

H
21C1,  C

l  4 H
29

C1  and C
lB
H

37
C1 (Fluka).  The samples 

were extracted in an ultrasonic bath for 30 min and left in test 

tubes overnight. The hexane extracts were shaken and centrifuged 
(4,332  g; 20 min-1 ); and the extracted  samples were stored at 
-20°  C until analysed.  

Mono- and sesquiterpenes  were  analysed  with the previously  de  
scribed gas  chromatography system  and the mass spectrometry  
system using an NB-351 (HNU-Nordion,  Helsinki,  Finland)  capil  
lary  column (25 mxo.2 mmxo.3 (jm).  The programme started at 
60° C (splitless injection, 0.5 min), rising by 5°C min-1 to a final 

temperature of 230°  C. The analysis time was 40 min,  the carrier  gas 
was helium,  and the split flow rate was 20 ml min-1 . Monoterpenes 
were identified and quantified using the retention and mass spectral 
data of  authentic model compounds. Sesquiterpenes were identified 
according to the  method of  Pohjola (1993)  and  quantified according 
to the response  factor  of  caryophyllene. Model compounds were ob  
tained from the Pharmacognosy  Division,  Department  of  Pharmacy. 
University  of  Helsinki, Finland. The results  are expressed  as micro  
grams of  terpenes per milligram of  fresh  phloem. 

Statistical analysis  

Univariate ANOVA was used to examine overall differences be  

tween inoculation methods and between inoculation directions. 

The means of  chemical compounds  calculated  from opposite sides 
of  the inoculation  site were used in the analysis.  For mechanically 
wounded trees and unwounded controls,  the means of  two  sam  

pling sites  were used.  Detection frequency  is  the mean (%)  of all 

Fig.  1 Within fertilization treatments, lesion lengths in fungus-in  
oculated and mechanically wounded trees  differed significantly 
from each other  at the  5% level;  these  differences  are indicated by  
different letters  
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Fig.  2 Stilbene concentrations  
(pg  mg- 1 fresh  phloem tissue. 
mean±SD)  in Picea  abies 

phloem inoculated with 

Ceratocystis  polonica. mechan  
ically  wounded and unwounded 

phloem (see  Materials and 
methods regarding  sampling), 
grouped according to fertiliza  
tion. Values indicated with an 

asterisk at the end of  a bar 

differ significantly from 

corresponding unfertilized 
phloem at the 5%  level.  Within 
fertilization treatments, bars  

with different letters  differ 
significantly from each  other 
at the 5% level  

samples in which  the substance in question was detected. The  
Dunnett-test  (Myers and  Well 1995) was  used to examine differ  
ences between  fertilized plots and the unfertilized control and 
within fertilization treatments. Homogeneity of  the variances  was 
tested with  Levene's  test (Snedecor  and Cochran  1980).  If the as  

sumption of  homogeneity was not shown to be  true (Jeffers  1960), 
nonparametric Dunnett-C tests  were used. The values presented in 
the tables and  figures are untransformed means, and if not men  
tioned otherwise,  the significance  level is  5%. 

Results 

Lesion  length 

Fungal inoculation  produced  a  necrotic  lesion  around  the  
inoculation  site, the vertical  length of  which  was  
7.1  ±O.B cm  (mean  of all  fertilizations±SE; n=39). In me-  
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Fig. 3 Detection frequency of  stilbene compounds  (%)  in P. abies 

phloem after inoculation with C. polonica,  in mechanically  
wounded and unwounded phloem  (see Materials  and  methods  for  

sampling information). Each  fertilization treatment and the control  
were combined. Values indicated with  an asterisk  at the end of a 

bar  differ  significantly  from unwounded phloem at the 5% level. 
For the same  compound, bars  labelled with  a different letter  differ 
significantly  from each other at the 5% level 

chanically  wounded  trees the  vertical  length of  the  lesion  
around  the inoculation  sites  was 0.2±0.3  cm  («=3B), and  

horizontal  growth was <0.3  cm. The  difference  in  lesion  

length between fungal inoculation  and mechanical  

wounding was  highly significant  (Fig. 1). The lesions  

appeared to be  longest in  P-fertilized  trees  and  shortest  
in  N-fertilized  trees.  After fungal inoculation  the  differ  
ence between  fertilization  treatments  was nearly signifi  
cant (F=  2.47, df= 3, P=0.064). 

Stilbenes  

Concentrations  of the  stilbene  glycosides  (piceid,  astrin  

gin,  isorhapontin) and  their  aglycones  (resveratrol. as  

tringenin  and  isohapontigenin) in  relation  to inoculation  
and  fertilization  are shown  in  Fig.  2. Near  the  inocula  
tion  site,  concentrations  of individual  glycosides and  to  
tal  glycosides  were lower  than  in  unwounded  phloem re  

gardless  of treatment (Fig. 2).  The  total  stilbene  glyco  
side  concentration  showed  a  negative and  significant  
correlation  with the  total  terpene concentration  near  the  
inoculation  site (r=-0.493, «=33, P<0.01). and  at the  

outer  border of the lesion «=39, P<0.01). The 

Fig. 4  Composition of the  

major monoterpenes  and the 

sesquiterpene germacrene 
(%, mean±SD)  grouped  

according to  fertilization. 
Labels as in Fig. 2 
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Table 1 Quantitative changes  
in the terpene  fraction  
(µg mg

_I fresh  phloem) of  
Picea  abies phloem inoculated 
with Ceratocystis  polonica, 
mechanically wounded and 
unwounded phloem. All 
fertilization treatments were  

pooled. Samples were taken 
around the fungal inoculation 
sites.  Near Mean of two 

samples  from the areas immedi  

ately  above  and below the site 
of  inoculation,  Far  mean of two 

samples  from the distal ends  of 
the visible reaction lesion 

*P<O.O5, **P<o.ol;  ***P<o.ool 

Fig. 5 a Relationship between lesion length  and total terpene  con  
centration near  the site of fungal inoculation (r=0.431. n=38. 
P<0.01). b The corresponding relationship at the outer border  of 
the lesion was not  significant (r=0.260.  n=39, P>0.0 1) 

total  stilbene glycoside concentration  did  not  correlate  
with  the lesion  length near the inoculation  site 
(r=-0.338, «=33, P>0.05) or at the outer border  of  the 

reaction  lesion  (MXO66, «=39, P>0.05). 

On  the  other  hand,  the stilbene  aglycone isohaponti  

genin and  total  aglycones  were detected  in  higher con  
centrations near  the  fungal inoculation  site  than  at  the  
other  sampling points  (Fig.  2).  Total  aglycone concentra  
tion did not correlate  with lesion  length (data not 

shown). It correlated positively  with  the  total  terpene 
concentration  at the far end of the lesion n=39, 

P<0.05) but not  with that near the inoculation  site 

(r— 0.231, n= 3B, P>0.05). In N-fertilized  trees, near  the  

inoculation  site  the  concentration  of resveratrol  was sig  

nificantly  lower  than  in  the  phloem of  unfertilized  trees.  
In addition,  the concentration  of  total  stilbene  aglycones 

decreased  significantly  after N  fertilization  compared 
to values  for the corresponding unfertilized  phloem 

(Fig. 2). 

The  detection  frequencies of  stilbene  glycosides near 
the  inoculation  site  were significantly  lower  than  in  me  

chanically wounded  or unwounded  phloem (Fig.  3).  Cor  

respondingly, near the  inoculation  site  the  frequencies of 
stilbene  aglycones  were constant. When  the detection 

frequencies of glycosides  and aglycones  in  different  fer  
tilization  treatments were compared to  those  of the  cor  
responding unfertilized  control,  the  differences were 
usually not  significant.  

Terpenes 

The  main  monoterpenes both  in  the  reaction  lesion  and  
in the constitutive  phloem tissue  were a-pinene,  |3-  

pinene, (3-phellandrene, A-3-carene  and  a-phellandrene, 
which  made up  82%  of the  total  terpene fraction  (Fig.  4).  

Near  Far Wounded Unwounded 

Tricyclene 0.172*** 0.022*** 0.004 0.004 

a-Pinene 26.469*** 3.407*** 0.326 0.351 

Fenchene 0.012*** 0.009** 0.003 0.003 

Camphene 0.560*** 0.080*** 0.007 0.008 

(3-Pinene 27.878*** 2 0.278 0.278 

Sabinene 1  228*** 0 ]4^*** 0.012 0.012 

A-3-Carene 7^812*** 0.854*** 0.038 0.049 

a-Phellandrene 5.550*** 0.646*** 0.054 0.063 

Limonene 3.531*** 0 437*** 0.028 0.029 

p-Phellandrene 13.121*** 1.376*** 0.142 0.163 

y-Terpinene 0.128*** 0.024*** 0.011 0.012 

Terpinolene  1.578*** 0.201*** 0.012 0.015 

Bornylacetate  0.414*** 0.065*** 0.010 0.010 

Total monoterpenes  88.446*** 10.149*** 0.903 0.975 

p-Caryophyllene 0.200*** 0.031*** 0.007 0.009 

a-Humulene 0.144*** 0.022** 0.004 0.004 

y-Muurolene 0.422*** 0.048** 0.008 0.010 

Germacrene  2.898*** 0.410*** 0.072 0.068 

B  icyclogermacrene  0.354***  0.027* 0.005 0.007 

A-Cadinene 1.181*** 0.138*** 0.026 0.037 

Total sesquiterpenes 5.193*** 0.648* 0.110 0.119 

Total terpenes  93.639***  10.797*** 1.019 1.094 
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Fig. 6 Total terpene concentrations ( µg mg -1 fresh phloem. 
mean+SD) in fungus-inoculated, mechanically wounded and 
unwounded phloem, grouped  according  to fertilization. Labels as  
in Fig.  2 

Minor  amounts  of the  monoterpenes  limonene, terpinol  

ene and  sabinene  occurred  in  all trees.  The  sesquiterpene 
fraction  was  found  to  consist  mainly  of germacrene  and  
A-cadinene.  Each of  the  other  mono- and  sesquiterpenes 
represented <l% of the  total  terpene fraction.  

The  average  total  concentration  of terpenes  in  the  
phloem near  the inoculation  site  was  almost 94 times 

greater than  that  of unwounded  and mechanically 
wounded  trees  (Table 1). In the  outer  border of the reac  

tion  lesion  the average  terpene  concentration  was about 

Table 2 Differences in terpene  
composition (%)  of the total 
terpene pool between fertilized 
and unfertilized phloem. 

Comparisons were made to  
the unfertilized control  with  

one-way  ANOVA. Values 
are means  of all sampling 

points (Near,  Far,  Wounded, 
Unwounded)  

*P<O.O5, **/><o.ol, ***P<o.ool 

11 times  greater than  the  constitutive  values.  Near  the in  
oculation  site  the  lesion  length and  the  total terpene con  
centration  were positively  correlated  (Fig.  sa).  This  was 
not. however, the case at the outer border  of the lesion  

(Fig. Sb).  In  all  terpenes  studied the  difference  between  
inoculation  treatments  was highly significant  (Table  1).  
This  difference  was most  marked  in  the  monoterpenes A  
3-carene,  limonene, terpinolene, sabinene  and  (3-pinene, 
which near the inoculation  site had concentrations  

>lOO times  higher than  the  constitutive  values  (Table 1).  
After  mechanical  wounding, terpene quantity remained  
stable  compared to that  in  unwounded  phloem. 

Near  the  inoculation  site,  the total  terpene concentra  
tion  of  N-fertilized  trees  was  significantly  lower  than  the  
values  for unfertilized  control  trees: according to the  
Dunnett-test, the mean difference was -0.59 and 

/>=o.ooB.  The total  terpene  concentration  was about  half 
that  found  in  the  control  (Fig.  6).  Other sampling sites  or 
fertilization  treatments  did  not  differ  significantly from 
the corresponding unfertilized  control.  On the other  

hand, in  some cases the percentage  composition  of the  

terpene fraction  differed  significantly after fertilization  
treatment (Fig.  4:  Table  2).  Of the total terpene fraction, 
the  proportion of  a-pinene increased  after N  and P  fertil  
izations,  and  the  proportion of germacrene  increased  af  

ter  NPK  fertilization.  The  proportions of  (3-pinene and  (3-  

phellandrene decreased  after  N  and  P  fertilization.  

N P NPK Control 

Tricyclene 0.34 0.36 0.18  0.27 

a-Pinene 34. IS*** 34 32*** 29.48 28.29 

Fenchene 0.13 

0.30*** 0  72*** 

0.10 

Camphene 
0.80*** 0.98*** 

0.64  0.59 

(3-Pinene 24.71*** 24.04*** 28.40 27.87 

Sabinene 1.12 1.18 1.56 1.26 

A-3-Carene 5.38 5.90 6.47 6.04 

ct-Phellandrene 5.54 5.52  4.98  5.42 

Limonene 4.31 3.54  

2 72*** 

3.69 

{3-Phellandrene 12.46*** 11 3S*** 14.36 15.13 

y-Terpinene 1.26* 1.23* 0.66* 0.96 

Terpinolene 1.53 1.75 1.57 1.56 

Bornylacetate  

1  1 18*** 

0.68 0.70  

Monoterpenes  92.94 91.31  88.82* 91.76 

p-Caryophyllene  
Q  93*** 

0.59 0.76 0.59 

a-Humulene 0.23 0.27  0.40 0.27 

y-Muurolene 0.63 0.510* 0.96 0.86 

Gennacrene 2.980*  4.75  

8.25*** 

3.78 

Bicyclogermacrene 0.35 0.37 0.68 0.57 

A-Cadinene 2.23 2.60 2.27 2.28 

Sesquiterpenes 7.06 8.69 12.07* 8.24 
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Discussion 

A mere  change in  the  concentration  of  allelochemical  com  

pounds is  not  sufficient  evidence  of  changes in  resistance  
to  bark  beetle  attack. Such  a change is  a  general response  

to stress,  wounding or reduced availability of nutrients  

(Wright et  al.  1979;  Delorme  and  Lieutier  1990). Neverthe  
less, aseptic  mechanical  wounding generally yields a  mod  
est response  (Johansson and  Stenlid  1985;  Lieutier  et al.  
1989; Raffa and  Smalley 1995). In this  experiment me  
chanical  wounding did  not  change the  amount of stilbenes  
and  terpenes compared to unwounded  phloem. In most  
cases the  bark  plugs  healed  and  there were  no signs  of ac  
cumulation  of secondary compounds. Mechanical  wound  

ing combined  with inoculation  of sterile  malt agar  media  
or  autoclaved fungus might have  given more variable  re  
sults,  as reported e.g.  hy Raffa and Smalley (1995). 

A low-density  method  of inoculation  was  used  since  the  
aim  was to study  phloem chemistry after nutrient  levels 

changed. With this  method  the  tree's  defence  response  is 
the  most  efficient mobilizing of all  resources  against  a  cor  

responding attack  (Raffa and  Berryman 1983).  After low  

density inoculation,  however,  lesion  length alone  is  not  a 

good measure  of  the  resistance  of  the  tree  or of  fungal  viru  
lence. Here  lesion  length was about  the  same as in a low  

density study  in  Norway spruce  after  a corresponding  incu  
bation  time  (Krokene and  Solheim  1997). In  general, small  
lesions  indicate  either  the  weakness  of  the  aggressor  or  the  
resistance  of the  host.  The  efficient  response  of a resistant  
tree  might produce a small  lesion, while  a longer lesion  

might imply either  a  physiologically  weaker  host  tree or  a 

more virulent fungus (Krokene and  Solheim  1999). The  

positive relationship between  lesion  length and  total  ter  

pene  concentration  near the  inoculation  site  supports the  
latter  idea.  For  determining the  virulence  of fungi, the  
depth of desiccated  sapwood would  be  a more  useful  vari  
able  than lesion  length  (Krokene and  Solheim 1997,  1999). 

In stilbenes.  the  qualitative  changes after inoculation  
with fungus were more  pronounced  than the quantitative 

responses.  Concentrations  of all stilbene  glycosides  de  
creased considerably after inoculation,  while  the  concen  

tration  of the  aglycone isorhapontigenin increased  signif  
icantly (Fig.  2). These  results  agree with  those  of  Wood  

ward  and Pearce  (1988  a), Lindberg et al. (1992) and 

Brignolas et al. (1995), all  of  whom  observed  similar  
changes a  few  days after  fungal infection.  It is  known  
that  the  fi-glycosidase  enzymes  produced by  pathogens, 
rather  than  the  constitutive  host  enzymes,  are able  to me  

tabolize  stilbene  glycosides to  the  corresponding agly  
cones (Johansson and Stenlid 1985; Woodward  and 

Pearce  1988 a;  Woodward  1992). In  this  study  the  increase  
in  (3-glycosidase  activities  in  fungus-inoculated phloem 

might also  have  been  instrumental  in  the  release  of  agly  
cones from glycosides  (Fig. 2); the longer the reaction  

lesions  were,  the less  glycosides were present, suggest  

ing that  they were actually  metabolized.  Since  (3-glycosi  
dase  activities  were not  measured  here,  we can only  

speculate about  the  accumulation  of stilbene  aglycones  
after  the  activities of  the  fi-glycosidase  enzymes.  

Nevertheless,  aglycones cause  higher levels  of anti  

fungal activity in  wounded  tissues  than  glycosides do.  
For  instance,  in  vitro  the  antifungal  activity  of the agly  
cone isorhapontigenin against  the  decay fungus  Phaeolus  
schweinitzii  (Fr.)  Pat.  was  6  times  greater than  that  of the  
corresponding glycoside  (Woodward and  Pearce 1988 a). 

Stilbene  aglycones  were  not  observed  in  previous  studies  
on fungus-inoculated or unwounded  phloem of Norway  

spruce, despite increased  stilbene synthase activity  

(Brignolas  et  al.  1995, 1998). This  may  be  due to  differ  
ent  methods  of sample preparation and  differences  in  as  

say  methods,  as in  a corresponding case in  Sitka  spruce  

[Picea sitchensis  (Bong.) Carr.] (Toscano Underwood  
and  Pearce  1991 a).  In  the  present study  the  accumulation  
of aglycones  was an actual  response  to fungal inocula  
tion  (as  shown  in Figs.  1. 2) and not an artefact caused  

by  sample preparation. 

In  healthy spruce, the  concentrations  of stilbene  glyco  
sides  are known  to  differ  between  trees but  may  also  vary  

according  to age,  season,  provenance  and  site  (Solhaug 
1990; Toscano Underwood  and Pearce 1991  a. 1991b; 

Lindberg  et  al.  1992). With  regard to the  stilbene  glycoside 
fraction,  our  results  agree  with  those  of Solhaug (1990) 
and  of Lindberg et al. (1992), who  concluded  that  the  
bark  of Norway spruce  contains  more isorhapontin than  

astringin.  The  concentration  of  stilbene  increases  towards  
the  outer  bark,  but  in  Sitka  spruce  the  procedure for bark  

plug sampling  still  provides  an adequate measure  of  the  
stilbenes  (Toscano  Underwood  and  Pearce  1991  a). 

The  terpene responses  of  Norway  spruce  to  fungal inoc  
ulation  were  strong and  quantitative rather  than qualitative. 
The  major terpenes in  the  reaction  lesion  did  not  differ  
from  the  constitutive  compounds. The  enantiomeric  com  

position  of  monoterpenes, which  differs  in  the  different  tis  
sues of Norway spruce, and  the  volatile  compounds emit  
ted  by the  host  tree  are important  in the  chemical  commu  
nication system  of the  spruce  bark  beetles  and  host  selec  
tion  (Ivarsson 1995; Persson  et  al. 1996). The  host tree 

monoterpene,  (-)-a-pinene,  acts  as  a precursor  for  synthe  
sis  of the  aggregation pheromone, ci.v-verbenol  (Ivarsson  

1995). On the  other  hand, the  fungistatic  effect of  terpenes 
in conifers  seems to be  quantitative rather  than  qualitative; 

the  response  of a tree to fungal inoculation  is characterized  

by  considerable  increases  in  the  concentrations  of all  the  

phloem  terpenes (Russell  and  Berryman 1976;  Raffa  and  
Berryman 1982 a, 1982b; Lieutier  et  al.  1989;  Delorme  and  
Lieutier  1990;  Raffa and  Smalley  1995).  On  the  basis of 

our sampling procedure,  it is  difficult to  determine  whether  

terpenoids accumulated  here  in  large quantities after  fungal 
inoculation  originated from  translocation or from on-site 

de  novo biosynthesis  (Lewinsohn et  al. 1993). In Norway 

spruce, parenchyma cells  near the  fungal inoculation  site  
differentiate  into  resin  ducts (Franceshi et al.  2000;  Nagy et  

al. 2000), which  makes  long-range translocation  of ter  

penes  less obvious.  In addition, changes in terpene compo  

sition  after inoculation  support the idea  that  the  neosynthe  
sis occurred  around  the inoculation  site. 

Sesquiterpenes and  resin  acids  (Björkman et  al. 1991), 
which  occur  in small quantities, may not be representa  
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tive  indicators  for  testing the  CNB  hypothesis.  Further  

more,  resins  that  require not  only  the  synthesis  but  also  
the production of specialized storage structures  or com  

partments may  begin  to  decline  sooner than  compounds, 
such  as phenolics,  that  can be  sequestered simply  by  the  

surrounding cell walls  or vacuoles  (Lerdau et  al. 1994). 
Previous  investigations  have  also  indicated  the  opposite;  
C  may  not  be  the  limiting  factor  for resin  accumulation, 
but rather  physiological and anatomical  constraints  
(Björkman et al. 1991: Muzika  1993: Kytö  et  al.  1999). 

Stilbene  compounds that  are  present in  low  concentra  
tions  after  dynamic reactions  are difficult  to  detect, and  
therefore  quantitative  changes following changes  in  re  
source availability are difficult  to  observe  and  document  

reliably.  Trade-off  between  growth and  defence seems to 
be  feasible  only  when  there is  actual biosynthetic  compe  
tition for  the  same precursor,  as in  the  case of the  phe  

nylpropanoids. The  CNB hypothesis  is  not applicable in  
all  cases  because  not  all  C-based  secondary compounds 
seem to  respond to  fertilization  in  the  same way  (Lawler  

et al. 1997; Koricheva  et al. 1998, and references  there  

in; Keinänen  et  al. 1999).  For  example,  total  phenolics,  
which  was previously  a widely used variable, may  in  
clude  ecologically interesting but  opposite responses  of 

secondary compounds, since tannins  and  non-tannin  phe  
nolics  have  not  been  separated and  identified.  Here, for  
stilbene  aglycones  and  stilbene  glycosides, the  trends  de  
tected in  response  to fertilization  were opposite. 

In this study, the  accumulation  of stilbene  aglycones 
and terpenes  was  significantly  reduced  near the  inocula  
tion  site only  after N  fertilization, but  not  by  P  or NPK  
fertilizations.  Thus, N  fertilization  might affect the  ability  
of spruce  to  defend  itself  against  aggression  by  C.  polo  
nica.  Responses  after N  fertilization  were  consistent  with  
the  CNB  hypothesis.  Even  so,  according to  a wide  meta  

analysis (Koricheva et  al. 1998, and references  therein), 
the  ability  of the CNB  hypothesis  to  predict  changes in  

plant terpenoids in  response  to experimental  manipula  
tions  seems weak.  That  analysis,  however, contained  

many  studies  in  which  constitutively occurring  secondary 

compounds were  included  or  changes outside  the  active  

growing phase were  analysed.  The  predictions  of plant  de  
fence  theories  might best  be  fulfilled  during those  times  of 
the  year  when  growth and  defence  are competing for re  

sources,  so that  an inverse  relationship between  N avail  

ability  and  allocation  to mobile  C-based  defences  might 
be  expected  (Lerdau et al. 1995). Minor  changes in  

growth and  defence  caused  by P  or  NPK  fertilization  or by  
other  stress  treatments  can easily  be  hidden  within  natural  
variation, especially  if  these  changes occur outside  the  ac  
tive  growing season. Since  here  sampling was  done only  

once,  the  lack of  reference  samples at  the beginning of the  

experiment is  a weakness  and  should  be  taken into  ac  
count  when  results are  interpreted. The  shift  from  stilbene  

glycosides  to aglycones in  the  lesion  (Fig.  2)  indicates, 
however, the  dynamics  involved  in the  wound  reaction.  

Here, NPK fertilization  increased  the total amount of 

terpenes  but  decreased  the  total  concentration  of stilbene  

aglycones  near the inoculation  site. The N-fertilizer  in  

our  NPK  regime was  moderate  (144 kg  ha-1 year 1 ),  since  
the  goal was  to  imitate  actual  fertilization  in  practical  for  

estry  and  not  to  create  artificial  responses  with  overdoses.  
These  results agree with  a those  of Muzika  et  al. (1989) 
and  Lerdau  et al. (1995). who  found that  treatment with  a 

high level  of  N  often  produced less  terpenes,  whereas  an 
intermediate  level  of N  apparently  had  little  influence  on 

terpene production. Most  likely,  our NPK fertilization  
was  too  modest to  cause proper  responses  in  allocation  of 

secondary  metabolites.  It might be  that  NPK fertilization  
has  a more balanced  effect on secondary  metabolite  pro  
duction  than  pure  N  fertilization  does.  In  boreal  conifer  

ous forests, N is commonly a  growth-limiting factor, 
whereas  P  seldom  reduces  growth; when  it does, this  typ  

ically  occurs  on  peat  lands.  Thus  it  is not  surprising  that  P  
fertilization  had  no significant effect on secondary  metab  
olite  concentrations  in  this study or in  the meta-analysis  
(Koricheva et  al.  1998). This  may  also  be  the  reason  why 
we  found  a significant  decrease  in  total  terpenes  only  in  
the  induced  response  of  N-fertilized  trees.  

In  summary, N  fertilization  resulted  in  lower  concen  
trations  of  total  terpenes and  stilbene  aglycones,  but  P  fer  
tilization  led  to  only  a minor decrease  in  the concentration  
of total terpenes. The  CNB  hypothesis  predicts  changes in  
these  groups  of secondary metabolites  in  response  to  the  
above-mentioned  nutrient  changes.  On  the  other  hand, the  
concentrations  of stilbene  glycosides  did  not  correspond 
to  the  predictions of  the CNB  hypothesis;  their  role  as in  
duced  defensive  compounds may  be  less  important. How  

ever,  the  effect of fertilization  was  seen only at  the  point 
where  the  induced  wound  response  was  the  most  exten  
sive, near the inoculation  site. Results  indicate that  further 

studies  of plant-herbivore interactions  are needed, in  par  
ticular,  studies  using a  model  in  which  allocation  varies in 

response  to  phenological and  herbivory demands.  
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Abstract  The aim of this study was to determine  

whether  fertilization  and the consequent increase  in  

growth reduce  the  allocation  of soluble  carbohydrates in  

response  to an induced  wound.  Norway spruce trees fer  
tilized  with  N,  P or NPK  were artificially  infected  with  

Ceratocystis polonica, a blue-stain  fungus associated 
with  the  spruce  bark  beetle  Ips typographus.  N  and  NPK  
fertilization  treatments  increased  radial  growth of the 

stem and  the  vigour indices.  The concentration  of  total  
soluble  carbohydrates in the  outer  border of the  lesion 

was  significantly  decreased  in  P-fertilized trees  com  

pared to corresponding unfertilized trees.  However,  
changes in the soluble  carbohydrate concentration  
caused  by  fungal inoculation  were more pronounced 
than  changes caused  by  fertilization.  The  main  soluble  

carbohydrate was  sucrose,  and  after  fungal inoculation  
its  concentration  decreased  considerably near  the  site  of 
inoculation.  Thus,  near  the  site  of  fungal  inoculation  the 
concentration  of  total  soluble  carbohydrates  also  de  
creased  significantly  compared to corresponding values  
in  unwounded  phloem. Despite  the  fact  that  in  all  fertil  
ized  trees  the  radial  growth of  the  stem  increased,  the  on  

ly  indication  that  enhanced  growth might reduce  the  lev  
el  of  resistance  was  the  modest  positive  correlation  be  

tween lesion  length and radial  growth of the  stem. 
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Introduction 

Bark  beetle-fungus  attack causes accumulation  of sec  

ondary metabolites  in  the  phloem tissues  of conifers.  In  

response  to attack, the  parenchyma  cells  in  the  phloem 

produce large quantities of C-based  secondary com  

pounds (CBSCs)  that, compared to  primary  metabolites, 
are energetically costly  to synthesize  (Lorio 1986; 
Gershenzon  1994 a,  1994b). The attack leads  to a de  

crease  in  the  amount of  soluble  carbohydrates in  the  in  
ner  bark  and  sapwood (Shrimpton 1973; Wright  et  al. 
1979; Christiansen  and  Ericsson 1986; Cook  and  Hain 

1987). Furthermore, primary  fungal invaders  of the 

phloem utilize  sugars  as nutrients.  Growth  of the fungus 
is  first  delayed  by  the  removal  of essential  nutrients, like  

glucose  and  fructose, and  later  by  secondary metabolites, 
which  reduce  the  availability  of  water  and  oxygen in the 
lesion  (Wong and  Berry  man 1977; Raffa and Berry  man 
1982). Finally,  traumatic  formation  of resin  ducts and  
wound  periderm seal  the  lesion  (Reid et al. 1967; 
Franceschi  et  al.  2000;  Nagy et  al.  2000). 

Carbohydrates are especially  important because  they  
are direct  products  of photosynthesis  and  are therefore  
the  primary  energy-storage compounds and the  basic  or  

ganic substances from which most  other  organic  com  

pounds  found  in  plants are synthesized (Kozlowski  
and  Pallardy  1997).  The  ability  of trees  to  withstand  at  
tack by bark beetles  and their  associated  fungi is  

thought to  be  linked  to  the  amount of carbohydrates that  
can be utilized  for  defence  reactions.  Thus, the  ability of 
a tree  to  resist  attacks by  bark beetles  is  directly related  

to its physiological  status and  vigour (Mulock and  
Christiansen  1986; Christiansen  et al. 1987; Paine  et al.  

1997).  Therefore,  any  environmental  factor  that  restricts  
the  size  of the  canopy  or its  photosynthetic  efficiency  
can weaken  the  resistance  of the  tree.  Production  of  car  

bohydrates in  plant  tissues, if  this  exceeds  the  amount 

required for growth, favours  the  synthesis  of C-based  

secondary metabolites, e.g. phenolics and terpenes 

(Bryant et al. 1983; Herms and Mattson 1992). The  
quantitative ability of a  tree  to  respond  to  infection  in  
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creases until  the  tree  reaches  maturity,  and  then  declines  
with  age  (Raffa and  Berryman 1982).  In  plants,  in  gen  

eral,  the  biosynthesis  of  terpenoids  proceeds via  two  in  

dependent pathways:  first, sesquiterpenes, triterpenes 
and  sterols are  biosynthesized  via  the  cytosolic,  classic  
acetate/mevalonate  pathway or  via  the  alternative,  non  
mevalonate  I  -deoxy-D-xylulose-5-phosphate pathway 
for the  biosynthesis  of plastidic  terpenoids, such  as 
mono- and diterpenes (Lichtenthaler 1999). Both  path  

ways  form  the  active  C 5
-unit  isopentenyl diphosphate as 

the precursor  from  which  all  other terpenoids are 
formed via  head-to-tail  addition  (Lichtenthaler 1999). 

Phenolics  are derived  from  carbohydrates via  the  shiki  
mate pathway through which  about  one fifth  of all  the  C  
fixed  by  plants  flows  (Matsuki 1996). According to  the  
C/nutrient  balance  (CNB)  hypothesis, fertilization  with  
a growth-limiting nutrient  or  release  of some other  nu  
trient  will  stimulate  growth more  strongly than  photo  

synthesis  (Chapin 1980), so that concentrations  of car  

bohydrates and C-based  secondary metabolites  decline  
(Bryant et al. 1983; Herms  and  Mattson 1992). 

The  main  aim  of the present study  was  to  investigate 
interactions  between  soluble  carbohydrates, defence  
mechanisms  and  radial  growth of the  stem of Norway 

spruce.  The  specific objectives were: 

1. To examine the effect of artificial  inoculation  with  

the  blue-stain  fungus Ceratocystis  polonica Siem.  
Moreau, transmitted  by  the  spruce  bark  beetle, Ips  

typographus L., on the composition of  soluble  carbo  

hydrates  in  the phloem. 
2. To determine  whether  fertilization  affects the relative  

amounts  of  soluble  carbohydrates. 
3.  To examine the  interactions  between  soluble  carbohy  

drates, terpenes, stilbenes,  radial  growth of the  stem 
in Norway  spruce and  the  length of lesions  caused  by  
C.  polonica. 

A  companion paper  (Viiri et  al.  2001) indicated  that  after 
fungal inoculation  in  Norway spruce the  total  amount of 

terpenes increased  and  the  total  concentrations  of  stil  
bene  glycoside decreased.  On  the  other hand,  N  fertiliza  
tion  decreased  the  concentrations  of both  total  terpenes 
and  total  stilbene  aglycones  (Viiri et  al.  2001). 

Material and methods 

Experimental area and fungal  inoculations of  trees 

The study  area was located in a mature natural stand  of  Norway 
spruce  [Picea  abies (L.)  Karst.] in Karttavuori,  Vesijako. southern 
Finland (see  Viiri et al. 2001 for  details).  At the end of  the experi  
ment. the experimental trees averaged 34±0.5 cm in diameter at 
breast  height and 28±0.2 m in total  height. Four  plots of 0.5 ha 
were marked,  and fertilization treatments [N (173 kg  ha

-1 year 1;  
NH

4
-N 13.5%: NO

r
N 13.5%: Ca 3%: Mg 1%:  S 3%: B 0.02%),  

P (41  kg  ha-1 yean 1:  total P 9%: P water  soluble 8%: Ca 20%: 
S 11%)  and NPK (800 kg  ha-1  year 1 : NH

4
-N 11%: NO

r
N 7%; to  

tal P  5%:  P  water  soluble 3.6%: K 10%: Ca 3%:  Mg 0.5%;  S 3%; 
B 0.02%;  Se 0.001%)]  were  spread by  hand on 4 May 1993. The 
control treatment was a non-fertilized plot. Due to limited space, 
we  used a single plot for  each  fertilization treatment and  one con  

trol  plot.  Thus,  our experimental design was pseudoreplicated 
(Hurlbert  1984); this is  taken into account  in  the interpretation of 
results,  where  fertilization treatments are compared with the con  
trol,  not with  each  other.  From  each plot,  30 trees that were free  of 
visible wounds,  a total  of 120 trees, were selected. Two trees that 

were infected with root-rot and two attacked by I.  typographus 
were omitted from the analysis.  

In June 1994  a culture of blue-stain fungus. C. polonica, on 
malt  extract agar  in Petri  dishes was inoculated into ten trees per  
fertilization treatment. The fungus was inoculated into the phloem 
with  a cork  borer  (diameter  5 mm),  and the bark  plug was re  
inserted  into the hole  according to the method originally described 

by Wright (1933).  Each  tree received  four inoculations, one at 
each of  the cardinal points of the compass,  1.3 m above ground 
level. For  mechanical wounding, ten  trees  per  fertilization treat  
ment  were injured with a cork-borer  in the same way as for  inocu  
lation,  but without the fungus and malt  agar. In  the middle of 
August,  after a 2-month incubation period, phloem samples were 
taken and the  vertical length  of  each  lesion was measured. Around 
each site of  fungal inoculation, four  phloem samples were taken 
with the cork-borer  (diameter  15 mm) to the level of the cambium: 

two  from the distal ends of  the visible reaction lesion (henceforth  

called "far" samples) and two  immediately above and  below the 
site of inoculation (henceforth  called "near"  samples). Two sam  

ples  were  taken  from around the site  of  mechanical wounding, one 
above the wounding site and the other  below the wounding site. In 

cases where there was visible  lesion formation around the me  

chanical wounding (necrotic area more  than 3 mm  at  the upper 
and lower  side  of the inoculation site, «=11), these necrotic tissues  

were included as part  of  the samples. Two  samples  of phloem per 
tree  from intact trees  were used  as unwounded controls. Phloem 

samples of  intact  trees were taken  at the same  height and  location 
as in mechanically wounded and fungus-inoculated trees. All sam  
ples  were immediately placed on dry ice  and stored at -20°  C until 
analysed.  

Tree characteristics  

At the end of  the growing season, on 5 October 1994,  the experi  
mental  trees were felled and their main characteristics  were  mea  

sured: age, height,  diameter at breast height, crown length,  bark  
and phloem thicknesses  (Table 1). Stem discs  were cut from each 
tree  at a height of 6.1 m for assessment of radial growth of  the 
stem during the last  5 years  (1990-1994) and  determination of  the 
tree-vigour index (Waring et al. 1980; Munster-Swendsen  1987). 
The cross-sectional area of the sapwood is  rather  constant from 
breast  height to the base  of the  live  crown. The vigour indices  
were calculated as the ratio of  the cross-sectional  area of the annu  

al ring  and the basal  area of the sapwood. Diameters were mea  
sured twice in opposite  directions, and all other  measurements of 
thickness (annual  rings,  bark,  phloem and sapwood) were means 
of  four  measurements made at four  positions along  the radii 90°  
apart. In some  cases  the  heartwood-sapwood border  was  impossi  
ble to distinguish precisely  due to the changing direction of  the  
tracheids at the base  of the branch  whorls  or  similarity in  the natu  
ral colours of the  sap  and heartwood. In these cases (n= 3o), the  
thickness of the sapwood was estimated from the regression model  
v= 13.111+0.655 x (r2=0.183, /;=9O) based on the  actual diameter 

(x) and sapwood (y)  measurements in the same experiment.  

Analysis  of chemical elements 

When trees were felled  at the end of  the  experiment, needle sam  
ples for analyses of chemical elements  were taken  from the mid 
crown on the southern side of the trees. From all experimental 
trees, the needles of  the current year  class, 1994. and the previous 
year  class,  1993. were sampled separately. After all sampled nee  
dles had been dried for 24 h  at 60° C and ground, the total concen  
trations of C and N were determined with a CHN elemental ana  

lyser  (CHN-1000:  Leco).  The concentrations of  other elements 
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Table  1 Characteristics  

(mean±SD)  of the experimental 
trees  at the end of  the experi  
ment 

*P<O.O5. ***P<o.ool in rela  

tion to the corresponding unfer  
tilized control 

were determined by  using an inductively coupled plasma atomic 
emission spectrometer  (ARL-3580)  after  dry ashing and  extraction  
with HCI  from separate  needle samples. 

Extraction  and analysis of soluble carbohydrates  

Soluble carbohydrates were extracted  according to the method of 
Mason and Slover  (1971).  The phloem samples  were ground  in  liq  
uid N. and 100 mg of ground phloem powder was  then extracted 
with 2 ml of  80% v/v  EtOH.  The ethanol contained 1.000  ppm  phe  
nyl-|3-D-glucoside (Sigma)  as internal standard (Marcy and Carroll 
1982). The extraction  liquid was placed in an  ultrasonic bath  for  
45 min,  after which it was left overnight  to stabilize. The extract 
was shaken on an orbital shaker  and then centrifuged for 20 min at 
4.332 g;  500  \i\ of supernatant  was evaporated to complete dryness 
under a flow of N. After all solvent had evaporated, the  samples 
were silylated for 2 h at room temperature  with 400 pi trim  

ethylsilyl-imidazole (TMSI) reagent  prepared from 100 ml dry py  
ridine and 21 ml TMSI (Fluka)  and preserved in complete dryness 
over silica gel. The silylated samples were shaken on an  orbital 
shaker  and preserved at -20° C until analysed.  The external carbo  

hydrate standard was prepared by dissolving each carbohydrate 
separately [5O  mg fructose.  100 mg glucose. 50 mg sorbitol. 50 mg 

myo-inositol and 50 mg sucrose (Merck)]  in 25 ml of  80% EtOH.  
TMSI derivatives of  soluble carbohydrates were analysed  with  

a Hewlett-Packard  5890 gas  chromatograph with  a HP-5  (Hewlett-  
Packard)  capillary column (25 mxo.2 mmxo.3 pm)  equipped with  
a mass spectrometry  (Hewlett-Packard  5988  A)  system.  The initial 
temperature was 110°  C. increasing at a rate of 10° C min-1 to a fi  
nal temperature of 300°  C. Split injection  was  used,  and the injec  
tion temperature  was 260°  C. The split flow was 20 ml min-1 and 
the carrier  gas was helium. Soluble carbohydrates were quantified 
and identified by  comparing retention times and mass spectra  to  
those of the carbohydrate  standards. The results  are expressed  as  

microgram of  soluble carbohydrates per  milligram of  fresh  phloem 
tissue. Detailed methods and results for  stilbene and terpene  anal  

ysis are presented  in  a previous paper  (Viiri  et ai. 2001).  

Statistical analysis  

Univariate ANOVA was  used to examine  overall differences be  

tween inoculation methods.  The means of chemical compounds 
calculated from opposite sides of the inoculation  site were used in 
the analysis. For mechanically wounded trees  and unwounded 
controls, the means of two sampling sites  were used. Homogeneity 
of the  variances was tested with Levene's test (Snedecor  and 

Cochran  1980). The Dunnett test  (Myers and Well 1995) was used 
to examine differences  between  fertilized plots and  the unfertilized 
control and differences within inoculation treatments. If the as  

sumption of homogeneity was  not fulfilled (Jeffers 1960). non  
parametric Dunnett C-tests  were  used.  The values presented in the 
tables and figures are untransformed means, and if not  mentioned 
otherwise, the level of significance is  5%. Tree-wise means  of 
variables were calculated for correlation analysis.  Concentrations 
of  each individual soluble carbohydrate  showed a significant posi-  

Fig.  1 Radial growth of the stem (mean±SD)  of experimental 
trees before (1990-1992)  and after (1993. 1994) fertilization, 

grouped according to fertilization treatments. The asterisk  indi  
cates  a significant difference  from the  unfertilized control trees  at 
the  5%  level. Within a  treatment. bars  with different letters  differ 

significantly  from each other at  the 5% level, n  in fertilization 
treatments: N =29, P=30. NPK=29, Control=28 

tive  correlation with total  soluble carbohydrate concentration  at 
both  sampling points  in  fungus-inoculated trees (data not shown).  
The trend was the same in mechanically wounded and unwounded 
treatments. Therefore,  to  simplify the presentation of correlation 
analyses,  the total soluble carbohydrate concentrations were used.  

Spearman's  rho  was  used as the correlation coefficient for  examin  
ing relationships between total soluble  carbohydrates, total terp  
enes. total stilbene glycosides, total stilbene aglycones. lesion 

length and radial growth of the stem  in experimental trees. 

Results 

Radial  growth and  vigour of  trees  

After the  experiment, tree  characteristics such  as age,  

height and  diameter  at  breast height  did  not  differ  signifi  

cantly  between  fertilized  and  unfertilized  trees.  In trees  
fertilized  with  NPK  the  crown ratio  was  significantly  low  

er  and  the  sapwood thickness  significantly  greater than  in  
unfertilized  trees  (Table 1). All  trees,  including unfertil  
ized  controls, had  greater radial  growth of the  stem in  
1994  than  they had  before fertilization  (Fig.  1). Before  fer  
tilization, there  were no significant differences  in  the  radi  
al  growth of the  stem. Due  to fertilization, the  radial  

growth of the  stem in  the  experimental trees  increased  in 
the year  when  fertilizers  were applied and  even more dur-  

Fertilization treatments 

N P  NPK Control 

Height (m)  27.8±2.4  29.2±1.9 28.3±2.3 28.0±2.6 

DBH  (cm)  33.6+4.7  33.7±4.1 35.0±6.3 32.3±4.5 

Live crown ratio (%) 41.6±9.8 44.6±8.8 31.0+9.4***  43.1+8.1 

Age (years)  80±5 83±6  81±6 79±8 

Bark  thickness  (mm) 2.60±0.6  2.67±0.5 2.24±0.7 2.39±0.7 

Phloem thickness  (mm) 0.35+0.07 0.34±0.06 0.33±0.06 0.32±0.07  

Sapwood  thickness  (cm)  3.12±0.72 3.23±0.63  3.60±0.61* 3.08±0.59 

n 29 30 29 28 
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Fig.  2 Vigour indices  (mean±SD) of experimental  trees before 
(1990-1992) and after (1993, 1994) fertilization, grouped accord  

ing to fertilization treatments. The asterisk  indicates  a significant 
difference from the  unfertilized control trees at the 5% level. 

Within a treatment, bars with different letters  differ significantly  
from each other  at the 5% level 

Fig. 3 Carbohydrate concen  
trations  (pg  mg

-1  fresh  phloem,  
mean±SD) in Norway  spruce  

phloem inoculated with Cer  

atocystis  polonica near the in  
oculation site (near.  e.g. middle 
part  of the lesion), at the outer 

border  of  the lesion (far), me  
chanically wounded (wounded)  
and unwounded samples (un  
wounded)  grouped  according  to 
fertilization. The  asterisk indi  

cates a significant difference 
from the unfertilized control 

trees at the 5% level. Within a 

treatment, bars  with  different 
letters  differ significantly from 
each other at the 5% level 

ing the following year.  In  the 2 years  after  fertilization, the  

growth of the  annual  ring in  N-  and  NPK-fertilized  trees  
was  significantly  greater  than  in  unfertilized  trees.  

Vigour indices  in all  trees  were higher in  1994 than  in  

1993 (Fig. 2). In  both  years,  the  vigour indices  were sig  

nificantly higher in  N-fertilized  trees  than  in the  unfertil  
ized controls.  In 1993, the  vigour index  was  significantly  

higher in  NPK-fertilized  trees than  in  the control, but  in  
1994  the  difference  was  not  significant.  When  all  fertiliza  
tion  treatments were pooled, vigour indices correlated  

positively  with  total  concentration  of  soluble  carbohydrate 

only  in  the  mechanically  wounded  trees  (data not  shown). 

Nutrients and  soluble  carbohydrates 

N and NPK fertilizers  increased  the concentration  of fo  

liar  N  up  to the level  recommended  for  spruce  on this  
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Fig. 4 Carbohydrate concentrations  (µg mg-1 fresh phloem, 
mean±SD)  in Norway spruce  phloem  inoculated with C. polonica 

grouped according to sampling site: near  (n=3B); far (n=39);  
wounded (n=38);  and unwounded  samples (n=39). Each  fertiliza  
tion treatment and the control were combined. Values indicated 

with an asterisk  at the end of  a bar  differ significantly from un  
wounded phloem at the 5% level.  For the same  compound, bars  la  
belled with a different letter  differ significantly  from each  other at 
the 5% level. For  sampling  site, see  Fig.  3 

Table 3 Lesion  lengths  caused 

by  Ceratocystis  polonica 
(mean±SD)  and Spearman's 
rho  non-parametric correlations 
of  lesion length with  radial 

growth of  the stem and the 
vigour  index.  Tree-wise means  
of  four  inoculations per  tree  

*/><0.05, **/><o.ol 

type of  site  (Jukka 1988) (Table 2). In 1994  the  Ca  
and  Mg concentrations  of the  needles  were significant  

ly  lower  in  N-  and NPK-fertilized  trees,  despite the  
fact that  both N  fertilization  treatments contained  Ca 

and  Mg. In  1994  the Mn  concentrations  of the  needles  
were also  significantly  lower  in  N-  and  NPK-fertilized  
trees. 

The main  soluble  carbohydrate was sucrose, which  
alone  made  up  most  of  the  total  amount of soluble  carbo  

hydrates (Fig.  3).  Pinitol, fructose,  a-glucose,  (3-glucose 
and small amounts of sorbitol  and inositol were also 

identified.  The phloem near the  inoculation  site  con  
tained  smaller  amounts of total  soluble  carbohydrates, 

pinitol,  fructose,  glucose and  sucrose,  than  the  unwound  
ed  phloem  did  (Fig. 3).  On  the  other  hand,  the  concentra  
tions  of pinitol,  fructose, a-glucose, (3-glucose,  sorbitol  
and inositol  in  the  outer  border  of  the  lesion  were higher 
than  in  the  unwounded  phloem. 

In the  fertilization  treatments, the  concentration  of to  

tal soluble  carbohydrates was significantly lower  in the 

Table 2 Concentrations of  chemical elements  (%  of dry  weight) 
and C/N ratios  of the 1993 and 1994 needle classes at the end  of 

the experiment on 5 October  1994. Fertilization  treatments were 
applied on 4 May 1993 

*P<O.O5, ***P<o.ool in relation to the corresponding unfertilized 
control  

outer border  of  the  lesion only in  P-fertilized  trees  

(Fig.  3). Near  the inoculation  site,  the  concentrations  of 

pinitol,  fructose,  a-glucose  and  (3-glucose  increased  after 
N  fertilization, but  these  differences  were  not  significant. 
When  all fertilization  treatments were pooled, the  total  
concentrations  of soluble  carbohydrates and  sucrose  near  
the inoculation  site and in  the outer border  of the lesion  

were significantly  lower  than  the  corresponding values  
in  the  unwounded  control (Fig.  4). In the  outer border  
of the lesion the  concentrations  of fructose, a-glucose,  

(3-glucose,  sorbitol  and  inositol  increased.  

Lesion  length and  interrelationships 
with  other factors studied  

For  this  section,  see also  Viiri  et ai. (2001). 

In  some years,  there  was  a  modest  positive  correlation  
between  lesion length  and radial  growth of stem or  
vigour in  P- and  NPK-fertilized  trees (Table 3). 

Needle 

class 

Fertilization treatments 

N P NPK  Control 

N (mg g-') 1993 16.59*** 10.82 14.99*** 10.76 

1994 16.97*** 13.17 17.21*** 13.01 

P (mg  g~')  1993 1.05  2.02"* 1.28"* 1.03 

1994 1.67  2 43*** 2.09*** 1.58 

K (mg  g* 1 ) 1993 4.48 4.84 4.60 4.55  

1994 8.04* 7.22 7.92* 7.01 

Mg (mg  g- 1 ) 1993 0.92*** 1.12 0.93*** 1.21 

1994 Q 1.28 0 92*** 1.27 

Mn (mg  g-
1 ) 1993 L02  1.26 0.94*  1.14  

1994 0.58*** 0.89* 0.52*** 0.75  

Ca  (mg  g-
1 )  1993 5.30 5.41 5.67  5.74  

1994 2.63*** 3.65 2  59*** 3.56 

B (Hgg-
1 ) 1993 11.35* 12.33 14.61 14.30 

1994 11.34  12.07 12.59 12.33  

C/N ratio 1993 5*** 51.6  37.6*** 51.6 

1994 33^4*** 42.5  32 4*** 42.9 

n 29 30 28' 29 

N P NPK Control  All trees 

Lesion length (cm)  5.4±4.0 9.0±8.5 6.5 ±3.8 7.5±3.0 7.1±5.3 

Radial growth 1990 0.32  0.80** 0.61 0.48  0.53" 

Radial growth 1991 0.56  0.45 0.57  0.15  0.38* 

Radial growth 1992 0.54  0.74* 0.56  0.26  0.46** 

Radial growth 1993 0.61 0.77** 0.65*  0.32  0.42** 

Radial growth 1994 0.51 0.51 0.58  0.38  0.30 

Vigour index  1990 0.39 0.52 0.48  0.46  0.18 

Vigour index  1991  0.21 0.16 0.49  0.04  0.30 

Vigour index  1992 0.33  0.59 0.63  0.25  0.34* 

Vigour index  1993 0.27  0.58 0.67* 0.29 0.19 

Vigour index  1994 0.20 0.38 0.60 0.40 0.40* 

n 10 10 10 9  39 
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Table 4 Effect  of  fungal inoculation with C.  polonica  on intercor  
relations among the chemical characteristics  (fig  mg

-1 fresh  phlo  
em) of  Norway spruce phloem and on correlation of the com  
pounds with lesion length (mm).  Spearman's rho  non-parametric 
correlation was  used. Different fertilization treatments and unfer  

tilized control  were pooled. Terpene concentrations are presented 
in Table 1 and stilbene concentrations in Fig. 2 in Viiri et ai. 
(2001).  LESION lesion length; TERPE total mono- and sesquiter  
penes;  AGLY  total stilbene aglycones,  e.g. isorhapontigenin.  as  

tringenin, resveratrol;  GLYCO total  stilbene glycosides, e.g. iso  
rhapontin. astringin, piceid; SUGAR total soluble carbohydrates as 
in Fig. 3 

*P<O.O5, **P<o.ol 

a  Except for GLYCO (/i=33)  
b  Except  for  AGLY  («=35)  
c  Except  for  AGLY («=34)  

Near  the inoculation  site,  the total  concentration  of 

soluble  carbohydrates and  the  length of the  lesion  were 

negatively correlated, whereas  total  terpene concentra  
tion  correlated  positively  with  lesion  length (Table 4).  In  
the  outer border of  the  lesion, lesion  length did  not  corre  
late  with  any chemical  characteristics  of the phloem.  
Near  the inoculation  site,  the  concentration  of  total  stil  

bene  glycosides  correlated  positively  with  total  carbohy  
drate concentration.  In the outer border  of the lesion, 

there  was no corresponding  significant  correlation.  On  
the  contrary, at both  isolation  sites,  the  total  concentra  
tion  of terpenes showed  a clear  negative  correlation  with  
total  concentration  of soluble carbohydrates (Table 4). 

Discussion  

After fungal  inoculation, the concentration  of the  major 
soluble  carbohydrate, sucrose,  decreased  dramatically in  
the  immediate  vicinity  of the  inoculation  site.  The  further  
lesion  formation  had progressed (wounding, fungus inoc  
ulated),  the larger  was  the  amount of total  soluble  carbo  
hydrates utilized  to  prevent  fungal invasion, which  agrees  
with  the  results  of Cook  and Hain  (1987) and  Warren et 

al.  (1999). Overall,  the  results  clearly  indicate  that  an ac  
tive  metabolizing process  occurred  inside  the lesion.  
However, it  is  difficult  to determine  to  what  extent solu  

ble  carbohydrates were translocated to the  phloem from 

other  tissues  or whether  they were produced or stored  at  
the site.  In many  trees, sucrose  is  the  main  translocated  
material  in  the  sieve  tubes  of phloem. Near  the inocula  
tion sites  most  of  the sucrose  was  probably  processed  into  

secondary metabolites  or  utilized  directly  by  the  fungus 
as a nutrient.  When  hydrolysed, sucrose  yields glucose 
and fructose, and  this  reaction  is not reversible.  Further  

more,  there  are no storage  reserves  of fructose,  glucose, 
sorbitol  and inositol  in  plant  tissues.  Pinitol, fructose, glu  
cose and  to some extent also  sorbitol  and  inositol  might 

play  an active  role  in  lesion  formation,  because  they ac  
cumulated  in the outer border  of the lesion. However, 

some carbohydrates, such as  inositol  and sorbitol,  are  
used  in the  biosynthetic processes  and  cannot be  direct  

precursors  of  secondary  compounds in plant  cells.  

Together with  sucrose, starch is a  major reserve 

carbohydrate (Kozlowski and Pallardy 1997).  Although 
the  starch  content of  the phloem was  not  analysed  here, 
it  was  expected to  be  low  in  the  middle  of August, vary  

ing in  Norway spruce  phloem from  4.7% (Baier 1996  a)  
to 12.9% of  dry weight in  August (Horntvedt 1988). 

According to Horntvedt  et  al. (1988), the starch  concen  
tration  of  the  phloem decreases  through August  to  a min  
imum 6%  of dry weight in  September. According to 

Krekling  et  al.  (2000), the contents  of  the starch  granules 

disappear completely from  August to November.  In  addi  
tion  to seasonal  variation, the  amount of starch in  a tree 

varies  according  to  age  and  the location  of  the  tissues.  

Ceratocystis  fungi  are able  to utilize  many  different  
C-based  compounds as sources  of  nutrients.  Ceratocystis  

fungi grew  well  on glucose and  fructose,  whereas  the re  
sults for sucrose,  sorbitol  and inositol  were more vari  

able  (Mathiesen-Käärik 1960). The primary fungi  are 
able  to  utilize  more compounds, often  even di-  and poly  
saccharides, while  the  secondary fungi have difficulties  

utilising  the  latter.  Nevertheless,  the  scope  of this  study  
was  not to determine  whether  soluble  carbohydrates 

were utilized  directly by  the  fungus  or whether  they were 

first  converted  to  other  soluble  carbohydrates.  Fungal in  
oculation  experiments have  shown  that  the  rate  of accu  
mulation  and  the  concentration  of secondary  metabolites 
in  the  lesion  are crucial  for  successful  protection. Most  
soluble  sugars  are withdrawn  from  or utilized  around  the  
attack-invasion site within  48 h  (Cook  and  Hain  1987). 

Thus, the fungus is  first  confined  by  the  consumption 
of essential  nutrients  from the  entry site  (Wong and  

Berryman 1977; Nsolomo  and  Woodward 1997) and  on  

ly  secondarily by resinosis  (Raffa  and  Berryman 1982; 
Christiansen  and  Ericsson 1986). 

In this experiment, in all  fertilized  trees, the radial  

growth of the  stem responded positively  to fertilization.  

Significant  changes in  the  C/N  ratio  of needles  after N  
and NPK  fertilization  were caused  by  an increase  in  N,  

probably not  by  lower  availability  of  C.  Here  in  the  low  

density inoculation  experiment,  the  soluble  carbohydrate 
for  defence  responses  was  not  allocated  at the  expense  of 
the  growth of the  whole  stem; the  responses  were merely  
local  ones. With low-density  inoculation, the  defence  

capacity  of the  tree  is  mobilized  effectively  and  the  tree  

LESION TERPE AGLY GLYCO 

Near  (n=38)a TERPE 0.68** 

AGLY 0.04 0.24  

GLYCO -0.38* -0.49** -0.16 

SUGAR -0.78** -0.75** -0.28 0.69** 

Far  (n=39)  TERPE 0.26 

AGLY 0.05 0.32*  

GLYCO 0.07 -0.43** 0.13  

SUGAR -0.17 -0.46** -0.27 -0.03 

Wounded  TERPE 

(n=38) b AGLY 0.18  

GLYCO -0.13 0.31  

SUGAR 0.01 0.33  -0.03 

Unwounded TERPE  

(n=39) c AGLY -0.06 

GLYCO 0.18  -0.06 

SUGAR 0.02 0.01 -0.21 
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responds to  fungal challenge with  a  discrete  lesion.  After 
mass  inoculation, the  resistant  trees  are expected to  pro  
duce  relatively  short lesions, while  susceptible trees that  
are overwhelmed  by  the  fungus will  produce very  long  
necrotic  lesions  (Krokene and  Solheim  1999). 

The correlations  between  lesion  length and  the radial  

growth of  the  stem or the  vigour index  of N-fertilized  or  
unfertilized  trees  were  not significant  either  before  or  af  
ter fertilization.  With  other  fertilization  treatments, rela  

tionships  were not as consistent.  

The  response  of  the  radial  growth of the  stem to  fertili  
zation  is based  only  on the  most  recent  year  or two.  The  

vigour index, which  reflects  the  history  of  tree  growth  dur  

ing the  past  several  years,  is  based  on the amount of  active  

sapwood  that  integrates  the growth of the  tree  over at  least  
the  last  10 years.  According to Waring et al.  (1992), the  

growth  efficiency  of  a tree  requires about  2 years  after 
treatment  to  respond to  it.  In  the  study  of  Kytö  et  al.  (1996) 
when  the  resin  ducts  were  counted  between  the  wounding 
sites,  the  frequency of resin  ducts  was  not  affected by  ei  
ther  N  or P  fertilization.  In  Norway spruce,  however, trau  
matic  resin  ducts  are formed  in the  immediate  vicinity  of 
the  wounded  area  (Bannan 1936;  Nagy et  al.  2000). 

Here, in  to some extent nutrient-limiting conditions, 
no excess of  soluble  carbohydrates was  accumulating  for  
the  production of secondary metabolites.  The negative 
correlation  between  concentrations  of secondary com  

pounds and  plant growth or nutrient concentrations  in  
plant  tissues  have  been  considered  to  indicate  a trade-off  
between  growth and defence, as predicted  in  the  CNB  
and growth/differentiation balance  (GDB) hypotheses 

(Bryant et  al.  1983; Herms  and  Mattson  1992). The  fun  
damental  premise  of  the  GDB  hypothesis  is  the  existence  
of  a  physiological  trade-off  between  growth and  differen  
tiation  processes,  including secondary  metabolism  (Herms  
and  Mattson  1992). The  GDB hypothesis  subsumes  the  
CNB  hypothesis (see  Herms and  Mattson  1992). Further  

more, it must  also be  taken into  account  that resource  

based  models, such  as the CNB  and  GDB hypotheses, 
can only  make  valid  predictions concerning the  total  
amount of C available  for  the  production of secondary 
metabolites; they do not predict  qualitative effects 

(Koricheva et  al.  1998). These  hypotheses cannot be used  
to  predict  plant  responses  in  terms  of individual  carbohy  
drates, pooled  CBSCs  or classes  of  CBSCs, because  re  
source availability  does  not  directly affect the distribution 
of  C  at  different  hierarchical  levels  (see  Fig.  2, Koricheva  
et al.  1998). In a broad  meta-analysis of  147 studies, 
Koricheva  et al. (1998) detected  that,  in  terms of carbo  

hydrates and  CBSCs, plant responses  to N  fertilization, 

shading and  CO-,  enrichment  were consistent  with  predic  
tions  made  with  the  CNB and  GDB  hypotheses. Soluble  

sugars,  precursors  of CBSC  synthesis,  were less  respon  
sive;  their  concentrations  were only  significantly  affected 

by drought stress  (increase)  and  shading (decrease). Nor  
could  any  clear  relationship be  established  between  the  

intensity  of  the  defence  reaction  and  the concentration  of 
soluble  carbohydrates or starch  in  Scots pine phloem 

(Croise and  Lieutier 1993)  or the starch  concentration  in  

Norway  spruce  phloem (Christiansen and  Ericsson  1986; 
Baier  1996b). In  these  previous  studies, however, the  
concentration  of starch was not measured  in  the immedi  

ate vicinity of the  wounding site; sampling  points near 
the wounding site  varied  up  to 150  cm  above  the  upper  

margin of  the  inoculation  belt.  More  recently  it  has  been  
shown  that  to  detect  relative  changes in  secondary com  

pounds reliably,  sampling in  different  growth phases  and  
in  different  parts  of the  plant  are needed  (Gebauer  et  al.  
1998; Schafellner  et al. 1999). 

The  costs  of terpenoid accumulation  are high,  and  
this obviously has  negative impacts on plant fitness  

(Gershenzon 1994 a, 1994b). In general, terpenoids have  

higher raw  material, enzyme  and  storage  costs  than do  oth  
er  classes  of secondary  or primary  plant metabolites, e.g.  
soluble  carbohydrates (Gershenzon  1994 a).  Since terpeno  
ids  need  complex storage structures,  their  synthesis  may  
also  be  reduced  by storage capacity  rather  than  by  the  

availability of  C.  While  a high C/N  ratio  may  increase  the  

availability of  substrate for producing defence  compounds, 
it  may  not  necessarily  lower  the  other  costs  of  chemical  de  

fence, including those  of  biosynthetic  machinery,  storage,  

transport and  maintenance  (Gershenzon 1994 a,  1994b). In  
this  experiment, however, terpenes were consistently and  

negatively related  to  the  concentration  of  total  soluble  car  
bohydrates (this study and Viiri  et al.  2001). 

In  conclusion,  fertilization  did  not  cause  unambigu  
ous changes in  the  total  concentration  of soluble  carbo  

hydrates  in  Norway spruce  phloem. The  concentration  of 
total  soluble  carbohydrates was significantly  decreased  
only in  the  outer border  of the  lesion in  P-fertilized  trees. 

The  fertilization  regimes and  low  inoculum  density used  
in  this  study  did  not affect the  supply of carbohydrate 
substrate  for the production of defence  compounds.  
Nevertheless, at the end  of the  experiment, the  experi  
mental  trees  were not  suffering  from  a lack  of  any  micro  
or macro-nutrients, and after all fertilization  treatments, 

the  radial  growth of the  stem improved. The  lower  the  
amount of soluble  carbohydrates present near the  inocu  
lation  site  the  more  they  had  been  used to  produce terp  
enes  and  the  protective  reaction  lesion.  In addition, near  
the  inoculation  site  the  strong positive  correlation  be  
tween the  concentrations  of total  soluble  carbohydrates 
and  total stilbene  glycosides  indicates  that  a positive car  
bohydrate  status favoured  the synthesis  of stilbenes.  
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