
JLP

A Linear Programming Package

for Management Planning

Juha Lappi

Metsäntutkimuslaitoksen tiedonantoja 414
The Finnish Forest Research Institute. Research Papers 414

JLP: A LINEAR PROGRAMMING PACKAGE

FOR MANAGEMENT PLANNING

Juha Lappi

The Finnish Forest Research Institute

Department of Forest Resources

Suonenjoki Research Station

Metsäntutkimuslaitoksen tiedonantoja 414

The Finnish Forest Research Institute. Research Papers 414

Suonenjoki 1992

Lappi, J. 1992. JLP: A linear programming package for management planning.

Metsäntutkimuslaitoksen tiedonantoja 414. The Finnish Forest Research Institute.

Research Papers 414. 134 p. ISBN 951-40-1218-6, ISSN 0358-4283.

JLP is a linear programming software package designed for management planning

systems that generate several treatment schedules for management units and select

optimal schedule combinations with linear programming. Constraints can be

specified to domains, i.e., subsets of management units. The optimization

algorithm is based on the generalized upper bound technique. The optimization

algorithm can be accessed through a flexible command interface that includes data

transformations. The program is written in portable FORTRAN 77, and it is

currently running in Macintosh, VMS, UNIX, and OS/2 environments. User defined

data input, transformations, report writer and interface routines can be linked to

the program. The report includes i) a user's guide for the built-in interface, ii) a

guide for installing the program into user's system, and iii) description of the

mathematical basis of the optimization algorithm.

Keywords: linear programming, management planning

Author's address: Finnish Forest Research Institute, Suonenjoki Research Station,

SF-77600 Suonenjoki, Finland.

Publisher: The Finnish Forest Research Institute; Project 3002-5. Accepted for

publication by Prof. Erkki Tomppo in June 5, 1992.

Distributor: Suonenjoki Research Station, SF-77600 Suonenjoki, Finland.

ISBN 951-40-1218-6

ISSN 0358-4283

Suonenjoen kirjapaino Ky

Suonenjoki 1992

ILP

Contents

Preface 7

1. INTRODUCTION 8

1.1 General 8

1.2 Optimization Problem 9

1.3 Purpose of the Report 12

2. USERS GUIDE .13

2.1 Overview 13

2.2 Command Syntax 14

2.3 Examples 15
2.3.1 A problem with x-variables: nondecreasing incomes 15
2.3.2 A problem with x- and z-variables: goal programming 18
2.3.3 A problem with z-variables: an ordinary LP problem 20
2.3.4 A problem with several data files and domains 21

2.4 General Operating Commands 24
2.4.1 Batch mode 24

2.4.2 Include 24

2.4.3 List 25

2.4.4 Help 25

2.4.5 Output 26

Output file (outfile) 26

Level of output (printlevel, outlevel) 26

2.4.6 Time 27

2.4.7 Pause 27

2.5 Data Management 27
2.5.1 Summary of data manipulation 28

Initilization commands 28

Reading data 28
Modification commands 29

Transforming data 30
2.5.2 Data variables 30

Constants 32

D-variables 32

C-variables 33

X-variables 34

Selecting the type of a data variable 35

Contents

2.5.3 Transformations 35

Arithmetic operations 36

Supported FORTRAN intrinsic functions 37
Additional functions 37

Own functions 37

Logical operators 37
Constant n 37

If
...

 then structures 38

Loops 38
2.5.4 Saving data in JLP format 39

2.6 Problem Definition 41

2.6.1 Domains 41

2.6.2 Constraints 41

RHS Range 42
2.6.3 Objective 42
2.6.4 Using different domains on the same row 43

2.7 Solution 43

2.7.1 Selecting the problem to be solved 43
2.7.2 Printing options 44

Printing rows and x-variables 44

Reprinting the last solution with other options 45

Printing weights and shadow prices of schedules 45
2.7.3 Marginal analysis of the solution 47

Shadow price of a utility constraint 47
Shadow price of an x-variable 48
Cost of decrease or increase of an x-variable 50

Reduced cost of a nonbasic z-variable 51

Shadow price of a treatment unit 51
Shadow price of a treatment schedule 52

2.7.4 Input parameters of the optimization 52
invert 53

wmin 53

tole 53

2.7.5 Output parameters of the optimization 54

3. REFERENCE MANUAL (FILE jlp.hlp) 55

'batch *buff 'buflevel 'cdata 'cform 'command line 'constants

'ctran 'cvar 'dir 'do 'domain 'dtran 'duplicate 'end 'end do

(enddo) 'domain 'feasible 'files 'help 'helpfile 'include 'init

'integer approximation 'keepc 'keepx 'list 'make 'mela 'mrep

'outfile 'outlevel 'ownread 'ownl *own2 'parin 'parout 'path

'pause 'printlevel 'problem 'read 'recall 'reject 'report 'save

'saveform 'schedules 'show 'solve 'split 'system 'time 'title

'transformations 'unsave 'values 'variables 'write 'xdata 'xform

'xtran 'xvar

lIP

4. SETTING UP THE WORKING ENVIRONMENT 74

4.1 Building JLP 74
4.1.1 Compiling and linking JLP (file readme.jlp) 74
4.1.2 Parameter file jlp.par 76

4.1.3 Features of standard FORTRAN not used 81

4.2 Output Files in non-VMS Environment 81

4.3 Sending a Command to the System Level 81

4.4 Creating Own Timing Subroutine 82

4.5 Management of Programs with JMAKE Precompiler 82
4.5.1 Accessing JLP global parameters and variables 82
4.5.2 Using JMAKE to manage own data structures 83

4.5.3 Using JMAKE precompiler options 86
4.5.4 Using JMAKE in other programs 87

4.6 Using JLP Data Structures and Subroutines 87
4.6.1 Listing headers of subroutines with JLP 87
4.6.2 Changing JLP subroutines 88
4.6.3 JLP data variables 88

Variable lists 88

Special variables 89
4.6.4 Accessing stored c- and x-data 90
4.6.5 Text buffers 91

4.6.6 String manipulation 91
4.6.7 Printing subroutines 92
4.6.8 Transformation subroutines 92

4.7 Creating Own Transformation Subroutines 93

4.8 User Designs for RHS Generation 94

4.9 User Defined Data Input 94

4.10 Writing Own Report Writer 96
4.10.1 General part of the report writer 96
4.10.2 Report writer for schedule information 97

4.11 Creating Own Interface 98
4.11.1 Main program interface calling JLP 98
4.11.2 Interface in a subroutine called by JLP 99
4.11.3 Replacing terminal input and buffer output 100

4.12 Adding Own Commands to JLP 101

5. ERRORS AND TROUBLESHOOTING 102

5.1 Syntax Errors 102

5.2 Dimensions of Vectors 102

5.3 Problems in the Optimization 103
5.3.1 Degeneracy due to linear dependency 103
5.3.2 Degeneracy when lower bound = minimum 104

Contents

6. LINEAR PROGRAMMING ALGORITHM 106

6.1 Problem Formulation 106

6.2 Generalized Upper Bound Technique 108
6.2.1 Basic idea: key variables 108
6.2.2 Entering variable 11l

New schedule enters 11l

New z-variable enters 112

Slack or surplus variable enters 113
6.2.3 Leaving variable 114

The weight of a key schedule becomes zero 115
An explicit basic schedules leaves 116
A basic z-variable leaves 116

A nonbinding constraint becomes binding (a slack

or surplus variable leaves) 116

6.2.4 Updating step 117
The weight of a key schedule becomes zero 117

A column of the basis is changed 118

A row is added to the basis 118

A row is dropped from the basis 119

Two rows of the basis are changed 119

Computations after changing the basis 119

6.3 Optimization Algorithm 120
6.3.1 Minimization 120

6.3.2 Summary of the algorithm 120

Finding a feasible solution 120

Finding optimal solution 121
How JLP selects the entering variable 121

6.4 Dual Analysis 122
6.4.1 Primal problem 122
6.4.2 Dual problem 123

6.4.3 Relations between primal and dual problems 124
Shadow price of an x-variable 124
Shadow price of a unit 124
Reduced cost of a nonbasic schedule 125

Reduced cost for a nonbasic z-variable 125

Objective function of the dual 125

Computation of the shadow prices 126
6.4.4 Cost of changing values of x-variables 127

6.5 Domains 129

Concluding Remarks: Future Developments 130

References 131

List of Commands 132

Index 132

Preface

Ten years ago I applied linear programming for optimization problems where the

MELA simulator generated treatment schedules for a number of treatment units.

When doing some computing experiments with heuristic methods for solving

iteratively small problems, I worked out how the computations could be done

without heuristics so that the basis matrix is small and schedules are checked one

after another. I began to implement the ideas, but then other problems intervened.

In 1989, when Tuula Nuutinen needed a linear programming algorithm in her

short term planning system, I returned to these ideas and promised to make her a

nice little subroutine. It was soon found that I had reinvented the well known

'generalized upper bound technique'.

Initial goals for the software were very modest, but the project got out of the control

as I followed the possibilities appearing during development process, or tried to

meet the wishes of Tuula Nuutinen, or of Markku Siitonen who began to use the

program in his MELA system. The first phase was an optimization subroutine for

simple problems without interface properties. The second phase was to build an

interface including transformations and possibilities to state constraints for

domains. Third major phase was to include capabilities to handle general linear

programming problems.

Installing the software to the GAYA-LP system of Hans Fredrik Hoen helped to

make the code more portable.

Tuula Nuutinen and Markku Siitonen read this manuscript, corrected several

errors and suggested improvements.

Suonenjoki June 3, 1992

Juha Lappi

8 Part 1 Introduction

1. INTRODUCTION

1.1 General

JLP is a linear programming software package designed to solve efficiently (fast and

in a small computer memory) planning problems of the following type. The plan is

made simultaneously for a number of treatment units (e.g. forest stands). A

number of treatment schedules is derived for each treatment unit. Treatment units

can also be called calculation units to indicate that they may result from grouping

similar treatment units together. It is hereafter expressed that schedules are

simulated, but JLP does not care how the treatment alternatives are generated. Each

schedule is associated with a vector of input and output variables over time. For

simplicity these variables will be called output variables. The decision maker is

interested in the aggregated output variables, i.e., in the sums of variables over the

treatment schedules. Treatment schedules can also be aggregated within some

domains, i.e., in subsets of calculation units.

It is assumed that the goals of the decision maker can be described as a linear

programming optimization problem. For instance, we may want to maximize net

present value of future incomes, subject to constraints that the income level is

nondecreasing in each subregion and the total volume after planning period is

above a minimum level. For the general background for using linear programming

in management planning see, e.g., Kilkki (1987) and Dykstra (1984). In this report, it

is assumed that the reader is familiar with the basic properties of linear

programming.

In addition to the aggregated output variables, the problem formulation may

contain other variables whose values are determined in the optimization process.

For instance, a goal programming problem (see, e.g., Steuer 1986) includes variables

describing how much aggregated output variables deviate from target values, and

the utility model of Lappi and Siitonen (1985) includes variables for consumption,

savings and loans.

JLP is designed to be portable among different computers and planning systems.

The package is planned to be distributed as FORTRAN 77 source code. It includes a

general purpose precompiler JMAKE by which the user can easily tailor vectors and

working areas according to the available memory and size of the problems (the user

in charge of building an executable version of the program will be hereafter called

ILP 9

'system manager')- JMAKE can also be used to add some system dependent features

to the programs. The package includes subroutine templates that the system

manager can modify for the special input and report generating tasks. The two

main parts of the package are the interface part (subroutine jlpiti) and the

optimization part (subroutine jlpopt). To guarantee portability, the interface is built

using simple command language that is interpreted with standard FORTRAN I/O

functions. It is also possible to communicate with the interface using simple buffers.

Thus a more sophisticated (and computer dependent) interface with menus and

windows, etc. can be built on the provided interface. The system manager can easily

access the solution also in binary form.

The program can read data using different formats, and the system manager can

provide special input subroutines. These input routines can also simulate the

schedules instead of reading them from files. The program can save the data in fast

working files. If there is enough memory available, the whole data are stored in the

memory. If there is not enough memory, a part of the data is stored in a working

file. Thus also large problems can be solved with small memory. New variables can

be created using transformations. It is possible that data contain only the physical

variables, and, e.g., the cost and price variables are created during the optimization.

The same transformation compiler is used for defining domains where different

constraints should be fulfilled. The domains can overlap in any manner (i.e. there

can be simultaneously domains for North and South, and poor and good sites).

1.2 Optimization Problem

Mathematically the optimization problems considered can be described as follows

(more complete mathematical treatment is in Part 6). Let us first define a linear

programming problem without assuming domains for constraints. An

optimization problem can be presented as:

subject to the following constraints:

p <?

Max or Min z0 = + X^o* z
* (1.1)

k=l *=l

c,^^atk xk + lk zk <C„ t = 1,...,r (1.2)
*=l *=l

m n «

= H k = \,...,p (1.3)

i=l 7=l

10 Part 1 Introduction

where

The problem is solved by finding proper values for the unknown variables wij,xk

and Zk-

The constraints of form (1.2) are for the aggregated variables and other decision

variables of which the decision maker is interested. These constraints will be called

utility constraints. Term 'constraint' without qualifications refers later to the utility

constraints. Constraints (1.3) define the aggregated output variables xk as the sums

over the calculation units. Coefficientsx'[are known constants produced by the

simulation system. If the simulation system computes output quantities per area

unit, then coefficients xj are obtained from these relative figures by multiplying

with the area of the unit. The constraint (1.3) can be equivalently written as:

The less intuitive form is used in (1.3) in order to follow the linear programming

convention that the right hand side is always a constant. Depending on the context,

X wy= 1. '= 1 m (1-4)
7=l

Wy > 0 for all i and j (1.5)

zk
> 0 for k = (1.6)

m

xk=Y,
y

L Xi W
ij' k = 1,...,p (1.7)

i=l 7=l

m
= number of treatment units

ni = number of management schedules for unit i

wij = the weight (proportion) of the treatment unit i managed according to

management schedule j

4 = amount of item k produced or consumed by unit i if schedule ; is
K

applied

Xk = obtained amount of output variable k, k=l,...,p

*k = an additional decision variable, k=l,...,q

atk = fixed real constants for t=\,...,r, k=l,...,p

btk = fixed real constants for t=l,...,r, k=\,...,q

r = number of utility constraints

lIP 11

term x-variable refers either to an aggregated defined in (1.3) or in (1.7),

or to constants x'[.

Constraints (1.4) are so called area constraints saying that proportions of treatment

schedules in a treatment unit need to sum up to one. A variable wjj is called a w

variable or a weight.. A variable is called a z-variable. W-variables and z-variables

are decision variables by which we can fix a possible solution. Even if aggregated xk

variables are formally unknown variables of the optimization problem, their

values can be trivially computed from Eq. (1.7) if the values of w-variables are

known. Z-variables and (aggregated) Jt-variables are utility variables that determine

how good the solution is. As described, e.g., by Kilkki (1987), all variables in a linear

programming problem can be interpreted as variables in an implicit utility model.

It is assumed in the above problem formulation that the identity of management

units is preserved throughout the planning horizon. Thus the planning model can

be classified as type Model I in the Model I / Model II terminology (see, e.g., Dykstra

1984)

The problem is a standard linear programming problem (some simple technical

tricks may be needed depending on what is meant by 'standard'), and thus any

linear programming software can be used to solve it.

A domain specific objective function or constraint can be defined in the above

formulation by defining xf to be zero if unit i does not belong to the intended

domain. The domain specifications are made explicit in the following formulation.

Let Df denote a subset of units (i.e. a subset of the set (1 ~..,m}) that are used on row t.

Domains for different rows can be equal. Then a linear programming problem with

domain specifications is:

subject to:

p q

Max or Min z0 = aokx
kDo +X z*>* zt, (1.8)

k=l /t=l

/> ?

c,^^atk x
kDl +^ b,k z

k <Ct, t = (1.9)
*=i *=i

ni

x
kD, - X X'k w

:] = 0 ' k = \,...,p, t = (1.10)
ieD, 7=l

n,

2>
#

=l. / = (1.11)
y=i

12 Part 1 Introduction

It is thus assumed that aggregated output variables appearing in the same constraint

are all for the same domain. X-variables from different domains can be included in

the same constraint using additional z-variables, as will be described later. Z
variables are always assumed to be global. Variables x

kDt will be called domain

variables if it is emphasized that the summation is over a given domain.

A user of JLP needs only to define objective function (1.1) or (1.8) and the utility

constraints (1.2) or (1.10), and JLP takes care of the other constraints utilizing the

special structure of the problem.

1.3 Purpose of the Report

The purpose of this report is:

1) To be user's guide and reference manual for the JLP software when used 'as is'.

2) To help to install the software into a larger planning system.

3) To help to understand how linear programming can be used in (forest)

management planning problems, and how the results can be interpreted.

4) To give insight to mathematical structure of planning problems considered.

5) To make a break point in the development process of the software.

The main chapters of the report are called 'parts' in order to indicate that they can

be largely read independently of each others. The main parts of the 'Parts' are called

'Chapters'. Because the report is intended to serve as a manual, a certain amount of

repetition is intentional.

w
iJ

> 0 for all i and j (1.12)

zt >o for k = 1,...,q (1.13)

JLP 13

2. USER'S GUIDE

2.1 Overview

This part describes the standard interface of the JLP package. A system manager can

add extra features or develop an own interface (see Part 4).

Some of the basic features of the standard JLP are:

Commands can be entered from the terminal or read from files using include
command. A specific section of a file can be included. Included files can be nested.
Included files can be listed without executing the commands.

Output can be written to output files. The amount of output can be controlled.

On-line help is available. The user or system manager can modify the help file.

With time command the user can measure the time of any section of the
session.

Data can be read in from several files, using different formats or subroutines

provided by the system manager.

Data can be stored in a special JLP format.

Variables are referred with variable names. New variables can be created with

transformations. Transformed data can be written on the disk.

New schedules can be created by duplicating old schedules and modifying

duplicates with transformations.

A treatment unit can be split so that different parts inherit different schedules
from the original unit.

In addition to the'x-variables that describe the simulated alternatives, JLP can

utilize variables that describe data files (d-variables) and treatment units (c

-variables). These variables can be used as parameters in transformations of x
variables, or they can be used to define domains for constraints.

Several RHS's can be defined in the same problem definition, and the alternative

problems implied can be solved in a loop.

JLP can solve ordinary linear programming problems (i.e. without simulated
data for treatment units).

Values of aggregated x-variables not included in the problem can be computed

using weights provided by the solution.

Part 2 User's Guide 14

JLP can compute the shadow prices of treatment units, shadow prices of x
variables, reduced costs of the nonbasic z-variables, and reduced costs for forcing a
nonoptimal schedule into the solution. JLP can compute also the cost of forcing
an to get a smaller or greater value than it had in the solution.

In this chapter only the basic features of different commands are described. For each

topic, more details are given in the reference manual (Part 3).

2.2 Command Syntax

All commands need to be in lower case. A command line can contain spaces and

tabs. If the last character of a line is then the logical command line continues to

the next physical line (record). Commands can be read from terminal (or input

stream in batch mode) or from files using include command. Command lines

starting with '!', or are comments, and the rest of line following '!' is also a

comment. Continuation character '>' is significant also after the next line is

regarded as the continuation of the comment.

liy If ">' is the last character of a command line, then the next line is not interpreted as

a continuation line if '!' is put after the command. This is important to remember

when using path command in systems where directory can be given as:

'<directory>'. For instance, the following command works as intended:

path disk2:<mela.data> !

Names of commands are checked as long as the name is uniquely determined

(usually four characters are significant). The rest of the command name is ignored.

In this manual, a longer form of a command name may be used when the

command is introduced. A shorter form is used thereafter.

Commands can have options starting with Options are appended to the

command name without space. In options (e.g. '/all') only the first character is

usually significant, except in negation options (e.g. '/nocost') three characters are

significant. If more characters are significant, it is always indicated. If a command

has several options, the order of options is free.

Examples:

The following input lines are equivalent (in schedules command four characters

are significant):

JLP 15

A group of commands belonging together is called a paragraph. Paragraphs end

always with '/'• For instance the following paragraph defines a linear programming

problem:

2.3 Examples

JLP solved the following examples in Macintosh Quadra 700. JLP was compiled with

Language Systems FORTRAN 3.0 compiler. Data were simulated with MELA system

(see Siitonen 1983). MELA specific features are not used in examples. Management

schedules were simulated for five ten-year periods. Management operations are

assumed to take place at midpoints of periods. The following variables were taken

from MELA files into standard sequential files:

When JLP is started, it prompts

jip>

and waits for commands from terminal (or input stream). The commands for the

following examples are stored in file ex.in. File ex.in contains a section:

*exl

...commands

*end exl

This section can be submitted using include command.

2.3.1 A problem with x-variables: nondecreasing incomes

vol.0,-vol.5
= total volumes, initial and after each period

npv.0,-npv.5 = net present values
cutvol.1,-cutvol.5 = annual volume harvested in each period
clearcut.1,-clearcut.5 = annual clear cut areas

income.1,-income.5 = annual net incomes

jlp>incl ex.in/* exl: *

> *exl

> xdat savo.xdb ! file containing x-data (simulated schedules)

> xform b ! x-variables are in binary file
> xvar vol.0,-vol.5,npv.0,-npv.5,cutvol.1,-cutvol.5,clearcut.1,-clearcut.5,>

> income.1,-income.5 !variables in x-data
> cdat savo.cda ! text file containing c-data

> cvar ns ! c-data must always contain number_of_schedules_variable 'ns
> cform * ! c-data can be read using FORTRAN free format

> time ! start timing

starting timing.

> prob

16 Part 2 User's Guide

needs to read data

reading xdat-file: savo.xdb

reading cdat-file: savo.cda
number of calculation units, schedules:

.

.

.
 433 12100

number of variables in xmat-matrix, max of ns 27 181

memory used by xmat, units written to disk . . 37% 0

x-variables: vol.0,vol.1,vol.2,vol.3,vol.4,vol .5, npv.0,npv 1, npv.2,npv.3,

npv.4,npv.5,cutvol.1,cutvol.2,cutvol.3,cutvol. 4,cutvol.5,clearcut.1,

clearcut.2,clearcut.3,clearcut.4,clearcut.5,income.1,income.2,income 3,

income.4, income.5
number of variables in cmat-matrix: 1

memory used by cmat 44%

c-variables:ns

number of rejected schedules: 0

data ready.
> income.2-income.1>0

> income.3-income.2>0

> income.4-income.3>0

> income.5-income.4>0

> npv.0 max
> /

number of domains, domain combinations:
.

.

.
 1 1

number of z-variables, temporary x-variables . 0 4

domain: # of units

row tolerance min max

all: 433

1 0.4 9114 42E-01 -1018118. 2126654.

2 0.7530341E-01 -1961494. 3260638.

3 0.1083217 -3036788. 4690328.

4 0.1455694 -4459802. 6303157.

5 0.7732226 0.2381406E+08 0.3348054E+08

> time ! print time since last time command

elapsed: 32.71655 total: 32.71655

> solve ! solve the problem defined in problem paragraph

starting optimization...

ok(0) constr. 2: 80632.089 w+z basics: 0 0

ok(0) constr. 3: 98079.493 w+z basics: 0 0

ok(0) constr. 4: 684918.26 w+z basics: 0 0

ok(2) constr. 1: 664.13396 w+z basics: 0 0

**FEASIBLE

**OBJECT VARIABLE: 30759195. w+z basics: 0 0

unit= 1, OBJ VAR= 32697588. w+z basics: 1 0

unit= 1, OBJ VAR— 33225259. w+z basics: 3 0

unit= 1, OBJ VAR= 33455594. w+z basics: 4 0

unit= 1, OBJ VAR— 33458323. w+z basics: 4 0

unit= 1, OBJ VAR= 33458704. w+z basics: 4 0

unit= 1, OBJ VAR= 33459040. w+z basics: 4 0

unit= 1, OBJ VAR= 33459073. w+z basics: 4 0

»»SOLUTION, OBJ VAR= 33459073. w+z basics: 4 0 unit= 332

s solution, optimization time ...11.14990
time for computing x-variables: 20.35009

DOMAIN all: 433 units

row value shadow lower upper

price bound bound

1) income.2-income.1 0.00000000 -0. 2052712 0.000000 L

2) income.3-income.2 0.00000000 -0. 2147269 0.000000 L

3) income.4-income.3 0.00000000 -0. 0895401 0.000000 L

4) income.5-income.4 0.00000000 -0. 0410396 0.000000 L

5) npv.0 33459072.9 1.00000000 max

17]LP

A '>' character at the beginning of a line indicates that the line is read from the

included file. Commands xdata, xform and xvar define the treatment schedule

information for JLP. Commands cdata, cform and cvar define information about

the calculation units. JLP needs to know at least how many schedules there are in

each treatment unit (variable ns). When the problem paragraph starts, JLP reads

data into the memory. Thus the data definitions need to be before problem

command but the order of definitions does not matter. After reading the problem

definition, JLP computes the smallest and largest possible values of the aggregated

output variables (x-variables). These bounds will rule out some problems as

infeasible immediately. These bounds are also used for determining tolerance

values of round-off errors.

In the example, all calculation units belonged to the same domain (all;).

Command solve asks JLP to solve the problem. The x-variable section of the

output is computed after the solution is obtained. These computations took more

time than the optimization as such (times are in seconds). A part or all of these

after-solution computations can be avoided. The shadow prices of x-variables

income. 1,-income. 5 are the shadow prices of constraints (1.3) defining the x

x-variable value shadow

price

cost of

decrease

cost of

increase

vol.0
....

 146895.466 INF INF

vol.1
....

 160940.368 0.00575244 0.09252250

vol.2 168948.219 0.00345704 0.00000000

vol.3
....

 176632.726 0.00433317 0.00000000

vol.4
....

 201095.434 0.00000000 0.02377209

vol.5
....

 247916.318 0.00391562 0.00000000

npv.0
 33459072.9 1.00000000 1.00000000 INF

npv.1

 35829849.0 0.00017427 0.00000000

npv .2
....

 39015973.1 0.00007436 0. 00000000

npv.3

 43297856.3 0.00004199 0.00000000

npv.4

 49052348.2 0.00002650 0. 00000000

npv.5

 56785902.2 0.00001771 0.00000000

cutvol.l 5514.61876 1.45063281 0.09019085

cutvol.2 5894.09835 0.80362908 0.31202058

cutvol.3 6087.74131 0.08545117 0.61943881

cutvol.4 5926.31498 0.41053064 0.02250821

cutvol.5 5340.53036 0.00000000 1.26948442

clearcut.l
....

 18.3550669 1131.97075 191.506863

clearcut.2
....

 8.74457034 INF 10068.0952

clearcut.3
....

 3.80288005 228.412333 1507.36195

clearcut.4
....

 7.36293925 88.5195472 10242.1571

clearcut.5
....

 7.71705472 212.978217 1084.61137

income.1 788108.446 -0.2052712 0.00000000 0.00202079

income.2 788108.443 -0.0094556 0.00000000 0.00202079

income.3 788108.441 0.12518680 0.00000000 0. 00202079

income.4 788108.439 0.04850047 0.00000000 0.00202079

income.5 788108.439 0. 04103964 0.00000000 0.00202079

> *end exl

jlP>

User's Guide 18 Part 2

variables. They tell how the objective function would change if the problem

remains the same and we get an extra unit of the from another source.

The cost of decrease and cost of increase are the marginal changes in the objective

function if we would add a new constraint that would require the corresponding x

variable to decrease or increase by one unit from the value implied by the solution.

The output and interpretation of shadow prices are later described in detail.

2.3.2 A problem with x- and z-variables: goal programming

The next example includes also z-variables, i.e., technical variables needed in some

linear programming problems. Suppose that we would like to have such a

management plan that variables income . 1 ,
-income . 5 would have values 800, 850,

900, 1000 and 1100 thousands, and variable npv.s would have value 50 mill.

However, a problem with these constraints is infeasible. We might then search for a

plan that minimizes the sum of differences between income variables and the

target values. As all z-variables are nonnegative, we need to define deviations from

target values using slack and surplus variables. Such a goal programming problem

definition is stored in file ex.in starting with an label '*ex2'. Thus our session

might continue as follows (part of the output is deleted).

jlp>incl ex.in/*ex2:*
> *ex2

> prob

> income.1 -sp.l + sl.l = 800000 / = 850000 The values after '/' define

> ; alternative RHS' s

> income.2 -sp.2 + si.2 = 850000 / = 900000

> income.3 -sp.3 + si.3 = 900000 / = 1000000

> income.4 -sp.4 + si.4 = 1000000 / = 1000000

> income.5 -sp.5 + si.5 = 1100000 / = 1100000

> npv.5 > 50000000
> sp.l + sl.l + sp.2 + si.2 + sp.3

/

+ si.3 + sp 4 + si. 4 + sp.5 + si.5 min

/

number of domains, domain combinations: . . . 1 1

number of z-variables, temporary x -variables
.
 10 0

domain: # of units

row tolerance min max

all: 433

1 0.2798653E-01 -2704.495 1211817.

2 0.4927205E-01 4919.161 2133480.

3 0.7595614E-01 -26151.70 3288901.

4 0.1088024 -35820.53 4711143.

5 0.1466871 -42605.84 6351553.

6 2.487337 0.2907604E+08 0.1077017E+09

7 0.2798653E-01

> *end ex2

jlp>solve

starting optimization...

ok(0) constr. 6: 57299366. w+z basics: 0 0

ok(3) constr. 1: 800000.00 w+z basics: 0 1

ok(3) constr. 2: 850000.00 w+z basics: 0 2

ok(3) constr. 3: 900000.00 w+z basics: 0 3

ok(3) constr. 4: 1000000.00 w+z basics: 0 4

lIP 19

ok(3) constr. 5: 1100000.0 w+z basics: 0 5

�»FEASIBLE

*»OBJECT VARIABLE: 744657.25 w+z basics: 0 5

unit= 1, OBJ VAR= 741184.00 w+z basics: 0 5

unit= 1, OBJ VAR= 213000.08 w+z basics: 4 2

unit= 1, OBJ VAR= 137757.85 w+z basics: 5 1

unit= 1, OBJ VAR= 137750.84 w+z basics: 5 1

unit= 1, OBJ VAR= 137750.25 w+z basics: 5 1

** SOLUT ION, OBJ VAR= 137750.25 w+z basics: 5 1 unit= 146

s solution, optimization time ...24.41650

time for computing x- variables: 27.23339

DOMAIN all: 433 units

row value shadow lower upper

price bound bound

1) income.1-sp .1+sl .1
.

 800000.000 -1.0000000 800000.0 U

2) income.2-sp . 2+sl .2
.

 850000.000 -0.7715559 850Q00.0 U

3) income.3-sp .3+sl .3
.

 900000.000 -0.5931115 900000.0 U

4) income.4-sp .4+sl .4

 1000000.00 -0.4444153 1000000. U

5) income.5-sp . 5+sl .5
.
 1100000.00 -0.3276779 1100000. U

6) npv.5

 50000000.0 -0.0260183 50000000 U

7) sp.1+sl.1+sp.2+sl. 2+

sp.3+sl.3+sp.4+sl.4+sp.5+sl .5 137750.254 1.00000000 min

x-variable value shadow cost of cost of

price decrease increase

vol.0
.

.
 146895.466 INF INF

vol.1 . . 172770.584 0.00000000 0.00000000

vol.2
.

.

 181429.917 0.00000000 0.00000000

vol.3
.

.

 182321.570 0.00000000 0.00000000

vol.4 . . 186760.039 0.00000000 0.00000000

vol.5
.

.

 196640.038 0.00000000 0.00000000

npv.0 . . 33334940.3 0.00000000 0.96435642

npv.1 . . 37122072.3 0.00000000 0.00000000

npv.2 . . 40035120.1 0.00000000 0.00000000

npv.3 . . 43370374.6 0.00000000 0.00000000

npv.4 . . 46693402.9 0.00000000 0.00000000

npv.5
.
 . 50000000.0 0.02601837 INF INF

cutvol.1 . 4547.23514 0.00000000 0.00000000

cutvol.2 . 6167.46797 0.00000000 0.00000000

cutvol.3 . 6858.98612 0.00000000 0.00000000

cutvol.4
.

 7328.18340 0.00000000 0.00000000

cutvol.5
.

 7693.73133 0.00000000 0.00000000

clearcut.1 .

 13.8998666 0.00000000 0.00000000

clearcut.2
.

 10.0533873 0.00000000 0.00000000

clearcut.3 . 6.55008829 0.00000000 0.00000000

clearcut.4 .
 8.95997921 0.00000000 0.00000000

clearcut.5
.

 14.4669117 0.00000000 0.00000000

income.1 . 662249.745 1.00000000 0.00000000 0.29608234

income.2
.

 849999.999 0.77155591 0.22844408 1.77155588

income.3
.
 900000.000 0.59311153 0.40688847 1.59311154

income.4
.

 1000000.00 0.44441532 0.55558468 1.44441535

income.5
.
 1099999.99 0.32767794 0.67232208 1.32767801

z-variable value reduced cost

sp.l 0.00000000 0.00000000

sl.l 137750.254 0.00000000

sp.2 0.00000000 0.22844408

si.2 0.00000000 1.77155591

sp.3 0.00000000 0.40688846

20 Part 2 User's Guide

We see that when deviations have the same weight for each period, only income

during the first period deviates from the target. Output 'w+z basics: 5 i' tells

that there are 5 basic weight variables and one basic z-variable in the solution. JLP

computes for each z-variable the reduced cost that tells the marginal price of forcing

the variable to the solution. For a basic (nonzero) z-variable, the reduced cost is

zero.

The problem with the second set of RHS's defined in the problem paragraph could

be then solved with:

jlp>solve 2

Both x- and z-variables are also needed to solve, e.g., the utility model of Lappi and

Siitonen (1985) which provides an alternative linear programming problem

formulation for studying smooth income patterns.

2.3.3 A problem with z-variables: an ordinary LP problem

The third example shows that JLP can solve also ordinary linear programming

problems (i.e. without simulated treatment schedules):

si.3
.

.

.

.

 0. 00000000 1.59311153

sp.4 0. 00000000 0.55558467

si. 4 0. 00000000 1.44441532

sp.5 0. 00000000 0.67232205

si.5 . . .
.

 0. 00000000 1.32767794

jlp>

jlp>incl ex.in/*lu52: *

> *lu52 This example is from Luenberger (1973) P- 52

> prob
> 2*xl +x2 +3*x3-2*x4+10*x5 min ! xl, -x5 are here z-variables, because they

; were not defined in xvar or xtran

> xl+x3-x4+2*x5=5

> x2+2*x3+2*x4+x5=9

> xl<7

> x2<10

> x3<l

> x4<5

> x5<3

> /

no x-variables, number of z-variables 5

tolerance for all cows: 0.00010000

> *end lu52

jlp>solve

starting optimization...

ok(0) constr. 4 0.00000000 w+z basics: 0 0

ok(0) constr. 5 0.00000000 w+z basics: 0 0

ok(0) constr. 6 0.00000000 w+z basics: 0 0

ok(0) constr. 7 0.00000000 w+z basics: 0 0

ok(0) constr. 8 0.00000000 w+z basics: 0 0

ok(3) constr. 2 5.0000000 w+z basics: 0 1

ok(3) constr. 3 9.0000000 w+z basics: 0 3

**FEASIBLE

*«OBJECT VARIABLE: 29.000000 w+z basics: 0 3

21]LP

Note that the term unit appearing in the printing of the optimization algorithm

does not mean anything. JLP interprets the variables xl, -x5 as z-variables because

they were not defined in a previous xvar command or in xtran transformations

(transformations creating new JLP is not efficient in solving ordinary

linear programming problems, but in small problems that may be of less interest.

2.3.4 A problem with several data files and domains

The following problem uses following properties of JLP: data can be read from

several files, there can be transformations of variables, symbolic names for

constants can be defined, constraints can be defined for different domains (subsets of

units), results can be printed for additional printing domains (most part of printing

is deleted):

unit' 1, OBJ VAR- 12. ,000000 w+z basics: 0 4

unit ; 1, OBJ VAR= 12. .000000 w+z basics: 0 4

**SOLUTION, OBJ VAR= 12. .000000 w+z basics: 0 4 unit= 1

s solution, optimization time ...0.250000

row value shadow lower upper

price bound bound

i) 2*xl+x2+3*x3-2*x4+10*x5
.

.

 12.0000000 1.00000000 min

2) xl+x3-x4+2*x5
.

.

.

 5.00000000 4.00000000 5. 000000 L

3) x2+2*x3+2*x4+x5
.

 9.00000000 1.00000000 9.000000 L

4) xl
...

.

 7.00000000 -2.0000000 7. 000000 U

5) x2
...

.

 1.00000000 0.00000000 10.00000

6) x3
...

.

 1.00000000 -3.0000000 1.000000 U

7) x4
...

.

 3.00000000 0.00000000 5.000000

8) x5

 0.00000000 0.00000000 3.000000

z-variable value reduced cost

xl
...

 7. .00000000 0.00000000

x2
.

.

.

 1. .00000000 0.00000000

x3
.

.

.

 1. .00000000 0.00000000

x4
...

 3. .00000000 0.00000000

x5 .

.

 . 0. .00000000 1.00000000

jlp>

jlp>incl ex.in/*exd: *
> *exd ! example including domains

> xdat savo.xdb,vaasa.xdb ! two data sets

> xform b

> xvar vol.0,-vol.5,npv.0,-npv.5,cutvol.1,-cutvol.5, clearcut.1, -clearcut.5, >

> income.1,-income.5
> cdat savo.cda,vaasa.cda ! c-data

> cvar ns

> cform *

> ctran ! data do not contain c-variables, let us make an artificial 'owner'

> owner=unit-2*int(unit/2) ! owner = 0,1

> /

> const private,public=l,0 ! make symbolic names for owner groups

> prob
.needs to read data

...

reading xdat-file: savo.xdb

reading cdat-file: savo.cda

22 Part 2 User's Guide

number of calculation units, schedules: 433 12100

reading xdat-file: vaasa.xdb

reading cdat-file: vaasa.cda
number of calculation units, schedules: 406 12872

total number of calculation units, schedules: . . 839 24972

number of variables in xmat-matrix, max of ns . . 27 200

memory used by xmat, units written to disk 75% 0

x-variables: vol.0,vol.1,vol.2,vol.3,vol.4,vol.5,npv.0,npv. 1, npv.2,npv.3,

npv.4,npv.5,cutvol.1,cutvol.2,cutvol.3,cutvol.4,cutvol.5,clearcut.1,
clearcut.2,clearcut.3,clearcut.4,clearcut.5,income.1, income .2, income. 3,

income.4,income.5

number of variables in cmat-matrix: 2

memory used by cmat 84%

c-variables:ns,owner
number of rejected schedules: 0

> data=savo.and.owner=private: data=vaasa.and.owner=private : owner=public:

> income.2-income.1>0

> income.3-income.2>0

> income.4-income.3>0

> income.5-income.4>0

> all:

> npv.0 max
> /

number of domains, domain combinations: 4 3

number of z-variables, temporary x-variables ... 0 4

domain: # of units

row tolerance min max

data=savo.and.owner=private: 217
1 0.470584 6E-01 -525772.3 1021169.

data=vaasa.and.owner=private: 203
5 0.1653200E-01 -173746.1 335599.5

owner=public: 419
9 0.3611564E-01 -723164.0 1513245.

all: 839

13 0.5274830 0.3129301E+08 0.4425582E+08

> ! print results for some x-variables only (default is all variables)

> ! variables npv.1,-npv.4 are not printed

> ! we may get results for domains not used in problem

> show/domain vol.0,-vol.5,npv.5,cutvol.1,-cutvol.5,clearcut.1,-clearcut.5
> data=savo:

> data=vaasa:

> /

> solve ! solve the problem defined in problem paragraph

starting optimization...

ok(0) constr. 2: 46468.188 w+z basics: 0 0

ok(2) constr. 5: 2228.2402 w+z basics: 1 0

**FEASIBLE

**OBJECT VARIABLE: 40315249. w+z basics: 1 0

unit= 1, OBJ VAR= 41193914. w+z basics: 4 0

unit= 1, OBJ VAR= 44209549. w+z basics: 12 0
** SOLUT ION, OBJ VAR= 44209549. w+z basics: 12 0 unit= 69

s solution, optimization time ...30.09960

time for computing x-variables: 195.7001

DOMAIN data=savo.and.owner=private: 217 units

23 lIP

row value shadow lower upper

price bound bound

1) income.2-income.1 .
.

.

.

.

 0.00000000 -0.1056677 0.000000 L

2) income.3-income.2
.

.

.

.

.
 0.00000000 -0.1513036 0.000000 L

3) income.4-income.3
.

.

.

.

.

 0.00000000 -0.0753490 0.000000 L

4) income.5-income.4 .
.

.

.

.
 0.00000000 -0.0418552 0.000000 L

x-variable value shadow cost of cost of

price decrease increase

npv.0 .

.

.

 16503894.6 1 .00000000 INF

vol.0
.

.

.
 72450.4998 INF INF

DOMAIN datä=vaasa .and.owner =private: 203 units

row value shadow lower upper

price bound bound

5) income.2-income.1 .
.

.

.

.
 0.00000000 -0.3187801 0.000000 L

6) income.3-income.2
.

.

.

.

.

 0.00000000 -0.3297849 0.000000 L

7) income.4-income.3
.

.

.

.

.

 0.00000000 -0.1762447 0.000000 L

8) income.5-income.4
.

.

.

.

.

 0.00000000 -0.0971891 0.000000 L

x-variable value shadow cost of cost of

price decrease increase

npv.0 .

.

.

 5152362.07 T .00000000 INF

DOMAIN owner=public: 419 units

row value shadow lower upper

price bound bound

9) income.2-income.1
.

.

.

.

.

 0.00000000 -0.2996129 0.000000 L

10) income.3-income.2
.

.

.

.

.

 0.00000000 -0.2838323 0.000000 L

11) income.4-income.3
.

.

.

.

.

 0.00000000 -0.1511955 0.000000 L

12) income.5-income.4
.

.

.

.

.

 0.00000000 -0.0655068 0.000000 L

x-variable value shadow cost of cost of

price decrease increase

npv.0 .

.

.

 22553292.3 T .00000000 INF

DOMAIN all: 839 units

row value shadow lower upper

price bound bound

13) npv.0 . .
.

 . 44209549.0 1.00000000 max

x-variable value shadow cost of cost of

price decrease increase

npv.0 .

.

.

 44209549.0 1.00000000 T .00000000 0.00750263

show/domain data=savo: 433 units

x-variable value shadow cost of cost of

price decrease increase

24 Part 2 User's Guide

For each domain, JLP prints first the problem rows, and thereafter the x-variables

implied by the options of the show command. For domains given only with

'show/dom', there are no problem rows to be printed.

2.4 General Operating Commands

In this section the following general operating commands are described:

batch - JLP is running in batch mode

include - include commands from a file

list - list a section of a file

help - get on-line help

outfile - write output into a file

outlevel - define the amount of the output

printlevel - define the amount of the terminal output

time - timing

pause - halt execution

2.4.1 Batch mode

The default is that the program is running in interactive mode. If the program is

running in batch mode, then the first command should be batch. In batch mode,

the program stops (or control returns to the main program provided by the system

manager) if an error occurs while in interactive mode only error messages are

printed, open include files are closed and the control is given to the terminal input.

In batch mode, the program does not print the prompts (e.g. 'jlp>') when reading

from the input stream.

2.4.2 Include

Commands can be read in from files using include command. For instance:

incl data.def

Part of the file can be read in giving initial and final address:

incl ex.in/*ex2:*

npv.0 ...

show/domain data=vaasa: 406 units

npv.0 ...

I LP 25

In this case the program reads the file until it reaches a line starting with '*ex2'

(initial spaces are ignored). Input from file stops as a line starting with '*' is met.

Both the first and last line can be ordinary commands that are executed. It may be a

good practice to use comment lines (starting with or as addresses in the

files. If the final address is not given, then the rest of file is included:

incl ex.in/*ex2:

If the command is:

incl ex.in/const

then only one line is read in. The default is that included files can be nested up to 6

levels.

2.4.3 List

A file or a part of it can be printed using list command. The syntax of list is as of

include command, the difference is that all lines read are interpreted as

comments. This command may be useful if you want to check what a file or a part

of it contains before executing it using include command. The headers of all

subroutines in file jlpsub.src are printed for Part 4 using:

list/all jlpsub.src/*=:**

Option '/all' means that all segments between lines starting with '*=' and '**' are

printed. This option is available also for include.

2.4.4 Help

On-line help is based on the list command and on a help file that the user or

system manager can edit. Command help alone is translated internally as:

list/all jlp . hip/*. This prints all header lines in file jlp.hlp starting with

The contents of a cell of the help file starting e.g. with '*list' can be seen using

command

help list

You can also change the help file:

helpfile own.hip

Thereafter the help information is read from file own.hip. Each cell in the help file

ends at a line starting with ';'. The current help file jlp.hlp is printed in Part 3.

26 Part 2 User's Guide

2.4.5 Output

The user can control both the amount and channels of output (terminal and/or file

and/or an internal buffer). Output to the different channels is controlled

independently, so that the user can direct output to any combination of the output

channels (e.g. so that output goes to all three channels, or nowhere). Output to the

internal buffer and the access to the solution vectors are described in Part 4.

Output file (outfile)

Printed output can be written at any time to a file (in Macintosh with LS-FORTRAN

this is seldom useful as all output goes to a window that can be edited, printed and

saved after the session). An output file is opened as:

outfile out.txt

The output file can be changed by giving a new outfile command. If no file name

is given, then the old output file is just closed. Writing to the output file does not

affect the terminal output, which is controlled independently. See Chapter 4.2 for

how new files are opened in a non-VMS environment.

Level of output (printlevel. outlevel)

The amount of output to the default output unit (the screen in interactive mode) is

controlled using printlevel command. Command

printlevel 0

prevents all printing. Using 'printlevel 1' only the solutions of the linear

programming problems are printed (in addition to the commands read from

include files). Printlevels 2 and 3 give information about the structure of the data

and the about the progress of the optimization algorithm. Higher printlevels than 3

should be used only in trouble-shooting.

The amount of output to the output file is controlled using outlevel command. It

works exactly as the printlevel command. Note that one can use different

printleve 1 and outlevel in different parts of the job. Selected solutions of the

linear programming problems can be printed to the output file as follows:

outfile sol.out

outlevel 0 ! 'outfile' sets automatically the outlevel to 1

problem
I

solve

... the solution shows that the problem needs to be modified

lIP 27

solve +1 ! solve with next RHS or define and solve a new problem

...solution is OK

outlevel 1 ! start printing to the file
recall ! the last solution can be reprinted with recall
schedules ! basic schedules can be printed with this command
outlevel 0 ! start searching new interesting solutions

2.4.6 Time

If the system manger has provided a subroutine for measuring time, then the

elapsed time between two points in the flow of program can be measured with

command time. The total time from the first time command is also printed. If the

system manager has supplied a subroutine for measuring CPU time, it is also

printed. Time used to solve a problem is automatically printed.

2.4.7 Pause

If the commands are read from an include file, JLP may print results too fast. With

pause command the execution of the program halts if the program is not running

in batch mode. Typing <return>, the program continues. The system manager may

provide a subroutine with better scrolling properties for the terminal output (see

Chapter 4.11).

2.5 Data Management

JLP can solve linear programming problems including defined as (see

Eq5.1.3, 1.7 and 1.10):

The simulation system generates coefficients xj for different treatment units i

schedules j and variables k. Generally the number of coefficients xj can be very

large. Thus the main effort in the data access is to handle efficiently these

coefficients (jt-variables).

JLP can solve problems with different constraints for different domains, i.e., groups

of treatment units. Thus JLP needs also the capabilities for handling variables that

describe treatment units. These variables are called c-variables. A common

description (identification) to all units read from the same xdat file can be given

with d-variables. The user can also define symbolic names for numeric constants.

m

x* = XX4/vV k = \,...,p
'=l7=l

28 Part 2 User's Guide

Constants, d- and c-variables can be used as parameters of transformations or for

defining domains. This chapter describes briefly how JLP manages constants, d

variables, c-variables and (i.e. coefficients x'[). These variables are called

data variable (other variables getting values in the optimization process, e.g., z- and

w-variables are linear programming variables).

2.5.1 Summary of data manipulation

Initilization commands

(necessary commands are in bold)

path directory of the data

dtran transformations made when data files change

xdat the names of x- files

xvar the names of jc-variables in the xdat files

xform format for reading xdat files

xtran transformations ofx-variables, 'then reject' transformation

interpreted as'then reject = -1'

keepx the stored, default: xvar-variables and

output variables of xtran transformations

cdat the names of c- files, necessary unless 'xform m' is in effect

cvar the names of c-variables in the c- files, must include ns

ctran transformations of c-variables

keepc the c-variables stored, default: cvar- variables and

output variables of ctran transformations

cform format for reading cdat files, default: same as xform

save the data are saved in JLP format on disk

const constants used in transformations

JLP reads the data using following logic:

Reading data

If keepx command was not given put all xvar variables into keepx list

If keepc command was not given put all cvar variables into keepc list

do ifi=l, (number of xdat files)

Open ifith cdat file.

Open ifith xdat file.

V(ivdata) = ifi ! ivdata is the number of variable 'data'

JLP 29

Make dtran transformations.

iunit=o

do until end-of-file in cdat file

iunit=iunit+l

Read cvar variables of the unit iunit from the cdat file

V(ivunit)= iunit

Make ctran transformations.

Store keepc variables in cmat matrix.

If there is not enough space in xmat matrix, write first

units in xmat in the save or scratch file,

do is = 1, V(ivns)! V(ivns) = number of schedules

Read xvar variables from the xdat file.

V(ivs)=is ! ivs is # of the variable 's'

V(ivrej)=o ! ivrej is # of the variable 'reject'

Make xtran transformations.

Store keepx variables in xmat matrix,

end of loop over schedules

end of loop over units

end of loop over files

If save command was given, save data in JLP format.

When the data need to be modified later, then basically the same loops are executed

but instead of reading data from cdat and xdat files, data are obtained from cmat

and xmat- matrices (and possibly from a working file, if data are too large for xmat).

Modification commands

dtran transformations made when data files change

xtran transformations of

ctran transformations of c-variables

const constants used in transformations

dupl transformations defining how to duplicate schedules

split what variables are split if splitting of units is indicated in

xtran transformations

save/later the data are saved in JLP format after modifications

If xtran, ctran, or dupl transformations are given, then JLP executes the following

modification loops when make or problem command is met:

30 Part 2 User's Guide

Transforming data

do ifi=l, (number of xdat files)

V(ivdata) = ifi ! ivdata is the number of variable 'data'

Make dtran transformations.

do iunit=l, (number of units in the xdat file)

Get old keepc variables of unit from cmat matrix into V-vector

V(ivunit)= iunit ! variable 'unit' is the within file unit #

Make ctran transformations.

Store old keepc variables and new output variables in cmat

If unit is stored in working file, read one record (which

contains one or more units) into xmat matrix

Make space for new x-variables

do is = 1, (number of schedules)

Get keepx variables from the xmat matrix.

V(ivs)=is ! ivs is # of the variable 's'

V(ivdupl)=o ! ivdupl is # of variable 'duplicate'

If 'reject' was not in keepxl then V(ivrej)=o

Make dupl transformations

ndupl=V(ivdupl) ! get number of duplicates

do i=o, ndupl

V(ivdupl)=i

Make xtran transformations.

Store keepx variables

If V(ivsplit)>o store nesessary information

! ivsplit is #of variable 'split'

end of loop over duplicates

end of loop over schedules

If unit was split, sort schedules

If schedules were duplicated, update number of schedules

end of loop over units

end of loop over files
If any unit was split, generate new units by duplicating rows of cmat and

by updating unit related lists

If save/later command was given, save data in JLP format.

2.5.2 Data variables

This section describes handling of data variables, i.e., constants, d-, c-, and x

variables. Constants, d-variables and c-variables can be used to define domains for

constraints. Constants and d-variables can be used as parameters in ctran-, and

ILP 31

xtran transformations, and c-variables can be used as parameters in xtran

transformations.

All data variables are referred using symbolic names. All variable names are stored

in the same vector. When JLP reads and transforms data, all current values of

different variable levels are put to the same vector. This makes it possible that

transformations of a given level of variables can use variables at the higher levels.

Variable names must start with a letter A-z or a-z (not with 'ÄÄÖäöä') and cannot

contain characters !" = *,/:-%. Variable names are case sensitive. For instance,

name 'a#s.l' is a valid variable name. The system manager can decide the

maximum length of variable names (see Chapter 4.1, 32 characters is the default).

Variables are referred using variable lists. Variable lists are formed by separating

variable names with commas. A variable list with consecutive variable names can

be formed, e.g., as follows:

xvar income. 1, -income. 3, volume != income .I,income. 2, income. 3, volume

const a,-d=2*1,2,3 ! a,b,c,d =1,1,2,3

Note that construction is interpreted using variable names and not the order of

variables (compare to transformation loops described in section 2.5.3). For instance,

if xvar command is:

xvar income.l,volume.l,income.2

then row

income.l,-income.2

in a problem paragraph is equivalent to:

income.l,income.2

The following variables are automatically created:

data = the number of data file to be read in (d-variable)

unit = the number of calculation unit (c-variable)

s = the number of the treatment schedule (x-variable)

Variables duplicate, split, and reject have also predefined meanings, as

will be explained later in this chapter and in the variables section of the reference

manual.

32 Part 2 User's Guide

Constants

Constants are created and given values using constant command, or are created by

xdat command. For instance

constant harvestcost,logprice,private = 100,230, 2

creates three new variables (if they do not already exist) and gives values to these

constants. These constants can then be used as parameters in transformations or

domain specifications when defining the linear programming problem. For

instance:

xtran

income.l=volume.l*(logprice-harvestcost) ! income during first period

/

problem

owner=private:
income.l > 1000

We can use standard transformations defined in an include file and load current

parameters from a second include file.

Command xdat creates automatically constants from the file names. For instance,

command

xdat south.xda,north.xda

creates constants 'south' and 'north' with values 1 and 2. If data file names start

with a digit then letter'd' is prepended to the name (e.g. constant 'd2l' is created

from file name 21. dat). If the data file name is not a valid variable name, (e.g. it

contains characters '%/:'), then no error occurs but the file names cannot be used as

constants in transformations or domain specifications. Note that the directory

specification for x-data or c-data files can be given using path command.

D-variables

D-variables (variables describing data sets) get new values when the data file

changes. A d-variable 'data' gets automatically the number of the data file, and

other d-variables are defined by dtran transformations. In dtran transformations

all constants can be used as input variables. With d-variables one can create

parameters for ctran- or xtran- transformations or define domains. For instance,

assume that xdat command is

xdat south.xda,north.xda,east.xda

Then we can define transformations and domains as:

/LP 33

dtran

if data=south then logprice=2oo
if data=north then logprice=lso
if data=east then logprice=lBo

/

problem
data=south & owner=private:

income.l,-income.4 > 2000

If data are stored in the JLP-format then dtran transformations are written

automatically to the '.sav' file. When the saved data are used later, the original

division into different data files remains (from user's point of view).

C-variables

C-variables (class variables) get new values when the treatment unit changes. C

variables are read from cdat files or made by ctran transformations. Command cvar

tells what are the c-variables in the cdat file, and format is given by cform

command. Constants and d-variables can be used in ctran transformations. A c

variable 'unit' gets automatically the number of the treatment unit within the

cdat file (i.e. for the first unit of a new file, variable 'unit' gets again value one).

With c-variables one can create parameters for xtran transformations or define

domains. C-variables need to include variable with name 'ns' which tells the

number of treatment schedules for each unit. For instance:

cform *

cdat south.cda,north.cda,east.cda

cvar ns,owner,distance

ctran

logging_cost=a*distance + b ! a and b are defined with dtran or const

/

problem

owner=private:

logging_cost min

The format of c-variables data needs to be one of the following types:

cform * ! FORTRAN free format

cform b ! the data are in binary sequential file(s)
cform (10f5.2) ! FORTRAN format, all data are read in as real variables

If the format of c-data is the same as the format of x-data, then cform command is

not necessary. Use of input subroutines written by the system manager is indicated

by 'xform m' command and no cform command is needed in that case either.

The directory for the files can be given by path command. Commands cdat, cvar,

ctran and cform can be given at any order before the data are read in by read

command or at first problem command.

34 Part 2 User's Guide

By default all cvar variables and output variables of the ctran transformations are

stored in memory and in '.cdj' file if data are saved in the JLP-format. If some of

these variables are not used in later problem definitions and there is a shortage of

memory, then you can define what variables are stored using keepc command. For

instance:

cvar ns,cl,-cloo

keepc ns,c6,-clo

X-variables

X-variables get new values when the treatment schedule changes. X-variables are

read from xdat files or made by xtran transformations. Command xvar tells what

are the in the xdat file. Constants, d-variables and c-variables can be used

in xtran transformations. An x-variable's' gets automatically the number of the

treatment schedule within the treatment unit. X-variables are used to define

constraints and the objective function for the linear programming problem.

Treatment schedules can be rejected using special 'reject' variable. If you have

'reject' among the xvar variables then all schedules with negative value of

'reject' are rejected. Schedules can also be rejected using xtran transformations:

xtran

if unit.eq.l.and.s .eq.3 then reject

if herbicides>o then reject

/

In the above transformations reject is in fact interpreted as 're ject = -l'. If

variable reject is read from the data, then its values can be changed in xtran

transformations. Rejected schedules remain in the data, and they can be accepted

again with new xtran transformations by giving value 0 to variable reject . For

instance, no schedules will be rejected after the following xtran paragraph:

xtran

reject=o
/

The format of data needs to be one of the following types:

xform * ! FORTRAN free format

xform b ! the data are in binary sequantial file
xform (10f5.2) ! FORTRAN format, all data are read in as real variables

xform m ! use input functions defined by the system manager

If xform is'm', then there need not be cdat or cform commands.

The directory for the files can be given by path command. Commands xdat, xvar,

xtran and xform can be given in any order before the data are read in by read

command or at first problem command.

lIP 35

By default all xvar variables and output variables of the xtran transformations are

stored in memory and in '.xdj' file if data are saved in the JLP-format. If some of

these variables are not used in later problem definitions and there is shortage of

memory, then you can define what variables are stored using keepx command

before the data are read. For instance:

xvar xl,-xloo

keepx x1,x6,-x2O

Selecting the type of a data variable

Functionally equivalent results can be often obtained by defining a variable as a

constant, d-variable, c-variable or For instance, assume that xtran

transformations include:

income=price*volume

If the same price applies everywhere, then the variable 'income' will get the same

values if variable 'price' is given a value within const command or within

dtran, ctran or xtran transformations. But with const the value of 'price' is

given only once while using xtran, for instance, JLP creates a vector having as

many elements as there are treatment schedules, and each element has the same

value. In large problems it is useful to keep variables at the highest possible level,

or at least above the jc-variable level.

It is possible that a variable with a given name belongs to two or more variable

levels simultaneously (e.g. the variable is both among cvar and xvar variables).

However, this will probably cause trouble if it is not carefully taken into account

how different variables get their values (see section 2.5.1).

2.5.3 Transformations

New variables can be created with transformations. The same transformation

compiler is used for dtran-, ctran- and xtran transformations and to interpret

domain specifications in problem definitions. Compiled transformations are fast to

compute.

Dtran transformations (transformations defined after dtran command) are

computed when the data file changes. Ctran transformations are computed when

the treatment unit changes. Xtran transformations are computed as the treatment

schedule changes. Transformations should (if their use can be anticipated) be

defined before the data are read in at the first problem command or using read

command. When data are read in, then ctran- and xtran transformation definitions

36 Part 2 User's Guide

are cleared (not dtran transformations). One can later define new transformations,

and these new transformations will be computed automatically when the next

problem command is encountered or when computation is explicitly required with

make command (both read and make are optional commands). The syntax of

transformations is similar to the FORTRAN syntax except that all functions must be

written in lower case. For instance:

xs=sin(x2**2+sqrt(log(x4-2)))
if (x3+x2=4 .or. sin (x3)>0.5) then ! outer parentheses are not necessary
x7=xs-7

else

x4=x3**2.2+tan(xs)

end if

Transformations are defined in dtran, ctran, and xtran paragraphs. If there are

old transformations (i.e. an xtran paragraph, for instance, is given for second time

before the transformations are actually computed), then new transformations are

appended to the old ones. One can clear all previous compiled transformations at

any time by entering 'transformation' clear. Ctran and xtran transformations

already computed and stored in the memory cannot be withdrawn. All previously

defined dtran transformations can be cleared. When defining new

transformations, existing variables can be used as output variables (the old values

will be replaced). Examples:

xtran

xl=o

/

prob ! after this we cannot recover what xl was earlier

If we had noticed before the prob command that we were accidentally zeroing ' xl'

we could prevented this:

xtran

clear

/

prob ! xl is what it used to be

Arithmetic operations

Standard **,*,/,+, and - operations are available. In addition there is an additional

"-operation for raising a variable to an integer power (internally all data variables

are REAL*4). For instance, (-1)"2=1 but (-I)**2 is undefined. Integer powers, when

applicable are faster to compute and are defined for negative arguments. The

hierarchy of operators is:

37 /LP

Supported FORTRAN intrinsic functions

abs(x) = absolute value of x

atan(x) = arctangent, result is in radians

cos(x) = cosine, x in radians

cosd(x) = cosine, x in degrees

exp(x) = exponential

int(x) = truncation to integer

log(x) = natural logarithm

loglO = log base 10

max(xl,...,xn) = largest value of x1,...,xn

min (x
1,...
 = smallest value of x1,...,xn

mod(xl,x2) = remainder of xl/x2

sin(x) = sine, x in radians

sind(x) = sine, x in degrees

sqrt(x) = square root

tan(x) = tangent, x in radians

tanh(x) = hyperbolic tangent

Additional functions

ran(x) = uniform random number between 0 and 1, with seed x

based on RANI-algorithm of Press et al. (1986, p. 196)

xl=swap(x2) = change values of xl and x 2

Own functions

As described in Chapter 4.7, the system manager can create transformations that can

be used in the same way as the predefined functions. The following function is

included as an example of a 'user defined function':

npv(interest_percent,incomel,timel,...,incomen,timen) = net present value

Logical operators

Following logical operators are implemented (below equivalent operators):

.gt. .It. .ge. .le. .eq. .ne. .and. .or. .not.

><>=<== &

Constant k

In transformations one can use rc with name '.pi':

User's Guide 38 Part 2

atd=9o*atan(x)/.pi ! arctangent in degrees

If
...
 then structures

Examples:

if unit=l then cost=cost+l ! one-line if, this is equivalent to:
if (unit.eq.l) then cost=cost+l

if data=south.or..not.(sitetype<3) then
cost=2

price=4
end if

if data=south then

cost=2

else

cost=2.7

end if

if data=south then cost=3

np=npv(3,100,0,200,3) ! this is computed always
then price=2 ! the previous test remains valid

diff=income.2-income.l ! there can be transformation between

else price=3

Note that unlike in FORTRAN, 'then' is necessary also in one-line if statement. No

nested if...then structures are allowed. After one if...then statement, the test remains

in effect and can be used in one-line 'then' or 'else' statements. No error will

occur if 'if...then...(else)' structure is not closed with 'end if', all statements after

'then' belong also in that case to the range of 'if...then'.

Loops

Transformations can contain simple loops. Examples:

out=o ! initialize out

%s:out=out+%xl !out= xl+x2+x3+x4+xs

%4:%z1=%xl + %yl !zl=xl+y2; z2=x2+y2
out2=o

%3:out2=out2+xl"% !out2=xl+xl"2+xl"3

out3=o

%3,2:out3=out3+%xl + % !out3=xl+l+x3+2+xs+3
%3: ! loop can contain several lines

tmp=%xl/% ! tmp=xl/1 ; tmp=x2/2 ; tmp=x3/3

%zl=tmp*%yl ! zl= tmp+yl ;z2= tmp
%end

Loops begin with '%«' where n tell how many times the loop is done. Character '%'

in front of a variable tells that the variable number is incremented at each iteration.

The default increment is one. If the loop begins '%n,i' then the increment is i.

Within transformations variable '%' gets values I,2(even if the increment iis

greater than 1, %-variable is incremented by steps of one). The variable numbers are

JLP 39

incremented without a reference to names of variables. Consecutive new variables

are created by const, xvar and cvar commands, and by dtran, ctran and xtran

transformations. For instance, let xvar command and xtran transformations be:

xvar x1,y1,x2,y2
xtran

out=o

%3:out=%xl

/

Then variable out gets value xl+yl+x2. One cannot create new variables within a

loop. New consecutive variables can be created using const command:

const outl,-out4

xtran

%4:%outl=%xl+%zl

/

If variables outl, -out 4 did not exist and were not created with const, then only

variable out 1 will be created properly.

If a %-loop of several statements is initialized and not closed properly, then

everything after the beginning of the loop is computed once (i.e. the loop is

ignored), and no error occurs.

2.5.4 Saving data in JLP format

Data can be stored in a special JLP-format. If the data exceed the memory

reserved, the initial part of the x-data is stored automatically in this format. The

data are saved if one uses the following command:

save filename

The exact effect of the save command depends where the command is given. If the

data are not yet read in, data are saved later at the time when the data are read at

problem or read commands. If the data have been already read in, then the data are

saved immediately. This makes a difference in case x-data exceed the memory. If

save command is not given before reading data, then a part of x-data (treatment

schedules) are written twice, first to a scratch file when reading data, and then to a

named file when saving data. New variables created during the session can also be

saved with save command. If new variables have been already created, then saving

is done immediately, in other case at the same time as new variables are created

with problem or make commands. Even if there are unsaved variables, the saving

can be postponed to the next time new variables are created by giving command in

form:

save/later filename

40 Part 2 User's Guide

When the data are stored, three files are created. A binary file filename.xdj contains

the *-data. Another binary file filename.cdj contains the c-data (variables describing

treatment units). A text (ASCII) file filename.sav contains const-, xdat-, keepx-,

keepc-, dtran- and unsave commands that are needed to read in data stored in

JLP-format. The file contains also the history of the file as comments. The saved

data can be read with command:

include filename.sav

The following example with the data used in section 2.3.1 shows that significant

savings in computer time can be obtained with saving data in JLP -format.

jlp>incl ex.in/*save: *

> «save

> xdat savo.xdb

> time

starting timing..
> read ! data can be read in with read command, this is not necessary

reading xdat-file: savo.xdb

reading cdat-file: savo.cda
number of calculation units, schedules: 433 12100

> time

elapsed: 27.00000 total: 27.00000

> save savo !saves data with JLP -format

**definitions saved in file: savo.sav

c-data saved in file: savo.cdj
x-data saved in file: savo.xdj

> init !get a fresh start

> time

elapsed: 6.617187 total: 33.61718
> incl savo.sav ! this will read in saved data

> ** saved data:*

> xform b

> ;# of units in files 433

> /total number of schedules: 12100

> /number of rejected schedules: 0
> unsave savo.cdj savo.xdj

> time

elapsed: 5.349609 total: 38.96679

jlp>

With save command the data are written to binary files with a special record

structure (see section save form in the reference manual). Data can be written to

disk with a simple record structure similar to the structure of xdat and cdat input

files using write command. This is needed, e.g., when transferring data in ASCII

files to a different computer system.

JLP 41

2.6 Problem Definition

LP-problems are defined in problem paragraph. One problem paragraph may

specify several RHS's, and which problem is actually solved depends on the solve

command. A problem paragraph consists of sections:

domainl:
...
 domainn:

constraint (or objective)

constraint (or objective)

Each domain in a domain specification line applies to all x-variables in the

following constraints.

2.6.1 Domains

If the domain consists of all treatment units, then the domain specification is given

as:

all:

If this is the first domain in the problem paragraph, the domain specification can be

omitted.

An ordinary domain specification is given by a logical statement determining when

the domain applies. The transformation compiler interprets a domain specification

in form:

if (domain specification) then (domain applies)

In the domain specification one can use constants, rf-variables and c-variables as

well as arithmetic operations, for instance:

data=south.and.(owner=private.or.sin(elevation)+altitude.gt.lo) :

(unit>2.and.unit.le:237).or.sitetype=wasteland :

Note that the colon is used to indicate the end of a domain definition. A domain

can consist even of a single treatment unit only. See section 2.7.2 for printing

domains, i.e., domains that are used to classify units only in the printing of an LP

solution.

2.6.2 Constraints

The form of a (utility) constraint line is either:

x-variable_list range_l / range_2 /
or

42 Part 2 User's Guide

coefl*varl+coef2*var2 + ..coefn*varn. range_l / range_2 /

Examples:

income.l,-income.s = 10000 />BOO <l5OO / >750

-yl+income.2 + 1.6*51-S2 - I.2B*Ll+L2 = 0 ! income.2 only is an x-variable

The list in the first alternative may contain several Variables

in the second alternative may be and z-variables, i.e. nonnegative

variables that are needed to define a linear programming problem. If the coefficient

is one, it can be omitted. Z-variables are always global, i.e., they do not relate to

domains. If domain specific z-variables are needed, they should be created explicitly.

For instance, if in a goal programming problem there are target levels for both savo

and karelia, then the problem paragraph should contain separate slack and surplus

variables for both domains:

prob
data=savo:

income.l -savosurplus.l + savoslack.l = 800000

data=karelia:

income.l -kareliasurplus.l + kareliaslack.l = 600000

/

RHS Range

A specification for a RHS range is some of the following types:

= 100

>lOO

<2OO

>lOO <2OO

<2OO >lOO ! equivalent to the previous one, no special order for '>' and •<'

The RHS's to be used when the problem is solved are selected with solve

command described in section 2.7.1.

Chapter 4.8 describes how the system manager can develop own methods for

generating RHS's. These methods can use the range specifications given in

problem paragraph as parameters.

2.6.3 Objective

The objective function and the type of the problem is given as follows:

coefl*variablel+coef2*variable2 +
...

 max

or

coefl*variablel+coef2*variable2 +
...

 min

43 JLP

If there were several domain specifications in the previous domain specification

line, the first domain applies. For instance:

problem
all: data=south: data=north

incomed.l,-incomed.s=o

presentvalue max
/

Now the domain for the objective variable is 'all:'

The objective row can be anywhere in the problem paragraph and it can belong to

any domain. It is not necessary to have objective row at all. If no objective function

is given, JLP just finds a feasible solution when it is asked to solve the problem (it is

possible to ask JLP to find a feasible solution even if objective function is included)

2.6.4 Using different domains on the same row

It is assumed that the on an objective or constraint row are all in the

same domain. For instance, if it is required that variable volume. 1 should be

equal in Savo and Karelia, then this constraint can be expressed as follows using

extra z-variables to define global domain specific

data=Savo:

savovolume.l-volume.l=o ! this defines volume.l in Savo as a global
! z- variable

data=Karelia:

kareliavolume.l-volume.l=o

savovolume.l-kareliavolume.l=o ! this constraint can be after any domain

! specification as it contains only global z-variables

2.7 Solution

2.7.1 Selecting the problem to be solved

JLP starts solving a problem when it gets command solve. If several RHS's are

given in the problem paragraph, then the appropriate RHS can be selected as

follows:

solve ! Solves the problem corresponding to first right-hand side,
solve 3 ! Solves the problem corresponding to third right-hand side.

! If for a constraint the are not 3 RHS's, the last one is used.

! If no constraint contains 3 RHS's, return to read new commands,
solve +1 ! Solves the problem corresponding to the next right-hand side.

! The RHS counter must be initilized with 'solve' or e.g. 'solve 5'

44 Part 2 User's Guide

If the number of ranges in a constraint line is less than the number of column

given in the solve command, then the last range is used. If no constraint line has

enough ranges, no problem is solved.

If the system manager has written an own subroutine to generate RHS's (see

Chapter 4.8), this subroutine is called when solve command is given with an option

starting with'm'. For instance:

solve/myown 3

If no objective function was given in the problem paragraph, solve will find a

feasible solution. JLP will find only a feasible solution even if the objective function

was included, if solve command is replaced with feasible command. The syntax

for feasible command is the same as for solve.

Timing comparisons are meaningful only if solve is given with option /i that

forces JLP not to use the previous solution as the starting point.

2.7.2 Printing options

This section describes JLP commands controlling how the solution is printed. An

interpretation of the shadow price and marginal cost variables printed is in the next

section (2.7.3), a mathematical description is given in Chapter 6.4. Chapter 4.10

describes how the system manager can write an own report writer.

Printing rows and x-variables

After solving a problem, JLP prints the solution (if printlevel>o). Values of rows

and z-variables are always printed. User can determine with show command what

else is printed. The same solution can be printed with different show options using

recall command. The format of the show command is as follows:

show(options) variable_list

The most important options are (see Reference Manual for more details, and how

to negate the following options):

/nox ! print no x-variables

/noxfirst ! print no x-variables automatically after solution,

! print x-variables information only with recall command

! as specified with other show options

/all ! print all x-variables (default)

/prob ! print variables used in problem

/cost ! compute cost of decrease and cost of increase for x-variables

(default)

/nocost ! costs are not computed
/int ! compute the integer approximation

]LP 45

/domains ! start paragraph that defines domains that are used when

computing x-variables (in addition to domains used in the problem)

/nodom ! do not use extra printing domains

The computation of cost of decrease and cost of increase of may take

quite a lot of time. As a rough approximation the time used to compute the values

of x-variables and costs is

(number of x-variables)*(number of domains)

number of rounds through units in optimization
x (°ptimizati°n time)

The main part of time is spent in computing costs (this part of the software is new,

currently it is not well optimized and tested). The user may wish that this

information is not computed. The purpose of /noxf option is to allow the user first

look the rows of the solution, and then get a more detailed output with recall if

the solution is interesting.

The integer approximation is computed so that only the schedule with largest

weight is applied in each unit. No integer optimization is done, and the integer

approximation does not generally satisfy the constraints.

The optional variable list in the show command tells what variables are printed in

addition to the variables appearing in the problem.

Section 2.3.4 contains an example of the use of show both with /dom option and

variable list. Another example:

show/nodom/dom !/nodom clears previous domains /dom tells that new ones follow

owner=private: ! remember colon

owner=public & site = wilderness:
/

Reprinting the last solution with other options

JLP prints the solution automatically after solving the problem using the current

show options except if /noxf option is in effect. If the show options are changed, or

if the printing parameters have changed, or if the user just wants to see the results

again, the solution can be printed again with recall command. If /noxf option is

in effect, then the current show options are used for the first time at recall .

Printing weights and shadow prices of schedules

After solving a problem, information about weights and shadow prices (marginal

values) of schedules can be printed using sched command. This command has the

following options:

46 Part 2 User's Guide

sched ! print all basic schedules (schedules used in the solution)
sched n ! print at most n schedules

sched/all ! print also values of nonbasic schedules
sched/all n ! print at most n schedules

sched/a11>95 ! print all schedules whose shadow price > 95% from the

! value of the basic schedules of the unit

sched/a11>95 n ! print at most n schedules

Example:

jlp>sched 100
value% of unit: % is from sum of unit values 33459072.9

unit value% sched % sched %

1 0.217174 8 100.0000

2 0.208857 4 100.0000

3 0.015557 2 100.0000

82 0.187835 40 100.0000

83 0.262362 21 58.80239 27 41.19760

84 0.176998 16 100.0000

85 0.074584 4 100.0000

86 0.198073 3 100.0000

87 0.162058 17 100.0000

88 0.153418 2 67.96054 3 32.03945

89 0.112786 1 100.0000

The unit and sched columns tell the unit number and schedule numbers for basic

schedules. The '%' column is the weight of the schedule multiplied by 100. There

can be several basic schedules in a unit. The value% column tells how many per

cents is the shadow price of the unit from the sum of shadow prices of all units.

Thus the value! column adds up to 100. The shadow price of unit 1 in the example

is 0.00217174*33459072.9 = 72664.4.

The printing format is different with the sched/all option:

jlp>sched/a11>99.5 150
unit sched value% of s share% value% of unit

1 8 100.0000 100.0000 0.217174

2 4 100.0000 100.0000 0.208857

6 2 100.0000 100.0000 0.068647

7 1 100.0000 100.0000 0.026881

8 2 99.92227 0.011231

8 4 100.0000 100.0000

9 1 100.0000 100.0000 0.184652

83 12 99.55764 0.262362

83 21 100.0000 58.80239

83 27 100.0000 41.19760

This option prints all schedules on separate lines. The share% column is the weight

of the schedule multiplied by 100 (= % column in the first format). The column

'value% of unit' tells how many % is the shadow price of the unit from the sum

of shadow prices of all units (= value% column of the previous format). Column

'value% of s' tells how many percent the shadow price of the schedule is from

47 JLP

the shadow price of the unit. This is at least as great as the specified printing limit.

For all basic schedules this figure is 100. For rejected schedules, the'value% of s'

may be over 100. For instance, let us solve the same problem as above after

transformation:

> xtran

>if unit=2.and.s=4 then reject ! this was a basic schedule above

> /

We will then get a slightly different solution and:

jlp>sched/a11>99.5 80
value% of unit: % is from sum of unit values 33458479.3

unit sched value% of s share% value% of unit

1 8 100.0000 100.0000 0.217178

2 3 100.0000 100.0000 0.207087

2 4 100.8566 rejected
3 2 100.0000 100.0000 0.015557

2.7.3 Marginal analysis of the solution

The dual problem of an LP problem can be used to analyze marginal changes of the

objective function caused by slight modifications of the original problem. Chapter

6.4 describes in more detail the mathematical basis of the marginal (dual) analysis of

the problems solved by JLP. This section indicates how to interpret the marginal

price information JLP computes.

A marginal change of the objective function has the following meaning. Assume

that a constant in a problem has value £, and the objective function has the value

zq. If zo+ is the value of the objective function when the problem is solved replacing

constant with a new value £+e, then (zo-zo+)/eis the marginal change in the

objective function. In linear programming, (zo-zo+)/e is independent of e provided

that e is so small that the current basis does not change. The marginal changes of

the objective function may be called, depending on the context, marginal prices, or

shadow prices, or reduced costs. In forest management planning problems where

both the number of treatment units and the number of simulated schedules are

relatively large, and the schedules follow the same logic of forest growth, the

marginal prices may change quite little even if the basis will change.

Shadow price of a utility constraint

The shadow price of a constraint is the marginal change of the objective function

when the RHS of the constraint is increasing. The effect of decreasing the constraint

is the opposite. JLP prints automatically the shadow prices of the utility constraints.

The shadow prices are for the lower or upper bound depending which one is active

48 Part 2 User's Guide

(character 'L' or 'a' indicates this in the printed solution). Note that for an equality

constraint (lower bound and upper bound are equal), either the lower or the upper

bound is active. The following table shows how the sign of the shadow price (n) is

determined:

The signs can be heuristically inferred as follows. If the lower bound is active, then

increasing the lower bound will make the constraint more restrictive, and the

objective function will become worse, i.e., smaller for maximization and greater for

minimization.

The shadow price of the objective row is set to be one. This is in accordance with the

equivalent problem formulation where the objective is always to maximize z0

subject to the constraint that

zo - (the initial objective row) = 0.

The shadow price of this constraint would always be one.

Shadow price of an

The shadow price of an xk is the shadow price of the constraint (1.3) or

(1.10) that defines xk as a sum over schedules. A natural way to interpret the

shadow price of an jc-variable is that it is the marginal utility of a unit of the x

variable obtained from other sources and used for satisfying the constraints of the

problem. Alternatively, marginal change in xk may result from a marginal change

in a coefficient x'[of a basic schedule j in unit i.

The shadow price nk of xk can be expressed in terms of the shadow prices of the

utility constraints as follows (see Chapter 6.4):

where a tk is the coefficient of xk on row t and k, is the shadow price of constraint t.

r

Vk = °ok -^, atk n
t (2-1)

I=l

active bound

the objective function is
maximized minimized

lower bound 71 <0 71 > 0

7t>0 71 < 0

no active bound O II t=! O II K

49 /LP

Note that if xk is present only on one row t and with coefficient one (e.g. the

constraint is like: f inal_volume > 1000), then

i.e., the marginal changes in the objective function are opposite if we get an extra

unit of quantity k from outside or if we require that the treatment units produce

one unit more. If xk does not have a nonzero coefficient in any binding utility

constraint, its shadow price is zero (which is not printed).

When interpreting the shadow prices of x-variables, it should be kept in mind that

effect of an extra unit of xk obtained from another source is taken into account only

through the explicit constraints and objective function. No implicit meaning or

implications are taken into account. For instance, in the example in section 2.3.1,

the net present value variable npv.O was maximized subject to smoothness

constraints for incomes:

> prob

> income.2-income.l>o

> income.3-income.2>o

> income.4-income.3>o

> income.s-income.4>o

> npv.o max

> /

The shadow prices of incomes were:

x-variable shadow

price

income.l
....

 -0.2052712

income.2
....

 -0.0094556

income.3
....

 0.12518680

income.4
....

 0.04850047

income.s
....

 0.04103964

This does not really mean that keeping the problem unchanged, the net present

value would decrease if we will get more income during first period. But the

problem formulation did not express the direct effect of income to present value.

Extra income during first period would be just used in constraints, and in this case

extra unit of income . X would make the constraints more difficult to satisfy. But we

can change the objective function to take into account the direct relation between

income and present value (3% interest rate, 10 year subperiods, incomes in the

middle of subperiods, income variables are per year incomes):

> prob

> 0.228107*npv.5 + 2.644 386*income.5 + 3.55383*inc0me.4 + >
> 4.7760557*inc0me.3 + 6.4186195*inc0me.2 + 8.6260878*inc0me.1 max

> /

Vk=~n„ (2-2)

50 Part 2 User's Guide

Note that 0.228107=1/1.0350
, 2.644386= 10/1.0345 , etc. If JLP solves this problem, the

same solution is obtained but, the shadow prices will be (shadow prices are divided

by 10 to transform the per year scale of incomes to absolute scale) :

x-variable shadow

price/10

income.l
.

.

.
 0.842081784

income.2
.

.

.

 0.640916123

income.3
.

.

.
 0.490124112

income.4
.

.

.

 0.360233488

income.s
.

.

.

 0.268542446

Thus 1 mark of income after 5 years will increase npv. 0 by 0.842 marks. Price 8.42 is

smaller than the coefficient 8.63 of income . l in the definitions of npv. 0. This is in

accordance with the fact that the shadow price of income . 1 in the first formulation

was negative.

The shadow prices of incomes can further be converted into interest rates as follows

(see e.g. Lappi and Siitonen 1985). Let Tit be the shadow price of income at time t,

and let rt then the internal rate of interest, it, between land /+1

is i, = r)
,d

 -1. The internal rates of interest computed from the above shadow prices

are:

The information obtained with the second objective function can be computed

from results obtained for the first objective function. These relations will not be

developed further here. The purpose of the above example of the analysis of

shadow prices is to emphasize that the solution of a linear programming problem

can be properly interpreted only if the basic properties of linear programming are

understood.

Cost of decrease or increase of an x-variable

The optimal solution provides weights w,y that can be used to compute the value of

an aggregated x-variable xk as

The options of show command determine what x-variables are computed. Let

denote the value thus obtained. If we add a constraint that requires that xk should

have a value different from £*. the objective function will generally change (even if

the shadow price of Xk would be zero).

»O! = 3.5%, in = 2.8%, i 23 = 2.7%, i 34 = 3.1%, /45 = 3.0%

m H,

xk=^L'L xk w
ij

i=\j=\ (2.3)

lIP 51

The cost of decrease tells how many units the objective function will change if xk is

required to decrease by one unit, and the cost of increase tells how many units the

objective function will change if xk is required to increase by one unit. The costs are

expressed as positive values, so for a maximization problem, the cost is marginal

decrease and for a minimization problem, a marginal increase in the objective

function.

It may be that when a constraint is added that requires that xk deviates from the

observed value the resulting problem is infeasible. The corresponding cost can

then be defined to be infine. Thus the 'inf' printout of JLP can be interpreted

either as 'infinite' or 'infeasible'. If the objective row in a maximization problem

consists of a single x-variable, the cost of increase for that variable is automatically

infinite.

For a basic xk (i.e., xk appears in a binding constraint or on the objective

row) the cost of decrease or increase is mathematically related to the shadow price of

the variable but it is equal to the shadow price only in special cases (generally only

when xk appears alone on one row). The cost of changing the value of xk and the

shadow price of xk are based on different concepts of 'changing the problem

slightly'. In the former analysis a constraint is added, and the latter analysis a

constraint is modified. The cost of changing the value of a nonbasic may

be easier to interpret than the cost of changing the value of a basic jc-variable. For a

basic x-variable, the interactions of the additional constraint with the original

constraints may not be self-evident.

Reduced cost of a nonbasic z-variable

The reduced cost of a nonbasic z-variable tells how many units the objective

function will change if the z-variable is forced to increase by one unit (from zero).

These costs are always printed (if printing is allowed at all).

Shadow price of a treatment unit

The shadow price 5, of the area constraint (1.4) or (1.11) for unit i is called the

shadow price of the treatment unit i. If the area of unit i would increase by a%, then

the change in the objective function would be aS-J 100. The increase of the area by

a% means that the coefficients for all k and for all schedules j in unit

i are increased by a%. Marginal changes in the nonbasic schedules do not really

have effect on the optimal value of the objective function, but it is easier to think

that all schedules are changed.

52 Part 2 User's Guide

The analysis of the dual problem reveals that the value of the objective function is:

where c* is the active bound (either c, or Ct
).

Thus the shadow prices of the units do not generally add up to the solution. If the

shadow price of a unit is negative in a maximization problem or positive in a

minimization problem (and the unit is so small that the marginal analysis is valid),

then a better solution would be obtained without the unit (thus the unit should be

immediately sold to someone who does not understand linear programming).

The shadow price of a treatment unit is equal to the shadow price of any of the basic

schedules in the unit.

Shadow price of a treatment schedule

The shadow price of a schedule is not really a shadow price of a constraint in the

problem. The shadow price schedule j in unit i is here defined as:

For all basic schedules Ay is equal to <5,, the shadow price of unit i. For a nonbasic
schedule j, the difference 5, - X,j is the marginal (reduced) cost of forcing schedule j

into the solution. For a minimization problem, the cost computed as Ay -8t would

express the cost as a nonnegative quantity (costs are assumed here to be always

positive)

2.7.4 Input parameters of the optimization

There are some parameters that determine how the optimization is done. The

current values can be seen with parin command. Thereafter new values can be

given in format 'parameter=value', and parin paragraph is ended with '/'. For

instance:

z0 = Z<s' +X c<\' (2.4)
I=l I=l

h = i>*4' (2.5)
*=l

JLP 53

jlp>parin

start_mode 0.0000 o=norm l=cont old 2=ffeas

start_unit 0.0000
maxvisit 0.0000

invert 100.0 after given # of changes of basis
tracel 0.0000 step # to start

trace 2 0.0000 step # to stop
tole 1.000 coefficient for tolerances

wmin 0.0000 = 0 change basis as you can , else =1

parin>invert=2oo

parin>/

jlp>

The user may wish to modify following parameters (other parameters are needed in

tests). Note that if the effect of different options on the optimization time is studied,

then solve command should be given in form solve/i so that optimization starts

always from equal situation (otherwise the key schedules of the previous problem

are used as the starting point).

invert

The basis matrix is reinverted after invert changes in the basis. Default for invert

is 100. A reinversion of the basis takes time but it will remove rounding errors

accumulated during the stepwise changes of the basis. After finding a solution, JLP

inverts the basis if the basis has changed more often than 10% of the value of

invert.

wmin

If wmin=o, then JLP enters a variable into basis even if its value will become zero

(i.e. the variable will be a degenerate basic variable). If wmin=l
, then variables with

value zero are not entered. Changing the value of wmin may help if there are

problems in the optimization (see Chapter 5.3)

tole

JLP tries to figure out what is the range of rounding errors. If the estimated

tolerance is too small, JLP may get into trouble in computations. If the estimated

tolerance is too large, JLP may fail to reach the solution (the obtained solution is

anyhow reasonable, but not necessarily optimal). The tolerances estimated by JLP

are multiplied by parameter tole. This way the estimates can be corrected, if JLP

runs into trouble or if the user feels that JLP does not find the optimum. See

Chapter 5.3 for more information.

54 Part 2 User's Guide

2.7.5 Output parameters of the optimization

JLP collects information about different steps of the optimization. The summary

statistics can be seen with parout command. For instance:

jlp>parout

nonfeasible constraint 0.

unit last visited 69.

rounds through units 15.

improvements in units 1839.

changes of key schedule 988.
w enters 1005.

slack/surplus enters 192.

z enters 0.

w leaves 993.

slack/surplus leaves 204.

z leaves 0.

basis changes 1197.

changes after reinversion 0.

reinversions of the basis 12.

55 JLP

3. REFERENCE MANUAL (FILE jlp.hlp)

The up to date reference manual is stored in file jlp.hlp which is also used by the

on-line help. With help command, JLP lists all lines starting with With 'help

key ' command, JLP lists the entry between '*key' and Changes made after the

printing of this manual will be indicated by '##' in file jlp.hlp.

Current modules are:

�batch *buff *buflevel *cdata »cform *command line »constants

*ctran *cvar *dir *do *domain *dtran »duplicate *end *end do

(enddo) »feasible »files »help »helpfile »include »init

»integer approximation »keepc »keepx »list »make »mela »mrep

»outfile »outlevel »ownread »onni »own2 »parin »parout »path

»pause »printlevel »problem »read »recall »reject »report »save

»saveform »schedules »show »solve »split »system »time »title

»transformations »unsave »values »variables »write »xdata »xform

»xtran »xvar

The current help file is listed below:

** file jlp.hlp ***

(SYS.DEP) = the property is system dependent (see Part 4 for details)

(not cmd) = the keyword is not a JLP command

*batch - JLP is running in batch mode.

Use as first command in batch mode. In batch mode, the run is terminated with

fatal errors, and prompts are not printed when reading commands.

*buff - (SYS.DEP.) Calls user written interface subroutine 'buff'.

'Buff' can be used to make an interface that sends commands to JLP and reads

and interprets the results. The subroutine template provided with JLP just

prints the output buffer (controlled by 'buflevel') and reads commands from

the terminal.

see also: buflevel, ownr, Chapter 4.11

«buflevel -(SYS.DEP.) Gives the amount of output send to the output buffer.

Osage: bufl i ! i= 0, 1, 2, Larger values of i indicates more output to

the internal output buffer:

Reference Manual 56 Part 3

0 = no output (default)
1 = only solution and problem definition

2-8 more and more output

Use only if your own routines have the full control. If buflevel is given

negative value, then the subroutine 'ownwri' is called for each line to be

printed. A template for 'ownwri' is given in file 'jlpint.src'. Currently the

optimization algorithm prints information about how the optimization proceeds

only to the terminal.

see also: printlevel, outfile, outlevel

*cdata - Defines the names of the c-data files.

Usage: cdata filel,...,f ilen

It is recommended that names of text (ASCII) files end with ".cda", and names

of binary files end with '.cdb'. (Files saved in the JLP-format end with

'. cd j'.) During reading, JLP adds the directory specification given by 'path'

command to the names. If 'xform=m' is in effect, then the user subroutines may

or may not utilize the names in cdat command (SYS.DEP.).

see also: xdata, save, cvar, path, xform

*cform - Defines the format of the c-data.

Usage: cform form ! where

form = * if c-data can be read with FORTRAN '*' format

b if c-data are in binary files
(8f10.0) any FORTRAN format

If cform is not given, JLP assumes that cform is the same as xform. All

variables given in 'cvar' are read with one FORTRAN read statement. If xform=m

then cform is also assumed to be 'm' (i.e. cform command is not used to

determine what subroutines JLP calls, it can be used to carry information to

data access subroutines (SYS.DEP.)).

see also: cdata, cvar, xform

�command line (not cmd) - Syntax of a command line.

A command line can contain spaces and tabs. The 'command' in a command line is

the initial nonblank part of the line. Commands must be in lower case. If the

last character of a line is '>' then the logical command line continues to

the next physical line (record). Commands can be read from terminal (or input

stream in batch mode) or from files using 'include' command. Command line

starting with '*', '!', or ';' are comments, and the rest of line following

'!' is also a comment. If a file or a part of file is included using 'list'

command, then all lines are treated as comments. Names of commands are checked

as long as the name is uniquely determined (usually four characters are

significant). The rest of the command name is ignored. In options (e.g.

JLP 57

'/all') usually only the first character is significant, except for the

negations '/nooptio' where usually three characters are significant (i.e.

'no' + the option character). The '/' options must follow command name without

a space. If the significant part of a name is longer than usually, it is

indicated in this help file. A paragraph is section of command lines starting

with command and ending with '/' (e.g. problem paragraphs and transformation

paragraphs). Note: 'show' command starts a paragraph only with '/dom' option,

see also: include, list, help

�constants - Gives values for (constant) variables.

Usage: variable_list= value_list ! These constants can then be used in

transformations. F.xampl e •

const pricel,-price4=2,2*3.1,4

If dtran-, ctran-, or xtran- transformations calculate sums over data files,

units or schedules, initial values (usually zeros), can be given with 'const'

command (or using appropriate 'if ... then var=o' transformation). Current

values of constants (or any variables) can be seen with 'values' command. Xdat

creates automatically constants from the file names given in 'xdat' command,

see also: values, variables, xdat

*ctran - Starts paragraph defining transformations made for c-variables.

Ctran-transformations are made in order to get variables that can be used as

parameters in xtran-transformations or to define domains in problem

definitions. The default is that all output variables are stored. If not all

output variables need to be stored, then variables stored when data are read

in are given in 'keepc' command, and output variables to be stored in later

transformations should be given in 'make' command.

Examples:

ctran

if distance.gt. 200 then
harvestcost=2

else

harvestcost=l.s

end if

/

see also: transformations, xtran, make, keepc

*cvar - Defines c-variables that are read from cdat files.

Usage: cvar variable_list ! Cvar list must include at least 'ns' which tells

the number of schedules in each file. The default is that all cvar-variables

are stored in cmat matrix. If only a subset needs to be stored, the stored

variables are given with 'keepc' command.

Example:

cvar cl,-c6,ns

58 Part 3 Reference Manual

see also: keepc, xvar, variables

*dir (not cmd) - How to define directory for input data?

Directory of data files can be given with 'path'

see also: path, files

*do - Starts a loop.

A loop ends with 'end do' or 'enddo'.

Uaana:

do n

(commands)

end do !or enddo

F.xampl e :

solve ! The RHS counter must be initialized before using 'solve +l'.
do 10

solve +1 ! If there are not enough RHS's, iteration terminates
! without error.

end do

�domain (not cmd) - Subset of units used in problem or report.

A domain is a subset of units that can be defined with d- and c-variables.

Domains can be used in 'problem' paragraph or in 'show/domain' paragraph.

Examples;

data=Savo 4 owner=private:
unit=23:

all:

see also: problem, show, variables

*dtran - Starts a paragraph defining transformations made for d-variables.

O.saye:

dtran

(transformations)

/

Dtran-transformations are made in order to get variables that can be used as

parameters in ctran- or xtran-transformations or to define domains in problem

definition. When data are read in, dtran-transformations are made always as

JLP starts reading new cdat- and xdat- files. In later transformations, JLP

remembers the original file sturucture, and dtran-transformations are made

when first unit of a cdat- and xdat- file is in turn. Dtran-transformations

remain in effect also when using data saved in JLP format. The automatically

created 'data' variable can be used in transformations.

Examples:

dtran

if data=NorthKarelia then harvestcost=2

else harvestcost=l.s

/

JLP 59

If you have given xdat-command 'xdat north.xda, south.xda' you can make dtran

transformations as:

if data=south then ...

Output variables of dtran-transformations are not stored anywhere, they are

just computed again when needed, and new transformations are appended to

previous ones. All dtran transformations can be cleared (unlike computed ctran

or xtran transformations) as follows:

dtran

clear

/

see also: xtran, transformations, variables, xdat, save

�duplicate - Defines transformations describing duplication of schedules.

ITsacie:

dupl

(transformations)

/

If dupl- transformations determine a nonzero value for variable 'duplicate' in

a schedule, then JLP makes that many NEW copies of the schedule. The total

number of copies will thus be duplicate+l. Thereafter JLP makes xtran

transformations for each copy. Before computing xtran-transformations, JLP

assigns the number of the copy (starting from zero) to the variable

'duplicate'.

Example:

dupl ! duplicate all schedules with clearcutting during first period
if clearcut.l.gt.o then duplicate=l
/

xtran ! separate manual and harvester clearcuttings
if clearcut.l.gt.o .and. duplicate=l then

manpower=lo*cutvolume.l
harvestertime= 2.s*cutvolume.l

else

manpower=7o*cutvolume.l
harvestertime=o

end if

/

Thereafter there can be problems with constraints for manpower and

harvestertime even if original data did not separate the two harvest method.

*end - (SYS.DEP.) Return to the main program.

The standard main program prints the output buffer, and stops. In user JLP

implementation 'end' can be used to get the control to interface level.

*end do or enddo - End of the do loop

see also: do

Reference Manual 60 Part 3

�feasible - Finds a feasible solution.

The syntax for selecting RHS is the same as for 'solve'. If the solution is

thereafter asked with 'solve' command, JLP starts directly from the feasible

solution. If no objective was defined in 'problem' paragraph, JLP finds a

feasible solution also with 'solve' command,

see also: problem, solve

�files (not cmd) (SYS.DEP.) - Opening of old or new files.

The way new files are created is determined by SLIST and SVERSIONS options in

file jlp.par. The SLIST option determines the carriage control keyword used

when opening output ASCII files. If SVERSIONS option is set, then JLP adds a

■_(nro) 1 -version number when opening a new file with the same name as an

existing file. SREADONLY option specifies an possible nonstandard keyword

when opening existing files for reading. See file jlp.par for more details.

*help - How to get on-line-help?

Usage: help ! List lines in this help file.

help keyword ! List the help module for keyword. Keywords that are not

commands are followed by (not cmd). A keyword must be written so far that it

can be uniquely determined (first match is always printed). Modules or

features that are dependent on the implementation of JLP are indicated by

(SYS.DEP.). The system manager should edit these modules. If the significant

part of the command is longer than 4 characters, it is indicated.

Current commands (significant part underlined):

batch buff buf level cdata cform

const ctran cvar do dtran

dupl end enddo feasible help

helpfile include init keepc keepx
make mrep outfile outlevel ownl

own 2 ownread parin parout path

pause printlevel problem read recall
report save sched show solve

split system time title unsave
value s write xriata xform xt ran

xvar

(SYS.DEP.): ownl and own 2 are replaced by commands given in jlp.par.

help is equivalent to: list/all jlp.hlp/*

help key is equivalent to list jlp.hlp/*key:;

see also: helpfile, command line, list

*helpfile . - Changes the help file.

Usage: helpf file !(5 characters required: 'helpf') New helpfile is 'file'.

The default is jlp.hlp. Command 'helpf' without file makes jlp.hlp the current

/LP 61

help file. The help file contains cells starting with '»keyword' and ending

with The user can freely edit the help file,

see also: help

�include - The command interpreter will read commands from a file.

Usage:

include filename ! The whole file is included

incl f ile/addrl:addr2 ! The first line included starts with addrl

! and the last line included starts with addr2.

incl file/addr ! Only the line starting with addr is included,

incl/all f ile/addrl:addr2 ! All matching sections are included,

incl/a file/addr ! All lines starting with addr are included,
incl ?opt.sav ?opt.def ! If file 'optdat.sav exists then include it.

! If it doesn't, include opt.def.

Include-files (including list-files) can be nested to 6 levels.

see also: list

*init - Gets a fresh start.

�integer approximation (not cmd)

If '/integer' option of the 'show' command is in effect, JLP computes the

values of x-variables resulting when for each unit only the schedule with

largest weight is applied,

see: show, recall

*keepc - Defines c-variables to be stored in memory when reading data.

Usage: keepc variable_list ! (5 characters significant: 'keepc').

When data are read in, the default is that all cvar-variables (variables read

from cdat-files) and output variables of ctran-transformations are saved in

the memory. If only a subset of those variables are needed, give them with

keepc-command. See 'make' for storing output variables of ctran

transformations defined after reading data,

see also: cvar, make, variables

*keepx - Defines x-variables to be stored in memory when reading data.

Usage: keepx variable_list ! (5 characters significant: 'keepx')

When the data are read in, the default is that all xvar-variables (variables

read from xdat-files) and output variables of xtran-transformations are saved

in the memory. If only a subset of those variables are needed, give them with

keepx-command. See 'make' for storing output variables of xtran

transf ormations defined after reading data,

see also: xvar, make, variables.

»list - Lists files or parts of them.

62 Part 3 Reference Manual

List will be used exactly as include-command except all lines are treated as

comments.

Usage:

list filename ! The whole file is listed

list file/addrl:addr2 ! The first line listed starts with addrl

! and the last line listed starts with addr2.

list file/addr ! Only the line starting with addr is listed,
list/all file/addrl:addr2 ! All matching sections are listed,

list/a file/addr ! All lines starting with addr are listed.

Short headers of source files (e.g. jlpsub.src etc.) can be listed as follows:

list/all jlpsub.src/*=:**

Longer headers can be listed:

list/all jlpsub.src/*=:***

The short header of a named module (e.g. 'ilfind') can be listed:

list jlpsub.src/*=ilfind:**

On line help is implemented using 'list' command,

see also: include, help

*make - Makes new variables when data are already read in.

Usage:

make ! Make all defined new variables,

make variable_list ! Make only variable_list variables.

New variables are defined in ctran- or xtran-transformations. The default is

that the output variables of transformations defined after reading data are

stored, except special x-variables 'split' and 'duplicate'. If no

variable_list is given, all new output variables are stored. Variable_list

should contain both c- and x-variables that are needed later. If all new

variables are stored, then 'make' is not necessary: new variables are

automatically created at 'problem' or 'solve' commands,

see also: dtran, ctran, xtran, keepc, keepx, save

*mela (not cmd) - MELA/ JLP relation.

For JLP, Mela is an implementation of the special data format 'xform m', and

report generator implemented behind command 'mrep' or option 'show/mrep'

command. For more information, consult Markku Siitonen, The Finnish Forest

Research Institute.

*mrep (SYS.DEP.) - Calls user's own special report writer.

If JMAKE option S MREP in jlp.par is in effect, JLP calls subroutine 'mrep'. If

option 'show/mrep' is in effect, then report is always generated with this

generator instead of the standard report writer. For JLP, user report

generators 'report' and 'mrep' work exactly in the same way. It is intended

63]LP

that 'report' could be a general report writer and 'mrep' a report writer

associated with 'xform m'.

see also: show, recall, solve, report

*outfile (SYS.DEP.) - Opens (or closes) a file for additional output.

Usage: outfile File ! Open output file 'File'

outfile ! Close the current output file.

Depending on the SVERSIONS option in file jlp.par, file may be opened with

version number added to the name. Option:

outf/s ! (SYS.DEP.) Additional output is written to unit NUOUT defined in

jlp.par without opening the file first. It is assumed that the file is/will be

opened by the operating system or the main program,

see also: outlevel, printlevel, write, files

*outlevel - Amount of output to be written to outfile.

Usage: outlevel i ! where i is:

0 = no output to outfile (default)
1 = only solution and problem definition
2 - 8 = more and more output

The outlevel-parameter works exactly as printlevel-parameter, except currently

the optimization algorithm prints information about how the optimization

proceeds only to the terminal (controlled by 'printlevel').

see also: outfile, printlevel, buflevel, buff

*ownread (SYS.DEP.) - Replaces terminal input with an own subroutine.

When JLP would normally read commands from input terminal, it will instead

call the user subroutine ownrea. Input from include files is not affected.

This may be useful when building an own interface,

see also: buff, buflevel

*ownl (SYS.DEP.) - Executes a user defined command.

When getting a command with a name given in SOWNI option in jlp.par, JLP will

call user subroutine ownl that may do something useful,

see also: own 2

*own2 (SYS.DEP.) - Executes another user defined command.

Command name is given in SOWN 2, and subroutine own 2 is called,

see also: ownl

*parin - Lists and defines input parameters of optimization.

JLP lists first current parameters. Thereafter JLP expects a paragraph

defining new values for input parameters of the LP-algorithm. User may wish to

change the 'invert' parameter that tells how often the basis is reinverted.

64 Part 3 Reference Manual

Other parameters are of interest when there are difficulties in the

optimization.

F.xampl e.s :

parin
invert=2oo ! reinvert the basis after 200 changes.

/

parin
/ ! List only parameters, 1 /' ending the paragraph is necessary,

see also: parout

*parout - Lists output parameters of the JLP optimization algorithm.

The output parameters are related only to the technical details of the

optimization.

see also: parin

*path - Defines directory for input data files.

Usage: path directory ! Directory is added to cdat-, xdat-, and unsave

file names. Note that command line

path <inventory.dat>

means that the command line continues to the next line. The command line ends

where it is intended if '!' is put to the end of line:

path <inventory,dat> !

If JMAKE option SREADONLY is properly defined in jlp.par, the directory can

belong to another user who has granted reading rights (SYS.DEP.)

see also: xdat, cdat, unsave

*pause - Pause until <ret>.

May be useful for following the program flow when commands are read from

include files. Has no effect in batch mode,

see also: batch

*printlevel - Determines the amount of printed terminal output.

Usage: printl i ! i= 0 or 1 or 2 or Larger values of i indicates more

output:

0 = no output
1 = only solution and problem definition
2-8 more and more output

see also: outlevel, outfile, buflevel

�problem ! Starts problem definition paragraph.

F.xamnl es :

problem

xl>o / > 110 />2OO />3OO ! defines several lower bounds

x2>o / >l2O <2OO ! both upper and lower bound
x3+2*xl-x3 >0 / >l3O ! linear combination of x-variables

65 JLP

zvar-2*x3=o ! zvar is a z-variable

x4=o / =l4O

xs>o / >l5O

x6-x2 max ! objective row, max or min

pml=l: pml=2: !defines domains for the following constraints

xl,-x3, x 5 =0 /=IOO ! the constraint can be defined for a variable list

/ ! End of problem definition.

The domain specifications can be made using constants, d- and/or c-variables.

There can be any number of domain specifications, domains need not be

hierarchical. Either object variable or constraints may be missing. If there

is no object variable, JLP just finds a feasible solution with 'solve'. The

objective row can be anywhere. If the problem is solved with 'solve/m', then

the user subroutine 'next' is used to compute actual RHS (SYS.DEP.). NOTE:

After reading, a problem paragraph, JLP computes the smallest and largest

possible value for each row. Thus 'problem' can be used to compute the range

of x-variables without solving the problem,

see also: solve, feasible, variables

*read ! Reads data.

JLP reads data automatically at 'problem' command if data are not yet ready.

Before reading data you must give xdat-,xvar-, cdat-, cvar- commands, and

ctran- and xtran- transformations, if needed,

see also: keepc, keepx

*recall - Prints again the last solution.

If you have made new variables and/or you have used commands 'printlevel',

'outlevel', 'buflevel' or 'show' then you will get more or less output than

when you solved the problem. If option 'show/noxf' is in effect, the other

options of 'show' are used only with 'recall',

see also: printl, outl, bufl, show

*reject (not cmd) - Rejecting schedules in the optimization.

Example:

xtran

if unit.eq.2.and.s .eq.3 then reject ! Reject schedule 3 in unit 2.
if herbicide>o then reject ! Reject schedules using herbicides.

/

Rejected schedules are ignored in the optimization, they are not deleted from

the data. Rejection of schedules is implemented with a special variable

'reject' which gets value -1 for rejected schedules and value 0 for accepted

schedules. If schedules are rejected for the first time during the session,

the default is that all schedules are accepted. If schedules have been

rejected earlier during the session, and later xtran-transformations define

rejections, then the schedules rejected earlier remain rejected unless the new

66 Part 3 Reference Manual

xtran-transformations specify the acceptance explicitly by giving value 0 for

the variable 'reject'. Example:

xtran

reject=o ! Cancel earlier rejections.
if biocontrol>o then reject ! Reject schedules with biological weed control.

/

It is possible define constraint that a variable needs to be always e.g. zero

using a constraint in the problem paragraph, e.g.:

problem
herbicide=o

Rejection with 'reject' is computationally more efficient.

�report ! (SYS.DEP.) Calls own general report writer.

Calls subroutine 'repo' provided by the system manager. If option 'show/repo'

is in effect, then report is always generated with this generator,

see also: mrep

*save - Saves the data in JLP format.

Usage: save File ! If file is not given, JLP uses name:'jlpsave'. If there

are unsaved data, then data are saved immediately. If the data are not yet

read in or are already saved, then saving is done when reading the data or

creating new variables.

Options:

save/later ! If there are unsaved data, the saving is done after the next

transformations. This may be useful when the data exceed the memory reserved

so that JLP knows to write the data directly into a named file instead of a

scratch file.

Save makes 3 files:

file.xdj = x-data file

file.cdj = c-data file
file.sav = the text file containing data definitions.

The saved data and all definitions can be read in using: 'include file.sav'

see also: write, saveform

*saveform (not cmd) - The JLP format of saved files.

The file file.sav contains const-, xdat-, keepx-, keepc-, dtran- and unsave

commands that are needed to read in data stored in JLP-format. The file

contains also the history of the file as comments.

The first record of file.cdj is:

ml, nht,maxrec,nfiles, (mil(i),i=l,nfiles) ,

where

ml = the total number of units

nht = the total number of real*4 variables in xdata

lIP 67

maxrec = all records in file.xdj and file.cdj contain less than

maxrec numbers (4 bytes each)
nfiles = number of xdat and cdat files used to make save-files.

saved files still differentiate original xdat- and cdat files
mil (1) ...mil(nfiles) = number of units in each original file

The next records contain all saved c-variables. The first variable in each

record is integerM variable telling the length of the rest of the record

(i.e. read()n, (cmat(j), j=iprev+l,iprev+n)). JLP packs cdata in as large

record as the MAXREC parameter in jlp.par allows, but when reading the data no

special structure is assumed except that variables of each unit are in order

given by keepc-command.

Each records of file.xdj contains first the number of xmat-numbers stored in

the record. A record contains only complete units. JLP packs as many units as

MAXREC allows into one record, but on input records can contain less units.

- Prints weights and shadow prices of schedules and units.

Can be used after solving a problem. The command has the following options:

sched ! Print all basic schedules (schedules used in the solution).

sched n ! Print at most n schedules.

sched/all ! Print also shadow prices of nonbasic schedules,
sched/all n ! Print at most n schedules (basic + nonbasic).

sched/a11>95 ! Print all schedules whose shadow price > 95% from the
! value of the basic schedules of the unit

sched/a>9s n ! Print at most n such schedules

The system manager may put these printings under 'mrep' or 'repo' (SYS.DEP.).

*show - How the x-variables are printed after solving a problem.

Usage: show(/options) (variable_list)

Options:

/nox ! Print no x-variables.

/noxfirst ! Print no x-variables automatically after solution,

! print x-variables information only with recall command

! using current show options

! Significant part of the option is nonstandard: /noxf

/xfirst ! Negate the /noxf option.

/all ! Print for each domain all x-variables (default).

/prob ! Print for each domain all x-variables used in problem
/notwice ! Do not print x-variable if it is on a constraint

row alone (i.e. without z-variables or other x-variables,

and thus the value can be seen from output for rows).
/twice ! Print also duplicate information (default).

/cost ! Print cost of decrease and increase for x-variables (default).

! Computation of costs may take much time.
/nocost ! Costs are not computed.

/inte ! Print for x-variables the integer approximation obtained by

using in each unit the schedules with largest weight.

/nointe ! Do not print the integer approximation (default).

68 Part 3 Reference Manual

/domain ! Start paragraph that defines domains that are used when

computing x-variables (in addition to domains used in the

problem). The domains are added to the domains given
with earlier /domain definitions. The previous domains

are first cleared if /nodom is also used (i.e. /nodom/dom).

Domains are defined in the same way as in problem paragraph

(remember ':' at the end), but only one definition per
line is allowed.

/nodom ! Do not use extra printing domains.

/repo ! (SYS.DEP.) Use report generator 'repo1
.

/norepo ! Do not use report generator 'repo' (default).

/mrep ! (SYS.DEP.) Use report generator 'mrep'.

/nomrep ! Do not use report generator 'mrep' (default).

show varlist ! print for each domain all x-variables in problem + varlist

variables.

New 'show' options will be in effect in the next 'solve' or 'recall' command.

Several options can be in the same 'show' command (e.g. show/repo/mrep/pro).

If the standard report writer is bypassed (i.e. '/repo' or '/mrep' or both are

in effect), then other options (except '/twice') determine what quantities are

available in user report generator,

see also: recall, mrep, report, solve

�solve - Solves an LP-problem.

Usage:

solve ! Solves the problem corresponding to first right-hand side,
solve 3 ! Solves the problem corresponding to third right-hand side.

! If for a constraint there are not 3 RHS's, the last one is used.

! If no constraint contains 3 RHS's, return to read new commands,
solve +1 ! Solves the problem corresponding to the next right-hand side,

! useful in do-loops,
solve +3 ! Solves the problem with RHS: previous + 3

options:

solve/i ! Initializes the vector of key schedules, useful if

! you compare the solution times using different options

solve/m(text) ! (SYS.DEP.) generate RHS with user subroutine 'next'

After solving the problem, the solution is automatically printed with the

current options of 'show' command (unless 'show/noxf' is in effect). The

solution can be reprinted with 'recall'. Schedules information can be printed

with 'sched'.

see also: problem, show, do, recall, report, mrep, sched, feasible

*split - Splitting a unit into parts.

A unit can be split into parts that inherit different schedules. How units are

split is determined in xtran-transformations with variable 'split'.

Rxampl e :

xtran

if unit.eq.lo.and. s ,ge.3.and.s .lt.7 then split=l.2s

if unit.eq.lo.and.s .ge.7 then split=2.4o

oldunit=unit ! Old unit numbers can be saved this way.
olds=s ! Old schedule numbers can be saved this way.

/

69 /LP

Now schedules 3-6 are put to part 1 that is 25% of the original unit.

Schedules 7- are put to part 2 that is 40% of the original unit. The

unspecified schedules 1 and 2 remain in the original unit (part=o), and their

share is 100-25-40%= 35%. It is required that the variable 'split' gets

consecutive values 1,2,.., and that not all schedules are put to these parts

so that some schedules are left to the original unit (part=o). The default is

that all x-variables stored in xmat matrix are multiplied with the

corresponding share proportion. If only part of x-variables should be split

among parts (e.g. a x-variable like ' harvestmethod' should remain unchanged),

then the variables that should be multiplied with the share can be determined

with command:

split variable_list

Alternatively, the variables that are NOT multiplied with the share can be

given with command:

split/no variable_list

see also: xtran, duplicate

*system (SYS.DEP.) - Sends a command to system level.

Usage: system command ! Executes the one-line FORTRAN statement given in

SSYSTEM option in file jlp.par. The example given in jlp.par can be used to

send command to the system level in VAX-VMS (e.g.: 'syst dir' will print the

current VAX directory).

*time (SYS.DEP.) Measures time.

If SSECNDS option in jlp.par is in effect, 'time' prints the time from the

first time-command and from the previous time-command. If SCPU option in

jlp.par is also in effect, the cpu- time is also printed. The time for solving

a problem and doing the after-solution computations is automatically printed.

*title - Defines title used when printing results.

Usage: title text

Note that you can get text into output file by entering comments.

User report writer can use the title for any purpose (SYS.DEP.).

(not cmd)

The format of transformations is basically the standard FORTRAN format.

For instance:

xs=sin(x2**2+sqrt(ln(x4-2)))
if x3+x2=4 .or. sin(x3)>o.s then ! parentheses are not necessary
x7=xs-7

else

x4=x3**2.2+tan(xs)

end if ! if
...

 then can not be nested

70 Part 3 Reference Manual

Arithmetic operations and functions:

"

 = raise to integer power (-1)"2=1 | ** = raise to real power

abs = absolute value I atan = arctan

cos = cosine of radians I cosd = cosine of degrees

exp = exp I int = integer part

log = natural logarithm I loglO = log base 10

mod(xl,x2) = remainder mod x 2 I ran(xl)= random with seed xl

sin = sinus (angle in radians) I sind = sinus, angle in degrees

sqrt = square root I tan = tangent, angle in rad

tanh = tanh I xl=swap(x2) = change xl and x 2

max(xl,x2,x4) = maximum I min (xl,2,x4) = minimum

Logical functions:

.gt. .It. .ge. .le. .eq. .ne. .and. .or. .not.

><>=<== &

Current 'own' functions:

npv(interest_percent,incomel,timel,...,incomen,timen) = net present value

see manual for %-loops and special uses of 'then' and 'else'

*unsave - Gets data from saved JLP files (not generally needed).

Usage: unsave cdat xdat

If JLP has saved data in JLP format at 'save' command, then JLP automatically

creates the correct 'unsave' command into the '.sav'-file.

User is not expected to give this command explicitly, implicitly this command

is implied by: 'include file.sav'.

see also: save, path

*values - Prints current values of variables.

Usage: values variable_list

Variable_list may contain d-, c- and x-variables and constants. For d-, c- and

x-variables the value is for the last xdat-file, for the last unit, and for

the last schedule, respectively. This command can be used to see the current

values of constants, or to print the results if transformations are used to

compute summary information over files, units, or schedules,

see also: constant, dtran, ctran, xtran

*variables (not cmd) - Description of data variables.

Data variables are constants, d-variables, c-variables or x-variables.

Constants, d-, c-, and x-variables differ in the way how they get their values

and how they can be used. Constants are given values by 'constant' command or

are created by xdat-command (e.g. 'xdat south.xda, north.xda' creates

constants 'south' and 'north' with values 1 and 2). D-variables get new values

JLP 71

when the data file changes. A d-variable 'data' gets automatically the number

of the data file, and other d-variables are defined by 'dtran'-

transformations. C-variables (class variables) are read or made by 'ctran'-

transformations for each calculation unit, and x-variables are read or made by

'xtran'-transformations for each treatment schedule. When data are read in or

when making transformations, all variables are put in the same vector so that

transformations can access variables from different levels. You should not use

the same names for constants, d-, c- and x-variables. JLP does not check

this. Constants, d-variables and c-variables can be used to define domains for

constraints or domains for printed results (see 'show/dom'). Constants and d

variables can be used as parameters in 'ctran'-, and 'xtran'-transformations,

and c-variables can be used as parameters in 'xtran'-transformations. C

variables need to include variable with name 'ns' which tells the number of

treatment schedules for each unit. Variable names must start with a letter A-Z

or a-z (not with 'ÄÄÖäöä') and cannot contain characters '!"=*/:%-' (allowed

characters include e.g. '#' and '.'). A list of variables is formed by

separating variable names with commas. A list (sublist) of several variables

with consecutive variable names can given with a construction:

varl,-varl2s,costa,-costx

The predefined variables are:

data = the number of data file to be read in (d-variable)

unit = the number of calculation unit (c-variable)

ns = number of schedules in unit (c-variable)

s = the number of the schedule (x-variable)

duplicate = x-variable used to duplicate schedules (see: duplicate)

split = x-variable used to split units into part (see: split)

reject = x-variable having value -1 for rejected schedules (0 otherwise)

see also: cdat, cvar, ctran, xdat, xvar, dtran, constant

�write - Writes the current xmat and cmat-matrices.

Usage:

write file ! Writes xmat to binary file file.xdb and cmat to

binary file file.cdb
write/* file ! Write xmat to file file.xda and cmat to file

file.cda with free format

write/(8f8.0) file ! writes xmat and cmat to files file.xda and file.cda

using FORTRAN format

Stored c-variables of one unit are written with one write-statement (i.e. into

one record unless implied otherwise by the format), and stored x-variables of

each schedule are written with one write statement. Names of written variables

are printed (to terminal/outfile/buffer).

The current data can be saved also with this 'write' command, but the user

needs to give the proper commands for reading the data again (compare with

'save l)

72 Reference Manual Part 3

see also: values, save

*xdata - Gives the names of x-data files.

Usage: xdata f ilel,...,f ilen

It is recommended that names of text files end with '.xda', names of binary

files end with '.xdb'. Files saved in JLP format end with '.xdj'. Directory

specification given by 'path' command is automatically added to the name.

Constants with names filel,...,f ilen (exluding extension) are created and

given values 1,...,n. JLP keeps track, of original file structure with variable

'data'. Thus transformations may contain 'if data=filel then' statements and

domain specifications contain 'data=filel' parts.

If xform = 'm', then the user subroutines may interpret names filel, .. .

without a connection to physical files (SYS.DEP.).

also: xform, xvar, cdata, save, cvar, path

*xform - Defines the format for reading xdat files.

Usage: xform form ! where

form = * if xdat files can be read with FORTRAN format

b if x-data are in binary files

(8f10.0) any FORTRAN format

m data are read with user subroutines:

minit, mgetc, mgetx, mfinit (SYS.DEP.)

All variables given in 'xvar* are read with one FORTRAN read statement.

see also: cform, write

*xtran - Defines transformations made for x-variables.

Xtran-transformations are made in order to get variables that can be used in

problem definitions. For each schedule, the values of constants, d-, and c

variables can be used. The default is that all output variables are stored

(except 'split' and 'duplicate'). If not all output variables should be

stored, then variables stored when data are read in are given in 'keepx'

command, and output variables to be stored in later transformations should be

given in 'make' command. Xtran- transformations are computed into the xmat

matrix, and they cannot be cancelled.

Examples;

xtran

cost=harvestcost*harvestvolume

/

If linear transformations are needed in LP-problems, they can be specified

either in xtran transformation or written explicitly in problem paragraph.

E.g. the following two problems are equivalent:

73 I LP

1)

xtran

dif f .l=income.2-income.l

/

prob
diff,l>o

/

2)

prob

income.2-income.l>o

/

If same linear transformations are used in several problems, it is more

efficient to do them just once in xtran transformations. On the other hand, if

linear transformations are written explicitly in 'problem' paragraph, JLP can

compute the shadow prices of the element x-variables ('income.2' and

'income.l' in the above example).

Xtran-transformations are used for splitting a unit into parts (see 'split'),

and for rejecting schedules in optimization (see 'reject').

see also: transform, keepx, ctran, make, split, duplicate, problem

*xvar - Defines x-variables to be read in.

Usage: xvar variable_list

The default is that all xvar-variables are stored. If only a subset needs to

be stored, the stored variables are given with 'keepx' command.

F.xampT e :

xvar income.l,-income.6,volume.l,-volume.6

If variable with name 'reject' is among xvar-variables, it is interpreted to

indicate schedules that are rejected. Value -1 means that the schedule is

rejected and value 0 that it is not rejected. The values of 'reject' can later

be changed with xtran transformations,

see also: keepx, cvar, variables, xtran, reject

** end of file jlp.hlp ***

Setting Up the Working Environment 74 Part 4

4. SETTING UP THE WORKING ENVIRONMENT

This part describes how the system manager (called here 'user') can build an

executable program from the source files provided and install JLP into a larger

management planning system.

4.1 Building JLP

4.1.1 Compiling and linking JLP (file readme.jlp)

File readme.jlp contains information what files are included, and how to set up the

working environment using JMAKE precompiler. File readme.jlp will be updated

to correspond changes made after the printing of this manual. Current content of

readme.jlp :

Pile readme.jlp:

This file includes general information about:

A. Files included in the JLP-package

and how to:

B. Compile and link JMAKE
C. Make own interface subroutines

D. Modify file jlp.par

E. Run JMAKE

F. Compile and link JLP
G. Test JLP

and

H. Revisions of JLP after June 1, 1992.

A. Files included in the JLP-package

The following files are included in JLP-package (on DOS or Macintosh

diskettes, file names are always in lower case):

1: readme.jlp - this file

2: jmake.f - source for the JMAKE precompiler

3: jlp.par - file containing system options and data parameters

4: jlp.hip - help file for on-line help and reference

JLP source files

5: jlp.src - file containing main program and interface subroutine
6: jlp2.src - subroutines accessing common data areas

7: jlpsub.src - general subroutines
8: jlpopt.src - optimization subroutines
9: jlpint.src - templates for interface subroutines

75 /LP

Test files:

10: test.in - commands for a test run, use:"include test.in"
11: test.xda - x-data for test

12: test.cda - c-data for test

13: test.out - output from the test run

B. Compiling and linking JMAKE

1) Edit in the first program line of the file jmake.f the values of parameters
n5 and n6 according to the system defaults:

* ns= unit for terminal input
* n6= unit for terminal output

parameter (n5=5,n6=6)

2) Change the extension ".f" of the file jmake.f if it is more convenient in

your system.

3) Compile jmake.f

4) Link jmake

C. Make your own interface subroutines

File jlpint.src contains templates for interface subroutines. If user specific
interface subroutines are needed, then the user should make own versions of

the subroutines into a different file.

D. Modify file jlp.par

Edit the file jlp.par, and save it with a different name if you want to keep

original jlp.par unchanged. The file jlp.par contains information about the

system specific features and size parameters for declaring variables and

vectors of JLP. File jlp.par contains three types of parameters. Parameter
lines starting with "ss" give general information for the JMAKE precompiler.
Lines starting with "$" tell how certain system dependent features can be

included in the programs. Other noncomment lines (lines starting with are

comments) are parameters for defining FORTRAN parameters, variables and

vectors.

E. Run JMAKE

Run then program JMAKE that creates final source files (with file name

extension given with parameter "$$EXT"in jlp.par). If the default directory

already contains a file with the corresponding name, JMAKE asks if the file
should be replaced. If answer "Y" is given, then JMAKE tries to write the new
final source file, and an error occurs in some systems (e.g. OS/2), or the old
file is just replaced (e.g. in Macintosh), or the new file will be the newest
version of the file (e.g. in VAX/VMS).

JMAKE creates files (assuming that SEXT -parameter in file jlp.par is F):

jip. f

jlp2.f

jlpsub. f

jlpopt. f

jlpint.f - if not removed from SFILES statement in jlp.par.

+ other files specified in SFILES statement in jlp.par.

76 Part 4 Setting Up the Working Environment

F. Compile and link JLP

Compile program files created by JMAKE and other files not precompiled with

JMAKE.

Link. If you have written your own main program, that file must linked before
the object file resulting from jlp.src. The interface subroutines replacing

templates in jlpint.src must be linked before jlpint.
If parameters in file jlp.par are changed, run JMAKE again. It is safest to

let JMAKE precompile all files again, even if not all files are generally
affected by changes of parameters in jlp.par.

G. Test JLP

Copy JLP program and test files in the same directory. Run JLP for a test

problem: give as first JLP-command:

incl test.in/*:*

The output should look similar to to contents of file test.out.

H. Revisions of JLP after printing of the manual

This section will tell what changes are made in JLP package after printing of

the manual.

******** encj 0f file readme, jlp

4.1.2 Parameter file jlp.par

The programs are written trying to follow the FORTRAN-77 standard. Some

common nonstandard features are useful. Options of the JMAKE precompiler

determine if nonstandard features are included, and what is the syntax of the

nonstandard features. All system specific features and editable size parameters for

declaring variables and vectors of JLP are transmitted in file jlp.par.

Current contents of jlp-par as used in Language Systems FORTRAN 3.0 running in

Macintosh Quadra 700:

****** file jlp.par
**** USer can edit only the right-hand sides of the parameters
*

* Precomiler parameters

*

SSEXT = .f ! File name extension for source files, e.g.
* ".f",".for" or ".ftn".

ss! = T ! Compiler interprets text after '!' as a comment.
* This parameter has effect only in lines
* generated by JMAKE.
SSDOUBLE = DOUBLE PRECISION

* Data type used in calculations, e.g. REAL*IO.
* Precision less than real*B is not recommended.

SSSOLTYPE = DOUBLE PRECISION !

lIP 77

* Data type for accessing the results.

SSDEFINITIONS=jIp2.src
* ! Files containing global definitions,
* user can/must change the first file only if
* JMAKE is used to precompile other programs. If own
* files included, separate with commas, e.g:
* ssDEFlNlTlONS=jlp2.src,owndef.src
* The definitions can be at the beginning of ordinary
* source file (as jlp2.src is) that is also precompiled
* with JMAKE.

SSFILES = jlpint.src
* User source files that use global JLP variables or
* variables defined in user

* or JMAKE filtering options. Initially file jlpint.src is
* included here. If user subroutines replace all the
* subroutine templates there, remove jlpint.src.
* If several files separate with commas,e.g:
* SSFILES = FILEI.SRC,FILE2.SRC
* If all files do not fit to one line,
* give several SSFILES -lines.
* If there are no files put

I*' as first character:
* *SSFILES (possible if JMAKE is used for other programs)
*

*

* Options
*

========

*

* Option is in effect: SOPTION = T
* Some options require additional information.
* In that case the syntax is: SOPTION = T = TEXT
* Option is not in effect: SOPTION = F (= TEXT)
*

*options in JLP:
�

SREADONLY = T = READONLY

* ! Keyword in OPEN statement used by JLP to open
* files for reading. In multiuser systems, a user
* with reading rights can acces files in other users'
* directories (e.g. in VMS this allows also a shared
* acces). It is always safer to open files with this
* option, as it prevents accidental modifications
* of files. This keyword is nonstandard Fortran.
* In IBM Fortran/2 this option would be
* ACTION=READ.

*

SLIST = T - LIST ! If this option is in effect, JLP opens output
* text files with the nonstandard keyword
* CARRIAGECONTROL='(text)'

* In some systems one may have trouble with the
* carriage control characters of standard Fortran
* text files (e.g. a program may read in characters
* you don't see in the editor or printing).
*

SSUPPRESS = T = $! Format that suppresses carriage return in output.
* This is used to print prompts (e.g. 'jlp>") that
* indicate that JLP waits for input.
* In IBM Fortran/2 this format is: \

*

SVERSIONS = T ! Different systems work differently when a program
* tries to create a new file with name of an existing
* file (e.g. VMS creates new version of the file,
* some systems just delete the old file, and in
* some systems an error occurs). If this option is
* in effect JLP creates version numbers when creating
* new files. For instance if JLP should open a new

78 Part 4 Setting Up the Working Environment

* file with name "output.jlp" and a file with
* that name exists, JLP opens the file with name
* "output_2.jlp". Parameter MAXVER given below
* determines the maximum number of versions.

*

SSYSTEM = F = call libsspawn(inp (ial:lop))
* This option (if in effect) tells what JLP should
* do at JLP command 'system'. Character variable
* inp contains the command line, ial is the first
* nonblank position after 'system ', and lop is
* the last nonblank character of the command line.

* In VMS 'call libsspawn(inp(ial:lop))' sends the
* command line after 'system 1 to the system level
* (e.g. JLP command 'system dir' then prints the
* names of files in the current directory)
*

SOLDMFORM = F ! Old versions of subroutines for reading data are
* included. These subroutines are used used when

* 'xform m' is given as the format.
* See the manual for more details.

*

SMREP = F ! Own report generator subroutine MREP included.
* Invoked by jlp-command 'mrep'. See the manual.
�

SSECNDS=T= SECNDS(O.)

* Timing function available in the system. The function
* should return the elapsed time measured
* from any fixed point in any units.
*

SCPU =F = ! Timing function measuring time used by cpu.
*

SINITI=F= ! First JLP command executed when JLP starts.

* For instance, if data files are always in
* directory diskl:[data], this could be
* SINITI=T= path diskl:[data]
*

SINIT2=F= ! Second command executed when JLP starts. If

* more than two initialization commands are needed,

* the commands can be stored in a file, and
* included with INITI option, e.g.:
* SINITI =T = include init.in

sOWNl=T=ownl ! Command for calling user subroutine ownl(inp,errors).
* File jlpint.src contains a template and more information

sOWN2=T=own2 ! Command for calling user subroutine own2(inp,errors).
* File jlpint.src contains a template and more information
*

SDUMP=F ! This option is used for printing information
* for tracing errors in the optimization algorithm.
* Ordinary user should have this option always off.
•k

* Parameters:

*
===========

*

* If e.g. parameter MAXNX is too small, JLP gives an error message:
* "*PAR* increase MAXNX"

*

N5 = 5 ! Unit for terminal input.
N6 = 6 ! Unit for terminal output.
*

MAXXMA=9OOOOO !Size of the vector used for xdata.

* If xdata exceed the memory reserved, JLP is slower.
* So put MAXXMA as large as possible.
MAXCMA=2OOO ! Size of the vector used to store c-data,
* at least (number of units) * (number of c-variables)

79]LP

MAXREC=BI9I ! Maximum number of realM variables in one record

* of an unformatted file. MAXREC has effect only if
* parameter MAXXMA is so small that the whole data
* can not be stored in memory, or when the data
* is saved in JLP format using 'save' command.
* Optimal value is dependent how the speed of
* reading depends on the record size.lf data does
* not always fit to memory, MAXREC should be
* at most 1/3 of MAXXMA, but probably e.g. 1/20
* of MAXXMA is better. MAXREC should be at least so large
* that one record can hold the x-data for any
* calculation unit

*

MAXNX=IOO ! Max. number of x-variables

MAXXS=3OO ! Max. number of x-variables computed and printed after 'solve'.
* If the integer solution is not printed, then this should be
* (number of domains) x (number of x-variables printed). If the
* integer solution is printed, then this should be twice as much.
MAXXDX=I7OO ! If cost of decrease and increse computed,
* this should be at least:

* (# of domains) x (# of x-variables printed) x (# of basic x-variables)
MAXNR=4 0 ! Max. number of rows in a problem (area constraints
* are not counted)

MAXNXP=6O ! Max number of x-variables in a problem definition,
* rows including a single x-variable without
* a coefficient are not counted.

MAXML=IOOO ! Max. number of calculation units.

MAXMV=2OO ! Max. number of shcedules in one unit

MAXSPL=2O ! Max number of parts in a unit when a unit is split
MAXSPT=IOO ! Max. total number of parts in all split units
MAXCOM=3O ! Max. number of domain combinations

MAXDOM=3O ! Max. number of domains

MAXNCI=3O ! Max. number of c-variables

MAXNZ=SO ! Max number of z-variables

MAXDAF=3O ! Max number of data files used in xdat - command

MAXVER=3 ! Max. number of file versions if SVERSIONS = T

*

* unit numbers used by jlp files (change if these conflict with
* unit numbers used in own subroutines):

*

NUSAVX = 33 ! Unit for saving data
NUSAV2 =34 ! Unit for rewriting save file
NUI = 35 ! Unit for several JLP files

NU2 =36 !

NUOUT =37 ! Unit for additional output
*

* units for included.files:

NFI = 41

NF2 = 42

NF3 = 43

NF4 =44

NFS =45

NF6 = 46

*

* units the user can use in own interface routines e.g.
* for reading data and report writer:
NUOWNI=SI

NUOWN2=S2

*

LCOMLI=6OO ! Max length of the command (including continuation lines)
LLINE=I3O ! Max. length of a command record
LPROBL=2OO ! Max length of command line in problem-paragraph
�

**text buffers

80 Part 4 Setting Up the Working Environment

LENINC =1640 ! Length of the input buffer 'INC'
LININC = 100 ! Max. number of lines of the input buffer
*

LENOUT =2640 ! Length of the output buffer 'OUT'
LINOUT = 100 ! Max. number of lines of the output buffer
*

LENDTR = 800 ! Length of buffer 'DTR' for d-transformations

LINDTR = 50 ! Max number of lines in the buffer for d-transformations

*

LENLOO = 400 ! Length of the buffer 'LOO' storing DO-loops
LINLOO = 60 ! Max. number of lines in the buffer

*

LENCON = 160 ! Length of buffer 'CON' for constant definitions
LINCON = 10 ! Max. number of lines in the buffer

*

LENPRO =1024 ! Buffer 'PRO' for constraint definitions (without rhs)

* Max. number of lines = MAXNR

■k

LENSDO=4OO ! Buffer 'SDO' for storing show/domain definitions
LINSDO=4 0 ! Max. number of lines.

**end of text buffers

■k

LVARNA=32 ! Length of character variables used for variable names

LFORM =l3O ! Max. length of formats xform and cform
LFILNA=SO ! Max. length of file names
LDOMNA=4O ! Max. length of domain specifications
LPATHN=4O ! Length of character variables used for PATH
NDTRAN=3OO ! Length of compiled d-transformations
NCTRAN=3OO ! Length of compiled c-transformations
NXTRAN=3OO ! Length of compiled x-transformations
NDUTRA=3OO ! Length of compliled dupl-transformations
NSDTRA=2OO ! Length of transformations defining show/domains

NINT =5O ! Max. number of intermediate results in transformations

NPARA =lOO ! Max. number of constants in transformations

NIDOUT=IOO ! Max. number of output variables in d-transformations
NICOUT=IOO ! Max. number of output variables in c-transformations
NIXOUT=IOO ! Max. number of output variables in x-transformations
MAXRHS=S ! Max. number of rhs' s in problem-command,
* note that your own NEXT subroutine may generate more rhs' s

LEVELP=3 ! Default value for printlevel
LEVELO=I ! Default value for outlevel

*

* Own parameters can be added here. For instance, if you need
* additional unit numbers, it is a good idea to determine them
* here so it is easier to prevent conflicting numbers. See manual for
* how to use JMAKE in own subroutines. An example: integer
* parameters NUOWN3, NSIZ a real parameter DELTA, a double precision
* parameter DDELTA and character parameter TEXT can be defined by
* deleting in the following lines:
*NUOWN3 = 77

*NSIZ = 123

*DELTA =1.3 ! JMAKE assumes the first character convention of Fortran

*DDELTA = 1.2D0 ! Double precision parameters should include '.' and 'D'
*TEXT = 'Help, Help'
** JMAKE will generate the corresponding parameter statements,
** if the program contains a section:
�needs:

*NUOWN3,NSIZ,DELTA

*DDELTA,TEXT

*end:

** end of file jlp.par

lIP 81

4.1.3 Features of standard FORTRAN not used

Some FORTRAN compilers do not implement all standard features. And some

companies seem to interpret the standard differently. In order to avoid difficulties

with less general compilers, the following features were not used:

- character and numeric data in the same common area

- alternative entry points in subroutines

- alternative return addresses

- same character variable on both sides of an assignment statement

4.2 Output Files in non-VMS Environment

New files are opened by save, outfile and write commands. Operating systems

work in different ways when a program tries to open a new file with a name of an

existing file. The VMS operating system just creates a new file with a new version

number. In the UNIX operating system an error occurs. Using LS- FORTRAN in

Macintosh the new file replaces (and thus deletes) the old file. If option $ VERS lONS

is set to T in file jlp.par, then JLP appends version '_n' to the file name (before file

name extension) if there is a file with the given name. The version number will be

one higher than the highest existing version. The first version does not have a

version number. If the version number would be higher than maxver parameter

given in jlp.par, then an error occurs.

For input files defined by cdat, xdat or unsave commands, JLP expects to get the

full file names, i.e. JLP does not try to figure out what version might be in question.

If data are stored in the internal format using save command, then the unsave

command is written into the '.sav' file with the correct version numbers.

4.3 Sending a Command to the System Level

While using JLP interactively, the user may need to interrupt the JLP session to do

something at the system level (e.g. copy files). In a modern windows based

operating system (e.g. in Macintosh), the system level can be accessed easily. If you

are using a simple VAX-VMS terminal, you can set the following JMAKE option to T:

SSYSTEM = F - call libsspawn(inp(ial:lop))

Thereafter system command can be used to send the command line to the

operating system:

system dir ! get directory
syst edit file.in ! edit file 'file.in'

82 Part 4 Setting Up the Working Environment

In operating systems other than VMS, you may replace the call to libs spawn with a

call to another system routine. The argument 'inp(ial:lop) ' contains the

command line after the system command
.

4.4 Creating Own Timing Subroutine

In the version of jlp-par listed above it is assumed that the function secnds

provided both by VAX FORTRAN and Language Systems FORTRAN is used for

timing. If the system does not support SECNDS then you may make your own

timing subroutine into a source file linked with JLP. For instance, in IBM

FORTRAN/2, an corresponding timing function might be:

function secsO

integer*2 hh,mm,ss,hd
call gettim(hh,mm,ss,hd)
is=hh*36oo+mm*6o+ss

secs=is+hd/100.

return

end

To use this function, change ssecnds option into:

SSECNDS=T= SECSO

Elapsed time can be measured in JLP using time command. The time used in the

optimization phase is also measured automatically. If scpu option is in effect (and

corresponding function provided), also elapsed cpu-time is measured.

4.5 Management of Programs with JMAKE Precompiler

JMAKE is a general purpose precompiler used to manage global parameters, global

variables (stored in common areas), lengths of character variables and system

dependent options.

JMAKE is case sensitive.

4.5.1 Accessing JLP global parameters and variables

JLP is designed so that all JLP subroutines and subroutines written by the user can

access all global variables and parameters of JLP (henceforth term 'variable' is used

to refer to both variables and parameters). Because the standard FORTRAN does not

recognize global variables, JMAKE precompiler was made to manage global

variables in a transparent way. JMAKE generates necessary definitions of variables

and common areas for all variables that the subroutine needs.

JLP 83

Editable parameters are given in file jlp.par, and other global variables are in the file

given in SSDEFINITIONS statement in jlp.par (currently in file jlp2.src). JMAKE

precompiles all files given in SSFILES statement in jlp.par and all files listed in

$F ile S section in files given in ssdefinitions statement in jlp.par (with this a

little complicated system JMAKE can hide definitions that the user is not allowed to

change). JMAKE generates definitions for global variables listed in 'needs:' sections

of the file. A 'needs :' section looks like:

�needs:

*KEEPCL,KEEPXL,LISTXS,TITLE,LIST,VNAME

*BATCH,INPUT,LEVEL,LEVEL2,LEVEL3,NOUT,NOUT2
*BMAT

*end:

It is possible to edit the output file of JMAKE and make it the new input file of

JMAKE by changing the file name extension into '.src'. In order to avoid

confusion with file names, this is not recommended except in case when

corrections are accidentally made to './' file.

US" The user should define all variables in subroutines using JLP global variables, so

that the compiler will print an error message if the user is trying to define a local

variable having the same name as a JLP global variable. Note that in order to make

proper definitions of common areas, JMAKE generates also variables not included

in the 'needs:' section. The user can not rely that these additional definitions

generated will remain the same in future versions of JLP.

4.5.2 Using JMAKE to manage own data structures

When writing own subroutines linked with JLP, the user may need to define own

global parameters and variables. It is recommended that the user will manage

his/her own global parameters and variables with JMAKE precompiler.

Parameters can be defined either by adding parameters directly into jlp.par or

defining them in the same way as variables (see below). Here jlp.par refers to the

parameter file of JMAKE (recall that the parameters can be in any file). Own

variables can be defined as follows:

1) Add to SSDEFINITIONS statement in jlp.par the name of the file that contains

the JMAKE definitions (that file can be ordinary source file as jlpl.src is).

2) Define the parameters, variables and common areas at the beginning of the file

(later called definitions section) given in ssdefinitions statement.

84 Part 4 Setting Up the Working Environment

All lines in definitions section start with A comment line starts with

Character '!' starts an end-of-line comment.

A definitions section must first contain SFILES subsection that looks like:

*SFILES ! files to be precompiled

*jlpsub.src

*jlpopt.src
* jlp2.src
* jlp.src

*SEND

If no files are specified here (recall that these files can be given also in SFILES

section of jlp.par) , this section contains only *SFILES and *SEND lines. Then the

definitions section may contain a parameter section like:

*:: PARAMETER

*MAXOPN =7 ! Max. number of simultaneous open include files
* * comment

*MAXNC=MAXD+B ! MAXD must be defined earlier in jlp.par
*MAXNV=MAXNC+4 ! total number of variables

*LCHAR=I3OO ! parameter used later to specify the length of character
** variable

*RPAR=I.SB ! real parameters can also be given
*DPAR=I.67DO ! double precision parameters must contain both and 'D'
*TXT - 'Message' ! Character parameters are also allowed

CF*Parameters can be equally well given in jlp.par as in '* : : parameter 1 section in

definitions file.

Thereafter definitions can contain sections as:

*::VTYPE ! VTYPE can be any variable type recognized by the compiler
*CFC ! Variable doing something useful
**AML ! comment

*MV(-2:MAXNC) ! MAXNC needs to be a parameter defined earlier

If e.g. variable mv is needed in somewhere (it is in 'needs:' list or it is required to

build a common area properly), JMAKE generates:

PARAMETER (MAXD=IOO) ! this comes from jlp.par

PARAMETER (MAXNC=MAXD+B) ! from PARAMETER section

VTYPE MV(-2:MAXNC) ! MAXNC needs to be a parameter defined

Thus if a variable is needed, JMAKE generates automatically all the parameters

needed.

If jlp.par contains a JMAKE ss-parameter like:

SSVTYPE= CTYPE*B ! CTYPE*B is a variable type known to the compiler

then JMAKE replaces the type VTYPE with type CTYPE*B :

/LP 85

CTYPE*B MV(-2:MAXNC) ! MAXNC needs to be a parameter defined

There are no assumptions for variable types used in definitions section, thus all

types accepted by the compiler can be used.

A special treatment is given for '* : : character ' section which may look like:

*:: CHARACTER

*lOO VNAME(MAXD)

*LCHAR APUNIM ! LCHAR is a parameter defined earlier

If vname and APUNIM are needed, JMAKE will generate

PARAMETER <MAXD=IOO)

CHARACTER*IOO VNAME(MAXD)

CHARACTER*I3OO APUNIM

Note that statement

PARAMETER (LCHAR=I3OO)

will be generated only if it is needed for other purposes in addition to specifying the

length of APUNIM. A parameter determining the length of a character variable must

be given literally, i.e. , definition

*LCHAR=LCI+LC2

is not allowed.

Common areas are defined in *: : common subsection as follows

*:: COMMON

*JLPDAT ML, MV, NSTICLA,>
* IFREE,LMEM,ILINKI,LOCREJ,IXAP

*JLPXMA XMAT,CMAT

The first name is the name of the common area. Character '>' at the end of line

indicates that the items in the next line belong to the same common area. If a

variable in a common are is needed, then JMAKE will generate definitions for all

the variables and the definition for the common area. JMAKE splits the lines in the

definition of the common in the same way as splitted in the * : : common

subsection, so the line can not be too long (JMAKE gives an error message if line is

too long). JMAKE also generates save statement for each common it creates, so

commons created by JMAKE are static also in systems where default is that

commons are dynamic.

There can be several definitions for the same common area. JMAKE will generate

the definition containing variables needed in the subroutine (of course variables

given in different definitions can not be used in the same subroutine). This way

different subroutines can share the same working areas. JLP uses a common

Setting Up the Working Environment 86 Part 4

jlpwrk this way. The user can also use this common in report writer but not in

subroutines used in transformations and reading the data into the program.

JMAKE can be used to generate also definitions for local variables. Variables will

automatically be local if they are not contained in any common.

The definitions section ends with:

*:: END

4.5.3 Using JMAKE precompiler options

If the user is making programs that should be used in different operating systems,

then the precompiler options of JMAKE might be useful. Assume that jlp-par

contains e.g. option:

SMREP = F ! option is not in effect

or

SMREP = T ! option is in effect

Then a program may contain section

*IF MREP

call ownsub(pari,par2)
write (n6, *)'kukuu'

*END

or section

*IF MREP

call ownsub(pari,par2)
*ELSE

write(n6,*)'kukuu'
*END

or section

*IF NOT MREP

call ownsub(pari,par2)
*END

JMAKE will then comment out the lines according to the value (t/f) of option

SMREP .No ordinary comment starting with is allowed in '*if ... *end '

section. Options can be associated with a text string that can be used to transmit

system dependent features into the code. For instance, assume that jlp.par contains:

SSECNDS=T= SECNDS(O.)

Then the program may contain:

*IF SECNDS REPLACE ??

TIME=??

»ELSE

TIME=O

*END

ILP 87

String defining what must be replaced if option is in effect can be anything (or

contain even spaces). This is useful if JMAKE is used to precompile the output file

of JMAKE where the original string (e.g. '??') has been replaced with e.g. 'double

precision'.

4.5.4 Using JMAKE in other programs

JMAKE does not contain JLP specific assumptions. Thus it can be used in any

program. The following changes are needed if JMAKE is used in other programs :

1) Change the default name of the parameter file determined in file jmake.fi, this
is not necessary as JMAKE asks if the default parameter file should be replaced
with some other file).

2) Make the corresponding parameter file. At least ssfiles and ssdefinitions
statements must be different from jlp.par.

3) Make a definitions section to each file listed in ssdefinitions statement in

the parameter file.

4) Make 'needs:' section to each subroutine where global parameters or
variables are needed.

5) If compiling options are needed, make corresponding '*if option
...
 *end

sections.

4.6 Using JLP Data Structures and Subroutines

This section describes some general properties of those JLP data structures and

subroutines that the user may need in writing own interface, data input and report

generator subroutines. All variables and parameters mentioned can be accessed

using 'needs :
'

 construction of JMAKE.

4.6.1 Listing headers of subroutines with JLP

The purpose of this chapter is to introduce some possibilities how the user can add

extra properties to JLP. More detailed (and updated) information is found in source

files. JLP can be used to extract the summary headers of subroutines from the source

files. Each subroutine has a short header (containing the subroutine or function

statement and the purpose of the subroutine), and a longer header containing more

information. Both headers starts with A short header ends with '**' and a long

header ends with '***'. The short headers of all subroutines in file jlpsub.src can

thus be printed as follow:

jlp>list/all jlpsub.src/*=:**

Setting Up the Working Environment 88 Part 4

The headers in other files can be listed similarly (in addition to jlpsub.src, jlpint.src

may be of special interest).

The longer forms of all headers can be listed as follows:

jlp>list/all jlpsub.src/*=:***

The listing of short headers in file jlpsub.src included:

*=jnewf=== file jlpint.src =========================
subroutine jnewf(iunit,form,name,name2,errors)

* Opens a new file (possibly a new version).
* h

The long header of this specific module can be printed as follows:

jlp>list jlpsub.src/*=jnewf:***

The whole module jnewf can be listed as follows:

jlp>list jlpsub.src/*=jnewf:*-

4.6.2 Changing JLP subroutines

File jlpint.src contains subroutine templates whose purpose is to help the user to

write own special subroutines for data access, transformations, report writer etc.

Also the main program in file jlp.src can be replaced with custom main program. It

is recommended that before making changes, the corresponding modules are

copied into an own file, and this file is linked before files provided by JLP files so

that standard routines will be replaced.

4.6.3 JLP data variables

As described in Chapter 2.5, JLP puts d-, c-, x- variables in the same vector V when

JLP read data or makes transformations. The variable names are stored in character

vector 'vname '. The user can not assume any specific order of V-variables, except

that variables created by an xvar, cvar, or const command and in one dtran,

xtran, or ctran transformation paragraph are consecutive (this can be used in %-

loops in transformations).

Variable lists

JLP refers to a subset of variables using integer vector called variable list having the

following structure. For instance a variable list listxs is defined:

integer listxs (-I: MAXNX)

89 JLP

where MAXNX is a global JLP parameter. Element (-1) tells the maximum number

of elements (i.e. listxs (-I)=maxnx). Element (0) tells the actual number of

elements (i.e. o<listxs (o)<maxnx). Element i, o<i<listxs (0) refers to an

element in v- vector, the name of the variable is VNAME (listxs(i)).

The user may need following subroutines for handling variable lists:

*=ilapp=== file jlpsub.src ======================
subroutine ilapp(ix,list,errin,errors)

* Appends variable ix into a variable list 'list'.

*=il find=== file jlpsub.src ============================
subroutine ilfind(ix,list,ilout)

* Finds the position of variable ix from a variable list.

*=ilmerg=== file jlpsub.src ===========================
subroutine ilmerg(listl,list2,list3,errin,errors)

* Merges variable lists listl and list 2 into list 3

*=ilput=== file jlpsub.src =======================

subroutine ilput(ix,list,errin,errors,ilout)
* Puts an element ix to a list if it is not there.

*=ilret=== file jlpsub.src ==

subroutine ilret(ix,list)

* Removes an element ix from a variable list and puts it into reserve

The user may need e.g. the following subroutines that treat also the names of

variables:

*=jname=== file jlpsub.src ===============================
subroutine jname(inp,names,nxres,nx,list,errors)

* Finds numbers of variables and makes new variable names.

*=joutl=== file jlpsub.src ====================

subroutine joutl(level,buf,list,name)
* Print names of variables in a variable list.

*=mlist=== file jlpsub.src ==========================

subroutine mlist(ch,ial,lop,nimi, nx,mul,errors)
* Makes a variable list.

*=mtja=== file jlpsub.src =====================
function mt ja'fnimi, nx, xni)

* Finds the number of a variable with name xni.

Special variables

There are some special variables used for handling transformations etc. These

variables should not generally be used for other purposes. JLP does not generally try

to check if these variables are misused, as there are legal ways to handle these

variables in nonstandard way (e.g. rejection variable 'reject' can be read directly

from data). The global parameters for variable numbers and the names of the

special variables are:

90 Part 4 Setting Up the Working Environment

*IVDATA 'data' variable

*ivunit 'unit' variable

*IVS 's' variable (current schedule)

* ivone number of variable having value 1.

*IVDUPL number of 'duplicate' variable

*ivspli number of 'split' variable

*ivns number of variable 'ns'

*IVREJ number of variable're ject'

How these variables are treated is described in Chapter 2.5.

4.6.4 Accessing stored c- and x-data

The user may want to access the stored c-variables and e.g. in her/his

own report writer. Variable list KEEPCL tells what variables are stored as c-variables

in simple vector cmat defined as 'real cmat (maxcma) 1

, where maxcma is a global

parameter given in jlp.par. The number of stored c-variables is thus keepcl (0) .

The first KEEPCL (0) elements of cmat are the c-variables for the first unit, and so

on up to the last unit ml. The name of first stored c-variable is vname (keepcl (1)),

etc.

Variable list keepxl tells what are stored Storage of is more

complicated, because JLP is designed to be able to handle x-data that exceed the

memory, and because JLP generates temporary jc-variables for linear combinations

of x-variables appearing on the rows of a linear programming problem. X-variables

can be accessed by calling subroutine jstun for each unit started:

*=jstun=== file jlp2.src =======
subroutine jstun(ic,ranac)

* Makes x-data ready for unit ic.
* *

* Reads data from disk if necessary.
* Updates LISTVO so that variable KEEPXL(ix) for schedule is
* can be accessed using statement function:
* x(is, ix) =XMAT{LlSTVo+(is-I)*NXDD+ix).
* An equivalent (more complicated but clearly faster)
* way to access several x-variables in the same schedule is to compute
* the base addres for each schedule is as follows:

* isbas = LISTVO + (is-1) * NXDD

* or if all schedules are acceses in order by defining starting
* value of isbas and adding NXDD for each schedule.
* Thereafter x-variable KEEPXL(ix) can be accessed with statement function:
* x2(ix)=XMAT(isbas + ix)
* Note: KEEPXL, XMAT, LISTV and NXDD are globals variables
* accessed with 'needs:'

* input parameters:

integer ic
* ic = unit

logical ranac
* ranac = .true, if units are accessed in any order (i.e.

lIP 91

* not necessarily in order 1,2,..., ML.
* If data does not fit to the memory, it is recommended
* that even with ranac=.true. the unit numbers in consecutive

* calls are in increasing order (units may be missing) so that
* work file needs not to be rewinded repeatedly.
**

Thereafter keepxl variables can be accessed with either of the statement function

described above in the header of j stun. A global function subroutine is not used in

JLP, because satement functions work much faster.

4.6.5 Text buffers

Text is stored in text buffers. Each buffer has a three character name called later

'bufnam' e.g. bufnam='DTß'. A text buffer is a single character variable to which all

text lines are packed. The name of the variable is bufnam//'buf', e.g. 'dtrbuf'. The

length of the variable is determined by JMAKE parameter given in file jlp.par. the

name of the length parameter is 'LEN'/ /bufnam e.g. 'LENDTR'. Associated with

each buffer is a link vector with name 'LNK'//bufnam (e.g. 'lnkdtr') which tells

the size of the buffer used to prevent overflow, and links to the first character in

each line. The maximum number of lines in a buffer is given by a parameter with

name 'LiN'//bufnam, e.g. 'lindtr'. The buffer name is stored in the buffer

variable so that the buffer subroutines can generate error messages if parameters

are too small. The user may also use the following buffer subroutines:

*=bufapp=== file jlpsub.src =========================
subroutine bufapp(inp,le,txtbuf,lnktxt,errors)

* Adds string inp to standard buffer txtbuf.

*=bufio=== file jlpsub.src =============================
subroutine bufio(what,line,L,errors)

* Sends commands to JLP and gets the JLP output.
* Handles command buffer 'INC' and output buffer 'OUT'.

*=bufpri=== file jlpsub.src ===========================
subroutine bufpri(nu,txtbuf,lnktxt)

* Prints the contents of text buffer txtbuf into a file.

For more information about text buffers, see the long headers of the above

subroutines, especially of the subroutine buffapp.

4.6.6 String manipulation

The user may use the following string manipulation subroutines:

*=adjul2=== file jlpsub.src ===
subroutine adjul2(inp)

* Adjusts a character variable to the left, i.e. removes initial blanks

*=chis=== file jlpsub.src ===========

character*s function chis(i,il)

92 Part 4 Setting Up the Working Environment

* Returns integer i as character*s.

*=chrB=== file jlpsub.src ====================

character*B function chrB(a)

* Returns real value as a character*B variable.

*=chrlO=== file jlpsub.src ===========================
character*lo function chrlO(a)

* Returns double precision a as character*lo variable.

*=lenl=== file jlpsub.src =========================

function lenl(str)

* Returns the position of first nonblank character.

*=len2=== file jlpsub.src ==================================
function len2(str)

* Returns the length of str when trailing blanks are ignored

*=nexlim=== file jlpsub.src ============

function nexlim(inp,ial,lop,limit)
* Finds the next limiter.

*=repl=== file jlpsub.src ===========================

subroutine repi (jono, jonol, jono2, llcml, lkm2, lop)
* Replaces substring with another string.

subroutine jrepl(jonol,il,i2,lop,jono2,le2)

�replaces the substring jonol (il:i2) by string jono2(l:le2)

4.6.7 Printing subroutines

JLP prints almost all results using subroutine jout that prints a character line

(character variable) to terminal, output file and output buffer according to the

current options of printing (determined by printlevel, outlevel, outf ile,

buf level) . (Currently the optimization algorithm prints information about how

the optimization proceeds only to the terminal.) The user can also call this and

other printing subroutines:

*=jout=== file jlp2.src ===============================

subroutine jout(ilevel,buf)
* Outputs a line into screen and/or file and/or buffer.

*=jouti=== file jlpsub.src =============
subroutine jouti(level,buf,ivec,n)

* Outputs an integer vector.

*=joutl=== file jlpsub.src ====================
subroutine joutl(level,buf,list,name)

* Print names of variables in a variable list.

4.6.8 Transformation subroutines

JLP handles all transformations (dtran-, ctran-, xtran-, dupl-, and parin

transformations and definitions of domains) with the same subroutines.

Transformations are first compiled with subroutine compi :

ILP 93

*=compi=== file jlpsub.src ===
subroutine compi (teku, nteku,nimi, nxres,nx,x,nint,npfrst,nxtot,

6 jono,errors,ixoutl)
* Compiles a transformation line jono into vector teku.

Compiled transformations are then made for variables stored in vector x with

subroutine muun:

*=muun=== file jlpsub.src ===========

subroutine muun (x,teku)

* Computes compiled transformations.

The user can use these transformation routines for own purposes.

If there are no defined transformations, subroutine muun can be called safely (i.e.

with immediate return) if the vector of compiled transformations (teku) is

properly initialized (otherwise unpredictable problems with memory will occur).

4.7 Creating Own Transformation Subroutines

It is possible to add own functions that can be used in transformations exactly as the

predefined functions. Own functions can be added by editing function ifunc and

subroutine func in file jlpint.src. JLP global parameters and variables can be used

but they are not generally necessary.

To show how this can be done, function npv is included as an example.

Transformation defined as:

present_value=npv(3,loo, 0, 50, 2, -70,10)

will calculate the net present value using 3% interest rate when there is instant

income 100, income 50 after 2 years and payment 70 after 10 years. There can be any

number of (income,time) - pairs in the function call, and any of the arguments can

be a variable.

A new function can be defined by editing function ifunc and subroutine func

properly:

*=ifunc=== file jlpint.src ===
function ifunc(name)

* Defines function names for own functions and returns their number.

*=func=== file jlpint.src ==============
subroutine func(teku,x)

* Compute the value of an own function.

Setting Up the Working Environment

4.8 User Designs for RHS Generation

The user defines constraints in the problem paragraph in form:

volume =lOOO / >lOO <lOOO / >0

Then solve r command tells JLP to use r th set of RHS's, or solve +r tells JLP to

use the set of RHS's with number: previous_number + r. If many sets of RHS's are

used in a systematic way it is tedious to write all the combinations into the problem

paragraph. If the solve command is given with option starting with '/m', e.g.:

solve/mmethod r

or

solve/mstandard + r

then the subroutine next is used to generate RHS's:

*=next=== file jlpint.src ==================
subroutine next(method, ir, errors)

* Gets new upper and lower bounds for JLP.

The whole option is transmitted to next as a character variable method and can be

used as input parameter for specifying the method for generating the RHS. The

lower and upper bounds given in the problem paragraph can be used as parameters

for defining new RHS's. Subroutine next contains the code for a method

'mstandard' which generates RHS's exactly in the same way as the standard

interface without explicit method. The standard interface does not use subroutine

next, so the user can safely edit it.

4.9 User Defined Data Input

If the format for x-data is given by 'xform m' (where W stands for 'my_own'), then

both x-data and c-data are read in using user defined subroutines. If 'xform m' is in

effect, JLP opens files and reads records as follows (transformations etc. are made as

described in Chapter 2.5):

call minit - initializes reading

do ifi=l, (number of xdat files)

call mopen ! Open ifith cdat and xdat file

! get the number of treament units in file

do iu=l, (number of units)

call mgetc ! read values of cvar variables of the unit

do is = 1, ns ! ns = number of schedules in the unit

call mgetx ! read values of xvar variables from xdat file

Part 4 94

]LP 95

end of loop over schedules

end of loop over units

end of loop over files

call mfinit - open files can be closed etc.

Terms 'open a file' and 'reading variables' mean that such operations are done in

the user subroutines that work similarly as if files were opened and records read.

For the user, the essential fact is in what place in the loop structure each subroutine

is called.There does not need to be a one-to-one connection between the logical and

physical operations. For instance, xdat file names can be area codes of a data base

system, and c-variables and x-variables may be stored in the same data base. Or, files

can be opened in the mgetc subroutine. It is also possible that treatment schedules

are simulated in place. JLP does not change values of c-, and x-variables (unless

modified by ctran and xtran transformations), so it is possible that mgetc and

mgetx give only the changing values. This may be handy if data contain several

levels of hierarchy (e.g., state, coynty, village, farm).

File jlpint.src contains subroutine templates that the user can use as starting point

when defining own subroutines, or as dummy subroutines in case no special input

subroutines are needed:

*=minit=== file jlpint.src ============================
subroutine minit(errors)

* Initilizes everything for reading data with 'xform m'

*=mopen=== file jlpint.src ==
subroutine mopen(mlfil, errors)

* Initializes reading of new data, called for each element of xdat-list

*=mgetc=== file jlpint.src =========================

subroutine mgetc()
* reads the c-variables of the next calculation unit

*=mgetx=== file jlpint.src ==================
subroutine mgetx()

* Rreads the x-variables of the next schedule.

*=mfinit=== file jlpint.src ========================
subroutine mfinit(errors)

* Cleans everything after reading data with 'xform m'

The provided subroutine templates work in the same way as if 'xform b' and

'cform *' would be in effect.

96 Part 4 Setting Up the Working Environment

4.10 Writing Own Report Writer

If the printing options provided by JLP (show, sched) are not enough, or the results

are needed in binary form for further analysis, the user can write his own report

writer. Using JLP subroutines and global variables, a report writer can have access to

the following variables:

1) termination status of the problem

2) RHS's used in the solution

3) values of rows (utility constraints + objective function)

4) shadow prices of utility constraints

5) values of (aggregated) x-variables (including x-variables not used in the

problem definition)

6) shadow prices of included in the problem

7) cost of forcing to have smaller or greater value they obtained

according to the solution (x-variables may or may not have been used in the

problem definition)

8) values of z-variables used in the problem definition

9) reduced costs of nonbasic z-variables

10) weights of schedules in the solution

11) shadow prices of units (= shadow prices of basic schedules)

12) shadow prices of nonoptimal schedules (reduced cost for forcing nonbasic

schedules into the solution)

JLP prints quantities 1) - 9) automatically after solving each problem (according to

the current options of show command). How the user can replace or augment this

report is described in the next section. JLP prints quantities 10) - 12) connected with

schedules with sched command. How these reports can be replaced or augmented

is described in the section thereafter.

4.10.1 General part of the report writer

The general report JP prints after each solution can be replaced or augmented by

editing the subroutine template repo :

*=repo=== file jlpint.src =================
subroutine repo (inp,errors)

* subroutine template for own report writer

If the user writes a command line starting with 'repo' then JLP calls subroutine

'repo'. The whole command line is transmitted as an input character variable to the

subroutines, so that the user can specify in the command line all necessary printing

]LP 97

options. If option '/repo' of command show is in effect, then the report is generated

always with repo instead of the standard JLP report writer. The command line

transmitted to repo is in this case the solve command line, and can not be used so

easily to transmit report writer options. The provided template for repo prepares

basically the same report as JLP usually does but in a slightly simplified format.

If JMAKE option smrep is in effect, then JLP will call subroutine mrep exactly in

the same ways as repo is called. That is, if a command line starts with 'mrep' then

JLP calls subroutine 'mrep'. And if option '/mrep' of command show is in effect,

then the report is generated with mrep instead of the standard JLP report writer. If

both option '/repo' and option '/mrep ' are in effect, then JLP calls first repo and

thereafter mrep. Report writer repo is intended for a general purpose report

writer, and mrep for report writer for special data structures (e.g. MELA system), i.e.

for the case when the data are read in with 'xform m'.

Because the use of mrep is identical to the use of repo, there is no separate

subroutine template for subroutine mrep (one can start making mrep from a copy

of repo where the subroutine name is changed into mrep).

The header of repo contains a list of those global variables that are possibly needed.

The options of show command determine what global variables are actually

computed by JLP. For instance, the integer approximation is computed only if

'/int' option is in effect, and cost of decrease and increase is computed only if

'/cost' option is in effect. The shadow prices of are not computed into

global variables, because they are fast to compute with subroutine jpix when

needed:

*=jpix=== file jlp2.src ====================

subroutine jpix (idom,iv,ipres,pix)
* computes the shadow price for an x-variable

4.10.2 Report writer for schedule information

The user may want to treat the schedule information (items 10-12 above) differently

than command sched allows. A subroutine template showing how to access the

necessary global variables is in subroutine ownl:

*=ownl=== file jlpint.src ===

subroutine ownl(inp,errors)
* Subroutine template for own command given in OWNI option in jlp.par.
* Currently includes template for report writer replacing
* sched command and showing how to access c- and x-data.
* *

Subroutine ownl can be accessed with a command given in file jlp.par (see section

4.1.2). The default command name is ownl. The user may wish to combine all

98 Part 4 Setting Up the Working Environment

report writing procedures into subroutine repo and/or subroutine mrep described

above.

The shadow prices of schedules (including shadow prices of units) are not

computed into a global vector. They can be accessed with subroutine jpis :

*=jpis=== file jlp2.src ===================

subroutine jpis (iunit,is,spsc)
* Computes the shadow price of an schedule.

4.11 Creating Own Interface

JLP is designed so that the user can easily create totally new interface with menus

and buttons etc. on the provided command based interface. This can be done using

input and output buffers. There are three main strategies for building an own

interface. Because JLP controls command input and printed output independently,

it is possible to choose the input method from one strategy and output method

from another.

4.11.1 Main program interface calling JLP

The provided main program in file jlp.src is very simple. It basically just calls

subroutine jlpin that contains the standard JLP interface. Thus the user can write

an own main program that will replace the standard main program.

The main program must (here the program calling JLP subroutine jlpin is called

main program, it can also be a subroutine) define an character variable for error

messages and a variable for receiving output:

character*Bo errors

character*7B outiin ! the length can be also e.g. 80
* errors must initially be empty

data errors/* '/

The main program can communicate with jlpin using subroutine bufio:

*=bufio=== file jlpsub.src ==============================
subroutine bufio(what,line,L,errors)

* Sends commands to JLP and gets the generated output
* �

* INPUT:

* what = 'in' adds line to command buffer INC

* = 'in/clear' clears command buffer

* = 'out' gets a line from output buffer OUT
* = 'out/clear' clears output buffer

The main program can put a package of commands to the command buffer using

'in' as what parameter of buf io. If last command put to the buffer is 'end' then

/LP 99

the control can be obtained back to the main program (otherwise control remains in

JLP, usually JLP would wait input from the terminal). For instance:

* output is put to the output buffer:
call bufio('inbuflevel 2',L,errors)

if(errors(l:l).ne.' '(goto 999 ! errors are checked there
* error messages start always in column one, it is faster to test
* only first character

call bufio('in','end',L,errors)
if(errors(l:l).ne.' '(goto 999

JLP can then be asked to execute the commands:

call jlpin(errors)

If parameter buflevel has been >O, the output has been send to the output buffer

that can be printed e.g. as follows:.

10 call bufio('outbuf,L3,errors)

if(L3.lt.o)goto 20

if(l3.gt.O) write(n6,*)buf (1:L3)

goto 10
20 (new commands)

After solving a linear programming problem, an own report generator can be

accessed either directly from the main program or via JLP (e.g. with JLP command

report).

4.11.2 Interface in a subroutine called by JLP

If JLP gets command buff it calls subroutine buf f :

*=buff=== file jlpint.src ===============================
subroutine buf f (inp,errors)

* An example of an interface operating through the buffer.

The subroutine template written to subroutine buff is handling similar interface

as the main program interface described in the previous section. Commands are

read from the terminal with prompt 'bufin>' and they are put into the command

buffer. When string '//' is encountered, control returns to the calling subroutine

jlpin and stored commands are executed. If buff is the last command put to the

buffer, control returns back to this subroutine. If buflevel is given a positive

value, then output goes to output buffer that can treated in this subroutine first.

The main program provided will give control directly to subroutine buff, if

JMAKE option SINITI in jlp.par is given value 'buff'.

It depends on the structure of the interface and on what other tasks the interface is

controlling if it is easier to build the interface into main program (or a subprogram)

Setting Up the Working Environment 100 Part 4

that calls jlpin, or if it is better to build the interface into subroutine buff that is

called by jlpin.

4.11.3 Replacing terminal input and buffer output

The interface structures described in the two previous sections are based on the

idea that the interface is intelligent, i.e., the interface knows what it is striving at so

that it can send to JLP command packages that accomplish major tasks. But an

interface may be just an other way of sending commands to JLP and printing the

results. For instance, the user may want to send commands using buttons or menus

and get results to different windows. In such an interface the main thing is that

terminal input and output (FORTRAN read and write statements) must be

replaced with some other operations. The JLP package provides the following tools

for this.

Replacing terminal input

If JLP gets command ownread, then the terminal input (reading from unit n5) is

replaced by call to subroutine ownrea:

**=ownrea=== file jlpint.src===================================
subroutine ownrea(line)

* An example of own input function that replaces terminal input.

The provided template for ownrea just reads the command line from the terminal.

The command ownrea affects only reading from the terminal, i.e., include

command can still be used to get input from files.

Command ownrea will toggle, i.e., giving another ownrea terminal input is used

again.

Replacing buffer output

The output buffer provides an way to replace terminal output. If printlevel is set

to zero, and bu f level is given a positive value, then nothing is printed to the

terminal and all output goes to the output buffer. The output buffer can then be

handled in the main program after returning to the main program after command

end, or in the subroutine buff after giving the control to subroutine buff by

command buff. If the bu f level is given a negative value, then instead of putting

a line into the output buffer, JLP calls subroutine ownwri:

*=ownwri=== file jlpint.src ================================
subroutine ownwri(line)

* An example of own output function replacing buffer output.

101 ILP

With ownwri the output can be handled line by line. It may be easier to make input

and output co-operate smoothly, if entries ownrea and ownwri are put to the same

subroutine.

A possible use for ownwri is to get better scrolling properties on the screen than

obtained by unqualified writing to the standard terminal unit.

4.12 Adding Own Commands to JLP

The user may add two commands to the JLP commands as follows (on request

arrangements for more commands can be easily made). The names of commands

can be given by giving proper values for JMAKE options SOWNI and SOWN 2 in

jlp.par. Let us call the commands ownl and own 2 (as is the default given in jlp.par).

When these commands are encountered, JLP calls user subroutines ownl and own 2:

*=ownl=== file jlpint.src ===
subroutine ownl (inp,errors)

* Subroutine template for own command given in OWNI option in jlp.par.
* Currently includes template for report writer replacing
* sched command and showing how to access c- and x-data.
■k *

* INPUT: inp = the whole command line (extra blanks are removed)

*=own2=== file jlpint.src ===
subroutine own2(inp,errors)

* Subroutine template for own command given in OWN 2 option in jlp.par.

These subroutines get the whole command line as the input, so all command

options etc. can be implemented by interpreting the command line properly. As all

JLP global parameters and variables can be accessed using 'needs : ' construction of

JMAKE, the user may do whatever she/he wants in these subroutines.

102 Part 5 Errors and Troubleshooting

5. ERRORS AND TROUBLESHOOTING

5.1 Syntax Errors

If JLP encounters an illegal command in batch mode, the program terminates

(returns to the main program) with the proper error message. In interactive mode

(default) all open include files are closed, the error message is printed, and the

control is given to the input terminal. Note that only the significant part of a

command is interpreted, and e.g. 'printleuvel 2' does not cause an error.

JLP prints warning messages in case no error has occurred but the result of a JLP

command may be different than the user may expect. For instance, if JLP is asked to

solve a problem without an objective function, JLP will print:

W no objective variable, finding feasible

The author is expecting feedback from the users to improve the error and warning

messages, and how to deal with error situations.

5.2 Dimensions of Vectors

JLP tries to check the ranges of character substrings and array indexes. If an overflow

would occur, JLP prints an error message telling what parameter should be

increased. For example the error message for parameter maxnx is:

PAR increase MAXNX

The parameter MAXNX in file jlp-par should then be increased and JLP rebuilt as

described in Chapter 4.1. It is possible to continue the current session with other

commands. However, if the error message comes in form:

*F*PAR* increase MAXSPL

then the data areas are out of order, and the current session can be continued only

after init. It is recommended that JLP source files are compiled without range

checking option, unless the user suspects that JLP fails in the range checking (which

is, in theory, possible). Programs compiled without range checking are smaller and

faster.

103 lIP

5.3 Problems in the Optimization

A major difficulty in a nontrivial numerical algorithm is that unavoidable

rounding errors may prevent the algorithm from finding the solution within a

reasonable accuracy. Even if JLP has solved all the test problems, there are certainly

problems where JLP fails. In case of difficulties, and before consulting the author,

the user should:

i) use 'printlevel 9' to get all the diagnostic output that might explain the cause of

the problem,

ii) try to solve modified problems, e.g., by adding a constraint at a time, to see when

the problems arise.

iii) modify parin parameters tole, invert and/or wmin (see section 2.7.4).

5.3.1 Degeneracy due to linear dependency

A basic variable in a linear programming problem is called degenerate if its value

is zero. Degeneracy can cause unstable behavior. There are two types of degeneracy

problems that have been addressed in the design of JLP.

First degeneracy situation arises when some constraint rows are linear

combinations of others. An example:

> prob
> income.2-income.l=o

> income.3-income.2=o

> income.4-income.3=o

> income.s-income.4=o

> income.s-income.3=o

> npv.o max
> /

Now the last constraint 'income . 5-income . 3' is a linear combination (sum) of the

two previous constraints. JLP keeps all constraints (including equality constraints)

nonbinding as long as they are satisfied up to the tolerance computed from the

minimum and maximum value of each Thus in the above sample

problem the constraint for 'income . 5-income . 3' will not become binding, and

following solution is obtained:

104 Part 5 Errors and Troubleshootin

The order of the last two constraints were then changed.
> prob
> income.2-income.l=o

> income.3-income.2=o

> income.4-income.3=o

> income.s-income.3=o

> income.s-income.4=o

> npv.o max

> /

The last constraint is nonbinding also this time, and following results are obtained:

Thus the results look different depending on the order of constraints. Note the

relations between the shadow prices of this and the previous problem: -0.0485004-

0.0410396= -0.089540. The shadow prices for x-variables look the same in both cases.

If the computed tolerance range for constraints is too small, then linear

dependencies may remain undetected, and JLP may behave in an unstable way, and

may or may not find the solution. If the tolerance range is too wide, then JLP will

get a reasonable solution but the solution is not exact in the sense that a constraint

that should be binding is not. See section 2.7.4 for how to change the default

tolerance.

5.3.2 Degeneracy when lower bound = minimum

Suppose that the simulated alternatives contain alternatives with herbicide

treatments (x-variable herbicide >0)
,
 and those alternatives are economically

favorable. If we set a constraint 'herbicide =o' then this constraint will become

binding and will get a nonnegative shadow price. Thus the algorithm takes a

schedule with herbicide>o as a basic schedule, even if the weight of such a

row value shadow

price

lower upper
bound bound

1) income.2-income.1
.

.
 . . 0.00000000 -0.2052712 0.000000 L

2) income.3-income.2
.

.

.

.
 0.00000000 -0.2147269 0.000000 L

3) income.4-income.3
.

.

.

.

 0.00000000 -0.0895401 0.000000 L

4) income.5-income.4 .
.
 . . 0.00000000 -0.0410396 0.000000 L

5) income.5-income.3 .
.
 . . 0.00000000 0.00000000 0.000000

6) npv.0 .
.

.

 33459072.7 1.00000000 max

row value shadow

price

lower upper
bound bound

1) income.2-income.1
.

.

 . . 0.00000000 -0.2052712 0.000000 L

2) income.3-income.2
.

.
 . . 0.00000000 -0.2147269 0.000000 L

3) income.4-income.3
.

.

 . . 0.00000000 -0.0485004 0.000000 L

4) income.5-income.3
.

.

 . . 0.00000000 -0.0410396 0.000000 L

5) income.5-income.4
.

.

 . . 0.00000000 0.00000000 0.000000

6) npv.0
.

.

.

 33459072.7 1.00000000 max

ILP 105

schedule is zero. (Earlier versions of JLP had difficulties in finding the solution in

this case.)

A faster way to implement such constraints would be to reject unacceptable

alternatives in xtran- transformations:

xtran

if herbicide>o then reject
/

If a constraint is forced this way, then no shadow price is obtained.

106 Part 6 Linear Programming, Algorithm

6. LINEAR PROGRAMMING ALGORITHM

In this part, the mathematical background of JLP algorithm is briefly described. The

domain structure has effect only on the way different variables are accessed and not

in the basic optimization algorithm as such. Thus the algorithm is described

without a reference to the domains. The realization of the domain structure is then

described at the end of the part. The reader is assumed to be familiar with basic

linear programming concepts (see e.g. Luenberger 1973).

6.1 Problem Formulation

Let us first restate the problem definition from Chapter 1.2 in a slightly different

form (see Chapter 1.2 for interpretation of the symbols)

subject to:

Vectors z, and x are:

Constraints (6.2) can be written in matrix form as:

Max or Min z
0 =ao

'x + bo
'z (6.1)

c, <a,'x + b,'z<C,, t = 1,...,r (6.2)

xk-^L xk
w

ij
 =°. k = 1,...,p (6.3)

.=iy=i

i = (6.4)

J=i

Wy > 0 for all i and j (6.5)

z
k

> 0 for£ = (6.6)

=(i - xp)
/

z = (z, ... zj (6.8)

c < Ax + Bz < C (6.9)

JLP 107

The problem is easier to understand (and define) if the constraints including the

aggregate xj-variables and their definitions are presented separately, as above. An

equivalent problem would be obtained by substituting the definitions of jc-variables

directly into the objective (6.1) and constraints (6.2) (as is the formulation of Dantzig

and Van Slyke 1967). Note that without a loss of generality we might assume that

on each row t all coefficients atk are zero except possibly one coefficient is one. For

instance, if some row t contains

then this linear combination can be replaced by a new variable x p+ \ for which we

define:

It is more natural for the user to define problems without artificial new x-variables,

but computationally a more efficient algorithm is obtained by making new

variables for linear combinations of x-variables. These variables are called

'temporary in JLP output. The mathematical basis of JLP is here

described assuming that there can be several x-variables on each row. It is also

indicated how computations will simplify if there can be only one x-variable on

each row without a coefficient (i.e. with coefficient 1). This formulation is called

one-x formulation.

Any standard linear programming algorithm can be used to solve the problem, at

least after writing any constraint t of form (6.2) as two separate constraints, one for

the lower bound and the other for the upper bound, or as an equality constraint in

case Ck=Ck. However, to solve the problem efficiently, the special features of the

problem should be taken into account.

JLP applies the following techniques:

(i) Generalized upper bound technique (see Dantzig and Van Slyke 1967) is used to
handle the area constraints (6.4).

(ii) Using the revised simplex method (used also by Dantzig and Van Slyke 1967),
the algorithm makes small local steps, i.e. without having the whole tableau in the

memory.

(iii) The basic unit in the optimization is one treatment unit, thus the algorithm
applies a kind of decomposition technique.

(iv) An upper bound technique is used to handle simultaneously both the lower
and upper bound.

2x2 +3*2

4+1 =24+34

108 Part 6 Linear Programming, Algorithm

6.2 Generalized Upper Bound Technique

6.2.1 Basic idea: key variables

The generalized upper bound technique is the most important special feature of the

algorithm. The number of constraints in the problem is m + 2r, and generally m is

large and r is small. As the speed and memory requirements of a linear

programming computer program depend mainly on the number of constraints, the

original problem may take quite much time and memory. Applying the generalized

upper bound technique for the area constraints and ordinary upper bound

technique for the upper bounds, the effective number of constraints is r.

The basic idea of the generalized upper bound technique is that the area constraint

(6.4) for treatment unit i

will be automatically satisfied if we select from each unit i a schedule J(i), and write

Wjy(i) in terms of the other weights:

Constraint (6.3) defining variable Xk,k=o,...p can then be written without variables

or

The area constraints (6.4) can be dropped from the problem, since (6.10)

automatically guarantees that they are satisfied. However, for each unit i, the

nonnegativity constraint > 0 will become:

ix=i

w U(i) =1- X w
y
 (61 °)

i*J{i)

/ "\~l
m

....

X x'k w

ij
+x

k

M !- X w
y
 =0 (611)

i=i V ■WW y_

m m

I(4 -4/(,)K =lX(') (6.12)
i=l ./>/(/) i=l

JLP 109

Thus the number of constraints (nonnegativity constraints are not counted) is the

same as in the original formulation, the area constraints were just changed into

constraints (6.13) . However, if the schedules J(i) are chosen at each stage of the

solution process so that wjj(j) would be a basic variable (i.e. wj(i) >0), then these new

constraints are never active. Thus the working basis can be formed without having

basic variables corresponding to these constraints.

The problem definition uses inequality constraints. As the matrix algebra of linear

programming is based on equalities, artificial surplus or slack variables are usually

introduced to make inequalities formally into equations. JLP treats nonbinding

constraints without surplus and slack variables by adjusting the dimension of the

basis matrix according to the number of active constraints. This can make the

algorithm faster if there are several nonbinding constraints.

Let us first describe how the optimization proceeds at any stage after finding a

feasible solution. How to obtain a feasible solution is described later. A stage of

optimization can be described as follows:

For each unit i there is an key schedule J(i) for which wu(i) >O. Variables wu(i) ("key

variables" of Dantzig and Van Slyke 1967) are implicit basic variables they are not

included in the working basis. Let s denote the sum of x-variables over the key

schedules, i.e.:

where

There are R binding utility constraints, 0 < R < r , for each binding utility constraint t

either the lower bound ct or the upper bound C(is active. Let us denote the

of the active bounds by cb- Assume for simplicity that the binding constraints are

the R first.

Correponding to the R binding utility constraints, there are R basic variables among

w- and z-variables (these variables form the "working basis" of Dantzig and Van

Slyke 1967). Let the number of basic basic z-variables be Q. Assume for simplicity

that the basic z-variables are the Q first. Let P =R-Q be the number of basic w

variables (in addition to the implicit basic variables w,y{l)
). These w-variables are

2>y <l, i = (6.13)

m

s = £xi/(i) , (6.14)
i=i

x
ij =(x? ... x'j,) (6.15)

110 Linear Programming Algorithm Part 6

called explicit basic w-variables, and the corresponding schedules are called explicit

basic schedules. Let us index the explicit basic schedules by u, and denote the unit

and schedule for explicit basic schedules by ij(u), u=\,...J
3 . Note that there can be more

than one explicit basic schedule in the same treatment unit. Denote further:

Thus the current value of x is:

Let us decompose A, B, bo, and z separating binding and nonbinding constraints and

basic and nonbasic variables:

The current value of the objective function is :

where the current values of w and zb can be solved using the assumption that the R

first utility constraints are binding:

/

w = (w

y(i)' - '
w 'j(P)) (6 - 16>

i„=x
m

-x
UM

, u = (6.17)

D = (d, ... d
P). (6.18)

x = s + Dw (6.19)

z=
 f b

,

 where
z„

 = O (6.20)
\

ZnJ

b„=M (6.21)
v

b
o«y

a.(£) #»
(Buu 8,,,,^

B =
46

a

bn

 . (6.23)
\

a
nb armJ

z 0 =ao
'x + bo'z = ao's + ao'Dw + b o;,'z i ,
 (6.24)

A fcx + B fc6z fc =c h,
 or (6.25)

A fcs + A fc
Dw + Bbb xb = cb , or (6.26)

A
fe
Dw + Bbb zb =cb - \bs ,or (6.27)

/ yy

(A fc D Bw) =cb
-\

b s,OT (6.28)
\ZbJ

111 /LP

The matrix (A h
D B

bb) is the current (working) basis matrix of the problem.

6.2.2 Entering variable

There can be three different possibilities to improve the current solution:

i) A new schedule j for some unit i enters into the solution (more precisely: weight

wij enters into the the solution).

ii) A nonbasic z-variable enters into the solution

iii) A binding constraint becomes nonbinding (the slack or surplus variable of a

binding constraint enters into the solution).

New schedule enters

Let us consider what will happen if schedule j for some unit i enters into the

solution with weight X. Let w+ denote the new values of the weights of the current

explicit basic schedules, let z b+ be the new values of the basic z-variables, and let d*

denote the difference:

New value of the .x-vector is denoted as x+ and is obtained as:

Binding constraints remain satisfied if (see Eq. 6.27):

or

Hence:

or

W 1 = (A,D B
bby\cb

-\
b s). (6.29)

\ Zb)

d* =x
ij
-x

J(i) (6.30)

x
+
=s + Dw

+
+Ad (6.31)

A
fc
Dw

+
 + X\

b
A* + Bbb zb+ =c b

- \b s (6.32)

(A,D W+ l = c fc
 - \

bs - AA
fc
d* (6.33)

\Zb+J

+ j = (A fc
D B

fcfc) '(ct-AfrS-AAfcd*) (6.34)

f w+ l = f w V A(A*
D B«.rlA

>
d

* (6 -35)
\

zb+J \
zb)

112 Part 6 Linear Programming Algorithm

Denote

where Hx contains P first rows and H z Q last rows of H.

Then

Thus the new value of the objective function is

is the vector of shadow prices of the active constraints (more precisely, this vector is

the shadow price vector at the solution).

If v
z

'd* >0 ,or v/x
l' > v/x

y<'>, then the solution will improve if schedule jis put

into the solution. Thus the value of a schedule in a unit can be computed using the

marginal prices of A nonbasic schedule can enter into solution if its

value is greater than the value of the key schedule.

In the one-x formulation all elements on each row of Ab are zeros except possibly

one element is one. Thus the computations simplify considerably. Each row of

matrix A fcD needed in the above formulas is either zero or is obtained by picking a

row of D. In computing the pricing vector v*, we note that ao is either zero or

contains one in some position, and postmultiplication of vector vc by Ab just adds

the elements indicated by the columns of Ab- Thus the total number of

computations needed to compute \x is very small.

New z-variable enters

Let us consider what will happen if a new z-variable, e.g. zQ+l enters into the

solution. Let Xbe the new value of zq + i . Let denote the coefficient (column)

H = (A fc
D (6.36)

x
+
 =s + Dw

+
 + Ad* =x + + l)d*, and (6.37)

z
+

=zb
- AH

z

A
fc

d* (6.38)

z
o+ =z

0 + A(a o
'(-DH,A

fc +1)- or (6.39)

z
o+

 =z„ + Av/d", where (6.40)

v
z

'= a o
'-v

c
'A

fc/ where (6.41)

v
c

'= a O
'DH

x + b fc
'H

z = (a O
'D b ft ')H (6.42)

lIP 113

vector of zq+i in the binding constraints, and let b0 denote the coefficient of z
e+l on

row 0. The binding constraints remain satisfied if:

We see that the equation is otherwise as Eq. (6.32) but A fc
d is replaced by b h . Thus

In the case of the entering schedule, we had to take into account the direct effect of

entering schedule on the Now the values are changed only

through the changed weights of schedules in the basis. Thus

The new value of the objective function is

The shadow price vector v c is given in (6.42).

Thus the objective function will increase if A
O -v

c
'b;,>o. If ft

o -v
c
'b

A
<o then

\
c

'b*h -bo is the reduced cost that would result if the z-variable would be forced to

the solution.

Slack or surplus variable enters

Assume that for some constraint t the upper bound C, is binding and the lower

bound c, is strictly less than C,. Then it may happen that when dropping the

constraint, and letting the value of the row to decrease, the objective function may

increase. An equivalent description for this is that the so called slack variable of

constraint t enters to the solution. (JLP does not actually use slack and surplus

variables, but they are useful for describing the situation when a binding constraint

becomes nonbinding.) Thus the above analysis for the entering z-variable applies.

The slack variable of constraint f is a z-variable so that

A
fc
Dw

+ + Bbbzb+ + Abi = Ci - A fc s. (6.43)

f W+] = f W]~ A(A
<>
D (6.44)

v
z
fe+y \

zb)

x
+
=s + Dw

+
=x-ADH.

[
b

(„ and (6.45)

z
&+= z6--*hX (6.46)

z
o+ =zo + Aft o*-A(a

O
'DH

x
 + or (6.47)

z
o+ =zo + A(b'0 - v/bj), where (6.48)

a,' x + b,' z + slack, =C, (6.49 a)

114 Part 6 Linear Programming Algorithm

i.e. it has coefficient one on row t and zero on other rows. The objective function

can be inreased by relaxing the constraint tif element tof v c is negative.

Similarly, if constraint tis at the lower bound c, and c,<C t, we should consider

entering the surplus variable for constraint t into the solution. The surplus variable

of constraint t is a z-variable so that

i.e., it has coefficient -1 on row t and zero on other rows. Thus the objective

function can be inreased by relaxing the constraint tif element tof v c is positive.

6.2.3 Leaving variable

When a new variable enters into the solution, the objective function increases in

proportion to the new value X of the entering variable. The new value will be

increased until some basic variable becomes zero. That variable then leaves the

basis. Three cases may occur:

(i) The weight y(i) of the key schedule of some unit i(i may or may not be the

same unit for an entering schedule) becomes zero. Note that is not formally a

basic variable of the modified problem. This is equivalent to the case that an

implicitly treated constraint <1 becomes binding.

(ii) The weight Wy of an explicit basic schedule will leave the basis

iii) A basic z-variable leaves the basis

(iv) A nonbinding utility constraint /, R<t<r will become binding (at lower or upper

bound).

To determine which of the three cases occurs, we need to compute the critical value

X* in each case. Let us first present in a unifying formalism how the w-, z-, and x
variables change when a new variable enters:

where

a,'x + b,'z-surplus, =c, (6 49b)

w
+ =w + Ar

w (6.50)

x
+
=x + Ar

;c
 (6.51)

x
+

=z+Xr
t (6.52)

/LP 115

and all elements of r zn are zero except if a z -variable enters then the corresponding

element is one (e.g. if zg+) enters then first element of r zn is one).

We need then consider the following cases:

The weight of a key schedule becomes zero

The weight of a key schedule becomes zero when the weights of basic

schedules of unit i sum up to one, i.e., the implicit constraint <1 becomes

j*Jd)

binding.

Denote by T,- the index set of explicit basic schedules from treatment unit i (i.e., ye T,-

means that >0 and j±J(i)). Let r wlJ denote the corresponding element of r w .

Let us first concider the case that the entering variable is not weight in unit i.

We note first that the weight cannot become zero if there are no explicit basic

schedules in unit i (i.e., T, is empty). If there are explicit basic schedules in unit i

(i.e. T; is not empty), then the weights of the explicit basic schedules sums up to one

if

, if a new schedule enters

„

_

 -H x

b'
b/ if a new z - variable enters

th (6.53)
t column of -H

x
 if surplus variable of constraint t enters

r
th column of if slack variable of constraint t enters

(-DH x
A

fc + I)d" ,if a new schedule enters

-DHX, if a new z - variable enters . .
x * »v. (6.54)

t column of - if surplus variable of constraint t enters

f
th
 column of DH

X if slack variable of constraint t enters

r
z =(/*]' where (6.55)

_H
z

A
id*, if a new schedule enters

- H
z
bL if a new z - variable enters

2b ' iu (6.56)
t column of -H

z
 if surplus variable of constraint t enters

r
th column of Hz if slack variable of constraint t enters

£(wy +X*r
wij) = \,OT (6.57)

M,

116 Part 6 Linear Programming Algorithm

If the entering variable is weight wy in unit i. the weights of the previous explicit

basic schedules and the weight of the entering schedule sum up to one if

If there were no explicit basic schedules in the unit of the entering schedule, then

the above equation says simply that w becomes zero if X*=l.

An explicit basic schedules leaves

The weight of an explicit basic schedule, wtj , becomes zero, if r
wlJ

<o and

A basic z-variable leaves

A basic z-variable z
w becomes zero if r zk < 0 and

A nonbinding constraint becomes binding (a slack or surplus variable leaves

Let Z(denote the current value of a nonbinding constraint row t:

c, < Z, < C,. The new value of the row, denoted as Z(+, will be

If a,'r
x + b/r

z <O, the constraint will reach the lower bound cj when X gets

value

A*= 1- Ys w
ij
 /lr

„ij
 (658)

Y, (wij + k*r
wij) +X*=l, or (6.59)

(\ K \

A*= 1- / 1+X r

wy
 (6-6°)

I J*Ti)! V JeT
i)

w
tJ + X*r

wij =O, or (6.61)

■ =~ w ij/rwij (6-62)

zbk + X*r
2k =O, or (6.63)

* = ~ zbk/rzk (6-64)

Z, =a,'x + b,'z , and (6.65)

Z
l+ = Z,+A(a/i-j+ t>/r

z). (6.66)

117 ILP

Similarly, if a,'r
x + b,'r

z >O, the constraint will reach the upper bound Cj when

X gets value

Note that the elements of r z corresponding to nonbasic z-variables are zero except

for an entering z-variable. The smallest value of X* computed in Eqs. 6.58, 6.60, 6.62,

6.64, 6.67, and 6.68 will be the new value of the entering variable (weight w/j, z

variable, slack/surplus variable) and it determines which is the leaving basic

variable (a key variable, an explicit basic variable, a z-variable, or an implicit

slack/surplus variable of a nonbinding constraint). Thereafter we need to update

the problem description, i.e. the list of key schedules, the list of explicit basic

schedules, and s, D, H, w, z, x, v c,
 and vx.

6.2.4 Updating step

There are three different types of entering variables (treating slack and surplus

variables as one category), and four different types of leaving variables. Thus there

are twelve different combinations. The overall updating step can be combined by

applying the following operations:

The weight of a key schedule becomes zero

The updating steps are simple, if weight wy enters the solution and the weight
of the key schedule of the same unit i leaves the solution, and there are no

explicit basic schedules for the unit (i.e., w,j will become 1 and wU(i) was 1). We first

update s (:= denotes assignmet operation):

Then we set J(i) := jin the list of key schedules. D, Bbb, H, \x > an<3 v c will remain the

same. New w, z, and x can be computed using Eqs. (6.29) and (6.19).

If becomes zero for a unit i having explicit basic schedules, then the updating

can be done as follows. We select any explicit basic scheduley" in unit ito become

the new key schedule. Vector s is updated similarly as in (6.69). If there are other

explicit basic schedules in the unit (in addition to the new key schedule), the

columns of D for other schedules in the unit are changed to correspond to the new

key schedule. The inverse H of the basis can be updated accordingly by standard

= (c
t ~Z,)/(a/r x + b/r

z). (6.67)

A*=(Cl -Z,)/(a/r ;t + b/r
z). (6.68)

+ x" (6.69)

118 Part 6 Linear Programming Algorithm

pivot operations. J(i) is set to be j'. Thereafter we proceed as if it where the column

of D corresponding to the schedule j' that is leaving the basis.

A column of the basis is changed

A colum of the basis is changed when the entering variable is either w- or z-variable

and the leaving variable is either w- or z-variable. If the leaving variable is the

weight of the key schedule (i.e. an implicit basic variable), it was described in

the previous section what steps are taken to transform the situation to correspond

the case that the leaving variable is of an explicit basic schedule.

If the leaving variable is w,y for an explicit basic schedule, the corresponding column

of D is dropped. If the leaving variable is a z-variable, then the corresponding

column of dropped. If the entering variable is a z-variable z* then the

coefficient vector

is included in By,. If the entering variable is wtj then vector d* = x'J -\ u<l) is joined
to matrix D. Thereafter the inverse of the basis H is updated using standard pivot

operations. For computing the inverse, the basis is treated as a single matrix whose

column is changed. Logical separation between By, and D is done with link lists.

A row is added to the basis

If either a z- variable or w,y of an explicit basic schedule is entering the basis and a

new constraint t ,

t>R, becomes active, then the dimension of the basis is inreased by one. Then

coefficient rows aj' and b{ that has been in the nonbasic (lower) part of A and Bin

(6.22) and (6.23) are moved to the basic (upper) part. If the entering variable is a z

variable z* then the corresponding column vector of coefficients is included in B bb-

If the entering variable is then vector d* = -x
i/(') .is joined to the matrix D.

Thus the basis matrix (A fe
D B

bb) is updated by adding both a new row and a new

column to it. The inverse basis H can be updated using the matrix formula (CRC ...

1981)

'V

■Pit
j

c, <&
t
'\ + b

l
'z<Ct (6.70)

JLP 119

where

A row is dropped from the basis

If the implicit slack or surplus variable of constraint t is entering the solution (a

binding constraint t becomes nonbinding), and either az- variable or of an

explicit basic schedule is leaving the basis, then we reduce the dimension of the

basis by removing a column and a row. If w,y is leaving the solution the

corresponding column of the matrix D is dropped. If the leaving variable is a z

variable, then the corresponding column of Bbb is dropped. Thereafter the row t is

classified as a nonbinding both in matrix A and B. The inverse of the basis is

updated using the matrix formula (this can be derived from formulas given in CRC

... 1981):

If

then

Two row of the basis are changed

If the implicit slack or surplus variable of constraint t is entering the solution (a

binding constraint t becomes nonbinding), and the implicit slack or surplus variable

of an other constraint is leaving the basis, then we interchange the status of the

corresponding rows in matrices A and B. The inverse of the basis (A fc
D By,) is

then obtained by standard (row) pivot operations.

Computations after changing the basis

After updating s, Ab, D, and H, new values of w, z, x, v
c and v* are computed

using Eqs. 6.29. 6.19, 6.42 and 6.41. Then JLP tries to improve the solution by

entering a new z-variable, a slack/surplus variable of a binding constraint or a

schedule.

d] = f k hd \
l

 i\ (671)
A J b A" +/iA~ bd'A

- J

/i = l/(c-d'A
_1 b) (6.72)

ff:)

B
_l

 = X —£yz' (6.74)

120 Part 6 Linear Programming, Algorithm

6.3 Optimization Algorithm

The preceeding chapters described briefly the mathematical basis of the generalized

upper bound method as applied in JLP. This chapter describes some properties of

the implementation of the method.

6.3.1 Minimization

The algorithm is described above for the case where we want to maximize the

objective function. If the problem is defined initially as a minimization problem, an

equivalent maximization problem is obtaint by changing the signs of coefficients on

the objective row. The signs needs to be taken into account only in Eqs. 6.42, 6.41

and 6.48.

6.3.2 Summary of the algorithm

The following symbols are used in addition of symbols defined in Chapters 6.1 or

1.2:

g = the current (temporary) objective row (after finding feasible g=Q)

Ln = list of nonbinding constraints

L:=L U [t] means that t is added to the list L

Finding a feasible solution

JLP finds a feasible solution by maximizing or minimizing each constraint row

until it will reach the feasible range [cf, Cf]. In the following it is summarized how

the algorithm is used to find the feasible solution.

Initialization: Get lower and upper bounds, and get for each unit the key schedule

(for first problem with the data, key schedules are just different schedule numbers,

thereafter key schedules are obtained from the previous solution), compute s

(which is also the initial value of x) using key schedules.

0. Set g:=0; L„:={}

1. If g=r, then EXIT, FEASIBLE FOUND

else

g:=g+l; L„:= L„U {#};

If constraint g is satisfied go to 1

lIP 121

2. Find an entering variable when row gis maximized + b^'z<C
j

) or
minimized (+ b^'z >C). If no variable can enter, then EXIT, PROBLEM

INFEASIBLE

3. Find the leaving variable, make one optimization step.

4. If constraint g is satisfied, then go to 1, else go to 2

The reason for adding constraint g into the list of nonbinding constraints in same

time as we begin to maximize or minimize row g is to prevent the possibility that

the row that is smaller than the lower bound (greater than the upper bound) and

will become greater than the upper bound (smaller than the lower bound) in one

optimization step. The algorithm became more efficient than the basic version

described above with the following modification. Each time a new constraint g is

started, all constraints g+\,....,r are inspected if they are already in the feasible range,

and satisfied constraints are added to the list of nonbinding constraints to prevent

them to become unsatisfied when making constraint g feasible. Also such option to

the algorithm was tested that temporary lower or upper bounds were used for

constraints g+1,....,r to prevent them deviate more from their feasible ranges. No

clear speed advantage was found, and this option is no more available.

Finding optimal solution

After finding a feasible solution, the optimum value for row g=o can be found

simply as follows:

1. Find an entering variable. If no variable can enter, then EXIT, SOLUTION.

2. Find the leaving variable, make one optimization step.

3. Go to step 1.

There are different possible stategies for finding the next entering variable. JLP is

using the following one.

How ILP selects the entering variabli

A linear programming algorithm has found the solution, if the current solution

cannot be increased by any entering variable. If several variables can enter, the

solution will be found if any strategy is used to select the entering variable.

Selection strategy affects of course the speed of the algorithm. JLP selects the

entering variable initially and after each change of the basis according to the

following priority order (i.e. the entering variable is selected from the highest

possible category):

Linear Programming Algorithm 122 Part 6

i) z-variables

ii) Slack or surplus variables

iii) Weights of schedules.

If several z-variables (slack/surplus variables) can enter, then the z-variable

(slack/surplus variable) resulting in highest marginal change in the objective

function is chosen. Units are visited in order when it is checked if a weight wy can

enter into the solution. The values of all schedules in a unit are computed, and

schedule with largest value is entered into the solution if its value is greater than

the value of the key schedule. If a weight w,y enters, then next time JLP computes

prices of schedules it starts from unit i+l. If i+l is greater than the number of units,

then the first unit will be the next unit. If no schedule can enter in the unit where

last weight entered the solution, then it is known that the optimum has been

found.

If, after entering Wy into the solution, JLP would return to the same unit i for

calculating the prices of schedules, JLP would find the optimum for the current

unit. In the language of decomposition algorithms: we would find the optimum for

a subproblem. In test problems, it was found slightly more efficient to go to the next

unit /+! after entering a weight Wy .

If there are no in the problem, then JLP just never reaches the phase iii)

where prices of schedules are computed.

6.4 Dual Analysis

It may give insight to the problem if we analyze how the primal problem and the

dual problem are related. This analysis will also indicate how to desribe marginal

properties of the solution.

6.4.1 Primal problem

Let us first rewrite the 'standard' problem formulation by separating the lower

bound and upper bound constraints:

subject to:

Max z o =a o
'x + bo'z (6.75)

+ t = 1,...,r (6.76)

i=l i=l

123 /LP

6.4.2 Dual problem

The dual problem is first defined using new symbols for the dual variables. It is

then indicated at the end of the chapter how the dual variables are related to

quantities computed when the primal problem is solved.

Let Of, k=\,...,r be the shadow prices for upper bound constraints (6.76), let <pt,

be the shadow prices for lower bound constraints (6.77), let k=\,...,p, be the

shadow prices of constraints (6.78), and let 8i,i=1,...m be the shadow prices of

constraints (6.79). The dual problem is then:

or after dropping the third term (which is zero)

subject to:

p ?

-Y, atk xk~Y. b
'k zk Z-c„ t = (6.77)

*=l jfc=l

m

xk~^^ x'iw
'j =0

-
 k = (6-78)

i=l;=l

s>v=l, i = (6.79)
i=i

w
tj

> 0 for all i and j (6.80)

z
k

> O forfc = 1,...,<7 (6.81)

r r p m

Min XCA-X^, + s>* + £«5,- (6.82)
/=1 f=l jfc=l *=l

r r m

Min (6.83)

f=l /=1 /=!

r

-<Pt) + I J-k =Ook , k = 1,...,p (6.84)
i=i

k = \,...,q (6.85)
/ = 1

-^ xk^
k
 + <si -0, for all <' and j (6.86)

i=l

124 Part 6 Linear Programming Algorithm

Because (6.78) and (6.79) are equality constraints, the corresponding dual variables n

and 8 are free variables. Because are free in the primal problem, the

corresponding constraints in the dual (6.84) are equality constraints.

Optimization of the objective variable of the primal problem can be described as a

process of finding a feasible solution for the dual problem. For instance, if the

pricing rule (6.40) tells that a schedule / in unit i could be included in the solution,

this indicates that constraint (6.86) in the dual problem is not satisfied. After the

schedule (precisely weight w
l}
) enters the solution of the primal, the constraint is

satisfied.

6.4.3 Relations between primal and dual problems

Let us then consider what kind of relations there are between shadow prices and

variables in the primal problem in the optimal solution.

Shadow price of an x-variable

For an original utility constraint t either the lower bound c t or the upper bound C(is

active. Thus either <D (=O or tpt-0 or both are zero. Let us write that

Then the shadow prices of x-variables can be obtained from (6.84) :

Shadow price of a unit

Constraint (6.86) can be written as:

Equality holds, if the weight vv/y in the primal problem is a basic variable (w,y>o), i.e.,

the shadow price of a unit is equal to the value of any basic schedule calculated

using the shadow prices of the Jt-variables. Multiplying with w,y we get an equality

for each w,y :

®t>o for f=1,...,r (6.87)

$r >oforf=l,...,r (6.88)

K t = O, - <pt. (6.89)

r

Hk= aok-Ys a'k 71
" k = I>->P (6.90)

t=l

p

<5, > ~^x'lnk , for all i and j (6.91)
i=l

lIP 125

If add up over all all schedules in unit i, we get

where

Thus the shadow price of a unit can be calculated using any of the basic schedules

Reduced cost of a nonbasic schedule

The reduced cost for forcing schedule j in unit i into the solution is:

Reduced cost for a nonbasic z-variable

Reduced cost for a z-variable z* is obtained from (6.85) and (6.89) as:

Objective function of the dual

The objective function of the dual (6.83) is equal to:

p

w
tJ
8t =]T Wijx'lUk. for all i and j (6.92)

*=i

P

Si =
J

x'
knk , for alii (6.93)

*=i

4=l^j xl- (6.94)
j=l

Si-f,4»k- (6-95)
*=i

r r

k = \,...,q (6.98)
»=1 /=i

r r m

zo= + X -
(=1 /=1 i=l

rr m p

= X c <°< - X c<& + XX*^
4
 (from 6 -93)

/=1 /=1 i"=l k=\

= I CA-I c
t

<p
t
 + f

j
xk»

t

 (6.96)
»=1 i=i *=i

rrp f r N

c<o/ + X x <J ao* ~~ $\ aik n
t (from 6.90, use then 6.89)

/=1 /=i k=\ v '=l /

126 Part 6 Linear Programming Algorithm

If there are no z-variables in the problem, then for each t either <D
(is zero (the upper

p

bound constraint tis nonbinding) or C, ~^alk xk is zero, and similarly, <p, is zero
k=l

p

(the lower bound constraint f is nonbinding) or X atk xk -c, is zero. Thus if there
k=l

are no z-variables, the last two terms term in (6.97) are always zero.

Computation of the shadow prices

The nonzero values of nu t=\,...,r, i.e., the shadow prices of utility constraints, are

obtained from vector v
c in Eq. (6.42). During the solution process v

c is always up to

date. If 7T<>o, then <t>, = k,, and if /r,<o, then <p, = -n t.

During the optimization, the shadow prices of are calculated from the

shadow prices of utility constraints using (6.41). If there are linear combinations of

on the rows of the problem, these shadow prices are for the temporary x

variables presenting the linear combinations. After solving the problem, the

shadow prices of the original jc-variables can be computed using (6.90).

During the optimization process, values of schedules are computed using (6.40)

when it is determined if a schedule should enter into the solution. The prices are

not stored. After finding the solution, the shadow price of a unit i (precisely, the

shadow price of the area constraint for unit i) can be computed applying (6.91, with

equality sign) to the key schedule of the unit (or to the explicit basic schedules).

Thereafter the reduced cost of a nonbasic schedule can be computed with (6.95).

Formula (6.48) used to check if a z-variable could enter into the solution is

essentially the same as the reduced cost of a nonbasic z-variable given in (6.98).

Values computed with (6.48) are not stored, beacause they are trivial to recompute

with (6.98) after finding the solution.

The fact that the optimization of the primal problem is essentially a r-dimensional

problem (r is the number of the utility constraints) is reflected in the dual problem

so that after knowing the shadow prices of the utility constraints, other dual

variables can be directly computed from them.

Pr (p \ r (p
>

zo= ~ X a

, kxk % atkxk~
c

t (6.97)
*=i (=i V *=i) <=i v*=i /

ILP 12 7

6.4.4 Cost of changing values of

In this section we study the marginal changes in the objective function, if we add a

constraint to the problem that requires that an Jt-variable Xk gets a value slightly

different from the value computed with the weights tv,j obtained from the optimal

solution. Variable Xk may or may not be present in the original problem.

Assume that according to the optimal solution Xk has the value:

Assume then that the problem is modified by adding a constraint

or a constraint

where e is a small positive constant. The constraint (6.100) is called constraint for

increase and the relative change of the objective function (i.e. the change in zo

divided by e) is called the cost of increase. Similarly, constraint (6.101) is constraint

for decrease , and the corresponding relative change is cost of decrease. If xk was not

present in the problem, then we need to add also a constraint of type (6.78) that

defines xk- This constraint is treated implicitly as before. The changes in the

objective function can be analyzed as follows.

If £ is small enough, then a solution satisfying the new additional constraint (6.100)

or (6.101) can be reached in one step from the current optimal solution by entering

a new w-, z- or slack/surplus variable into the basis. As the number of constraints

is increased by one, no variable is leaving the basis. The optimal entering variable

can be chosen by applying the same formulas that are used to determine the

entering variable during the optimization (in this discussion 'entering variable'

refers to a variable that could be entered into the basis, actually no computations are

made to change the basis). If a potential entering variable y gets value A, (A>o) then

the change in the objective function is tt(y)X, where a(y) is computed with Eq. (6.40)

if yis a w-variable (i.e. a = \x
'il*), and with Eq (6.48) if y is a z-variable or a

slack/surplus variable (i.e. a = b*Q - v c 'b£, or a= ±an element of vc
) Because we start

from the optimal solution with less restrictive constraints, a(y) is always

nonpositive (when the objective function is maximized).

The corresponding changes in the variable Xk can be analyzed using the same

formulas treating Xk as the objective function. When computing the price vector

Xk = & (6.99)

** = & + £ (6.100)

xk = &-£, (6.101)

Linear Programming Algorithm 128 Part 6

v
c '=(ao'D bb ')H using Eq. (6.42) we note that a O

'D is a vector with elements

x'l - x^<l> and bh is zero. The change in xk can be expressed as /?(y)A, where p(y) can

be zero, positive or negative.

The constraint for increase (6.100) will be satified if P(y)>o and

The objective function will change by the amount:

Thus the optimal entering variable is such that -a(y)//s(y) is as small as possible.

Ratio - a(y)/P(y) is the marginal cost of forcing to increase.

Similarly, the optimal entering variable for the constraint for increase (6.101) is

such that p(y)<o and cc(y)/p(y) is as small as possible. Ratio a(y)/p(y) is the

marginal cost of forcing Xk to decrease.

If the optimal solution is not unique, then it is possible that cost of decrease or

decrease is zero (i.e., a(y) may be zero for an entering variable y for which p(y) is

nonzero). If is the largest value that Xk can have, then p(y) is never greater than

zero, and the problem with the additional constraint is infeasible. Thus the cost of

increase is not defined (or can defined to be infinite). Similarly, £4 may be the

smallest value can have. The JLP printout 'inf • can thus interpreted to mean

that the problem with the corresponding additional constraint is infeasible or that

the cost is infinite. Generally, the cost of increase is different from the cost of

decrease. For instance, if the net present is maximized, then the requirement to

decrease cuttings in the first period costs usually more than the requirement to

increase cuttings.

The cost of increase and decrease can be computed also for domain specific x

variables (even if the domains were not used in the problem). If the entering

variable y is a z- or slack/surplus variable, then ratio a(y)/p(y) is the same in each

domain.

The shadow price of an x-variable xk tells what is the marginal change of the

objective function, if the problem remains the same and we get an extra unit of Xk • If

the shadow price of an x-variable is zero (i.e. the is present only in a

nonbinding constraint) or an x-variable does not appear in the problem, then a

marginal change in the does not cause any change in the objective

P(y)l=£, or (6.102)

X=e//Xy). (6.103)

a(y)\= e a(y)/p(y). (6.104)

JLP 129

function. The cost of change gives a different view of the marginal properties of the

solution. The main difference is that the shadow prices are computed assuming

that only the right hand sides of constraints change, while when the cost of change

is computed, a constraint is added.

The cost of changing the value of a nonbasic is easier to interpret than the

cost of change of a basic jc-variable (a basic x-variable is an Jt-variable present on the

objective row or in a binding utility constraint). For a basic the additional

constraint for change may intervene with the previous constraints in a way that

may be not seen directly. The mathematical connections between shadow prices and

costs of changing the values of x-variables will not be analyzed further in this

report.

6.5 Domains

Domains are not assumed to have any specific structure. For instance domains can

overlap in any manner. Thus it did not seem to be possible to apply decomposition

techniques to take advantage of the domain structure in optimization algorithm as

such. The domains are taken into account in the computation process as follows.

All x-variables are stored in one matrix without domain information. When the

problem and domains are defined in a problem paragraph, JLP classifies treatment

units into domain combinations. All units in a domain combination belong exactly

to the same domains (a unit can belong to any number of domains). A logical

vector is created for each domain combination telling what constraints apply in the

domain combination. When JLP is dealing with a unit, the loops go over the

constraints that apply in that domain combination.

Domain structure for constraints can be taken into account using any linear

programming program by defining coefficients x'j so that they are zero outside the

domain. This would lead to a system where the same non-zero numbers are stored

several times and many zeros are also stored. JLP stores coefficients x'l only once

and does not store extra zeros.

130 Concluding Remarks

Concluding Remarks: Future Developments

It was a very difficult to decide at what point to stop the development of the JLP

program and make a first version for a general use. There are several possible

extensions, and some of them would be quite easy to implement. It is best that users

decide what extensions are included in future versions of the program. For

instance, following additions might interest some users:

a) Objective function could be nonlinear with respect to the x-variables. This would

quite easy to implement. Other nonlinear properties would require more work.

b) Now all transformation definitions are cleared after transformations are

computed (except dtran which are computed always in place). If definitions could

be saved, it would be possible to have parameters in definitions and change their

values with constant command without needing to retype (or recall from include

file) transformation definitions.

c) It is not currently possible to merge several data sets saved in JLP-format. Is there

need for it?

d) It is not currently possible to edit afterwards problem paragraph or

transformation definitions. This is not a great shortage in modern computer

environments where one can switch to an other editor program and then return to

JLP and get edited commands using include command.

e) JLP algorithm is built so that dimension of the basis (the number of binding

constraints) can change any time. Thus it would be easy to add to JLP the property

that the user could add or remove constraints from the previous problem, and the

optimization would start from the previous solution. Now the algorithm is

utilizing the previous solution only by using the set of the key schedules of the

previous solution. An earlier version of the program included these capabilities,

and it was found that in small problems no significant improvement in speed was

obtained. The situation may be different in large problems.

JLP 131

References

CRC Standard mathematical tables. 25th Edition. CRC Press, Boca Raton, Florida.

613 p.

Dantzig, G. B. and VanSlyke, R. M. 1967. Generalized upper bounding techniques.

Journal of Computer and System Sciences 1:213-226.

Dykstra, D. P. 1984. Mathematical programming for natural resource management.

McGraw-Hill. New York. 318 p.

Kilkki, P. 1987. Timber management planning. 2 nd edition. Silva Carelica 5. 160 p.

University of Joensuu. Faculty of Forestry.

Lappi, J. and Siitonen, M. 1985. A utility model for timber production based on

different interest rates for loans and savings. Silva Fennica 19(3):271-280.

Luenberger D. G. 1973. Introduction to linear and nonlinear programming.

Addison-Wesley, Reading. Mass. 356 p.

Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T. 1986. Numerical

recipes: The art of scientific computing. Cambridge University Press. 818 p.

Siitonen, M. 1983. A long term forestry planning system based on data from the

Finnish national forest inventory. Forest Inventory for improved Management,

Proc. of the lUFRO Subject Group 4.02 Meeting in Finland, September 5-6 1983.

Univ. of Helsinki. Department of Forest Mensuaration and Management. Res.

Notes 17: 195-207.

Steuer, R.E. 1986. Multiple criteria optimization: Theory, computation, and

application. John Wiley. New York. 546 p.

132

List of Commands

Current commands (significant part is underlineed):

Note that the modules of the Reference Manual (Part 3) are listed at the beginning

of it.

Index

Valid JLP commands are underlined.

batch buff buflevel cdata cform

const ctran cvar dtran

dupl end enddo feasible help

helpfi If? include init keepc keepx

make mrep outfile outlevel ownl

own2 ownread parin parout path

pause pr i ntlevel problem read reca11

report save sched show solve

split system time title UH£a.ve

values write xdata xform xtran

xvar

PAR error message 102 Command

Basic line 14; 56

explicit basic schedules 110 comment 14

implicit basic schedules 109 continuation 14

z-variable 20 option 14
Basis syntax 14

reinversion 53 constants 28; 32; 39; 57; 70

working 109; 111 Constraints

batch mode 24; 27; 55; 64; 102 area 11

Buffer defining x-variables 10
interface 55 utility 10; 41

buflevel 55 Cost

buff 99 of decreasing x 50; 51; 127
see also Own:interface of increasing x 50; 127

text 91 reduced, see: Reduced cost

Building JLP 74 D-variables 32; 33; 70

C-variables 33; 70; 90 "data" 32; 71

cdata 28; 56 dtran 28; 58

cform 28; 56 Dantzig 107; 109

ctran 28; 57 Data

cvar 28; 57 reading 28

keepc 28; 34; 61 transforming 29
"ns" 71 variables 30

"unit" 71 Decision variables 11

lIP 133

Degeneracy 53 MELA 15; 62

linearly dependent constraints 103 Model 111

lower bound=minimum 104 needs: 83; 84; 87

Directory 58; 64 Objective see: problem
do loop 58 Objective function
Domains 41; 58 of the dual 125

computation 129 one-x formulation 107; 112

domain combination 129 Output 26

domain variables 12 file 26

mixing 43 outfile 26; 63

Dual 122; 123 outlevel 26; 63

objective function of 125 printlevel 26; 64

duplicating schedules 29; 59 see also: Files,Printing,write

Dykstra 8; 11 Own (user defined)

end 59 buffer output 100
end do 59 commands 63; 101

Entering variable 111 data input 94
feasible 44; 60 functions in transformations 37; 93

technique for finding 120 interface 98-101

Files 60 ownl 63

in the package own2 63

jlp.hlp 25; 55 ownread 63

jlp.par 76 report writer

readme.jlp 74 for schedules 97

source (.src) files 74 see also: Report writer

output file 26 RHS generation 94
version 81 subroutines see: Subroutines

Goal programming 18 terminal input 100
Headers of subroutines 87 variables managed with JMAKE 83

help 25; 60 Paragraph 15

help file 25 Parameters

helpfile 25; 60 of JMAKE 75; 76

If
...

 then structures 38 of optimization
include 24; 61 parin 52; 63
INF - in output 51 parout 54: 64
init 61 path 14; 28; 64

Integer approximation 44; 61; 67 pause 27; 64

JLP format 66 Printing

JLP subroutines 82 solution 44; 67

jmake precompiler 74-87 rows 44

Key schedule 109 schedules 45; 67

Kilkki 8; 11 weights 45

Lappi 8; 50 subroutines 92

Leaving variable 114 problem 41
list a file 25; 61 constraints 41

Logical operators 37 definition 64

Loop domains 41

in solving problems 58 objective 42
in transformations 38; 88 RHS 42

make -compute new variables 29; 62 see also: solve, Own:RHS

make JLP, see JMAKE Random number 37

134 Index

read 65 Transformations 35; 69
recall 45; 65 arithmetic operations 36

Reduced cost clearing 36
of a schedule 52; 125 computation scheme 30
of z-variable 51; 113; 125 when reading 28

see also: Shadow price ctran - see: C-variables

Rejecting schedules 34; 65 defining domains - see:Domains

Report writer dtran -see: D-variables

mrep 62 logical operations 37

repo 66 loops 38

writing own 96-98 subroutines for 92

RHS xtran -see X-variables

defining, see: problem Troubleshooting 53; 102
selecting, see: solve, Own:RHS UNIX 81

Rounding errors 103 unsave 70

save 28; 39; 66 Utility 11
format of files 66 constraints, see: Constraints

unsave 70 variables 11

sched 45; 67 values 70

Shadow price Variables 70

computation 126 c- see: C-variables

of schedule 52; 125 d- see: D-variables

of unit 51; 124 data- see: constants,D-,C-,and X-

of utility constraint 47 decision 11

of x-variable 48; 124 domain 12

show 44; 67 key 108
see also Printing slack and surplus 113

Siitonen 15; 62 special 89
Solution, printing see: Printing variable list 31; 88
solve 43: 68 w-11

find a feasible 44 x- see: x-variables

splitting a unit 29; 68 z-11

Steuer 8 VMS 69; 77; 78; 81

Subroutines Weight see: Variables:w-
for data input 95 write data to disk 71

for printing 92 see also save

for string manipulation 91 x-variables 11; 34; 70; 90

for text buffers 91 aggregated 11
for timing 82 keepx 28; 35; 61
for transformations 92 reject 34
for variable lists 89 "s" 71

for variable names 89 xdata 28; 72

headers 87 xform 28; 72

Swap values of variables 37 xtran 28; 72

system - sending command to 69 xvar 28: 73

System manager 9

Timing 27; 69

comparisons 53
subroutine 82

title 69

Tolerance 53; 104

ISBN 951-40-1218-6

ISSN 0358-4283

Suonenjoen kirjapaino Ky

Suonenjoki 1992

	Contents
	1. INTRODUCTION
	1.1 General
	1.2 Optimization Problem
	1.3 Purpose of the Report

	2. USER'S GUIDE
	2.1 Overview
	2.2 Command Syntax
	2.3 Examples
	2.3.1 A problem with x-variables: nondecreasing incomes
	2.3.2 A problem with x- and z-variables: goal programming
	2.3.3 A problem with z-variables: an ordinary LP problem
	2.3.4 A problem with several data files and domains

	2.4 General Operating Commands
	2.4.1 Batch mode
	2.4.2 Include
	2.4.3 List
	2.4.4 Help
	2.4.5 Output
	2.4.6 Time
	2.4.7 Pause

	2.5 Data Management
	2.5.1 Summary of data manipulation
	2.5.2 Data variables
	2.5.3 Transformations
	2.5.4 Saving data in JLP format

	2.6 Problem Definition
	2.6.1 Domains
	2.6.2 Constraints
	2.6.3 Objective
	2.6.4 Using different domains on the same row

	2.7 Solution
	2.7.1 Selecting the problem to be solved
	2.7.2 Printing options
	2.7.3 Marginal analysis of the solution
	2.7.4 Input parameters of the optimization
	2.7.5 Output parameters of the optimization

	3. REFERENCE MANUAL (FILE jlp.hlp)
	4. SETTING UP THE WORKING ENVIRONMENT
	4.1 Building JLP
	4.1.1 Compiling and linking JLP (file readme.jlp)
	4.1.2 Parameter file jlp.par
	4.1.3 Features of standard FORTRAN not used

	4.2 Output Files in non-VMS Environment
	4.3 Sending a Command to the System Level
	4.4 Creating Own Timing Subroutine
	4.5 Management of Programs with JMAKE Precompiler
	4.5.1 Accessing JLP global parameters and variables
	4.5.2 Using JMAKE to manage own data structures
	4.5.3 Using JMAKE precompiler options
	4.5.4 Using JMAKE in other programs

	4.6 Using JLP Data Structures and Subroutines
	4.6.1 Listing headers of subroutines with JLP
	4.6.2 Changing JLP subroutines
	4.6.3 JLP data variables
	4.6.4 Accessing stored c- and x-data
	4.6.5 Text buffers
	4.6.6 String manipulation
	4.6.7 Printing subroutines
	4.6.8 Transformation subroutines

	4.7 Creating Own Transformation Subroutines
	4.8 User Designs for RHS Generation
	4.9 User Defined Data Input
	4.10 Writing Own Report Writer
	4.10.1 General part of the report writer
	4.10.2 Report writer for schedule information

	4.11 Creating Own Interface
	4.11.1 Main program interface calling JLP
	4.11.2 Interface in a subroutine called by JLP
	4.11.3 Replacing terminal input and buffer output

	4.12 Adding Own Commands to JLP

	5. ERRORS AND TROUBLESHOOTING
	5.1 Syntax Errors
	5.2 Dimensions of Vectors
	5.3 Problems in the Optimization
	5.3.1 Degeneracy due to linear dependency
	5.3.2 Degeneracy when lower bound = minimum

	6. LINEAR PROGRAMMING ALGORITHM
	6.1 Problem Formulation
	6.2 Generalized Upper Bound Technique
	6.2.1 Basic idea: key variables
	6.2.2 Entering variable
	6.2.3 Leaving variable
	6.2.4 Updating step

	6.3 Optimization Algorithm
	6.3.1 Minimization
	6.3.2 Summary of the algorithm

	6.4 Dual Analysis
	6.4.1 Primal problem
	6.4.2 Dual problem
	6.4.3 Relations between primal and dual problems

	6.5 Domains

	Concluding Remarks: Future Developments
	References
	List of Commands
	Index

