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Abstract. The Climate-responsive Land Allocation model
with carbon Storage and Harvests (CLASH) is a global, bio-
physical land-use model that can be embedded into inte-
grated assessment models (IAMs). CLASH represents vege-
tation growth, terrestrial carbon stocks, and production from
agriculture and forestry for different land uses in a chang-
ing climate. Connecting CLASH to an IAM would allow
the consideration of terrestrial carbon stocks, agriculture
and forestry in global climate policy analyses. All terrestrial
ecosystems and their carbon dynamics are comprehensively
described at a coarse resolution. Special emphasis is placed
on representing the world’s forests. Vegetation growth, soil
carbon stocks, agricultural yields and natural disturbance fre-
quencies react to changing climatic conditions, emulating the
dynamic global vegetation model LPJ-GUESS. Land is di-
vided into 10 biomes with six land-use classes (including
forests and agricultural classes). Secondary forests are age
structured. The timing of forest harvests affects forest car-
bon stocks, and, hence, carbon storage per forest area can
be increased through forest management. In addition to sec-
ondary forests, CLASH also includes primary ecosystems,
cropland and pastures. The comprehensive inclusion of all
land-use classes and their main functions allows representing
the global land-use competition. In this article, we present,
calibrate and validate the model; demonstrate its use; and dis-
cuss how it can be integrated into IAMs.

1 Introduction

CLASH (Climate-responsive Land Allocation model with
carbon Storage and Harvests)1 is a biophysical land-use
model that describes the allocation of land to different uses,
forest growth, terrestrial carbon stocks, and the production
of agricultural and forestry goods globally. Global land area
is divided into 10 biomes, and each biome’s area can be
allocated to different uses, including agriculture, forestry
and primary ecosystems. The biophysical properties of land
and vegetation are biome-specific and respond to climate
change. The model has been parametrized to emulate the
dynamic global vegetation model Lund-Potsdam-Jena Gen-
eral Ecosystem Simulator (LPJ-GUESS) (Smith et al., 2001,
2014; Lindeskog et al., 2021) in varied and changing climatic
conditions. In this article, we describe, calibrate, and validate
the model and demonstrate its use.

CLASH can be embedded in economic optimization mod-
els, and integrated assessment models (IAMs) in particular,
or used independently to simulate the climatic impacts of
land use in long-term scenarios. However, CLASH has been
specifically developed for the former purpose. In this role,
CLASH represents the biophysical aspects of land use, while
the IAM needs to provide the rationale for why land is used
and managed in a specific way, including economic, policy
and other societal factors, as well as how the climate changes
over time. These factors are relevant for realistic modelling
of land use but are outside the scope of CLASH.

Three features make CLASH especially suitable for incor-
poration into IAMs: (1) its technical design and low com-

1Model version used in this manuscript: 22 January 2024.
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putational burden, (2) global geographical coverage, and
(3) comprehensive representation of land use and carbon
stocks. CLASH is computationally lightweight, is linear, and
has an adjustable time step. Many IAMs are written as in-
tertemporal optimization problems (Keppo et al., 2021); i.e.,
the whole modelling time horizon is considered and solved
for optimum within a single optimization problem. Such
models can be computationally challenging to solve, espe-
cially if the model is nonlinear. CLASH’s low computational
expense facilitates its incorporation into such IAMs, and
given its linear mathematical formulation, it can be incor-
porated also into IAMs defined as linear programming prob-
lems. However, the formulation of the optimization problem
is not inherently a part of CLASH but needs to be provided
by the IAM. The underlying temporal resolution is annual,
which can be flexibly adjusted to match any longer time step,
such as 5 or 10 years commonly used in IAMs.

Geographically, CLASH covers all global land area and
depicts the global production of goods in agriculture and
forestry. The model covers the carbon stocks of vegetation,
litter, and soil and describes how they are affected by land
use and climate change. The effects of climate change on
vegetation growth and soil carbon dynamics are modelled
as a function of global mean temperature change and atmo-
spheric CO2 concentration, as these two variables are stan-
dard outputs of many IAMs. Together, the global coverage,
representation of main terrestrial carbon stocks and the inclu-
sion of climate change effects on terrestrial ecosystems make
CLASH suited for examining land-based climate change mit-
igation and adaptation measures at the global scale and over
long time horizons.

Embedding CLASH in an IAM enables the optimization
of land-use and forest management over a multi-decadal time
frame in a changing climate and the representation of the op-
timal contribution of the land-use sector towards the global
climate change mitigation effort. This capability fills a criti-
cal, vacant niche in the model ecosystem. Towards this role,
CLASH combines some features from three model types.

1. Dynamic global vegetation models (DGVMs), such as
LPJ-GUESS (Smith et al., 2001, 2014; Lindeskog et al.,
2021), can be used to depict how vegetation responds to
changing climatic conditions. DGVMs are notably more
detailed than CLASH. In DGVMs, however, land use
can only be depicted by exogenous scenarios. It cannot
be optimized. Due to their high level of detail and heavy
computational burden, DGVMs cannot be embedded in
IAMs in the way that CLASH can.

2. Economic partial equilibrium models of the land-use
sector, such as MAgPIE (Dietrich et al., 2019) and
GLOBIOM (Havlík et al., 2018), enable the optimiza-
tion of land use within a time step, while recursive-
dynamics rules represent the evolution over years. Such
models represent land use comprehensively and can be
linked to IAMs (Fricko et al., 2017). However, as they

stem from an agricultural economic modelling tradi-
tion, the models do not necessarily represent compre-
hensively the dynamic changes in the age structure of
forests (GLOBIOM) or allow for intertemporal opti-
mization (MAgPIE and GLOBIOM). Both features are
needed to enable the full dynamic optimization of forest
structure and management over long time horizons, e.g.
when aiming for long-term climatic targets.2

3. Forest sector models, such as the GTM (Sohngen et
al., 1999), include the forest age structure and rely
on intertemporal optimization as the solution concept.
Although forest sector models have been linked to
IAMs (Sohngen and Mendelsohn, 2003; Tavoni et al.,
2007; Favero and Mendelsohn, 2014) and explicit, age-
structured representations of forests have been built into
IAMs (Siljander and Ekholm, 2018), they do not depict
land use comprehensively as they (by definition) focus
on the forest sector.

In particular, CLASH covers the climate-responsive vege-
tation growth and the representation of vegetation and soil
carbon stocks from DGVMs, crop and livestock production
from land-use models, age-structured forests and harvesting
of wood from forest sectors models, and the possibility for
optimizing land use from both types of partial equilibrium
models. What is left out is the product demand, markets and
policies that drive land-use decisions in partial equilibrium
models, and the detailed biophysical modelling of ecosys-
tems in DGVMs. Also, agriculture and forest management
are described in less detail and without detailed management
options than in models focusing on each aspect individually.

This paper provides a proof-of-concept description for the
model and how it could be utilized. The current parametriza-
tions of CLASH are based on non-bias-corrected climate
data, which can lead to some deviation from reality regarding
vegetation characteristics. New parametrizations based on
bias-corrected data will be provided with subsequent model
versions and should be used for analyses.

The rest of the article is organized as follows. In Sect. 2,
we describe the structure of the model and the modelling
of vegetation, soils, and crop and timber yields. In Sect. 3,
we present the calibration of the model, and in Sect. 4, we
present the validation of this calibration against the global

2Intertemporal optimization and recursive-dynamics optimiza-
tion are two main ways of modelling optimal actions over long
time horizons. The main distinction is that an intertemporal problem
finds optimal actions for the whole time frame at once, whereas re-
cursive dynamics optimizes each time step chronologically. The two
approaches can provide complementary insights. Whereas intertem-
poral optimization can be seen as too idealized as it assumes per-
fect foresight over the whole time horizon, recursive dynamics can
be seen as too myopic towards long-term developments. However,
both approaches can simulate each other’s behaviour: intertemporal
optimization through a myopic formulation and recursive dynamics
through iterative procedures.

Geosci. Model Dev., 17, 3041–3062, 2024 https://doi.org/10.5194/gmd-17-3041-2024



T. Ekholm et al.: Climate-responsive Land Allocation model with carbon Storage and Harvests 3043

terrestrial carbon stocks projected by LPJ-GUESS. As a
demonstration of the model, we analyse in Sect. 5 how dif-
ferent demand scenarios for agricultural and forestry prod-
ucts affect the possibilities for enhancing terrestrial carbon
stocks. Last, in Sect. 6, we further discuss the integration of
CLASH with IAMs and the possible uses the model might
have.

2 Model structure

2.1 Dimensions and variables

The basic dimensions of CLASH are biomes b ∈ B into
which global land area is divided, land-use categories u ∈ U ,
and time steps t ∈ T . The basic time step resolution is an-
nual, but most use cases – especially when combined with an
IAM – require using a multi-year time step, such as 10 years.
The age structure of secondary forests is modelled though
age classes a ∈ A.

The variables describe

– land area (by biome, land-use type and time step),

– carbon stocks in vegetation (by biome, land-use type
and time step),

– carbon stocks in woody and herbaceous litter and soil
(by biome and time step),

– areas of forest clearing (by biome, age class and time
step),

– harvested crops and wood (by biome and time step),

– headcount and product yield of agricultural animals (by
time step), and

– CH4 and N2O emissions from agriculture (by biome and
time step).

2.2 Ecological and land-use modules

CLASH consists of a land-use module and an ecological
module. The land-use module contains the variables and
equations for land allocation, terrestrial carbon stocks, and
harvesting, and it is the part that can be integrated into an
IAM. The ecological module is used to calibrate the land-
use module’s parameters based on the trajectories of climate
change. The ecological module is not designed to be inte-
grated into the IAM, as it would violate the linear formula-
tion required by many IAMs.

Climate change affects vegetation growth through changes
in local factors, such as temperature and precipitation. In
CLASH, vegetation growth and other ecological processes
emulate results from LPJ-GUESS, which is run on a spa-
tial grid in different climate scenarios and thus accounts for
the regional differences in growing conditions in current and

future climates. The biomes in CLASH are large and cover
somewhat heterogeneous conditions and responses to climate
change (e.g., some parts of a tropical biome may become
drier, while others get wetter). The CLASH parametrizations
thus depict the average conditions within each biome. To ac-
count for climate change, the parametrizations are done as
a function of global mean temperature and carbon dioxide
concentration, standard outputs of many IAMs. These serve
as proxies for the changes on local climatic factors, which
are nevertheless modelled explicitly in LPJ-GUESS.

The division into two separate modules was done to satisfy
two conflicting model design requirements: (1) the land-use
module must be linear and computationally lightweight and
(2) ecological conditions must respond to climate change.
Some ecological parameters depend nonlinearly on climatic
conditions, but including this climate dependence in the land-
use module would make the model nonlinear and involve
more complex calculations. Instead, linearity is maintained
in the land-use module through fixed, time-varying param-
eter values to depict vegetation growth, disturbances, yields
and carbon dynamics, which change over time according to
a predetermined climate change scenario. When CLASH is
integrated into and IAM, one can iteratively run the IAM and
then re-calibrate the parameters with the ecological module,
using the climate trajectory in the IAM’s solution. The proce-
dure is repeated until consecutive solutions converge, and the
ecological parameter values align with the climate trajectory.
Whether the iterative procedure is necessary depends on the
IAM and scenario design.

2.3 Land area allocation

Global land area is divided into 10 biomes based on the
USDA major biomes classification (Reich and Eswaran,
2020). Biomes of marginal importance to agriculture,
forestry and carbon stocks – such as ice and permafrost – are
aggregated into a single unproductive class. We keep the ge-
ographical boundaries of biomes constant over time, even as
the climate changes. Instead, the ecological parameters de-
picting vegetation growth, disturbances, agricultural yields
and carbon dynamics respond to climate change. A map of
the applied biome classification is presented in Fig. 1.

Two requirements guided the choice of classification: con-
ciseness (i.e., having only a relatively small number of
biomes) and relative homogeneity (i.e., keeping the vari-
ation in growth and carbon dynamics within each biome
small). These are conflicting requirements, as greater con-
ciseness leads to less homogenous biomes. The USDA major
biomes classification was chosen as the basis for the biomes
in CLASH, as it divides the world to relatively few biomes,
but which were more homogenous than with alternative clas-
sifications, such as the Köppen–Geiger climate classification
or Holdridge life zones.

The land-use classes in CLASH are based on the Land-
Use Harmonization dataset (LUH2) (Hurtt et al., 2020).
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Figure 1. Biome classification used in the CLASH model.

The classes are cropland, pasture (including rangeland),
primary ecosystems (including primary forest and primary
non-forest), secondary forest, secondary non-forest and ur-
ban land. Primary ecosystems are ecosystems that have not
been notably altered by direct human disturbance. Secondary
forests have been logged at least once or have been estab-
lished on previously unforested land. Secondary non-forest
is land that is not actively used but has been subject to hu-
man land use. Land cannot be converted back into primary
ecosystems. Hence, once cleared, primary ecosystems can-
not be regained.

The land-use module allocates land area to different uses,
which affects the production quantities of goods (food and
feed crops, wood, etc.) and carbon storage in vegetation and
soil. Land use in each biome, b, is constrained by the biome’s
total land area Ab (million km2). This area is distributed be-
tween land uses, u, and the area of land use u in period t is
Ab,u,t . Hence, for all biomes b and time steps t ,

∑
u
Ab,u,t = Ab. (1)

Secondary forests (u= secdf) are further divided into age
classes. The width of each age class is the same as the model
time step (e.g. 10 years). All secondary forest area, Ab,secdf,t ,
must belong to one age class, Âb,secdf,t,a . Hence,

∑
a
Âb,secdf,t,a = Ab,secdf,t . (2)

Between time periods, secondary forests can age, be har-
vested or get destroyed by disturbance events like forest fires.
Ageing forest land area will shift to the next age class in the
following time period. Area cleared by harvests or destroyed
by forest disturbances is allocated to the youngest age class
in the next period if replanted, or it is converted into other
land use and thereby subtracted from the secondary forest
area. Other land converted to secondary forest is added to the
youngest age class.

2.4 Vegetation carbon stocks

Vegetation carbon stocks (GtC) are calculated by multiply-
ing land area Ab,u,t (million km2) by vegetation carbon den-
sity db,u,t (kgC m−2). Vegetation carbon densities for all land
uses across biomes are projected by the ecological module
based on global mean temperature and atmospheric CO2 con-
centration scenarios provided to the module.

Vegetation on cropland and pastures is short-lived com-
pared to the model time step and hence assumed to regenerate
within each model period. Cropland vegetation is represented
by an aggregate crop that reflects the weighted-average prop-
erties of all crops cultivated in the biome. Likewise, pasture
vegetation is depicted by representative grasses. As the veg-
etation regenerates frequently, the amount of vegetation and
its carbon density in period t is solely determined by current
growth conditions (i.e., not on pre-existing vegetation stock
or past growth conditions). The growth conditions in biome
b depend on the global mean temperature, Tt , and the atmo-
spheric CO2 concentration, Ct .3 The dependence is charac-
terized by the function

db,u,t = αb,u+βb,u Tt + γb,uCt , (3)

where αb,u, βb,u and γb,u are parameters estimated by fitting
the function to data from LPJ-GUESS simulations.

Similarly, the growth of secondary forests reflects the aver-
age properties of forests in each biome. Unlike vegetation on
cropland and pasture, trees are long-lived and the carbon den-
sity depends on the stand age and the climatic conditions the
trees have grown in. Relatedly, forest growth depends on the
growth conditions characterized by the current climate and
the stand’s current state (characterized by the growth history
and thus the past climate).

For a stand currently in age class a, the next-period car-
bon density db,secdf,t+1,a+1 depends on its current density
db,secdf,t,a and the relative growth rate, gb,secdf,t,a :

db,secdf,t+1,a+1 = db,secdf,t,a(1+ gb,secdf,t,a), (4)

where

gb,secdf,t,a = d
δb+εbdb,secdf,t,a
b,secdf,t,a(

ηb+ θb Tt + κbCt + (λb+µbCt )T
2
t

)
. (5)

Parameters δb, εb, ηb, θb, κb, λb and µb are estimated from
LPJ-GUESS simulations of forest growth in various scenar-
ios of changing climate (see Sect. 3).

Primary ecosystems encompass primary forest and pri-
mary non-forest. Their vegetation is long-lived. However, un-
like in the case of secondary forests, the age structure (and,

3The effect of global warming on average temperature and pre-
cipitation is not uniform across biomes. However, changes in lo-
cal conditions are driven by the increase in the global temperature
anomaly. The increasing atmospheric CO2 may enhance growth
through CO2 fertilization.
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hence, the growth and disturbance dynamics) of primary
ecosystems need not be modelled explicitly.4 The carbon
density of primary ecosystems, db,primary,t , is a landscape-
level average that accounts implicitly for the age structure
and the growth conditions of primary ecosystems. Its depen-
dence on climatic conditions is characterized by the function
of the same form as in Eq. (3).5

Secondary non-forest is a small but diverse category of
land. It contains areas that are recovering from human in-
fluence, including, for example, deforested land that is not
claimed for another use and abandoned croplands and pas-
tures. Hence, the carbon density of secondary non-forest
varies notably depending on local climatic conditions, earlier
land use, and the degree and time since the human influence
on them. These factors make the modelling of the associated
vegetation and carbon stock very difficult. As the composi-
tion of vegetation on secondary non-forest land is not speci-
fied in the LUH2 dataset, we assume due to lack of data that
vegetation is growing naturally in these areas. This possibly
overestimates the amount of biomass and stored carbon to
some degree.

Urban areas cover currently only 0.4 % of the global land
area (Hurtt et al., 2020). As vegetation carbon stocks in urban
areas are insignificant compared to the global total, they are
omitted from CLASH. As urban areas do not contribute to
carbon storage or producing agricultural and forestry prod-
ucts in CLASH, the urban area needs to be fixed to an exoge-
nous scenario in a typical use case of the model.

2.5 Litter and soil carbon stocks

Litter and soil carbon stocks (measured in GtC) are modelled
through dynamic stock equations that account for their accu-
mulation, decay into atmosphere and transfer of carbon from
the litter to the soil stock. Each biome b has separate litter and
soil carbon stocks for woody and herbaceous matter, Lb,k,t
and Sb,k,t , distinguished by the subindex k ∈ {woody, herb}.
This distinction allows accounting for differences in their de-
cay. The woody matter accumulates from primary ecosys-
tems, secondary forests and secondary non-forests, as well

4The age structure of secondary forests is determined by har-
vesting patterns (which depend on human behaviour and may there-
fore differ between model runs) and natural disturbances (which oc-
cur at exogenously given rates). Enabling the optimization of har-
vests requires explicitly modelling age structure. The age structure
of primary ecosystems, on the contrary, is not affected by harvests.
If the land is cleared by humans, the ecosystem is no longer con-
sidered primary. Hence, the age structure of primary ecosystems is
solely affected by disturbances and natural mortality.

5This formulation does not (fully accurately) account for the
growth and disturbance history of primary ecosystems (which is
linked to the historical development of the climate). However, as
growth conditions and disturbance regimes change fairly gradually,
the error caused by adopting this (notably simpler) formulation for
primary ecosystems (than secondary forests) is small.

as herbaceous matter from croplands and pastures. As these
stocks are not directly linked to the land area under each land-
use category, land-use change does not affect existing stocks
but only the accumulation of carbon.6

Vegetation generates litter. Its amount is defined as the dif-
ference between the annual net primary production (NPP)
and the annual change in the vegetation carbon density. Ad-
ditionally, in forests, harvests produce logging residues that
increase the influx of woody litter, and on cropland, harvests
remove a part of the carbon fixed by NPP, reducing the litter
carbon influx. The total annual litter carbon influx is denoted
by Ibkt .

The fraction
(
νb,k + ξb,k Tt

)
of the litter stock decays into

the atmosphere annually. Here, νb,k is the base decay rate for
biome b and ξb,k Tt represents the effect of climate change
on the litter decay. A fraction ρb,k of litter carbon is trans-
ferred to the soil carbon stock. Carbon that is not released
into the atmosphere or transferred into soil remains in litter.
Analogously, the fraction σb,k+ τb,k Tt of soil carbon decays
annually to the atmosphere. This leads to the dynamic equa-
tions for litter and soil carbon stocks:

Lb,k,t+1 = Lb,k,t
(
1− νb,k − ξb,k Tt − ρb,k

)
+ Ib,k,t

Sb,k,t+1 = Sb,k,t
(
1− σb,k − τb,k Tt

)
+ ρb,kLb,k,t . (6)

2.6 Forest disturbances

Forest fires are the only natural disturbance in CLASH at the
moment. Fires are modelled as stand-replacing disturbances.
A certain share of secondary forest area in each age class
burns every year, and this average fire probability changes
over time with the climate. Fires also affect primary ecosys-
tems, but the effect is not explicitly modelled: the disturbance
regime and climate-induced changes are implicitly accounted
for in the carbon density of primary ecosystems.

The fire probability was modelled to depend on the global
mean temperature (which drives changes in local tempera-
ture and precipitation) and the CO2 concentration (CO2 fer-
tilization affects forest growth, which affects fire probabil-
ity through fuel load). The linear relationship between fire
probability and the climate variables is equivalent to Eq. (3),
and the parameters of this equation were estimated from LPJ-
GUESS simulations for natural forests.

6Should the litter and soil carbon stocks explicitly represent the
stocks in each land-use class u, any change in the area of a land-
use class should be also reflected in these stocks. Then, a change
from forest to pasture, for example, would require transferring litter
carbon from forests to pastures, but this would affect the decay of
this stock (see e.g. Rautiainen et al., 2017). Alternatively, one could
account for the land-use change history, but this would complicate
the model. Due to these considerations, the litter and soil carbon
stocks were chosen to not to explicitly represent the carbon stored
in each land-use class. After choosing this relative independence
from the land-use classes, two stock types (woody and herbaceous)
already provided sufficient accuracy for this model’s scope.
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2.7 Crop and wood harvests

Food, feed and energy crops are harvested from cropland.
Each biome’s average crop yield yb,t (kgDM m−2 yr−1) is a
weighted average of the yields of the five plant functional
types (PFTs) grown on cropland (C3 annuals, C4 annuals,
C3 perennials, C4 perennials and C3 nitrogen fixing plants)
and accounting for the share of irrigated and rainfed crops at
each location. We used LPJ-GUESS defaults for irrigation,
fertilization and other cropland management options (Lin-
deskog et al., 2013; Olin et al., 2015). We assumed externally
an average 80 % cropping intensity (Siebert et al., 2010), as
our LPJ-GUESS simulation protocol did not account for this.
The average crop yield is represented by the same functional
form as was used with vegetation carbon density, in Eq. (3).
Total crop harvest in each biome is the product of average
crop yield and cropland area.

Wood is harvested from secondary forests and cleared pri-
mary ecosystems by clear-cutting. Wood harvests depend
on harvested area and the stocking density (i.e. stem vol-
ume) vb,u,t,a (m3 ha−1) of the harvested forests, which varies
across biomes, as well as across age classes for secondary
forest. The stem volume is calculated by multiplying the car-
bon density, db,u,t,a (kgC m−2) with the conversion factor,
γb ((m3 ha−1)/(kgC m−2)), which accounts for the conver-
sion from carbon mass to dry biomass and from dry biomass
to stem volume. Hence,

vb,u,t,a = γbdb,u,t,a . (7)

The conversion factors applied in CLASH are based on
data from FAO’s Global Forest Resources Assessment 2020
country reports (FAO, 2023). Their values are displayed in
Table 1.7

Wood harvesting generates three timber grades: logs,
pulpwood, and energy wood (m3 yr−1) and forest residues
(kgDM yr−1), which includes all biomass not covered by
the aforementioned categories. The largest parts of large
stems qualify as logs and may be used for timber. Pulp-
wood includes small stems, thin parts of large stems and large
branches. Energy wood are treetops, very small stems and
small branches. Residues may be harvested or left on-site, in
which case the carbon in them enters the woody litter carbon
pool.

The division of stem volume into timber grades de-
pends on the stem volume vb,u,t,a . Stands with very small

7The conversion factor for each biome is based on data from
a representative country that is predominantly located within the
biome. The geometry of trees within these countries is assumed
to roughly represent geometry of trees within the biome. (Data for
other countries were checked to verify the correct magnitude of the
conversion factors.) The conversion factors are based on estimates
of average growing stock (m3 ha−1 over bark, reported in Sect. 2a
of each report) and forest biomass (t ha−1, reported in Sect. 2c of
each report). The conversion factors also incorporate a unit conver-
sion from kg m−2 of biomass to m3 ha−1 of stem volume.

trees and low stocking density provide only energy wood;
stands with large trees and high stocking density provide
mostly logs and some pulpwood.8 Let σi(vb,u,t,a), where i ∈
{energy,pulp, logs}, denote the share of each timber grade
as a function of stocking density. We assume the following
breakdown:

σenergy =


1 when vb,u,t,a < 20
1− 0.0085 when 20≤ vb,u,t,a(
vb,u,t,a − 20

)
≤ 120,

0.15, when 120< vb,u,t,a,

(8)

and

σlogs =


0 when vb,u,t,a < 80,(
1− σenergy

)
when 80≤ vb,u,t,a

0.00425vb,u,t,a ≤ 280,(
1− σenergy

)
0.85, when 280< vb,u,t,a,

(9)

and

σpulp = 1− σenergy− σlogs. (10)

Let ϑb and ρb denote respectively the carbon density of
wood in biome b (Table 1)9, and the fraction of total biomass
carbon is contained in residues. As residues contain all car-
bon not contained in the stems, we define

ρb :=
db,u,t,a − 10−1ϑbvb,u,t,a

db,u,t,a
= 1−

ϑbγb

10
. (11)

2.8 Livestock

CLASH includes a representation of livestock to account for
the land area needed for cattle grazing and cultivating live-
stock feed crops, as well as for the CH4 and N2O emis-
sions from livestock management. We consider four kinds of
livestock that only produce meat – beef cattle, pigs, broiler
chicken and “shoats” (aggregated sheep and goats) – as well
as dairy cattle that produces milk and beef and laying hens
that produce eggs. The livestock variables covered in the
model are headcount per animal type (millions), production

8The functions described here are based on expert judgement
and roughly characterize the development of the assortment shares
in boreal forests. We assume that the connection between stock-
ing density and assortment shares is roughly similar across biomes.
Hence – lacking biome-specific data for the calibration – we ap-
ply the same functions to all biomes. The accuracy of future model
versions maybe improved by developing biome-specific functions.

9The carbon density of a cubic metre of wood is the product of
(1) its mass and (2) the carbon content of wood. Different wood
species have a different dry weight. Hence, the average dry mass
of a cubic metre of wood varies between biomes, depending on
species composition. Biome-specific values of average wood mass
are not readily available. Hence, we use estimates from Rautiainen
(unpublished) for boreal, temperate, and tropical biomes and apply
the most appropriate estimate to each biome. The carbon content of
wood is approximately 0.5 tC/tDM.
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Table 1. Conversion factors for translating vegetation carbon density (kg m−2) into stem volume (m3 ha−1).

Biome Conversion factor Assumptions Wood carbon Approximate
(m3 ha−1)/(kgC m−2) content residue fraction

(tC m−3) (unitless)

Boreal 28.4 value from Finland (2020) 0.190 0.46
Tundra 28.4 adopted from boreal biome 0.190 0.46
Desert cold 27.0 value for Mongolia (2020) 0.190 0.49
Temperate dry 21.4 value for Greece 0.215 0.54
Temperate humid 29.5 value from Japan (2017) 0.215 0.36
Desert 5.6 value from Namibia (2020) 0.215 0.88
Tropical dry 21.1 value from Tanzania (2020) 0.240 0.49
Tropical humid 22.8 value from Brazil (2020) 0.240 0.45
Semiarid 17.0 value from Kenya (2020) 0.215 0.63
Unproductive 28.4 adopted from boreal biome 0.190 0.46

of each animal product (Mt yr−1), and CH4 and N2O emis-
sions from enteric fermentation and manure management
(Mt yr−1).

Table 2 displays the animal products’ modelling assump-
tions for global current herd size and per-head pasture and
feed requirements (for modelling the land use for animal
husbandry), product yields (for modelling the supply of ani-
mal products), GHG emissions factors (for modelling the an-
imals’ climatic impacts) and average-animal characteristics
(provided for reference).

The annual product yields of cow milk and chicken
eggs per head (i.e., per producing animal) were obtained
from FAO (2023). Similar (albeit theoretical) annual product
yields of meat per head were calculated for meat-producing
animals as follows. First, the boneless meat yield per animal
was estimated by multiplying its average liveweight (cattle:
Dong et al., 2006; others: Gavrilova et al., 2019) by the share
of boneless meat of the animal’s mass (Knight and Rent-
frow, 2020; Wilfong and O’Quinn, 2018). Second, the av-
erage slaughter age was approximated based on the size of
the global herd and the number of animals slaughtered annu-
ally (FAO, 2023). Finally, the annual product yield of meat
per head was calculated by dividing the boneless meat yield
by the average slaughter age.

The livestock carbon stock is insignificant, around 0.1 Gt C
(Bar-On et al., 2018), and is therefore omitted from the
model. The emission factors for methane and nitrous oxide
were obtained respectively from Gavrilova et al. (2019) and
Jun et al. (2000). Pasture use was obtained from Mottet et
al. (2017) and Poore and Nemecek (2018). A biome-specific
pasture use per animal was calculated from this global aver-
age by using the NPP of pastures in each biome, so that the
biome-specific pasture use weighted with the pasture area in
year 2020 matches the global average pasture use per ani-
mal, as presented in Table 2. Yearly feed use per head was
obtained from Mottet et al. (2017).10 The crops consumed as

10Supplement, Table SI 2 in Mottet et al. (2017).

animal feed are produced on cropland, which implies that
livestock also requires cropland to produce the necessary
feed.

3 Data and model fitting

3.1 LPJ-GUESS

To estimate the parameters of CLASH that define growth,
disturbances, yields and carbon dynamics in each biome, we
used data generated by the LPJ-GUESS model (Smith et
al., 2001, 2014; Lindeskog et al., 2021) run globally with
a 2°× 2° grid in different climatic scenarios. LPJ-GUESS
is a second-generation dynamic global vegetation model
(DGVM) which has been optimized for regional to global
applications. It includes a detailed representation of forest
ecosystem composition and stand dynamics. It can simulate,
for example, vegetation growth and succession (Smith et al.,
2014) and vegetation shifts under future climate scenarios
(Hickler et al., 2012). A detailed description of LPJ-GUESS
is available in Smith et al. (2001). We used LPJ-GUESS ver-
sion 4.0 with global PFTs.

The model simulates potential vegetation as a mixture of
19 PFTs which compete with each other for light, space and
soil resources in each simulated grid cell. Each PFT is char-
acterized by growth form, phenology, photosynthetic path-
way (C3 or C4), bioclimatic limits for establishment and sur-
vival. Additionally, woody PFTs are characterized by allom-
etry. In “cohort mode”, all individuals of a given age cohort
are assumed identical (Knorr et al., 2016). The ecosystem
processes are updated daily but carbon allocation is only up-
dated annually. Crop sowing and harvesting dates are deter-
mined dynamically based on local climatology (Lindeskog et
al., 2013).

Biomass-destroying disturbances are turned off, but wild-
fire probability is modelled prognostically based on weather,
fuel continuity (litter) and human population density using
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Table 2. Data and assumptions used in the livestock module.

Herd size Animal Pasture Yearly GHG emission Life- Product Production
in 2020 weighta useb feed use factorsd time yield

million kg m2 kg DM kg CH4 kg N2O years kg per head Mt per
heads per head per head per head per head per year year

Beef 953 435 15 982 124.2 58.9 0.943 2.8 56.4 53.8
Beef (dairy cows)c 573 435 605.6 137.3 96.2 1.100 6.0 26.4 15.1
Shoat 2390 37.3 3833 1.3 7.12 0.251 1.4 10.9 26.1
Pork 953 155 10.6 309.7 2.86 0.283 0.5 140.0 133.4
Chicken 33 100 3.0 0.6 14.6 0.009 0.009 0.5 3.7 123.1
Whole milke 573 444 10 861 137.3 96.2 1.100 6.0 1548 886.9
Eggse 7900 3.0 2.8 13.9 0.135 0.009 2.0 11.2 88.6

a Liveweight. b Total global in-use pasture area assumed to be 2.1 billion hectares (Mottet et al., 2017; Poore and Nemecek, 2018). c Beef from culled dairy cows; shared
values across the two sub-systems are repeated and printed in italic. d Emissions from manure management and, for ruminants, enteric fermentation. e Demand and
product yield refer to the product (milk or eggs) and the rest to the product-delivering animal (dairy cow or laying hen).

the SIMFIRE-BLAZE model where the simple global fire
model (SIMFIRE) calculates total burned area (Knorr et al.,
2014) with total fire carbon flux calculated from BLAZE
(BLAZe-induced land-biosphere-atmosphere flux Estimator)
(Rabin et al., 2017).

3.2 Case setup: runs and climate scenarios

We ran 48 global simulations with LPJ-GUESS, varying CO2
concentration and climate scenarios from different climate
models. The variations are presented in Table 3. The pur-
pose of running different climate and CO2 scenarios inde-
pendently of each other was to distinguish between the ef-
fects climate change and CO2 fertilization. Climate scenarios
from three climate models were used to assess the results’
sensitivity to model choice. LPJ-GUESS simulations began
with a 500-year spin-up, and after that the actual simulations
were run from 1900 to 2100. Model defaults for irrigation,
fertilization and other cropland management options are used
(Lindeskog et al., 2013; Olin et al., 2015).

The climatological data driving LPJ-GUESS are from the
Coupled Model Intercomparison Project Phase 6 (CMIP6)
simulations (Eyring et al., 2016) in the Earth System Grid
Federation database. We used temperature, precipitation and
solar radiation from three Earth system models (ESMs): EC-
Earth3, CanESM and MPI-ESM. Citations of specific model
variants and datasets are provided in Table S1 in the Supple-
ment. These three model variants were chosen, as they give
rather different results in terms of global mean temperature
and precipitation: CanESM produces higher temperature and
precipitation, MPI produces lower temperature and precipita-
tion, and EC-Earth is between these. The datasets have been
interpolated to 2°×2° grid by Climate Data Operators (CDO)
using bilinear interpolation. Climate datasets used with LPJ-
GUESS to parametrize the current version of CLASH were
not bias-corrected. Biases in ESM results can have a large in-
fluence on ecosystem and carbon cycle modelling (Ahlström

et al., 2017), but correcting for them can also introduce new
uncertainties to scenarios of future climate (Maraun et al.,
2017). Although averaging over large geographical areas is
likely to reduce the biases’ effect on CLASH parametriza-
tion, potential model users are advised to use parametriza-
tions based on bias-corrected data, which we provide with
subsequent model versions.

Each LPJ-GUESS simulation was based on one of two al-
ternative climates: a warmer future climate (scenario SSP2-
4.5) or colder historical climate (climate from years 1901–
1930, randomly sampled). Likewise, two CO2 concentra-
tion pathways were used: the SSP2-4.5 scenario or a con-
stant concentration of 310 ppm. These four variations enable
separating the effects of climate change and CO2 fertiliza-
tion when parametrizing the ecological module in CLASH.
The three ESMs, on the other hand, provide three distinct
parametrizations for CLASH, as averaging results from dis-
parate models did not seem meaningful. In the following,
we focus on the EC-Earth parametrization for brevity. The
main climate variables of temperature and precipitation in
each biome are presented in the Supplement.

Forests, crops and pastures were simulated separately at a
global grid resolution of 2°×2°. That is, in forest simulations,
only forest was grown at all the grid points. In crop simula-
tions different crop types were grown, and in pasture simula-
tions only grass was grown. To parametrize forest growth as
a function of stand age, the forest simulations included for-
est stands planted in 20-year intervals from 1900 to 2000. In
addition, one set of simulations with LUH2 land use (Hurtt
et al., 2020) was run for primary ecosystem parametrization
and model validation purposes.

3.3 Parameter fitting procedure

To parametrize the functions presented in Sect. 2, we used
LPJ-GUESS output variables (such as vegetation carbon den-
sities, litter and soil carbon stocks, NPP, crop yields, and an-
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Table 3. Scenario specifications for the LPJ-GUESS simulations.

Variations

Earth system model EC-Earth3, CanESM, MPI
Climate scenario SSP2-4.5, historical 1901–1930
CO2 scenario SSP2-4.5, constant 310 ppm
Modelled land use Forest, crops, pasture, LUH2

nual forest fire probabilities) as dependent variables and cli-
matological drivers (global mean temperature and CO2 con-
centration) from the related climate scenarios as independent
variables. All data were on an annual level. Three separate
CLASH parametrizations were made, corresponding to the
LPJ-GUESS runs driven with the EC-Earth3, CanESM and
MPI climate scenarios. The separate CLASH parametriza-
tions can be used to represent some of the variation that ex-
ists between ESMs regarding future climate change, as well
as how these variations affect vegetation growth and terres-
trial carbon stocks.

For static, linear equations (e.g. Eq. 3), ordinary least-
squares fitting was used. For dynamic equations (Eqs. 4
and 6), the parameters were fitted by minimizing the sum
of the squared errors between the LPJ-GUESS result and
values simulated using the fit over the whole time frame
(1900–2100). As this minimization problem is possibly non-
convex, the parameter fitting was done in two steps: first us-
ing a global optimization algorithm to find a relatively good
parametrization and then using this as a starting point for a
local optimization algorithm to find the exact optimum.

To find a suitable form for each function, we started with
a simple (e.g., linear) representation. If this was not suffi-
cient to replicate the LPJ-GUESS results with sufficient ac-
curacy, additional terms were added to the function. In the
case of more complex formulae, particularly the relative for-
est growth of Eq. (5), a number of functional forms were
tested in each case to ensure a suitable fit. The variations
included, for example, polynomial, exponential, and power
representation for the temperature effect or the inclusion or
exclusion of interaction effects between the temperature and
CO2 concentration. The objective of the fitting procedure
was to find functions that roughly emulate LPJ-GUESS. The
final formulations are what is presented in Sect. 2.

3.4 Fits of forest growth and fires

The development of forest carbon density with stand age in
a changing climate is shown in Fig. 2. The carbon density
modelled with LPJ-GUESS is compared to the carbon den-
sity simulated using Eq. (4) with the fitted parameter values.
The parametrization emulates the original LPJ-GUESS re-
sults well in all biomes and climate scenarios.

Forest growth, and how climate change affects it, varies
across biomes. In colder biomes such as tundra and boreal
biomes a warming climate increases forest growth consider-

ably, whereas the opposite is true, although to a lesser de-
gree, for the warmer biomes, particularly for temperate hu-
mid, tropical dry, and tropical humid biomes. Higher atmo-
spheric CO2 concentrations improve growth considerably in
all biomes due to the CO2 fertilization effect (Walker et al.,
2021). This effect is relatively stronger in the warmer biomes
than in the colder ones, which conforms with earlier analyses
with LPJ-GUESS (Hickler et al., 2008).

Annual probabilities of forest fire from LPJ-GUESS and
the fitted parametrization for an equation of the form (3) are
displayed in Fig. 3. The fitted functions capture the overall
level and in most cases the trend in the incidence of forest
fires. Fire probabilities depend strongly on the biomes’ cli-
mate. Generally, dry and warm biomes have more recurring
fires than cold and wet ones. Tundra experiences a major in-
crease in fire probability due to a warming climate. However,
in some biomes, climate change does not affect fire preva-
lence strongly, and the changes are more driven by land-use
change (Knorr et al., 2016). This effect is not captured by the
explanatory variables of Eq. (3).

3.5 Fits of vegetation carbon stocks

The carbon densities of natural vegetation, cropland and pas-
tures are presented respectively in Figs. 4, 5 and 6. The lin-
ear model of Eq. (3), with temperature and CO2 concentra-
tion as the explanatory factors, performs well in depicting the
overall trends of the three vegetation types across scenarios
and biomes. Cropland and pasture vegetation exhibit notable
variation between consecutive years, which is not captured
well by the statistical fit. However, as CLASH is primarily
intended to be used at a 5- or 10-year time step, the inability
to model annual fluctuations is not a major concern.

The vegetation carbon stocks react strongly to climate
change, and the magnitude of the effect depends on the
biome. With a constant climate and CO2 concentration the
densities remain relatively constant, as can be expected. An
elevated CO2 concentration increases the vegetation carbon
density through the CO2 fertilization effect. A warming cli-
mate increases carbon density in the cold biomes but has a
negligible or, in some cases, a small decreasing effect on the
other biomes. These effects are generally well in line with
previous observations and model experiments regarding the
global greening (Piao et al., 2020).

3.6 Fits of litter and soil carbon stocks

The litter and soil carbon stocks of forests, croplands and
pastures are presented in the Supplement. The fitted func-
tions mostly compare well against the LPJ-GUESS simula-
tions in the four climate scenarios described in Table 3. Rel-
ative differences between the fitted functions and the origi-
nal LPJ-GUESS simulations are the largest for cropland car-
bon stocks. This is because the functions for cropland and
pasture share the same parametrization, as they both con-
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Figure 2. Forest stand carbon density in the four simulated climate scenarios with a stand planted in 2000. Solid lines indicate LPJ-GUESS
simulations, and dashed lines indicate functions fitted to the results. The proximity of solid and dashed lines of the same colour indicates the
goodness of fit. If the lines are close, CLASH emulates LPJ-GUESS well.

tribute to the herbaceous litter and soil stocks in CLASH.
Pastures contain more carbon than croplands and, therefore,
have more weight when the litter and soil carbon dynamics
functions are parametrized by minimizing the squared error
between the LPJ-GUESS result and the fit. Hence, the fit is
better for pastures than croplands. For the same reason, how-
ever, inaccuracy in depicting cropland litter and soils does
not notably affect the overall accuracy of CLASH in emulat-
ing LPJ-GUESS simulations. That is, as cropland litter and
soil contain only a small part of the total carbon, and inac-
curacy in depicting these stocks does not notably affect the
overall accuracy of representing the total carbon stocks.

3.7 Fits of crop yield

The yield of the average crop is presented in Fig. 7. As men-
tioned previously, the colder biomes experience a notable in-
crease in yields in a warming climate. Also, CO2 fertiliza-
tion improves yields notably. The statistical fits capture these
changes well. The desert biome contains a discontinuity in
the LUH2 cropland areas between the historical period and
scenario after 2015, which is not captured by the fit.

The CO2 fertilization effect is notably strong on crop
yields. In the temperate and tropical biomes, which comprise
approximately 75 % of cropland area in 2020, the average
crop yields increase respectively by 38 % and 57 % between
2000 and 2100 due to the CO2 from the RCP4.5 concentra-
tion pathway. This is higher than the approximately 15 % to
30 % increase in a multi-model mean for four staple crops
for the same concentration difference reported in Franke et
al. (2020). However, in that study LPJ-GUESS produced the
highest response to elevated CO2 among the compared mod-
els, and our results are in line with these earlier LPJ-GUESS
results. The model, along with LPJmL, has also previously
been observed to produce a stronger CO2 fertilization effect
than other DGVMs (Müller et al., 2015). Hence, a high re-
sponse to changes in the atmospheric CO2 concentration is a
property of LPJ-GUESS, which CLASH correctly replicates.

4 Validation

We validated CLASH by comparing its results to those from
LPJ-GUESS in the SSP2-4.5 scenario. Both models used
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Figure 3. Average forest fire return times in the four simulated scenarios. Solid lines indicate LPJ-GUESS simulations, and dashed lines
indicate functions fitted to the results.

the LUH2 land-use patterns (Hurtt et al., 2020). CLASH
parametrization based on EC-Earth3 was compared to LPJ-
GUESS driven with the EC-Earth3 SSP2-4.5 scenario, and
similar comparisons were done using MPI and CanESM cli-
mate scenarios. While the LUH scenario determines land
area allocation between different uses, it does not specify
how secondary forests are managed. Hence, to allow com-
parisons between the models, we applied forest management
assumptions that lead to similar management. In the LPJ-
GUESS LUH scenario, all forests were modelled without
harvests. This behaviour was emulated in CLASH with an
exogenous objective to maximize terrestrial carbon stocks in
2100, which effectively minimizes harvests.

The results of the validation experiment are shown in
Fig. 8 with the EC-Earth3 climate scenarios. The models’
results mostly align well with each other. The relative dif-
ference in the total terrestrial biosphere carbon stock ranges
from 0.7 % to 3 % over the modelled examined time frame.
The differences are larger for specific carbon stocks in cer-
tain biomes, such as vegetation in the tropical biomes.

Three main reasons can potentially explain differences in
results between the two models. (1) The resolution of the

aggregate biome-level representation in CLASH is coarser
than compared to the 2°× 2° grid applied in LPJ-GUESS.
(2) Inaccuracies in the fitted functions describing the pro-
cesses in CLASH could cause the results to differ. (3) The
areas of different land uses in the LUH2 dataset are inter-
preted slightly differently in the two models, which also af-
fect carbon stocks.

The main differences observed in Fig. 8 can be attributed
to differences in resolution (1) and differences in the inter-
pretation of LUH2 data (3). The first of these is inevitable,
as CLASH describes the average growth, yield and carbon
stocks over much larger areas than LPJ-GUESS. This was
identified as the primary reason for the difference in vege-
tation carbon stock in the two tropical biomes. The problem
could be remedied by applying a lower level of aggregation
for the biomes, but this would increase the computational
weight of the model.

Inaccuracies in the fitted functions (2) as a source of error
could be reduced by trying to find functional forms that bet-
ter emulate the LPJ-GUESS results. In general, however, the
chosen functions and estimated parameters seem to replicate
the LPJ-GUESS results relatively well. Cropland litter and
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Figure 4. Carbon density in natural vegetation in the four simulated scenarios. Solid lines indicate LPJ-GUESS simulations, and dashed lines
indicate functions fitted to the results.

soil carbon dynamics are an exception, but as these carbon
stocks are minor compared to those of other land uses, their
effect is small in the big picture.

Differences in the interpretation of the LUH2 dataset (3)
imply that land allocation within the biomes differs slightly
between the models. The original LUH2 data are at 0.33°×
0.33° resolution. The area of land allocated to each use in
each biome in CLASH is calculated directly from these data.
However, for LPJ-GUESS, the data are re-gridded, and a 2°×
2° grid is applied in the LPJ-GUESS simulations. Different
gridding leads to differences in biomes’ land-use allocations
between the models. This difference particularly explains the
differences in soil carbon stocks in the temperate dry and
semiarid biomes, which have roughly 20 % more pasture area
in CLASH.

Validations of CLASH fitted to the climate scenarios from
CanESM and MPI models are presented in the Supplement
(Figs. S9 and S10). These figures are qualitatively very sim-
ilar to Fig. 8, which indicates that the different parametriza-
tions of CLASH can emulate well the LPJ-GUESS results
driven by climate scenarios from different ESMs. However,
it is worth noting that the choice of climate model notably
affects the level of certain carbon stocks in the LPJ-GUESS

results. This is illustrated in Fig. 9 with the three alternative
parametrizations of CLASH. Whereas across parametriza-
tions the carbon stocks are similar for most biomes, there is
a particularly notable difference in the tundra biome, where
the use of the CanESM climate scenario produces signifi-
cantly larger carbon stocks for all three carbon pools. This
can be explained by the higher temperature in the CanESM
scenario compared to the other two climate scenarios. The
higher temperature means greater vegetation growth, more
litter input and hence larger soil carbon stocks.

Comparing CLASH to future scenarios from other models
is not as straightforward, as each model study has its own
modelling mechanisms and set of assumptions that might
be difficult to replicate in CLASH. In particular, given that
CLASH is a biophysical model, it does not represent the mar-
kets and policies that drive the production of land-use prod-
ucts. Nevertheless, we make a simple comparison by fixing
the land-use areas of CLASH to the LUH2 SSP2-4.5 scenario
and compare the crop and wood production to FAO statistics,
IAM scenarios and forest sector models. This comparison is
presented in Fig. 10.

Crop production provides a straightforward comparison,
as cropland area determines crop production directly in
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Figure 5. Carbon density in cropland vegetation in the four simulated scenarios. Solid lines indicate LPJ-GUESS simulations, and dashed
lines indicate functions fitted to the results.

CLASH. We compare CLASH results to FAO statistics,
FAO’s future of food and agriculture scenarios (FAO, 2018)
and SSP2-4.5 scenarios from five different IAMs (Riahi et
al., 2017). CLASH crop production is very close to the FAO
statistics and at the upper end of the scenarios around 2020.
Crop production grows slightly slower than in the FAO sce-
narios and notably slower than in the SSP scenarios, however.
The reason for this divergence is strongly increasing energy
crop production in the IAM scenarios. Energy crops have po-
tentially higher yields than food crops, which leads to larger
production with the same cropland area. However, food crop
production in most of the IAM scenarios remained slightly
below the CLASH crop production.

Comparing wood harvests is not as straightforward, as
managed forest area can yield very different wood har-
vests, depending on harvesting intensity. Therefore, for this
comparison, we additionally required CLASH to produce
the same amount of industrial roundwood (logs and pulp-
wood) than in the demonstration case of Sect. 5. This de-
mand scenario was then compared to FAO statistics (also
including the category “Other industrial roundwood”) and
a recent comparison of forest-sector model (FSM) scenar-

ios by Daigneault et al. (2022). The CLASH demand sce-
nario matches the FAO statistics well and is for the most part
slightly higher than the harvests in the FSMs. Further com-
parisons are difficult due to seemingly different definitions
of forest land, with FSMs being based on FAO statistics and
CLASH on LUH2. This results in differences of forest land
area and thereby also forest carbon stocks. Yet, as a sepa-
rate comparison, the forest carbon stocks in CLASH fall in
the range reported in a recent review of terrestrial biosphere
models (Seiler et al., 2022), based also on the LUH2 land-use
categorization.

5 Analysing trade-offs between carbon storage and
production

To demonstrate the behaviour and possible use cases of
CLASH, we explored how varying the future demand for dif-
ferent land-use products affects the global terrestrial carbon
sink during the 21st century. In the example, CLASH is run
subject to an exogenously given objective: maximize the ter-
restrial carbon stock in 2100 by allocating managed lands be-
tween the biomes, while satisfying an exogenously given de-
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Figure 6. Carbon density in pasture vegetation in the four simulated scenarios. Solid lines indicate LPJ-GUESS simulations, and dashed
lines indicate functions fitted to the results.

mand scenario for agriculture and forestry products. As this
problem setting does not represent the drivers determining
real-world land-use decisions, the analysis should be seen as
a simple demonstration of the model through scenarios that
would still be physically possible.

There is a trade-off between storing carbon in the bio-
sphere and producing land-intensive products: more produc-
tion usually implies less storage (Erb et al., 2018). Examining
this trade-off can help understand the physical limitations of
the land-use sector’s contribution towards mitigating climate
change, e.g. to reach the Paris Agreement’s 1.5 °C target (Roe
et al., 2019). Given these physical limitations in land use, this
trade-off can be seen as a production-possibility frontier be-
tween carbon storage and the supply of land-use products
(Pingoud et al., 2018). Here, we use CLASH to analyse this
problem as an example of how the model can be utilized in
practice.

In this demonstration, CLASH is allowed to freely allocate
land between cropland, pastures, and secondary forest across
all biomes. The areas of other land uses develop according
to the SSP2-4.5 LUH scenario (Hurtt et al., 2020). We vary
the future demand of four product categories: crops (for di-

rect human consumption), animal products (meat, milk and
eggs), wood products (timber and pulp wood) and bioenergy
(energy crops and energy wood).

The model is first solved in a baseline scenario, in which
the demand for each product category follows the SSP2-4.5
scenario from 2020 to 2100 (Riahi et al., 2017), denoted as
DBL (t). Then, we vary the demanded quantity of each prod-
uct category at a time from the baseline, so that the demand
D(t) deviates gradually from the baseline until a variationm
of ±10% or ±50% is reached by 2100:

D(t)=DBL (t) ·

(
1+m ·

t − 2020
2100− 2020

)
. (12)

Hereafter, the demand scenarios are referred to as very low
(−50%), low (−10%), high (+10%) and very high (+50%)
demand.

Figure 11 shows how changes in the demand for each
product category affect the global carbon stock and net CO2
uptake of terrestrial ecosystems in 2100. The stocks respond
almost linearly to changes in the demanded quantities. Alto-
gether, the change in global carbon stocks between 2020 and
2100 ranges from −90 to +310 GtC across the demand sce-
narios or −156% to +94% relative to the baseline increase
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Figure 7. Crop yields in the four simulated scenarios. Solid lines indicate LPJ-GUESS simulations, and dashed lines indicate functions fitted
to the results.

of +160 GtC. Variation in animal product demand is respon-
sible for the extremes of the range, and when measured per
tonne of product, the variation affects the average CO2 up-
take 7–8 times as strongly as variation in the crop or bioen-
ergy demand and 15 times as strongly as variation in wood
demand. The very high animal product demand scenario is
the only scenario where terrestrial ecosystems are a net emit-
ter instead of a net sink.

Demand variations cause land-use conversions between
cropland, pastures and secondary forests (Fig. 12a). High
demands for crops, animal products or bioenergy are satis-
fied by converting additional secondary forest to agricultural
land, while in the low-demand scenarios unused agricultural
land can be converted to secondary forests to increase the
global carbon stock. Croplands and pastures are mostly allo-
cated to tropical and boreal biomes (Fig. 12b). Cropland and
pastures together make up 47 %–49 % of total land area in
2050 and 36 %–68 % in 2100. The loss of primary ecosys-
tems from 2020 to 2100 amounts to 15 %–24 %. The sensi-
tivity of the loss of primary ecosystems for animal product
demand is 10 times stronger than that of wood demand, 33

times stronger than that of bioenergy demand and 129 times
stronger than that of food crop demand.

In our illustrative case, the production of crops is mostly
allocated to the tropical dry, boreal and temperate humid
biomes. Pastures are mostly allocated to tropical biomes,
with boreal land areas serving as fallback for very high an-
imal product demand. Wood demand is satisfied on the one
hand by large-scale forestry in boreal forests, with moder-
ate forestation during the first half of the century and in-
tensive harvest during the second half of the century. On
the other hand, wood is delivered by constant intensive har-
vest of the temperate humid zones, while cut-down forest is
not reforested but converted into cropland. Hence, temperate
biomes’ carbon stocks decrease the most during the century
(Fig. 12b).

The results suggest that – when assessed purely in terms of
biophysical properties – the tropical and tundra biomes have
a relative advantage in storing carbon over producing crops
and timber but are heavily affected by high animal product
demands (Fig. 12b and c).

Due to land-use change and intensive wood harvests, the
temperate humid secondary forests’ area-weighted mean for-
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Figure 8. Validation of CLASH carbon stocks against LPJ-GUESS in the SSP2-4.5 scenario, separately for vegetation, litter and soil carbon
in each biome. Solid lines indicate LPJ-GUESS results, and dashes indicate CLASH results.

est age drops from 84 years (2020) to below 10 years in 2100.
The boreal forest age decreases from 101 years in 2020 to
65 years in 2100. Meanwhile, the tropical humid biome’s
mean age of secondary forests increases from 36 years in
2020 to 109 years in 2100, and the tundra biome’s mean
age of secondary forests increases from 80 years (2020) to
147 years in 2100 (Fig. 12c).

Notably, the maximization of global carbon storage sub-
ject to the global demand constraints leads to a strongly po-
larized land allocation between the biomes. Economic factors
(such as production costs, trade policies, security of supply
concerns and the value of ecosystem services) are not con-
sidered in this optimization problem. Doing so would alter
regional relative advantages between carbon storage and pro-
duction and lead to a different global land allocation.

The CH4 and N2O emissions from agricultural activi-
ties reach 14–33 Gt CO2 eq. yr−1 between 2090 and 2100
(Fig. 12d), of which 63 %–73 % are from animal husbandry.
In most scenarios, the terrestrial carbon sink in 2100 (−20–
+6 GtCO2 eq. yr−1) is not large enough to compensate fully
for the agricultural non-CO2 emissions, and, therefore, land
use is a net source of GHG emissions in 2100. In the very
high animal product demand scenario, terrestrial ecosystems
already become a net emission source by 2050.

Altogether, the large effect of animal products on climate,
land area and ecosystems supports the view that reducing
their consumption could be an effective means to mitigate
climate change (Jarmul et al., 2020; Hayek et al., 2021). Ear-
lier research has also suggested that the relocation of crop-
lands (Beyer et al., 2022) and increasing carbon storage in
forests (Sohngen and Mendelsohn, 2003) are effective ways
to mitigate climate change. All these effects can be identified
in our illustrative analysis conducted using CLASH.

6 Conclusions

CLASH is a lightweight biophysical model that represents
land use at an aggregate level of 10 biomes, each divided into
six land-use classes. Vegetation growth and ecosystem car-
bon dynamics respond to climate change in CLASH, and the
model keeps track of terrestrial carbon stocks and, thereby,
also of terrestrial CO2 emissions and sinks. CLASH has been
specifically designed to be hard linked with IAMs. It can be
incorporated into models formulated as linear or nonlinear
programming problems, and it can be run under intertempo-
ral optimization. In this role, CLASH can be used to opti-
mize global agriculture and forestry and their climatic im-
pacts over a multi-decadal timescale. Hence, it can help in
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Figure 9. Vegetation, litter and soil carbon stocks in a SSP2-4.5 scenario, modelled by CLASH parametrized against LPJ-GUESS-results-
driven climate scenarios from EC-Earth (solid lines), CanESM (dashed lines) and MPI (dotted lines) models.

Figure 10. Comparisons of crop production (a) and industrial roundwood harvests (b) between CLASH, FAO and SSP2-4.5 scenarios from
either IAMs for crop production or forest sector models (FSMs) for wood harvests.

evaluating the possible role that land use might have in miti-
gating climate change.

When integrated with an IAM, CLASH provides the an-
nual production of land-use commodities (food and other
biomass for energy and materials), the change in terrestrial

CO2 stocks and GHG emissions from agriculture. The IAM
should provide the demand for these products, as well as any
costs, policies and other societal constraints that affect land
use. As such, CLASH would depict land use from a biophys-

https://doi.org/10.5194/gmd-17-3041-2024 Geosci. Model Dev., 17, 3041–3062, 2024



3058 T. Ekholm et al.: Climate-responsive Land Allocation model with carbon Storage and Harvests

Figure 11. The production-possibility frontier between carbon storage (left y axis), terrestrial CO2 uptake (right y axis), and the production
of different land-use products (x axis) for food crops, animal products (meat, milk and eggs), wood products (logs and pulp wood) and
bioenergy (crops and logging waste). The carbon storage in the baseline demand scenario is indicated with a horizontal grey line. The demand
variations are represented with point size and colour: different product categories are indicated by colour, and the point size indicates the
relative deviation in 2100 from the baseline demand (the bigger the point size, the bigger the demand). The slope of the line connecting the
points indicates the sensitivity of global carbon stock to a change in demand per tonne of product.

Figure 12. (a) Share of total land area in 2100 (%tot.) and relative change since 2020 (%rel.) per land-use type in all scenarios. (b) Total
carbon stock in 2100 (GtC) and relative change (%rel.) per biome in all scenarios. (c) Total harvested biomass (Gt) and net carbon stock
growth (GtC) for period 2020–2100 and area-weighted-average tree age in 2100 (years) per biome averaged over the scenarios (error bars).
(d) Evolution of agricultural CH4 and N2O emissions from crop cultivation, enteric fermentation and manure management (Gt CO2 eq. yr−1)
for baseline and extreme demand scenarios. In panels (a) and (b), the point size indicates the relative deviation in 2100 from the baseline
demand for the product category indicated with the colour. In panel (d), the line type represents the relative variation in demand for the
product category indicated with the colour.

ical perspective, whereas the IAM provides the motivation
for how the land should be used and managed.

If the IAM has a built-in climate module, it can provide
the future CO2 concentration and temperature change for
the CLASH ecological module, while CLASH can calcu-
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late the net carbon exchange of terrestrial ecosystems. How-
ever, in such a setup, it is important to note a likely dis-
crepancy between the climate module’s carbon cycle and the
carbon stocks represented by CLASH. In particular, the cli-
mate module should not represent the carbon exchange be-
tween atmosphere and terrestrial ecosystems, as CLASH ac-
counts for terrestrial carbon stocks and the fertilization effect
from elevated CO2 concentrations. Further model develop-
ment might be needed to replace relevant parts of the IAM
climate module (or an external simple climate model) with
associated outputs from CLASH to ensure consistency be-
tween the two parts.

CLASH could be easily re-parametrized to alternative ge-
ographic resolutions and time steps to achieve compatibility
with a specific IAM or to represent political borders, which
would be necessary for including agricultural, climate, and
ecosystem protection and other policies relevant for land use.
It would also be possible to use CLASH as a pure simulation
model, that is, without any optimization problem. However,
this might be impractical due to the number of free variables
and the equation structure of the model. For this reason, we
specified an external optimization problem of carbon stock
maximization in Sect. 5.

The role of land use in climate change mitigation has
been extensively analysed from various perspectives (e.g.
Harper et al., 2018; Roe et al., 2019; Daioglou et al., 2019;
Daigneault et al., 2022; Roebroek et al., 2023), and the
topic’s policy relevance has recently increased due to the
grown interest in maintaining and enhancing land-based car-
bon sinks (Rockström et al., 2021; Griscom et al., 2017). Our
demonstration of CLASH in Sect. 5 highlights the model’s
capacity to depict several well-known mechanisms through
which land use can contribute to climate change mitigation,
including reducing the consumption of animal products (Jar-
mul et al., 2020; Hayek et al., 2021), relocating croplands
(Beyer et al., 2022) and increasing carbon storage in forests
(Sohngen and Mendelsohn, 2003).

Due to its simplicity, CLASH cannot match the accuracy
or detail of sectoral models, which have been soft linked
with IAMs (e.g. Fricko et al., 2017; Favero and Mendel-
sohn, 2014). CLASH’s relative advantages are its light com-
putational burden and broad scope. It can be hard linked to
IAMs and run under intertemporal optimization to provide a
comprehensive depiction of global land use, terrestrial car-
bon stocks and their bi-directional interaction with the cli-
mate. We believe such hard linking of CLASH and an IAM
would be helpful in examining the optimal role of land use
in mitigating climate change, in providing food and biogenic
raw materials for the economy, and in conserving primary
ecosystems.

Code and data availability. The current version of the
GAMS code for CLASH is available at https://github.com/
SuCCESsIAM/CLASH (last access: 11 April 2024) un-

der the MIT License. The version used in this paper is
archived on Zenodo (https://doi.org/10.5281/zenodo.10554383,
Ekholm et al., 2024), as are LPJ-GUESS results
(https://doi.org/10.5281/zenodo.8272853, Thölix and Ekholm,
2023) and R scripts (https://doi.org/10.5281/zenodo.8273074,
Ekholm, 2023) to parametrize the model and the demonstra-
tion results and scripts to produce the plots from these results
(https://doi.org/10.5281/zenodo.10550924, Freistetter et al., 2024).
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