
Environmental Management
https://doi.org/10.1007/s00267-024-01965-7

Detecting Spatial Patterns of Peatland Greenhouse Gas Sinks and
Sources with Geospatial Environmental and Remote Sensing Data

Priscillia Christiani 1
● Parvez Rana 1

● Aleksi Räsänen 1
● Timo P. Pitkänen 2

● Anne Tolvanen 1

Received: 2 January 2024 / Accepted: 16 March 2024
© The Author(s) 2024

Abstract
Peatlands play a key role in the circulation of the main greenhouse gases (GHG) – methane (CH4), carbon dioxide (CO2),
and nitrous oxide (N2O). Therefore, detecting the spatial pattern of GHG sinks and sources in peatlands is pivotal for guiding
effective climate change mitigation in the land use sector. While geospatial environmental data, which provide detailed
spatial information on ecosystems and land use, offer valuable insights into GHG sinks and sources, the potential of directly
using remote sensing data from satellites remains largely unexplored. We predicted the spatial distribution of three major
GHGs (CH4, CO2, and N2O) sinks and sources across Finland. Utilizing 143 field measurements, we compared the
predictive capacity of three different data sets with MaxEnt machine-learning modeling: (1) geospatial environmental data
including climate, topography and habitat variables, (2) remote sensing data (Sentinel-1 and Sentinel-2), and (3) a
combination of both. The combined dataset yielded the highest accuracy with an average test area under the receiver
operating characteristic curve (AUC) of 0.845 and AUC stability of 0.928. A slightly lower accuracy was achieved using
only geospatial environmental data (test AUC 0.810, stability AUC 0.924). In contrast, using only remote sensing data
resulted in reduced predictive accuracy (test AUC 0.763, stability AUC 0.927). Our results suggest that (1) reliable estimates
of GHG sinks and sources cannot be produced with remote sensing data only and (2) integrating multiple data sources is
recommended to achieve accurate and realistic predictions of GHG spatial patterns.
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Highlights
● We compared remote sensing and geospatial data to predict peatland greenhouse gas sinks and sources across Finland.
● Remote sensing data perform less effectively than habitat and climate-related variables.
● We recommend integrating various data sources for modeling greenhouse gas sinks and sources.

Introduction

Greenhouse gas (GHG) emissions are a significant global
concern due to their climate warming impact (IPCC 2022).
Peatlands, particularly in northern landscapes, play a crucial
role in the global carbon cycle, acting as substantial reser-
voirs of soil organic carbon (Harris et al. 2022). Despite
covering only about 3% of the Earth’s terrestrial surface,
these ecosystems store approximately 40% of the world’s

soil organic carbon and hold between 10–15% of the global
nitrogen pool (Hugelius et al. 2020; Leifeld and Menichetti
2018; Qiu et al. 2020; Treat et al. 2019).

In Finland, peatlands cover nearly one third of the
country’s land area, totaling approximately nine million
hectares. Of the peatlands, about half have been drained,
mostly for forestry purposes (4.7 Mha) and to lesser extent
to agriculture (0.3 Mha) and peat production (0.1 Mha)
(Korhonen et al. 2021; Statistics Finland 2023). Typically,
drained peatland soils serve as a source of CO2, whereas
undrained peatlands act as sinks for CO2 and as sources for
CH4 (Joosten and Clarke 2002; Kaat and Joosten 2009;
Pönisch et al. 2023). While agricultural peatlands can be
significant N2O sources (Anthony and Silver 2021; Ernfors
et al. 2020; Leifeld and Menichetti 2018; Minasny et al.
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2023), forested peatlands tend to be either minor sinks or
sources for N2O (Leifeld 2018; Liu et al. 2020).

Given peatlands’ role in GHG dynamics, long-term and
spatially extensive monitoring of GHG sinks and sources at
regional and local levels is crucial for guiding climate
change mitigation planning in the land use sector. Current
conventional fieldwork methods such as chamber mea-
surements (Holland et al. 1999; Lundegårdh 1927; Smith
and Connen 2004; Zhao et al. 2023) and eddy covariance
towers (Dou and Yang 2018; Foken et al. 2012), are labor-
intensive, costly, and limited in their spatial coverage.
Hence, there is an urgent need for economically viable
methods to accurately measure GHG emissions across large
spatial scales (Lees et al. 2018; Shono and Jonsson 2022;
Wurtzebach et al. 2019).

Geospatial environmental data provides extensive
coverage and can be used to estimate GHG sinks and
sources. For example, Parkkari et al. (2017) showed that
habitat conditions, such as drainage intensity and site
fertility, which indirectly reflect moisture conditions,
derived from geospatial data, were the most significant
variables in explaining and predicting GHG balances at
the landscape level. Webster et al. (2018) also found that
climate i.e., mean diurnal range and seasonality of tem-
perature, is an important driver in estimating peatland net
emissions of CO2 and CH4. Furthermore, Koch et al.
(2023) demonstrated the utility of machine learning
techniques in modeling water table depth (WTD) on a
national scale in Denmark using geospatial environ-
mental data. Their study revealed that topography, water
body proximity, and land use were crucial factors
influencing WTD, which in turn is one of the most
important factors affecting GHG emissions from peat-
lands (Abdalla et al. 2016; Huang et al. 2021). While
geospatial data are invaluable for estimating GHG sinks
and sources, they often suffer from coarse spatial reso-
lutions, which limit their capacity to capture fine-scale
landscape features and variations, and only offer a static
snapshot of the landscape at a given moment.

Satellite-derived remote sensing data serves as a versatile
tool for predicting GHG sinks and sources, offering global
coverage, high temporal and spatial detail, and access to a
wide variety of spectral regions to study GHG dynamics.
Particularly beneficial is its capability to monitor peatlands
that may be inaccessible due to wetness and open waters.
For example, C-band synthetic aperture radar (SAR)
Sentinel-1 can penetrate cloud cover, operate in darkness,
and provide insights into surface vegetation structure and
topography under various weather conditions (Bourgeau-
Chavez et al. 2009; Karlson et al. 2019; Li et al. 2021;
Millard et al. 2020; Räsänen et al. 2021; White et al. 2017).
Additionally, SAR backscatter information is sensitive to
soil moisture, a crucial factor influencing GHG fluxes in

peatlands (Millard and Richardson 2018; Räsänen et al.
2022). Another valuable resource is multispectral optical
remote sensing data from Sentinel-2, which enables mon-
itoring of various physical and biological properties of
peatlands (Lees et al. 2020; Räsänen et al. 2021 2022;
Tucker et al. 2022), aiding in the detection of factors such as
land cover, vegetation, water table depth, and soil moisture
levels (Burdun et al. 2023; Räsänen et al. 2022), all of
which significantly influence GHG emissions from peat-
lands (Abdalla et al. 2016; Lees et al. 2018). However, there
are still relatively few studies that analyze the direct use of
satellite data to predict GHG sinks and sources.

Some studies have highlighted the potential of remote
sensing data in predicting the spatial patterns of GHGs. For
instance, Räsänen et al. (2021) found that VH polarization
data from Sentinel-1, along with water vapor, blue, and
coastal aerosol bands from Sentinel-2, were important pre-
dictors for predicting CH4 fluxes in a heterogeneous
peatland-forest-tundra landscape in northern Finland.
Similarly, Junttila et al. (2021) identified strong relation-
ships between CO2 gross primary productivity and a com-
bination of Sentinel-2 Enhanced Vegetation Index 2 (EVI2),
Sentinel-2-derived water scalar (Ws), and daytime Land
Surface Temperature (LST) from MODIS. However, to the
best of our knowledge, there has been no attempt to detect
spatial patterns of GHG sinks and sources at a national scale
using directly remote sensing data.

This study builds upon the work of Parkkari et al. (2017),
who utilized geospatial environmental data to detect peat-
land GHG sinks and sources. We expanded their approach
by incorporating satellite remote sensing data (Sentinel-1
and Sentinel-2) as additional explanatory variables. Our
research aimed to address the following questions: (1) How
accurately can geospatial environmental and remote sensing
data predict peatland GHG sinks and sources at a national
scale? (2) How does remote sensing data compare with
environmental data in terms of predictive accuracy? and (3)
Do the predicted spatial patterns differ when using different
explanatory variables?

Materials and methods

Study area

The study was carried out in Finland (60–70° N; 20–30° E)
in Northern Europe (Fig. 1). The average annual tempera-
ture in the study area ranges from 6 °C in the southwestern
region to −2 °C in the northeastern region, while annual
precipitation varies between 500 mm and 750 mm in
1991–2020 (Jokinen et al. 2021).

We divided the study area into 1 ha grid cells
(100 m × 100 m). We excluded the cells where peatlands
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covered less than 10% based on the peatland drainage status
map from the Finnish Environmental Institute (2009).
Consequently, a total of 13,382,854 spatial grid squares

(133,829 km2) at a 1 ha resolution were used for predicting
the distribution of GHG (44% of the total land area of
Finland).

Fig. 1 Location map of Finland, along with the distribution of GHG measurement sites

Environmental Management



Peatlands in Finland

The peatlands in Finland primarily consist of two main
types: minerotrophic aapa mires, which are predominantly
found in the middle and northern boreal vegetation zones,
and ombrotrophic raised bogs, which are mainly located in
the southern boreal zone (Ruuhijärvi 1983, 1988). Notably,
drained peatland constitutes 41% of the peatland area in
northern Finland, and 75% in southern Finland (Korhonen
et al. 2021). There are five different main peatland fertility
types for the forestry-drained peatlands based on their
dominant ground vegetation and dominant tree species
(Laine et al. 2018) (Table 1).

These types also align with undrained peatlands, which,
however, are dominated by mire vegetation such as Carex
spp, Sphagnum spp, and selected forbs and shrubs.
Undrained peatlands can have tree cover, but wetter
undrained peatlands lack it.

Field-based GHG sinks and sources data

We used field-based data on soil-atmosphere fluxes of CH4

(79 drained, 21 rewetted, and 3 undrained sites), CO2

(including heterotrophic and total soil respiration, measured
in 76 drained sites), and N2O (59 drained, 24 rewetted, and
20 undrained sites) (Table 2, Fig. 2). From the temporal,
GHG measurements, that were conducted predominantly
during the snow and frost-free seasons, annual soil balances
of CH4, N2O, and CO2 were derived. The detailed metho-
dology for estimating these annual balances can be found in
the referenced papers (Korkiakoski et al. 2019; Minkkinen
et al. 2018, 2020; Ojanen et al. 2010, 2013, 2018, 2019).

Using the annual GHG balance data, we calculated the
measurement sites as either sources (emitting GHGs into the
atmosphere) or sinks (absorbing GHGs from the atmo-
sphere) for each GHG. Sites with a balance value of 0 were
designated as sinks. The distribution of measurement sites

categorized as sinks or sources for each GHG was as fol-
lows: 47 sinks and 56 sources for CH4, 39 sinks and
37 sources for CO2, and 1 sink and 102 sources for N2O
(Table 3).

Geospatial environmental data

In selecting our geospatial environmental variables, we
drew guidance from the findings of Parkkari et al. (2017),
who emphasized the significance of drainage and
moisture-related variables in predicting GHG sinks and
sources. For our study, we derived ten explanatory
geospatial environmental variables and grouped them into
three categories: climate, topography, and habitats (Table
4). All the variables were then resampled into 100 m
spatial resolution using the nearest neighbor method. To
ensure there was no multicollinearity among the variables,
we applied Spearman’s rank correlation, setting a pairwise
absolute correlation cutoff at 0.70, as recommended by
McCune (2016).

For the climate category, we calculated mean growing
degree days (GDD) and mean water balance (WAB)
annually using climate data from the Finnish Meteor-
ological Institute spanning the years 1990–2013 (Pirinen et
al. 2012). GDD, determined by daily mean temperatures,
acts as an indicator of plant growth development, con-
sidering both the duration of the growing season and solar
energy influx (Skov and Svenning 2004). Recognizing that
precipitation alone does not fully represent available
moisture for plants, we calculated the water balance by
subtracting monthly potential evapotranspiration from pre-
cipitation, with monthly balances then aggregated annually.
These climatic variables influence organic matter decom-
position rates, the balance between plant photosynthesis and
respiration, and water availability within peatlands, all
factors affecting GHG fluxes in these ecosystems (Antala
et al. 2022; Górecki et al. 2021).

Table 1 Fertility types in forestry-drained peatlands and their characteristics

Peatland fertility types Characteristics

1. Fertile herb-rich type (Rhtkg; N= 17) Field layer vegetation is dominated by herbaceous plants while the dominant trees include
Norway spruce (Picea abies), downy birch (Betula pubescens), and other deciduous trees.

2. Moderately fertile bilberry (Vaccinium myrtillus)
type (Mtkg; N= 48)

Field layer is dominated by various shrubs and some herbaceous vegetation while the tree
layer is a mix of Scots pine (Pinus sylvestris), Norway spruce, and downy birch.

3. The fertile lingonberry (Vaccinium vitis-idaea)
type (Ptkg; N= 35)

Shrub-dominated field layer and pine-dominated tree layer with some downy birch and
Norway spruce.

4. The nutrient-poor shrub type (Vatkg; N= 27) Abundant occurrence of dwarf-shrubs typically associated with pine bogs. Moss layer
consists of various mosses, including Sphagnum sp. Tree layer is mostly composed of Scots
pine.

5. Lichen type (Jätkg; N= 16) The diversity of vascular plants is generally low compared to other types of drained
peatlands. Ground layer is dominated by mosses (especially S. fuscum) and lichens. Tree
layer is mostly composed of Scots pine.

N = number of sites
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In the topography category, we included the topographic
wetness index (TWI; Beven and Kirkby 1979), calculated
from a 2 m spatial resolution digital terrain model using
local slope and upslope contributing area (Salmivaara
2016). Topography plays a crucial role in water flow and
accumulation across landscapes, influencing nutrient avail-
ability and plant productivity, thereby indirectly affecting
GHG fluxes (Murphy et al. 2009; Stewart et al. 2014).

In the habitat category, we used seven variables. Five of
these variables were derived from multi-source national
forest inventory (MS-NFI) data from 2017 (Natural
Resources Institute Finland 2017), including the proportion
of tree species root biomass and the proportion of four site
fertility types (Rhtkg, Mtkg, Ptkg, Jätkg). Additionally, we
calculated the proportion of undrained and drained peat-
lands in each grid cell using the peatland drainage status

dataset provided by the Finnish Environment Institute
(2009), which was based on the topographic database of the
Finnish National Land Survey.

Remote sensing data

The remote sensing dataset comprised European Space
Agency (ESA) Copernicus Sentinel-1 and Sentinel-2 data,
acquired from Google Earth Engine (GEE; Gorelick et al.
2017). To filter out noise that exists in individual images,
we calculated representative imagery for three specific
periods within the snow and frost-free season: early summer
(ES, May 1 - June 15), mid-summer (MS, July 1 - August
15), and late summer (LS, September 1 - October 15) from
2019 to 2023 (Table 5). These periods correspond to dif-
ferent stages of the growing season: ES represents high-

Table 2 List of various studies contributing GHG flux data used in this study

Source Site Method

Ojanen et al.
2010, 2013

68 study sites from permanent sample plots of the 8th NFI For CO2 flux, both total soil respiration (RTOT) and
heterotrophic respiration (g m− 2 h− 1 of CO2) were measured
from 5 points at each study site. Respiration was measured
every 2–3 weeks using a portable infrared gas analyzer with an
opaque closed chamber from May to October 2007 and 2008.
Gas samples for calculating CH4 and N2O fluxes were taken
from 4 of the RTOT points 5–7 times. Samples were collected
from the chamber headspace using syringes at 5, 15, 25, and
35 min after inserting the chamber into the point.

Minkkinen
et al., 2018

Kalevansuo (was drained in 1971) The net ecosystem exchange of CO2 was measured using the
eddy covariance method from a mast positioned above the forest
canopy from April 2005 to April 2006. Additionally, CO2 fluxes
from the soil and forest floor were assessed using closed
chambers, with a focus on four plots, each with 16 measurement
points, between 2005 and 2008. Soil CH4 fluxes were measured
with static chambers, and fluxes were measured from four points
on two parallel ditches on both sides of the mast, conducted a
total of 7 times between June and December 2011.

Ojanen
et al. 2019

Six study sites in Finland which were identified as low-
productivity drained peatlands, categorized as either nitrogen-
rich or nitrogen-poor areas. These sites had undergone long-
term fertilization experiments with varying fertilizer types and
doses, conducted by the Natural Resources Institute Finland.

At each plot, six measurement points were established. Gas
fluxes were measured a total of 11 times at each plot during the
snow-free period between July 2014 and September 2015.
Respiration measurements were conducted using a portable
infrared gas analyzer with an opaque closed chamber.
Additionally, gas samples for calculating CH4 and N2O fluxes
were collected from the chamber headspace at 5, 10, 15, and
20 min after placing the chamber at the measurement point.

Korkiakoski
et al. 2019

Lettosuo (was drained manually in the 1930s and more
effectively in 1969)

Eddy covariance was utilized to measure CO2 fluxes from April
2016 to March 2018, while chamber methods were employed to
measure CO2, CH4, and N2O fluxes from June 2015 to August
2017, respectively. Chamber measurements were mostly
conducted during snow-free periods, with intervals ranging
from one week to one month.

Minkkinen
et al. 2020

28 undrained, 65 forestry-drained (6 of which were fertilized
experimental sites), and 24 rewetted boreal peatland study sites
in Finland.

Flux measurements were carried out using the closed chamber
method, with gas samples collected into four syringes at equal
intervals of either 5 or 10 min (with incubation times of 20 or
35 min). Measurements were conducted primarily during the
snow-free season (May–October) but occasionally during winter
as well.
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water table conditions after snowmelt at the beginning of
the growing season, MS indicates a period of limited water
supply and peak vegetation growing season, and LS
represents end of the growing season when vegetation
senesces and when water table is again higher. We calcu-
lated multi-year averages since multi-year data is more
representative for the average conditions of the different
periods and corresponds better with the field data which is
also based on multi-year averages. For Sentinel-2, we
included only ES and MS due to persistent cloud-cover in
Finland during LS. Sentinel-1 has a 20 m resolution, while
Sentinel-2, as well as the derived indices, have a resolution
of 10 m.

For Sentinel-1 data, we used the Ground Range Detec-
ted, Sentinel-1 Toolbox preprocessed data that had under-
gone thermal noise removal, radiometric calibration, and
terrain correction with ASTER DEM. We used only
ascending orbit imagery for our analysis and calculated the
median for different time periods. Alongside the vertical
transmit vertical receive (VV) and vertical transmit hor-
izontal receive (VH) polarization bands, we calculated their
ratio (referred to hereafter as the Polarization ratio) and
included it in the explanatory variables for remote sensing
data.

We utilized Sentinel-2 Level-2A (atmospherically cor-
rected surface reflectance) images with a maximum cloud
cover of 20%. We masked out remaining clouds, cloud

shadows, and snow with Scene Land Cover pixel classifi-
cation. We used the unmasked image areas to generate a
mosaic, with each pixel representing band-wise 40th per-
centile reflectance values. Compared to the more conven-
tional median-based approach (Kollert et al. 2021; Shafeian
et al. 2021), this method yielded a better outcome with
fewer cloud remnants and haze, while still effectively
avoiding low-reflectance areas caused by cloud shadows
(Pitkänen et al. 2024). We utilized nine bands, excluding
those with 60 m initial resolution (bands 1, 9, and 10) and
the narrow near-infrared band (8A). Additionally, we cal-
culated four spectral indices, including the Modified Nor-
malized Difference Water Index (MNDWI; Xu 2006),
Normalized Difference Moisture Index (NDMI; Gao 1996),
Normalized Difference Vegetation Index (NDVI; Rouse
et al. 1974), and Normalized Difference Water Index
(NDWI; McFeeters 1996). Finally, to reduce the computa-
tion time of the analyses and to match with the spatial
resolution of geospatial environmental variables, we
resampled the Sentinel-1 and Sentinel-2 to a 100 m pixel
resolution using the nearest neighbor method.

GHG model calibration and validation

We utilized the maximum entropy (MaxEnt), a machine-
learning algorithm to predict the spatial patterns of GHG
sinks and sources. The core principle of the MaxEnt is to
achieve the highest possible entropy in the distribution
(Phillips et al. 2006), resulting in a probability distribution
model that connects explanatory variables with occurrence
records (Elith et al. 2011; Merow et al. 2013; Phillips et al.
2006; Phillips and Dudík 2008). We chose this method
because it efficiently handles complex predictor interactions
and non-linearity, and is suitable for dealing with small
sample sizes (Parkkari et al. 2017; Phillips et al. 2017;
Saarimaa et al. 2019). Although MaxEnt is traditionally
used in species distribution modeling, it has also been

Fig. 2 Boxplot visualizing field-
based greenhouse gas sinks and
sources data. The box displays
the interquartile range (IQR)
with the median depicted as the
middle line. The ‘x’ represents
the mean, and the whiskers
extend to the minimum and
maximum values, providing a
visual representation of the data
distribution. Negative values on
the y-axis indicate GHG uptake
from the atmosphere, while
positive values signify GHG
emissions into the atmosphere

Table 3 Numbers of measurement sites of field based GHG sinks and
sources data

GHG Drained Undrained Rewetted Total

Sink Source Sink Source Sink Source

CH4 47 32 - 3 - 21 103

CO2 39 37 - - - - 76

N2O - 59 1 19 - 24 103

Environmental Management



successfully applied in modeling GHG sinks and sources
(Parkkari et al. 2017). Following the approach by Parkkari
et al. (2017), we employed the default parameter settings,
including a regularization multiplier of 1, auto-features, a
maximum of 500 iterations, and a convergence threshold of
10−5.

We treated the measured GHG sink or source informa-
tion as presence-occurrence data and compared it against
10,000 randomly selected background points representing
the distribution of environmental conditions and remote
sensing features in the study area. We calculated the mean
values of the environmental and remote sensing variables
within a 50-meter radius circular buffer area surrounding
each GHG measurement point and background point.
Employing the buffer area helps eliminate potential noise in
individual pixels, thereby avoiding the issue of misleading
values when points are located near the edge of pixels.

We developed individual models for CO2, CH4, and N2O
sinks and sources. However, we did not include the N2O
sink in our analysis since data only from one site was
available. We constructed separate models for the following
explanatory variable sets (1) geospatial environmental data,
(2) remote sensing data, and (3) a combination of both types
of data.

To evaluate our model, we employed a 10-fold cross-
validation and reported the average results over all itera-
tions. We used the area under the receiver operating char-
acteristic curve (AUC) to assess the model performance.

The AUC is a widely recognized, effective, and threshold-
independent metric for evaluating distribution modeling
(Rana and Tolvanen 2021; Saarimaa et al. 2019; Zhang
et al. 2018). Model accuracy was considered low if AUC
fell below 0.7, fair if it ranged from 0.7 to 0.8, good if
between 0.8 and 0.9, and excellent if the AUC exceeded 0.9
(Saarimaa et al. 2019; Swets 1988). We evaluated model
stability by comparing the test AUCs to the training AUCs
(Parviainen et al. 2013):

AUC stability ¼ Test AUC

Training AUC

A closer similarity between the test and training AUCs
indicates greater model stability.

We utilized MaxEnt permutation importance analysis
to identify key variables for our models. This approach
was chosen for its robustness, as permutation importance
relies solely on the final MaxEnt model, regardless of the
path taken to achieve it. By randomly permuting variable
values among training points—both presence and back-
ground—and assessing the resulting decrease in training
AUC, we estimated each variable’s contribution. A
substantial decrease indicates a variable’s significant
impact on the model. Therefore, MaxEnt permutation
importance emerges as a superior metric for evaluating a
variable’s explanatory power due to its independence
from the specific algorithmic path taken (Saarimaa et al.
2019).

Table 4 List and description of geospatial environmental variables used in the study.

Geospatial environmental variables Abbreviation Unit Resolution Data source Mean [min-max]

Climate variables

Growing degree days GDD – 1 × 1 km FMI 1112.28 [705.94–1418.10]

Mean water balance WAB mm/year 1 × 1 km FMI 306.36 [144.70–383.19]

Topography variable

Mean topographic wetness index TWI – 16 × 16 m NLS, DEM 7.44 [5–12]

Habitat variables

Proportion of drained peatlands in grid square of
peatland area

DRAINED % 25 × 25 m SYKE 37.15 [0–98.70]

Proportion of undrained peatlands in grid square of
peatland area

UNDRAINED % 25 × 25 m SYKE 10.26 [0–82.95]

Mean root biomass (spruce, pine, other broadleaves) ROOT_BIOMASS 10 kg/ha 16 × 16 m Luke, MS-
NFI

412.71 [0–1201.65]

Proportion of Herb-rich type in grid cell area Rhtkg % 16 × 16 m Luke, MS-
NFI

0.6 [0–8.81]

Proportion of Vaccinium myrtillus types I and II in
grid cell area

Mtkg % 16 × 16 m Luke, MS-
NFI

5.85 [0–37.28]

Proportion of Vaccinium vitis-idaea types I and II
types in grid cell area

Ptkg % 16 × 16 m Luke, MS-
NFI

35.82 [0–83.52]

Proportion of Cladina type in grid cell area Jätkg % 16 × 16 m Luke, MS-
NFI

2.70 [0–43.37]

FMI Finnish Meteorological Institute, NLS National Land Survey, DEM Digital Elevation Model, SYKE Finnish Environment Institute, Luke
Natural Resources Institute Finland, MS-NFI Multi-source National Forest Inventory
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Given the recommendation to use only relevant variables
in the modeling process (Elith et al. 2011; Parkkari et al.
2017), we initially ran the model using all variables and
assessed the permutation importance values. Subsequently,
we iteratively removed the variable with the lowest
importance value, following a backward stepwise proce-
dure, until there was no further increase in model perfor-
mance. This approach aimed to strike a balance between
retaining potentially important variables and preventing the
inclusion of irrelevant ones. Finally, we selected the

variable combination with the highest test AUC as the final
model. Finally, we generated GHG sink and source pre-
diction maps for the study area to visualize the spatial
distribution of GHGs.

Results

The model that incorporated both geospatial environmental
and remote sensing variables yielded the highest AUCs,

Table 5 List and description of
remote sensing variables used in
the study

Variable Abbreviation Band(s) Equation

Sentinel 1

Vertical transmit vertical receive ES_VV
MS_VV
LS_VV

Vertical transmit horizontal receive ES_VH
MS_VH
LS_VH

Polarization ratio (VV/VH) ES_POL
MS_POL
LS_POL

Sentinel 2

Individual bands:

Band 2 ES_BLUE Blue

MS_BLUE Blue

Band 3 ES_GREEN Green

MS_GREEN Green

Band 4 ES_RED Red

MS_RED Red

Band 5 ES_RE1 Red edge

MS_RE1 Red edge

Band 6 ES_RE2 Red edge

MS_RE2 Red edge

Band 7 ES_RE3 Red edge

MS_RE3 Red edge

Band 8 ES_NIR NIR

MS_NIR NIR

Band 11 ES_SWIR1 SWIR

MS_SWIR1 SWIR

Band 12 ES_SWIR2 SWIR

MS_SWIR2 SWIR

Indices:

Modified normalized difference water
index

ES_MNDWI
MS_MNDWI

Green, SWIR1 ðGreen�SWIRÞ
ðGreenþSWIRÞ

Normalized difference moisture index ES_NDMI
MS_NDMI

NIR, SWIR1 ðNIR�SWIRÞ
ðNIRþSWIRÞ

Normalized difference vegetation index ES_NDVI
MS_NDVI

Red, NIR ðNIR�REDÞ
ðNIRþREDÞ

Normalized difference water index ES_NDWI
MS_NDWI

Green, NIR ðGreen�NIRÞ
ðGreenþNIRÞ

ES, MS, and LS refer to early, mid and late summer data acquisition periods, respectively
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with 0.845 for the test and 0.910 for the training data (Fig.
3a, b). Models that incorporated environmental variables
performed almost as well, yielding average AUCs of 0.810
and 0.876 for the test and training sets, respectively.
However, models based on remote sensing variable lagged
behind, with average AUCs of 0.763 and 0.823 for the test
and training data, respectively. The models from remote
sensing variables only were slightly more stable (AUC
stability of 0.927) than those from geospatial environmental
variables (AUC stability of 0.924), while the combination
of both types of variables exhibited the highest stability
(AUC stability of 0.928) (Fig. 3c).

In the variable importance analysis for models utilizing
only geospatial environmental variables, GDD emerged as
the most influential environmental variable, being the most
important variable for CH4 sinks and N2O sources and
having high importance in other models (Table 6). For CH4

and CO2 sources, DRAINED and UNDRAINED were the

most important variables, respectively, and mtkg was the
most important for CO2 sinks. Notably, GDD,
UNDRAINED, DRAINED, WAB, and peatland fertility
types ranked among the top three most important variables
for all GHGs, surpassing ROOT_BIOMASS and TWI.

When considering remote sensing variables, Sentinel-2
variables predominated in the models, except for CO2 sinks,
for which Sentinel-1 LS_VH was the most important. In
more specific, individual bands ES_Blue and MS_RE1,
emerged as the most influential for models predicting CH4

sinks and CO2 sources, respectively, while spectral indices
MS_NDMI and ES_MNDWI were deemed the most
important in predicting CH4 and N2O sources, respectively
(Table 6).

When utilizing both geospatial environmental and
remote sensing variables, UNDRAINED was the most
influential variable for CH4 and CO2 sinks, WAB for the
N2O sources, and ES_MNDWI and MS_RE1 for CH4 and
CO2 sources, respectively (Table 6). Interestingly, the top
three most important variables were a mix of geospatial
environmental and remote sensing variables, except for CO2

sinks, for which all top three variables were environmental
geospatial ones.

Figure 4a–c exhibited a similar distribution pattern for
CH4 sinks. All variable sets predicted CH4 sinks in Fin-
land’s central to southern region, with smaller occurrences
observed in the northwestern part. Maps generated from
remote sensing variables depicted a higher probability of
CH4 sinks, evident by the presence of more red colors on
the map (Fig. 4b).

CH4 sources were mainly predicted in Finland’s western,
middle, and southern regions according to the geospatial
environmental variables (Fig. 5a), and when both geospatial
environmental and remote sensing variables were used (Fig.
5c). Remote sensing data extended these predictions to
include the northern area as well (Fig. 5b).

CO2 sinks were primarily predicted to be concentrated in
the western, middle, and southern parts of the country
according to the geospatial environmental variables (Fig.
6a) and when both geospatial environmental and remote
sensing variables were used (Fig. 6c), while they were
predicted also for northwestern, and northeastern parts
when using solely remote sensing data (Fig. 6b).

Environmental variables predicted CO2 sources pre-
dominantly in Finland’s western, middle to southern regions
(Fig. 7a) and also when both geospatial environmental and
remote sensing variables were used (Fig. 7c). Remote sen-
sing data extended these predictions to include the northern
area as well (Fig. 7b).

NO2 sources were primarily concentrated in the wes-
tern, middle to southern parts of the country according to
the geospatial environmental variables (Fig. 8a) and
when integrating both geospatial environmental and

Fig. 3 Training (a) and test (b) AUC values, and AUC stability (c) of
the models using geospatial environmental (Env) and remote sensing
(RS) variables
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remote sensing variables (Fig. 8c). Remote sensing
variables depicted a more dispersed distribution,
extending from the northern to southern regions of the
country (Fig. 8b).

Discussion

GHG model accuracies

Our study shows that the spatial distribution of GHG sinks
and sources on a national scale can be predicted using either
a combination of geospatial environmental and remote
sensing data or solely geospatial environmental data. The
predictive accuracy and stability remained consistent across

all models, indicating their robustness for spatial prediction.
Variables reflecting drainage intensity and climate con-
sistently performed well in all GHG models, highlighting
their significant influence as the primary drivers of GHG
sinks and sources.

Models relying solely on remote sensing variables
demonstrated lower predictive accuracy than the two other
model types. This suggests that using only remote sensing
data is not optimal for predicting GHG sinks and sources
over large spatial extents. Nonetheless, integrating remote
sensing data with environmental GIS data slightly improves
model accuracy. This highlights the importance of incor-
porating land cover, vegetation, and moisture-related
proxies from remote sensing data to better understand the
spatial patterns of GHG sinks and sources. This result

Table 6 Top three geospatial
environmental (Env) or remote
sensing (RS) variables in the
final models of each GHG based
on their permutation importance
values

Model Env Permutation RS Permutation Env & RS Permutation

CH4 sink GDD 35.395 ES_Blue 18.793 UNDRAINED 23.162

UNDRAINED 27.646 MS_RE1 18.753 GDD 17.707

jatkg 15.761 MS_NDWI 16.461 MS_NDWI 14.872

CH4 source DRAINED 30.556 MS_NDMI 17.920 ES_MNDWI 13.368

GDD 18.838 ES_RED 13.772 GDD 11.681

WAB 17.154 MS_NDVI 13.458 MS_NDVI 11.056

CO2 sink mtkg 19.095 LS_VH 63.547 UNDRAINED 15.372

UNDRAINED 17.389 MS_Blue 15.087 GDD 12.331

ptkg 17.094 ES_Blue 9.486 DRAINED 10.945

CO2 source UNDRAINED 35.425 MS_RE1 33.509 MS_RE1 18.083

DRAINED 27.309 ES_NIR 18.890 UNDRAINED 17.146

GDD 14.747 ES_RE2 15.542 GDD 14.142

N2O source GDD 28.753 ES_MNDWI 17.812 WAB 17.017

WAB 27.255 ES_RED 11.752 GDD 16.481

DRAINED 19.787 MS_MNDWI 8.448 ES_NIR 15.762

Fig. 4 Predicted probability of
CH4 sinks from (a) geospatial
environmental variables, (b)
remote sensing variables, (c)
both geospatial environmental
and remote sensing variables.
Black dots represent the
measurement sites of CH4 sinks
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concurs with earlier studies which emphasize that multiple
different data sources should be used when producing maps
for biogeochemical and ecological phenomena such as
GHG fluxes, vegetation, and land cover (Karlson et al.
2019; Räsänen et al. 2021; Räsänen and Virtanen 2019;
White et al. 2017).

Spatial patterns of the prediction maps

The GHG distribution map derived from remote sensing
variables displayed a slightly different spatial pattern com-
pared to the maps generated using geospatial environmental
variables alone or in combination with both types of vari-
ables. These disparities can be attributed to the inherent
differences in the nature of the data sources utilized.
Geospatial environmental data quantify variables such as

drainage intensity, habitat type, topography, and climate,
which are closely linked to GHG fluxes between ecosys-
tems and the atmosphere. In contrast, satellite data rely on
detecting surface properties (e.g., vegetation type, land
cover) and physical phenomena (e.g., soil moisture, tem-
perature) that can indirectly influence GHG emissions.
However, these relationships may not always be straight-
forward or consistent across different regions and ecosys-
tems, leading to uncertainties in the predictive models.

Generally, the prediction maps identified a higher prob-
ability of GHG sources towards the southern area. One
reason may be the overall increase in drainage towards the
south, coupled with more intensive degradation of peatlands
in that region. In addition, GHG sinks were also often
predicted to occur in the same grid cells as GHG sources.
This might be caused by the spatial heterogeneity of land

Fig. 5 Predicted probability of
CH4 sources from (a) geospatial
environmental variables, (b)
remote sensing variables, (c)
both geospatial environmental
and remote sensing variables.
Black dots represent the
measurement sites of CH4

sources

Fig. 6 Predicted probability of
CO2 sinks from (a) geospatial
environmental variables, (b)
remote sensing variables, (c)
geospatial environmental and
remote sensing variables. Black
dots represent the field
measurement sites of CO2 sinks
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use and land cover within the region. While certain areas
experience extensive peatland degradation and subsequent
GHG emissions due to drainage and land conversion
activities, other nearby areas may retain relatively intact
vegetation. The juxtaposition of these contrasting land
cover and management types within the same grid cells can
result in the coexistence of GHG sinks and sources. Addi-
tionally, the complex interplay of factors such as soil
properties, hydrological dynamics, and management prac-
tices further contributes to the variability in GHG fluxes
observed at the local scale (Abdalla et al. 2016; Bhullar
et al. 2013; Koch et al. 2023). For instance, the different
GHGs respond differently to drainage and management
activities, with pristine peatlands being predominantly CO2

sinks and CH4 sources, while forestry-drained peatlands are

typically CO2 sources (Joosten and Clarke 2002; Kaat and
Joosten 2009; Pönisch et al. 2023). Consequently, despite
the prevalence of GHG sources in the southern area, the
presence of GHG sinks within the same grid cells highlights
the importance of considering the multifaceted nature of
landscape processes in predicting regional GHG dynamics.

Geospatial environmental variables influencing GHG

Our findings showed that UNDRAINED, DRAINED, and
GDD were the most significant geospatial environmental
variables in explaining the GHG sink and source distribu-
tions, which corroborates with the study by Parkkari et al.
(2017). UNDRAINED and DRAINED, habitat-related
variables, represents the proportion of undrained and

Fig. 7 Predicted probability of
CO2 sources from (a) geospatial
environmental variables, (b)
remote sensing variables, (c)
geospatial environmental and
remote sensing variables. Black
dots represent the field
measurement sites of CO2

sources

Fig. 8 Predicted probability of
N2O sources from (a) geospatial
environmental variables, (b)
remote sensing variables, (c)
geospatial environmental and
remote sensing variables. Black
dots represent the measurement
sites of N2O sources
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drained peatlands. This variable serves as an important
explanatory factor for GHG sinks and sources due to the
fact that the presence of drainage significantly alters peat-
land hydrology and biogeochemical processes related to
GHGs (Hyvönen et al. 2013; Laine et al. 2019; Laine et al.
1996).

Climate variables such as GDD and WAB were impor-
tant in explaining the spatial patterns of CH4 and N2O. It is
somewhat surprising that, in our models, these climate
variables had a higher significance for CH4 and N2O com-
pared to CO2, suggesting that the influence of climate
variables on CO2 was overshadowed by the higher sig-
nificance of other variables. It is probably because drained
peatlands undergo substantial alterations in terms of water
table levels, soil conditions, and vegetation types, which are
more directly linked to CO2 release. Site type and fertility
further influence the availability of organic matter and
nutrient cycling, directly impacting CO2 emissions. While
climatic variables play a role, the local peatland character-
istics have a more immediate and profound impact on the
CO2 dynamics, making them more dominant factors in the
predictive model. Particularly, GDD has an impact on CO2

balance since the length of the growing season increases
photosynthesis activity and thus CO2 uptake (Gatis et al.
2019; Zhu et al. 2022). However, it may be that GDD
primarily affects the strength of CO2 uptake rather than
determining whether a specific area acts as a net sink or
source of CO2 (Groendahl et al. 2007; Kroner and Way
2016). Other factors, such as organic matter decomposition
and soil moisture, might play more significant roles in
dictating the overall CO2 balance (Castro et al. 2010; Clark
et al. 2009; Cregger et al. 2014; Wilson et al. 2022).

Additionally, some other habitat variables, representing
site fertility information, were deemed important in many of
the GHG models. For example, unfertile or nutrient-poor
site (jätkg) influenced the CH4 sink model and moderately
fertile site (mtkg) and less fertile site (ptkg) the CO2 sink
model. This observed relationship can be attributed to the
impact of nutrient availability on ecosystem functioning. In
moderately fertile or less fertile sites, microbial activity
driven by organic matter decomposition may be enhanced
under nutrient-limited conditions (Bhullar et al. 2013;
Koelbener et al. 2010), leading to elevated methane emis-
sions and influencing the CH4 sink/source dynamics. Lim-
ited nutrient availability may also constrain plant
productivity and carbon sequestration potential, resulting in
reduced CO2 sink strength (Hommeltenberg et al. 2014;
Lohila et al. 2011; Ojanen et al. 2013). On the other hand,
fertile sites might release more carbon into the atmosphere
than they capture due to their high respiration and pro-
ductivity levels, contributing to the climate warming (Jau-
hiainen et al. 2016; Maljanen et al. 2010; Ojanen et al.
2013; Renou-Wilson et al. 2014). Furthermore, variations in

vegetation composition and litter decomposition rates
associated with nutrient availability further contribute to the
observed patterns in GHG fluxes. The relationship between
peatland site fertility and GHG sinks and sources is inter-
connected with other factors, such as water table depth,
temperature, vegetation composition, and land management
practices (e.g., drainage and fertilization) (Kareksela et al.
2015; Laine et al. 2019; Soini et al. 2010).

The contribution of TWI was minimal in this study,
possibly due to ditching, which likely alters the hydro-
logical characteristics of the landscape and may have a
significant impact on soil moisture dynamics, overriding the
influence of TWI (Parkkari et al. 2017).

Remote sensing variables influencing GHG

Our results highlight the importance of considering multi-
temporal remote sensing variables derived from different
stages of the growing season when predicting GHG
dynamics. By examining data from early summer, mid-
summer, and late summer, we captured variations in vege-
tation growth and temporal moisture conditions that influ-
ence GHG sinks and sources.

The results showed that Sentinel-2 data had higher pre-
dictive power compared to Sentinel-1 data, likely due to the
effectiveness of optical data in detecting peatland wetness,
especially in open peatlands and areas where wetness cor-
relates with land cover and vegetation patterns (Burdun
et al. 2020; Räsänen et al. 2020). Sentinel-2 variables were
also ranked in the top three most influential variables, even
when considered alongside environmental variables. This
suggests that incorporating Sentinel-2 data has the potential
to improve the accuracy and reliability of GHG sinks and
sources predictions.

Across various GHG models, most bands and indices
derived from Sentinel-2 data consistently ranked within the
top three, except for the green and SWIR bands. The low
importance of SWIR is a bit surprising as SWIR bands have
been identified as sensitive indicators of moisture content,
both in vegetation (Ceccato et al. 2001) and soil (Crist and
Cicone 1984) and also important in predicting restored and
intact peatland water table depths (Burdun et al. 2023;
Räsänen et al. 2022). Individual bands such as BLUE, RED,
RE1, RE2, and NIR emerged as the most important ones.
These bands have been previously identified as useful in
estimating soil moisture and vegetation cover (Junttila et al.
2021; Kolari et al. 2022; Pang et al. 2023). Moreover, our
study also identified moisture and vegetation indices as
important variables in predicting GHG sinks and sources.
These indices provide valuable information about surface
soil moisture content, water presence, and vegetation den-
sity (Lees et al. 2020; Räsänen et al. 2022). However, it is
essential to note that the effectiveness of optical data, such
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as Sentinel-2, to detect soil moisture, ground vegetation,
and land cover diminishes in peatlands densely covered by
trees (Burdun et al. 2023; Räsänen et al. 2022) due to the
obstructive nature of the tree canopy.

Despite the superior performance of Sentinel-2, it is
noteworthy that Sentinel-1 variables also held an important
role in our GHG models. VH (Vertical-Horizontal) vari-
ables from Sentinel-1 were ranked among the top three most
important variables in CO2 sinks model. Earlier studies have
emphasized the sensitivity of Sentinel-1 and other SAR data
to soil moisture, proving valuable in mapping peatland
vegetation, land cover, moisture and GHG fluxes (Bour-
geau-Chavez et al. 2009; Karlson et al. 2019; Millard et al.
2020; Räsänen et al. 2021; White et al. 2017). However, as
a C-band satellite, Sentinel-1 may not be optimal for
moisture mapping due to its limited penetration capabilities
through vegetation. The notable contribution of Sentinel-1
variables, even when compared to Sentinel-2, underscores
the complementary role of these two remote sensing data-
sets. This highlights the significance of leveraging multiple
remote sensing datasets for a comprehensive understanding
and modeling of GHG dynamics in peatland ecosystems.

Limitations and future directions

There were some limitations in our study which should be
addressed in future studies. Firstly, our GHG data were mea-
sured from a limited number of sites, exclusively focusing on
several years, with data collected mostly during the snow and
frost-free season, which were then used to estimate the annual
GHG balance. This restricted spatial and temporal coverage
may hinder the comprehensive capture of fluctuations in GHG
sinks and sources across different seasons and geographical
locations. To address this limitation in future investigations,
expanding the field dataset to include a broader range of sites,
covering various seasons, could provide a more nuanced
understanding of peatland GHG dynamics.

Secondly, there is a bias towards drained peatland sites in
our study, with limited representation of undrained and
rewetted sites. This bias may affect the generalizability of
our findings, especially concerning GHG dynamics in
undrained and rewetted peatlands. To improve the overall
understanding of GHG dynamics in peatland ecosystems,
future studies should aim for a more balanced dataset that
includes undrained and rewetted sites.

Thirdly, while our study successfully identified spatial
patterns of GHG sinks and sources, it did not explore the
strength of these sinks and sources. This limitation restricts
the depth of understanding of peatland GHG dynamics.
Future work should delve into quantifying the strength of
GHG sinks and sources to provide a more comprehensive
understanding of their impact on the overall carbon balance
in peatland ecosystems.

After all, a GHG predictive model is essential to
identify areas with high GHG emissions or sequestration
potential. Such information holds significant value for
land-use planning, empowering decision-makers to
allocate resources effectively and prioritize areas for
conservation, restoration, or economic use. The inte-
gration of predictive models into decision making pro-
cesses can contribute to more informed and
environmentally conscious land-use practices. However,
the maps should not be used directly to prioritize areas in
spatial decision making. Instead, the results should be
validated and discussed together with decisionmakers
and other stakeholders (Hauck et al. 2013). Such dis-
cussion can be even more important than the result maps
themselves as the discussions facilitate social learning
and knowledge exchange between various sectors and
help to understand the environmental processes relevant
for GHG dynamics. Nevertheless, as the maps provide
easily comprehensive and illustrative information, they
are important for facilitating such discussions. There-
fore, further research could look at how the maps can be
used in decision making.

Conclusion

Our study demonstrates that the combination of geospatial
environmental and remote sensing data can predict peat-
land GHG sinks and sources on a large spatial extent.
Geospatial environmental variables like drainage and
climate-related variables were the most important con-
tributors to the models. Models relying solely on remote
sensing variables from Sentinel-1 and Sentinel-2 per-
formed worse than those using geospatial environmental
variables. However, the combination of remote sensing
and geospatial environmental variables slightly boosted
model performance compared to models utilizing only
geospatial environmental variables. The maps generated
from environmental variables alone and those from the
combined dataset display similarity, indicating the
robustness of the approach. Nonetheless, maps based
solely on remote sensing data showed slightly different
patterns. These results suggest that (1) reliable nationwide
estimates of GHG sinks and sources cannot be produced
with remote sensing data only and (2) integrating multiple
data sources is recommended to achieve accurate and
realistic predictions of GHG spatial patterns in peatland
ecosystems.
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