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A B S T R A C T   

The use of genomic information has been proven to be a highly effective in predicting genomic breeding values 
(GEBV) across various species, including aquatic organisms. In the Finnish national rainbow trout breeding 
programme, the integration of genomic selection holds particular significance for the traits recorded on sibling 
fish reared in the main commercial sea production environment, given the selection occurs among the breeding 
candidates reared in the freshwater nucleus. In the programme, family tanks allow to maintain a pedigree for a 
large number of fish, and genotyping of a portion of the fish accompanied with a single-step genomic evaluation 
(ssGBLUP) would maintain high selection intensity and simultaneously make use of possibilities of genomic 
selection. In this study we used three different statistical approaches to quantify the selection accuracy of 
ssGBLUP evaluation of body weight and maturity age, relative to the evaluation based on the traditional sire- 
dam-offspring pedigree (PBLUP). The data included 600,409 fish in the pedigree among which 214,410 and 
4573 were phenotyped for the reported traits and genotyped, respectively. Firstly, a phenotypic cross validation 
study showed that ssGBLUP had a slightly better prediction power for body weight and maturity age recorded at 
the sea, with an average 2.7% relative increase in accuracy compared to PBLUP. Secondly, a linear regression 
(LR) of GEBVs computed using either full or reduced dataset demonstrated that the ssGBLUP model had a 
consistently lower bias and dispersion compared to the PBLUP model, underscoring its efficacy in dealing with 
complex datasets like ours. When considering the reliability of [G]EBV predictions, the use of ssGBLUP model 
resulted in a significant improvement. There is, on average, a notable 50% relative increase in the reliability of 
predictions for the sea-recorded traits. Thirdly, the enhancement in reliability was further evidenced by the 
individual assessment of [G]EBVs computed using the reverse reliability methodology. Notably, genotyped in-
dividuals experienced an average increase of 0.27 units in reliability, while ungenotyped individuals experienced 
a corresponding increase of 0.03 units. The results show that the ssGBLUP method had higher prediction ac-
curacy for both sea and freshwater traits compared to PBLUP. The developed ssGBLUP model will be instru-
mental in Finland’s rainbow trout breeding, facilitating precise and efficient selection of new candidates.   

1. Introduction 

Genomic prediction is a method to predict genomic estimated 
breeding values (GEBV) of breeding candidates using genomic marker 
information, and a set of phenotyped and genotyped individuals known 
as a reference population (Meuwissen et al., 2001). Genomic selection in 
aquaculture species has been shown to be especially useful for hard-to- 
record-traits, such as disease resistance and product quality traits that 
are typically recorded from sibs of the breeding candidates (Houston 
et al., 2020). Aquaculture breeding programmes are shifting from 

pedigree-based schemes to genomic evaluations in which genotyping 
with thousands of DNA markers is needed. Genotyping is costly, and not 
all fish in a breeding programme can be always genotyped. One solution 
would be to reduce the number of fish in a breeding programme but this 
may slow down genetic gain, e.g. via reduction in selection intensity. An 
alternative is selective genotyping of the most interesting breeding 
candidates, for instance, based on the pre-existing information on their 
sibs’ genotypes and performance for the hard-to-record traits. Conse-
quently, fish breeding programmes may benefit from a method where 
GEBVs are predicted based on both a traditional sire-dam pedigree and 
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genotypes obtained from a portion of fish. 
Single-step genomic evaluation (ssGBLUP) is a method to combine 

phenotypes, pedigree and genomic information from a reference popu-
lation and candidates in a single statistical model to estimate GEBVs 
(Legarra et al., 2009; Aguilar et al., 2010; Christensen and Lund, 2010). 
Genotyping itself typically leads to more accurate breeding values of the 
genotyped individuals, but additionally, the combination of pedigree 
(A) and genomic (G) relationship matrix is especially valuable because it 
may also improve prediction in ungenotyped sibs, reduce bias and 
predict GEBVs instead of sum of marker effects (aka. Direct Genomic 
Value, Christensen and Lund, 2010; Kachman et al., 2013; Mäntysaari 
et al., 2020). 

Validation of genomic prediction is an important instrument to un-
derstand how appropriate the developed prediction model is for routine 
genomic evaluation. It is also widely used tool to compare genomic 
prediction models. In a nutshell, validation stands for regression of 
corrected phenotype or GEBV calculated accounting phenotypic data on 
predicted GEBV. In a validation study, predicted GEBVs rely on pedigree 
and/or genomic information. To estimate predicted GEBVs, phenotypic 
data is truncated to simulate the absence of data in the candidates. 

In aquaculture species, the most common validation method has 
been phenotypic validation, in which phenotype, or phenotype cor-
rected for fixed effects, is used as response variable. A similar statistical 
approach is used in livestock breeding (Jairath et al., 1998; Strandén and 
Mäntysaari, 2010) but it was realized that alternative methods are 
needed for complex structured populations, models with multiple 
random factors, phenotypes that are solutions of statistical models (e.g. 
maternal effects, regression parameters) and for single-step models used 
on routine basis in evaluations (Interbull, 2023). For such cases Legarra 
and Reverter (2018) suggested a more general validation approach - 
linear regression (LR) of the GEBVs computed using the full data on the 
GEBVs from the truncated data. 

In the Finnish national breeding programme for rainbow trout, 
family tanks are used at the initial phase of growth which allows to 
maintain a sire-dam-offspring pedigree for large number of fish, and 
breeding value evaluation has been based on this pedigree (PBLUP) 
(Kause et al., 2005, 2022). Growth, maturity age, body shape, viscera 
percentage, survival, skeletal deformations, and eye cataract are 
selected in two environments, at sea (main commercial production 
environment) and at the freshwater nucleus. Fraslin et al., 2022a, 
2022bshowed that genomic selection for disease resistance against Fla-
vobacterium columnare infection is possible in this population, when sibs 
of the breeding candidates are genotyped and tested outside the nucleus 
for survival under a natural outbreak. Genotyping also a portion of the 
breeding candidates accompanied with a single-step genomic evaluation 
would maintain high selection intensity for all the currently recorded 
traits and simultaneously make use of possibilities of genomic selection, 
e.g. for disease resistance. 

The aim of this study was 1) to implement ssGBLUP model in the 
Finnish rainbow trout breeding programme; 2) to quantify the predic-
tion power of the developed ssGBLUP model using different validation 
methods, and 3) to compute exact selection accuracies for both geno-
typed and non-genotyped individuals. We focus on growth and maturity 
traits that so far have not been the most urgent focus because the 
phenotypic recording of these traits is extensive both at sea and fresh-
water (Kause et al., 2003, 2005, 2022) but breeding of these traits will 
likely benefit from genomic information. Our work is an example of 
implementation of genomic prediction in a real rainbow trout breeding 
programme. 

2. Material and methods 

2.1. Data 

2.1.1. Phenotypic data 
The data was obtained from the Finnish national breeding 

programme maintained by Luke at the Enonkoski freshwater nucleus 
and multiple sea stations (Kause et al., 2005, 2022). Hatched fish were 
kept in a full-sib family tanks until individually tagged - allowing 
pedigree recording. At tagging each family was split and placed to 
freshwater and sea testing stations. The freshwater nucleus is a flow- 
through farm with tanks and raceways, and the water comes from a 
nearby lake. The sea stations, one or two each year, are fully commercial 
farms with open net pens, located along the coast of Finland and Åland 
islands at the Baltic Sea. 

Pedigree included 600,409 fish and 6234 families, born between 
1992 and 2019. Two populations were present in the pedigree: popu-
lation I consisted of generation born in 1989, 1992, 1995, 1998, 2001, 
2004, 2007, 2010, 2013, population II has two subpopulations: IIa 
consists of fish born 1990, 1993, 1996, 1999, 2002, 2005, 2008, 2011, 
and 2014 from which both 2018 and 2019 were generated, and IIb 
consists of 1997, 2000, 2003, 2006, 2009, 2012, and 2015. Population 
IIb was established using fish of IIa from year 1993. There were no fish in 
year classes of 2016 and 2017. The base population was created with 
fish assumed to be unrelated, born in 1989 and 1990 (Kause et al., 
2005). Unknown parent groups formed separately by year and sex were 
included at the beginning of the pedigree to minimize incompatibility 
issue in single-step genomic prediction (Misztal et al., 2013). 

Recorded traits were four body weight traits recorded at the ages of 
1, 2, and 3 years at freshwater (Weight1, Weight2, Weight3) and at the 
sea at the age of 2 years (Sea weight2), and three binary maturation traits 
(0 = late maturity age, 1 = early maturity age) recorded for the males 
and females at freshwater (Maturitymale, Maturityfemale) and for the 
males at sea (Sea maturitymale; Kause et al., 2005). Males are recorded to 
mature at the age of 2 and 3 years, and females at the age of 3 and 4 
years. At freshwater live fish, and at sea gutted fish, are scored for 
maturity status by inspection by ultrasound and visual observation, 
respectively. Female maturity trait is not available from sea because at 
sea the fish are recorded at age 2 years. Number of records for all traits 
are shown in Table 1. 

The population has been selected based on pedigree-based EBVs 
estimated using MiX99 software (Strandén and Lidauer, 1999; Kause 
et al., 2022), and the rate of inbreeding has been controlled by the 
optimal genetic contribution method and by avoiding mating of rela-
tives (Kause et al., 2005). 

2.1.2. Genomic data 
Genotypes were available from 4573 fish born 2014, 2018, and 

2019. In year class 2014, all the fish were genotyped. In year class 2018 
and at sea, the genotyped fish were randomly sampled regards to the 
phenotypic value. In year class 2019, all early maturing males were 
genotyped, otherwise the sampling for genotyping was random. Number 
of genotyped fish with associated phenotypic data is presented in 
Table 1. DNA samples from fin clips were collected and genotyped using 
57 K Axiom Trout Array (https://www.thermofisher.com/order/catalo 
g/product/550571). The proportion of genotyped fish for the year 
2018 and 2019 was 16% and 28%, respectively. Quality control was 
performed in Plink 1.9 software (Purcell et al., 2007) with following 
filtering criteria: SNPs mapping to a single position in the genome 
(Fraslin et al., 2022a), average call rate for passing SNPs ≥0.90, average 
call rate for passing samples ≥0.70, Hardy-Weinberg equilibrium exact 
test p-value <1E-50, and minor allele frequency < 0.01. After quality 
control 40,374 markers remained for imputation with AlphaImpute 
software (Hickey et al., 2012). Imputation of missing SNPs in the gen-
otyped individuals was performed using family-based imputation 
approach. For the genotyped fish without genotyped family members 
missing, alleles were imputed by the most common allele in all geno-
typed fish. 

2.2. Mixed model equation 

Multitrait pedigree BLUP (PBLUP) and single-step genomic BLUP 
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(ssGBLUP) were used to predict EBVs and GEBVs, correspondingly. The 
mixed model equations used were:  

where yi are vectors of observations on traits; 
fixed effects are: by is birth year, byts = birth year and testing station, 

bytsms = birth year, testing station, maturity, and sex, bytsc = birth year, 
testing station, and cataract disease, bytsd = birth year, testing station, 
and spinal deformation, bytst = birth year, testing station, and tank; 

random effects are: byft = birth year and family tank, a = additive 
genetic effect, and e = residual. 

Maturity, and spinal deformation were coded as 0 in case late 
maturity and no disease observed, and 1 in opposite cases. Cataract due 
to Diplostomum spp. eye flukes was visually scored as 0 = healthy eyes, 1 
= one opaque eye, and 2 = both eyes opaque. Males were coded as 1 and 
females as 2. A missing fixed effect record was coded as 9 (Kause et al., 
2022). In two newest year classes, the fish at the nucleus were reared in 
two tanks into which the fish were randomly allocated to. Number of 
effects levels shown in Appendix1a. Breeding value prediction was 
performed with MiX99 software (Strandén and Lidauer, 1999). Weight1 
is recorded on all fish and included in the model only to account for 
selection bias and any missing observations in traits recorded later in life 
(Martinez et al., 2006; Janhunen et al., 2014). The genetic correlations 
of the traits are presented in the Appendix 1. The variance components 
used in routine breeding evaluations were estimated using phenotypic 
data of seven year classes, 2001–2007, with the sample size of 200,737 
for Weight1, 36,937 for Weight2, 30,744 for Weight3, 33,481 for Sea 
weight2, 13,197 for Maturitymale, 19,098 for Maturityfemale, and 10,075 
for Sea maturitymale. The statistical model described in Section 2.2. was 
used. 

2.3. Single-step genomic BLUP 

In ssGBLUP full pedigree relationship matrix A− 1 is replaced by a 
joint relationship matrix H− 1 (Aguilar et al., 2010; Christensen and 
Lund, 2010) computed as: 

H− 1 = A− 1 +

(
0 0
0 G− 1 − A− 1

22

)

where, A22 is a part of A for the genotyped animals only and G is the 
genomic relationship matrix. The G matrix was computed using hginv 
v1.0 software (Strandén and Mäntysaari, 2018) as: 

G = st (1 − w) G05 +wA22  

where w is the residual polygenic proportion equal to 0.05, G05 =

2
(

M101M′
101

m

)
with M101 as an n by m marker matrix with the genotypes 

coded by {− 1,0,1}, m is the number of SNP markers, n is the number of 
genotyped animals, i.e. assuming allele frequencies = 0.5, and st is a 

scaling factor computed as 
(

trace(A22)
trace(G05)

)
. The scaling factor was used to 

make the average of the diagonals of the G matrix equal to the average of 
the diagonal of the A22 matrix. The unknown parent groups were 
included into H− 1 matrix as shown by Misztal et al. (2013) and Mat-
ilainen et al. (2018). Inbreeding was computed using RelaX2 software 
(Strandén and Vuori, 2006) and accounted during A− 1 construction in 
MiX99. 

2.4. Model validation 

Four validation approaches were tested: CrossV_Y*, CrossV_BV, For-
wardP_Y*, and ForwardP_BV (Table 2). The data of year classes 2018 and 
2019 were modified to perform different validation tests. The ap-
proaches were different on the fraction of phenotypic information used 
to estimate reduced [G]EBV ([G]EBVr) and information used as a 
response variable. Reduced data was obtained either by repeated five-
fold cross validation across the two year classes (CrossV) or by the 
deletion of the whole last year class of the phenotypic data (ForwardP; 
forward prediction). Phenotype adjusted for fixed effects and random 
family tank effect (Y*) or [G]EBV from the full data ([G]EBVf) were used 
as the response variable in a regression model. In the reduced dataset, 
groups of genotyped fish with and without own phenotypic records are 
termed as training and test sets, respectively. Every trait had specific 

Table 1 
Number of records and heritability of the traits.  

Trait Number of records in the full data Number of records in the 1-year truncated 
data 

Number genotyped 
fish 

Heritability (h2) Genetic standard 
deviation 

Weight2 96,544 95,038 2237 0.33 113 
Weight3 101,509 98,770 2497 0.34 230 
Sea weight2 85,927 83,750 1532 0.33 165 
Maturityfemale 55,404 53,640 1130 0.27 0.26 
Maturitymale 41,202 40,014 1064 0.28 0.16 
Sea maturitymale 32,157 31,270 673 0.42 0.20  

Table 2 
Explanation of methods used for model validation.  

Method TBVa Fish truncated from the data 

CrossV _Y* Y*b 5-fold cross-validation + full sibs 
CrossV _BV [G]EBVfc 5-fold cross-validation + full sibs 
ForwardP_ Y* [G]EBVf Forward prediction (all fish born 2019) 
ForwardP_BV [G]EBVf Forward prediction (all fish born 2019)  

a TBV = True breeding value. 
b Y* = Phenotype adjusted for the fixed effects and random tank effect. 
c [G]EBVf = [G]EBV predicted using full phenotypic data. 

⎡
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testing group due to different number of records available (Table 3). 

2.4.1. Five-fold sib cross-validation (CrossV) 
Genotyped and phenotyped fish born 2018 and 2019 were randomly 

split into five folds. Every fold was used as a testing set while the rest 
four acted as training set. Phenotypic records of all traits were masked 
not only for the fish in a fold, but also for their genotyped and ungen-
otyped full sibs outside the fold, however only the fish in the fold were 
considered as the test set. Avoidance of full-sib data was done to prevent 
overtraining of the model. Data reduction was always followed by the 
prediction of [G]EBVr and regression of Y* or [G]EBV (on y-axis) on [G] 
EBVr (on x-axis). Overall procedure was repeated 20 times. The pre-
sented results are the mean of 100 runs (i.e., 5 × 20). 

2.4.2. Forward prediction (ForwardP) 
Similar to the practice in livestock (Mäntysaari et al., 2010) all 

phenotypes of all traits from the latest year class 2019 were removed 
from the data regardless of whether the fish was genotyped or not. This 
strategy imitates situation when prediction is performed for a future 
generation without own phenotypic records. All genotyped fish with 
masked records for a particular trait was considered as a test set. 
Number of records in the training set is presented in Table 1. 

2.4.3. Y* as function of [G]EBVr 
For the fish in the test group, regression of Y* on [G]EBVr was per-

formed using formula: Y* = b0 + b1[G]EBVr, where intercept b0 and 
slope b1 are measures of bias and dispersion. Prediction accuracy (acc) 
was estimated as the Pearson correlation between Y* and [G]EBVr 

divided by the square root of heritability (cor(Y* ,[G]EBVr )̅̅̅̅
h2

√ ). These are 

parameters that reflect population- and model- specific levels of accu-
racy (Legarra and Reverter, 2018). 

2.4.4. EBV or GEBV as function of [G]EBVr 
For the fish in the test group, linear regression of [G]EBVf on [G] 

EBVr was performed using formula: [G]EBVf − [G]EBVr = b0 +

b1([G]EBVr − [G]EBVr ) (Legarra and Reverter, 2018), where b0 is a 
mean difference between GEBVf and GEBVr, b1 is a dispersion of the 
model, and R2 of the model is correlation squared or the predictive 
ability of the model. These are again parameters that reflect population- 
and model- specific levels of accuracy (Legarra and Reverter, 2018). 

2.5. Reliability approximation 

Individual reliabilities were calculated for EBVs (PBLUP) and GEBVs 
(ssGBLUP). Reliability of EBVs were calculated using Tier and Meyer 
(2004) approach, while for GEBVs the multistep reverse reliability 
approximation approach described by Ben Zaabza et al. (2022) was 
used. Computations were done using the ApaX99 (Strandén and Lidauer, 
1999) and MiX99 software. The multistep method was based on a 
separate calculation of reliabilities for genotyped and non-genotyped 
fish in the following steps: 1) reliabilities were estimated using PBLUP 
for all fish using Tier and Meyer (2004) approach; 2) effective record 
contributions (ERCs) were calculated using reverse reliability approach 
for genotyped fish; 3) reliabilities were estimated using GBLUP for 
genotyped fish; 4) ERCs were calculated for all the fish; 5) ERCs were 
corrected for double counting of information in the genotyped fish; 6) 
final reliabilities were calculated using weighting for ERC for all the fish. 
Benefit of the method is the avoidance of double counting of information 
in genotyped fish and the increased quality of prediction in non- 
genotyped fish due to genomic information from sibs. 

3. Results 

3.1. Validation study 

The results of validation study for PBLUP and ssGBLUP models are 
presented in Table 4. In general, ssGBLUP had better prediction power 
than PBLUP. Accuracies obtained using CrossV_Y* method were slightly 
higher for ssGBLUP in all the traits except Weight2 and Weight3. For 
Weight2 accuracies were equal in PBLUP and ssGBLUP, and for Weight3 
0.05 units lower in ssGBLUP. The bias (b0) was lower in ssGBLUP model 

Table 3 
Ratio of the fish in test and training set by trait in the 5-fold cross validation 
(CrossV) and forward prediction validation (ForwardP).   

Validation method 

Trait CrossV a ForwardPa 

Weight2 447 / 1790 804 / 1433 
Weight3 391 / 2106 1071 / 1426 
Sea weight2 306 / 1226 1148 / 384 
Maturityfemale 226 / 904 665 / 465 
Maturitymale 212 / 852 583 / 481 
Sea maturitymale 134 / 539 495 / 178  

a Test/training fish. 

Table 4 
Validation bias (b0), dispersion (b1), accuracy (acc), and correlation squared (R2) in pedigree-based (PBLUP) and single-step genomic (ssGBLUP) models obtained using 
different validation approaches.  

Model and trait  CrossV_Y*a  CrossV_BVb ForwardP_Y*c ForwardP_BVd 

PBLUP b0 b1 acc b0 b1 R2 b0 b1 acc b0 b1 R2 

Weight2 27 1.04 0.63 10 1.02 0.65 70 0.85 0.51 13 0.83 0.39 
Weight3 50 1.01 0.71 6 0.94 0.65 97 0.87 0.65 12 0.87 0.56 
Sea weight2 40 0.95 0.51 6 0.91 0.46 86 0.77 0.41 10 0.82 0.33 
Maturityfemale 0.05 0.91 0.53 0.01 1.02 0.65 0.04 1.00 0.56 0.01 0.93 0.48 
Maturitymale − 0.04 0.58 0.46 − 0.003 0.83 0.66 − 0.04 0.24 0.56 0.01 0.61 0.69 
Sea maturitymale 0.02 0.96 0.39 0.01 0.99 0.41 0.01 0.89 0.38 0.02 0.85 0.32  

ssGBLUP 
Weight2 10 1.04 0.63 9 1.02 0.74 89 0.84 0.47 11 0.88 0.48 
Weight3 69 0.96 0.66 − 0.7 0.94 0.75 170 0.81 0.57 7 0.88 0.63 
Sea weight2 16 1.01 0.53 4 0.96 0.64 63 0.90 0.45 7 0.91 0.47 
Maturityfemale 0.07 1.06 0.60 0.001 1.07 0.79 0.05 1.12 0.60 − 0.01 1.00 0.64 
Maturitymale − 0.08 0.66 0.51 − 0.004 0.92 0.84 − 0.14 0.27 0.60 0.01 0.75 0.74 
Sea maturitymale 0.01 0.97 0.42 0.001 0.99 0.66 − 0.04 0.76 0.35 0.01 0.83 0.51  

a CrossV _Y* = 5-fold cross-validation with phenotype adjusted for the fixed effects and random tank effect used as TBV. 
b CrossV _BV = 5-fold cross-validation with [G]EBV predicted using full phenotypic data used as TBV. 
c ForwardP _Y* = Forward prediction with phenotype adjusted for the fixed effects and random tank effect used as TBV. 
d ForwardP_BV = Forward prediction with [G]EBV predicted using full phenotypic data used as TBV. 
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for all the traits except Weight3. In both PBLUP and ssGBLUP models the 
dispersion (b1) in different traits was close to 1.0 except lower Matur-
itymale trait. 

CrossV_BV method showed higher R2 and lower bias for ssGBLUP 
model in all the traits, suggesting better predictive ability of the model 
(Table 4). When compared to PBLUP model, lower dispersion was 
observed in ssGBLUP model for Weight3, Maturityfemale, and Matur-
itymale traits, but similar dispersion in the other traits. 

ForwardP_Y* method showed 0.04 units higher validation accuracy 

for ssGBLUP, compared to PBLUP, for Sea weight2, Maturityfemale, and 
Maturitymale traits (Table 4). For Weight2, Weight3, and Sea matur-
itymale, accuracy was on 0.04, 0.08, and 0.03 higher in PBLUP model. 
Underdispersion was observed in both PBLUP and ssGBLUP models for 
Maturitymale, similar to what was observed in CrossV _Y* method. In 
contrast, Maturityfemale trait showed noticeable overdispersion in 
ssGBLUP. In ForwardP_BV, ssGBLUP showed better prediction abilities in 
all the traits (Table 4). 

Fig. 1. Comparison of reliability obtained using pedigree-based (PBLUP) and single-step genomic (ssGBLUP) models for body weight traits of genotyped and non- 
genotyped animals at nucleus. 

A.A. Kudinov et al.                                                                                                                                                                                                                             



Aquaculture 585 (2024) 740677

6

3.2. Result from reverse reliability estimation 

The comparison of reliability of individual fish obtained through 
PBLUP and ssGBLUP for the body weight and maturity traits are pre-
sented in Figs. 1 and 2. Average reliability of prediction in genotyped 
individuals at the nucleus increased by 0.23, 0.23, 0.31, and 0.27 units 
for Weight2, Weight3, Maturitymale, and Maturityfemale traits, corre-
spondingly. Average reliability of prediction for the sea recorded traits 
in the freshwater reared fish increased from 0.40 to 0.68 and from 0.40 
to 0.73 in Sea weight2 and Sea maturitymale traits. 

In Figs. 1 and 2, the fish were also divided into subgroups based on 
the presence or absence of own phenotypic data. For ungenotyped in-
dividuals at the nucleus, reliability of prediction was improved on 
average by only 0.03 units. Segregation of animals in ungenotyped part 
was explained by presence of genotyped sibs with and without own 
records. 

Fig. 2. Comparison of reliability obtained using pedigree-based (PBLUP) and single-step genomic (ssGBLUP) models for maturity traits of genotyped and non- 
genotyped animals at nucleus. 
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4. Discussion 

4.1. Single-step genomic BLUP 

In the current study, single-step genomic evaluation (ssGBLUP) 
provided in general a higher population prediction accuracy and less 
biased results than the traditional pedigree-based PBLUP model. This 
implies that the marker information had a positive influence on the 
predictive ability of breeding values of body weight and maturity age in 
rainbow trout. When compared to pedigree based BLUP, single-step 
genomic evaluation showed moderate, little or no improvement in the 
accuracies in the phenotypic validation with CrossV _Y* and For-
wardP_Y*, while the accuracies based on LR approach and reversed re-
liabilities showed much higher increases when single-step evaluation 
was applied. Single-step has been shown to be a powerful tool for GEBV 
prediction in agriculture species (Christensen et al., 2012; Legarra et al., 
2014; Mäntysaari et al., 2020) and similar evidence is currently accu-
mulation in aquaculture species (present study; Garcia et al., 2018, 
2023). 

Improvement was especially considered for sea recorded traits where 
phenotypes are not available for the breeding candidates in the nucleus. 
In freshwater fish, the average individual reliability of GEBV was 0.28 
and 0.33 units higher than for EBV of Sea maturitymale and Sea weight2 
traits. In ssGBLUP, breeding candidates reared in the nucleus benefit 
considerably from their own and their sea-reared sib’s genotype infor-
mation. Moreover, it should be noted that the accuracy in which the 
freshwater traits aid in the prediction of sea water traits, and vice versa, 
is impacted by the degree of genotype-by-environment interaction 
(GxE). In our data, the genetic correlation between sea and freshwater 
environment is 0.66 for body weight and 0.70 for male maturity (Ap-
pendix 1b). This moderate correlation implies significant GxE but 
simultaneously increases the accuracy of GEBVs of sea water traits 
estimated for the breeding candidates in the nucleus. On individual 
level, the prediction accuracy computed using reverse reliability 
approach was improved by at least 0.23 units for the freshwater traits. 
This is an important observation because this occurs even though these 
traits are well phenotyped on the freshwater breeding candidates at the 
nucleus. Prediction power was slightly improved also for non-genotyped 
fish. 

In the Finnish breeding programme, full-sib families are held sepa-
rated in family tanks until the fish are big enough for tagging. The 
maintenance of sire-dam-offspring pedigree for large number of fish is 
hence easy without any genotyping, but simultaneously genotyping and 
genomic selection can be integrated into this scheme. For instance, all 
families are routinely tested outside the freshwater nucleus for slaughter 
traits (Kause et al., 2007) and performance at commercial sea farms 
(Kause et al., 2003; current study), and can be recorded for disease 
resistance (Fraslin et al., 2022). These traits are likely to benefit the most 
from genomic evaluation (Houston et al., 2020; García-Ballesteros et al., 
2022). The current study showed that genotyping of the proportion of 
fish in the programme increases the selection accuracy even for body 
weight and maturity status, i.e. traits that are already extensively phe-
notyped on both breeding candidates and their sibs reared outside the 
nucleus. Consequently, single-step genomic evaluation fits to such a 
breeding scheme well, and more added value is expected when applied 
to traits that cannot be recorded from breeding candidates. 

Construction of G matrix can be performed using allele frequencies 
derived from the data (observed), estimated for a base population, or 
fixed to 0.5. In our study, G matrix was constructed with the assumption 
that average allele frequency was equal to 0.5. The use of base and 
observed allele frequencies was not suitable for the current population 
as the main batch of genotyped fish in our study represent only genetics 
of the recent years and are progeny of the same parental year class. 
Similarly, Garcia et al. (2023) did not use observed allele frequencies in 
the genomic evaluation of rainbow trout due to the high relatedness of 
the genotyped fish. The authors used base population allele frequencies 

but reported that as a potential source of bias in the validation studies. 

4.2. Validation study 

Reliable and convenient validation approach is important compo-
nent of accessing prediction power of a breeding value evaluation. 
Development of validation methods for ssGBLUP has not received much 
attention in commercial aquaculture breeding programmes. We 
compared four validation tests used to assess prediction power of PBLUP 
and ssGBLUP models. The first method was modification of the most 
used in aquaculture (Garcia et al., 2018; Al-Tobasei et al., 2021; Song 
et al., 2022; Fraslin et al., 2022), the 5-fold cross-validation with cor-
rected phenotype used as TBV (CrossV_Y*). The modification was on 
masking phenotypes not only in the test animals but also in their full 
sibs. This helped to avoid overtraining of the model through the com-
mon random family tank effect and the relationship matrix. The closer 
the relationship between the fish in the training and test groups, the 
higher the accuracy in a validation study (Fraslin et al., 2022). We 
masked the sibs of the individuals in the reference group to ensure that 
the change in the accuracy is especially due to the genomic information. 

The second approach was done by replacing the corrected phenotype 
in CrossV_Y* by [G]EBV computed from the full data (CrossV_BV). Linear 
regression of GEBVf on GEBVr was performed like presented by Legarra 
and Reverter (2018). In general, ssGBLUP model showed better pre-
diction ability then PBLUP model. However, surprisingly, CrossV_Y* 
prediction results for Weight3 trait were slightly better when using 
PBLUP. This may be explained by the low number of genotypes and 
records available for the trait. 

As an alternative to CrossV, two forward prediction approaches were 
tested (ForwardP_Y* and ForwardP_BV). Phenotypic data was masked 
from all fish born in 2019. It is important to note that in this approach, 
the year class 2018 (training set) and 2019 (test set) were created from 
the same parental year class, yet they do not share any individual sires or 
dams. In forward prediction, the fish in the test set were not directly 
influenced by full and half sib information of the training set as the 
whole year class was deleted. This should reduce, yet not totally remove, 
model overtraining. The observed accuracies in ForwardP_BV were in the 
range of 0.39 to 0.69 in PBLUP and 0.47 to 0.74 in ssGBLUP with 
average increase of 0.12. A similar approach was used by Fraslin et al. 
(2022) but in their study the year classes of Atlantic salmon were not 
closely related and hence the accuracies were close to zero. In our data, 
deletion of both year classes 2018 and 2019 was impossible as it would 
make reference population uninformative. 

For freshwater body weight traits, ~0.10 and 0.08 units improve-
ment in predictive ability of ssGBLUP was observed for the CrossV_BV 
and ForwardP_BV models, respectively. At the same time nearly no 
improvement was detected in CrossV_Y* and ForwardP_Y* methods. A 
similar pattern was observed for body weight in rainbow trout in the 
study by Garcia et al. (2023). Studies on residual carcass weight in 
channel catfish reported 0.07 units absolute prediction improvement for 
residual carcass weight using CrossV validation and Y* (Garcia et al., 
2018). 

It is a challenge to choose a proper validation model especially when 
genomic evaluation is being launched in a breeding programme. Both 
under- and overprediction of GEBVs are vitally important to know as 
wrong selection decisions will cause economical losses. Despite genomic 
prediction has been implemented already over a decade, the develop-
ment of validation tests is still a fundamental topic in both large and 
small populations of livestock (Interbull, 2023). Two main concerns are 
what parameter should be used as response variable in validation 
regression model, and which group of animals should be used as the test 
set. Phenotypic validation (Tsai et al., 2015) that is common in aqua-
culture studies may not be an optimal tool for complex multigeneration 
data sets because pre-corrected phenotypes may bias validation due to 
small contemporary groups (Legarra and Reverter, 2018) and due to 
unclear behavior of binary traits. Hence results of bias and dispersion are 
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difficult to interpret. Use of the LR method is more justified for a small 
and complicated populations because the comparison is based on [G] 
EBV solutions from both full and reduced models. The method can be 
applied for binary traits as regression performed on two [G]EBV solu-
tions (Leite et al., 2021). The comparison of [G]EBV from two sources is 
an elegant approach with understandable bias and dispersion values. 
Current data set should not suffer from selection bias as two-step 
genomic prediction not in the routine use and genotyping was per-
formed mostly randomly. The LR method does not require ‘true’ 
breeding values to be known. However, it is good to remember that LR 
method can show high accuracy not because prediction power of GEBVr 
has increased but because both GEBVf and GEBVr were initially biased 
and alike. For example, in case where erroneous model taking too little 
advantage of own phenotype (due to a low heritability), both GEBVf and 
GEBVr are in the similar distance from true value. 

Originally LR validation approach was presented as statistics 
describing the change in genomic predictions from old to newly devel-
oped evaluations. In this sense, the forward prediction (ForwardP) type 
of validation is a proper method to mimic consecutive evaluations. It can 
be expected that in CrossV_BV scenario, the reduced model will be well 
trained due to existing family links, and thus better prediction will be 
observed. However, we were not able to detect a large difference be-
tween the CrossV_BV and ForwardP_BV scenarios. This may be explained 
by the close relation between the training and the testing set, as gen-
erations 2018 and 2019 originate from the same parental generation 
born in 2014. Presumably there is no strait answer which method is the 
best for the model validation and both can be equally used to understand 
properties of the model. 

5. Conclusions 

Genomic prediction has been effectively integrated into the Finnish 
rainbow trout breeding programme. Based on our results, the ssGBLUP 
model is expected to have superior prediction accuracy compared to 
PBLUP. The validation of the ssGBLUP model through linear regression 
of GEBVs, computed from both the full and reduced data, is an appealing 
approach for complex data sets like ours. 
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Fraslin, C., Yáñez, J.M., Robledo, D., Houston, R.D., 2022b. The impact of genetic 
relationship between training and validation populations on genomic prediction 
accuracy in Atlantic salmon. Aquac. Rep. 23, 101033 https://doi.org/10.1101/ 
2021.09.14.460263. 

Garcia, A.L.S., Bosworth, B., Waldbieser, G., Misztal, I., Tsuruta, S., Lourenco, D.A.L., 
2018. Development of genomic predictions for harvest and carcass weight in channel 
catfish. Genet. Sel. Evol. 50, 66. https://doi.org/10.1186/s12711-018-0435-5. 

Garcia, A.L.S., Tsuruta, S., Gao, G., Palti, Y., Lourenco, D.A.L., Leeds, T., 2023. Genomic 
selection models substantially improve the accuracy of genetic merit predictions for 
fillet yield and body weight in rainbow trout using a multi-trait model and multi- 
generation progeny testing. Genet. Sel. Evol. 55, 11. https://doi.org/10.1186/ 
s12711-023-00782-6. 

García-Ballesteros, S., Fernández, J., Kause, A., Villanueva, B., 2022. Predicted genetic 
gain for carcass yield in rainbow trout from indirect and genomic selection. 
Aquaculture 554, 738119. https://doi.org/10.1016/j.aquaculture.2022.738119. 

Hickey, J.M., Kinghorn, B.P., Tier, B., van der Werf, J.H., Cleveland, M.A., 2012. 
A phasing and imputation method for pedigreed populations that results in a single- 
stage genomic evaluation. Genet. Sel. Evol. 44, 11. https://doi.org/10.1186/1297- 
9686-44-9. 

Houston, R.D., Bean, T.P., Macqueen, D.J., Gundappa, M.K., Jin, Y.H., Jenkins, T.L., 
Selly, S.L.C., Martin, S.A.M., Stevens, J.R., Santos, E.M., Davie, A., Robledo, D., 
2020. Harnessing genomics to fast-track genetic improvement in aquaculture. Nat. 
Rev. Genet. 21, 389–409. https://doi.org/10.1038/s41576-020-0227-y. 

Interbull, 2023. https://interbull.org/static/web/Session_II.pdf. 
Jairath, L., Dekkers, J.C., Schaeffer, L.R., Liu, Z., Burnside, E.B., Kolstad, B., 1998. 

Genetic evaluation for herd life in Canada. J. Dairy Sci. 81, 550–562. https://doi. 
org/10.3168/jds.S0022-0302(98)75607-3. 
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