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Abstract
Data acquisition for sustainable forest management has focused on obtaining high quality information to estimate biomass. 
Improving the quality of non-timber sustainability indicators, like deadwood volume, has been a minor interest. To explore 
how inventory approaches could be improved, we applied a Global Uncertainty and Sensitivity Analysis (GUSA) to evaluate 
which factors propagate more errors in deadwood modelling and how better data collection can minimize them. The impact of 
uncertainty on deadwood characteristics (diameter, collapse ratio, decay class, tree species, and position) was explored under 
stakeholders´ preferences, management actions, and climate change scenarios. GUSA showed that removing the prediction 
error in deadwood tree species and diameter would alter the most the total uncertainty in deadwood volume. We found that 
assessment of high deadwood volume was less uncertain for the scenarios where small deadwood items were left decaying 
on the forest floor (BAU) and for high-end climate change scenario (RCP8.5) which resulted in lower deadwood accumula-
tion in forest stands and therefore also in lower likelihood of erroneous estimates. Reduced uncertainty in tree species and 
diameter class will elevate the certainty of deadwood volume to a similar level achieved in living biomass estimation. Our 
uncertainty and sensitivity analysis was successful in ranking factors propagating errors in estimate of deadwood and identi-
fied a strategy to minimize uncertainty in predicting deadwood characteristics. The estimation of uncertainty in deadwood 
levels under the scenarios developed in our study can help decision makers to evaluate risk of decreasing deadwood value 
for biodiversity conservation and climate change mitigation.

Keywords Biodiversity · Boreal · Deadwood · Finland · Global Uncertainty and Sensitivity Analysis · Laser-scanning · 
Prediction errors

1 Introduction

In Fennoscandia, current forest management prioritizes sus-
tainable provisioning of timber, bioenergy, and bioproducts. 
This is reflected in data acquisition for forest management: 
research has focused on improving the precision and reduc-
ing the uncertainty in structural forest indicators, like tree 
density, tree height, tree growth, and forest living biomass 
resulting from prediction errors from airborne laser scanning 
(Maltamo et al. 2021). In this context, we identify uncer-
tainty as the knowledge about the environmental indicator, 
referring to both its accuracy and variability. The uncertainty 
in the future projections of these forest indicators is related 
both to the uncertainty in model structure and parameteriza-
tion and to the uncertainty in the input data inferred via laser 
scanning. Model uncertainty is related with the propagation 
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of the error in the allometric equations chosen to estimate 
tree biomass. Uncertainty in the input data is small, as inven-
tory errors involved in biomass prediction derive from small 
inventory errors in tree basal area and tree height (for both, 
% Standard Error (SE) <  = 20% in laser scanning according 
to Næsset 2004).

Instead, forest management has focused on providing a 
sustainable supply of timber and has given less priority to 
sustainably providing other values (Eyvindson et al. 2018), 
such as deadwood. Deadwood supplies carbon cycling, car-
bon storage, enhanced soil fertility, the maintenance of soil 
moisture, habitat creation and biodiversity conservation 
(Lassauce et al. 2011; Campbell et al. 2019). This is reflected 
in the few resources dedicated to monitoring the non-timber 
indicators of Sustainable Forest Management (SFM), such 
as the deadwood volume accumulated in the forest stand via 
tree death and decomposition (Woodall et al. 2009; Chirici 
et al. 2012). Consequently, the estimates of total deadwood 
volume from laser scanning are affected by large inventory 
errors (Root Mean-Square Error ranging between 128 and 
203% in commercial forest stands, Maltamo et al. 2014). 
These uncertainties are far larger than those related with 
biomass estimation.

Quantifying the accumulation of deadwood in the forest 
depends on three key main drivers: the rate of tree mortality 
at the stand, the decomposition rate, and the frequency of 
deadwood removal through human intervention (Stokland 
et al. 2012). The uncertainties in deadwood volume esti-
mates are impacted by assumptions of the chosen models 
for tree mortality and decomposition (Harmon et al. 2020). 
Decomposition occurs in stages, providing specific resources 
for the life-cycle of different species living in deadwood, 
and is impacted by the collapse class, decay class, and tree 
species of the deadwood (Kouki and Tikkanen 2007; Tik-
kanen et al. 2006, 2007). Deadwood of different tree species 
decays at different rates, with the fastest decay occurring 
for deciduous trees (birch and aspen), an intermediate rate 
for spruce, and the slowest decay for pine (Shorohova and 
Kapitsa 2014). This different decay rate is the reason for the 
capacity of different tree species to support a different num-
ber of species thriving in deadwood included in the Finnish 
Red List of threatened species (Tikkanen et al. 2007; https:// 
punai nenki rja. laji. fi/ en).

In the Finnish forests, coniferous deadwood hosts a higher 
number of red-listed species compared with deciduous dead-
wood, with Norway spruce deadwood hosting more species 
than Scots pine (Tikkanen et al. 2006). Decay classes are not 
equally important for hosting red-listed deadwood-depend-
ent species. While deciduous trees host similar number of 
species in recent deadwood and in advanced decay stages, 
coniferous trees host far more species in advanced decay 
than in recent deadwood. Among the coniferous trees, Scots 
pine hosts the same number of species in the early and 

advanced decay stages, while Norway spruce hosts far more 
species in deadwood in advanced decay (Tikkanen et al. 
2006). Finally, a substantial proportion of deadwood species 
are specialized to live in large-diameter trunks (> 30 cm) 
(Tikkanen et al. 2006). In the heavily managed Fennoscan-
dian boreal forests these types of deadwood fractions (the 
deadwood of deciduous trees in general and deadwood of 
coniferous trees in advanced decay classes) are often found 
in very small quantities, making it rare or impossible to find 
species depending on these resources (Gibb et al. 2005).

Quantifying uncertainty in deadwood volume is a 
research gap that must be addressed, given the current pres-
sure of the society to promote multiple values from for-
ests (see, e.g., Mönkkönen et al. 2014; Triviño et al. 2017; 
Pohjanmies et al. 2017, 2021). Assessing the uncertainties 
is of utmost importance, as assessments of environmental 
indicators like deadwood volume are often conducted report-
ing only the indicator status against target values without 
ascertaining any confidence interval as measure of uncer-
tainty (Carstensen and Lindegarth 2016). The assessment 
of uncertainty bounds for environmental indicators helps 
to verify the effectiveness of management actions target-
ing conservation values (c.f., McCarthy et al. 2012). Fail-
ing to implement them properly can have serious ecological 
consequences. For example, in Northern Europe 20–25% 
of the forest-dwelling species are dependent on deadwood 
habitats (Siitonen 2001) and the availability of a deadwood 
volume of at least 20  m3  ha−1 is certainly the most important 
requirement for the presence of threatened wood-inhabiting 
fungi in the Finnish forests (Junninen and Komonen 2011). 
Therefore, management actions releasing deadwood below 
this threshold may lead several species to extinction (Le 
Saout et al. 2013).

To address this concern, we use an uncertainty and sensi-
tivity analysis approach to evaluate which factors propagate 
more errors in the estimates of deadwood volume and how 
these errors can be minimized. According to Campbell et al. 
(2019), who studied the sources of uncertainty in current 
field-based deadwood estimates in the northeastern United 
States, the uncertainty in the estimate of total deadwood 
volume on the forest floor is mostly determined by the uncer-
tainties in five factors, related to the deadwood character-
istics. These factors are (1) the diameter of the deadwood 
items, which directly relates to their volume, (2) the dead-
wood item´s collapse, a reliable estimate of the proportion of 
the deadwood volume remaining during the decay process, 
(3) the decay class of each deadwood item, reflecting the 
stage of deadwood decomposition, (4) the tree species to 
which each deadwood item belongs to, reflecting wood den-
sity and tree characteristics and, (5) the position of the dead-
wood item, whether it is standing as a snag or lying as a log 
on the forest floor, which affects its diameter and the decay 
rate. Most countries that conduct deadwood inventories 

https://punainenkirja.laji.fi/en
https://punainenkirja.laji.fi/en
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measure deadwood according to the volume categorized by 
these five characteristics, whose assessment in sample tran-
sects or plots is error-prone (Rondeux and Sanchez 2010).

Through the quantification of the relative importance of 
the uncertainty, it is possible to improve the inferences of 
a SFM indicator like deadwood volume. This assessment 
identifies the elements of deadwood monitoring to prioritize 
so that the total uncertainty is minimized, and the inference 
errors are reduced. The Global Uncertainty and Sensitiv-
ity Analysis (GUSA) (Saltelli et al. 2004, 2008) can be 
used to estimate how the uncertainties related to deadwood 
characteristics contribute to the overall uncertainty of the 
total deadwood (a similar approach was applied by Camp-
bell et al. 2019). GUSA assesses confidence levels around 
the estimate of an environmental indicator and evaluates 
which of the errors related to the indicators´ factors has a 
higher impact on the overall uncertainty of the indicator. By 
indicating where the monitoring design can be improved, 
GUSA allows decision makers to better allocate monitoring 
resources to reduce errors in the estimate of the indicators 
(Campbell et al. 2019).

The aim of this study is to evaluate the potential impact 
of the uncertainties in the five deadwood characteristics on 
the overall uncertainty in the total deadwood volume pre-
dicted via laser scanning for a production forest landscape 
in Finland.

In addition to the uncertainty related to the deadwood 
characteristics, we hypothesize that the uncertainty regard-
ing the total estimated deadwood volume depends upon three 
factors:

(a) The forest values preferred by the forest owner, i.e., 
nature conservation vs. timber production, (Koskela 
and Karppinen 2020; Juutinen et al. 2021). Biodiver-
sity-friendly forest owners may decide to leave all the 
wood to decay naturally on the forest floor after clear-
cut, while forest owners primarily interested in timber 
production may also collect a considerable proportion 
of trees felled by natural mortality (i.e., collection 
of ~ 75% naturally felled trees to be sold or used for 
bioenergy production), removing this resource from the 
forest.

(b) The management actions applied on the forest, which 
alter the forest structure and consequently the initial 
levels of deadwood in the forest (McCarthy and Bailey 
1994; Riffell et al. 2011). In Fennoscandia, stands man-
aged for timber production are mostly governed with 
rotation forestry (Business As Usual, BAU), that uses 
regeneration harvest methods such as thinning from 
below and clearcutting producing even-aged stands 
(e.g., in Finland: Äijälä et al. 2014). Stands managed 
with Continuous Cover Forestry (CCF) are treated with 
selection harvest of single large trees (thinning from 

above) and natural regeneration instead of planting or 
seeding (Pukkala et al. 2013). Finally, in stands left 
growing unmanaged as Set-Asides (SA), timber is not 
extracted but totally left to grow fully stocked, allowing 
natural mortality to be high due to self-thinning.

(c) The impact of climate change on the forest, which 
affects how much deadwood is accumulated (Heinonen 
et al. 2017; Blattert et al. 2020). Climate change has 
a direct impact on biomass accumulation in trees and 
soil (Creutzburg et al. 2017) and conversely on how 
much deadwood is accumulated in the forest (Blattert 
et al. 2020) and how fast it decays (Russell et al. 2014; 
Mazziotta et al. 2016). The uncertainty associated with 
alternative three IPCC radiative forcing scenarios (i.e., 
Representative Concentration Pathways (RCP) 2.6, 4.5 
and 8.5, van Vuuren et al. 2011) is likely to induce 
a large variability on the deadwood volume, on the 
capacity of different tree species to thrive in the stands, 
and on the time window of persistence of certain dead-
wood decay classes (Blattert et al. 2020).

To account for these three factors, we explored separately 
the impact of uncertainty in the five deadwood character-
istics on the overall uncertainty in total deadwood volume 
under alternative stakeholders´ choice of deadwood extrac-
tion, choice of management actions, and climate change 
scenarios.

2  Materials and methods

2.1  Study area

The study area is in the Central Finland region and is primar-
ily located in the southern boreal vegetation zone (Fig. 1). It 
covers 2240 ha and consists of 1475 forest stands of diverse 
age, productivity, and tree species composition. Among 
these stands, we have randomly selected 158 stands for sim-
ulation (i.e., 10.7% of the total). The area is a typical Finnish 
production forest landscape, consisting of a mosaic of stands 
with the current stand age ranging between 0 and 133 years 
and an average of 48 years (Table 1). The most common tree 
species are Scots pine (Pinus sylvestris, the dominant spe-
cies in 50.1% of the stands), Norway spruce (Picea abies, 
34.9%), silver birch (Betula pendula, 2.2%), downy birch (B. 
pubescens, 1.1%) and other deciduous trees (8.1%). While 
we have no specific information on the past management of 
the area, the relatively young age-class distribution of the 
stands suggests that the area has been managed extensively 
for production forestry, following an even-aged management 
that was the legally required management system until 2014 
(Äijälä et al. 2014). Forests in the study area are privately 
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owned and managed using a diverse set of silvicultural treat-
ments (Kuuluvainen et al. 1996).

2.2  Inventory data

The stand-level inventory data derived from airborne laser-
scanning for our study area was extracted from openly 
available data managed by the Finnish Forest Centre (FFC 
2021) and used as input data in the forest growth simulator. 
The data used in this study are owned and archived by the 

Finnish Forest Centre (www. metsa keskus. fi). The data are 
available from the authors upon reasonable request and with 
permission of the Finnish Forest Centre.

Key stand level variables used in our simulations are 
reported in Table 1. Initial deadwood characteristics for 
Central Finland were obtained from measurements from 
experimental plots from the Finnish National Forest Inven-
tory (NFI) for the years 1980–2015 (Korhonen et al. 2020). 
We utilized NFI data of deadwood to simulate them wall-
to-wall, mimicking laser scanning data suitable for forest 

Fig. 1  Locations of the study area in in Central Finland and Finland in northern Europe

Table 1  Summary statistics for key stand level variables used in the simulations (N = 158 stands)

Stand area(ha) Stand 
age 
(years)

Basal 
area  (m2/
ha)

Stem count 
(n/ha)

Mean 
diameter 
(cm)

Mean height 
(m)

Volume  (m3/
ha)

Sawlog 
volume 
 (m3/ha)

Pulpwood 
volume  (m3/
ha)

Minimum 
value

0.03 1 0.0 5 0.0 0.07 0.0 0.0 0.0

25th percentile 0.53 23 1.2 103 9.3 8.42 8.4 0.0 2.8
Median 1.00 47 3.7 315 18.5 16.96 28.5 6.2 15.1
Mean 1.47 48 6.6 837 17.2 14.87 58.2 30.0 26.2
75th percentile 1.77 69 10.2 775 24.3 21.13 84.6 30.9 41.2
Maximum 

value
15.69 133 39.4 10,733 39.1 28.64 497.8 439.9 177.6

http://www.metsakeskus.fi
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planning. Using NFI data for deadwood initialization was 
necessary, as Forestry Centre currently does not produce 
deadwood data. Deadwood initialization parameters are 
summarized by tree species, diameter, decay class, position 
and years after death (Table 2).

2.3  Simulations of forest growth 
and decomposition

The simulation of the future states of the forest was con-
ducted using SIMO, an open-source forest simulation and 
optimization software (Rasinmäki et al. 2009). Using forest 
growth models, SIMO produces projections of future stand 

development based on the stand’s initial characteristics and 
the forestry operations to be applied to the stand. The for-
est simulator creates a wide range of management actions 
using a decision tree following the Tapio guidelines (Äijälä 
et al. 2014). The implementation of alternative manage-
ment actions in the simulator is described in more detail by 
Eyvindson et al. (2018).

The formation of deadwood and its decomposition from 
initial deadwood values is predicted with the empirical sta-
tistical model developed for Scots pine, Norway spruce, and 
silver birch by Mäkinen et al. (2006). The models estimate 
the remaining fraction of deadwood volume based on the 
years´ after death with a Gompertz function. The mortality 

Table 2  Summary statistics of the deadwood parameters used to initialize the simulations for NFI stands’ estimates for Central Finland 
(N = 1475)

Means and uncertainties (i.e., standard deviations, SD) are estimated on the basis of deadwood inventory errors for each parameter. Density 
ad, volume ad, and biomass ad are the density, volume, and biomass estimated immediately after tree death (i.e., ad). The density, volumes and 
biomass after tree death represent means of the values taken only at year 0 after death, while other variables represent means across all the years 
after death

Category Stem number Volume  (m3) Volume ad  (m3) Density (kg/m3) Density 
ad (kg/
m3)

Biomass (kg) Biomass ad (kg)

Species Pine 2.21 0.033 0.013 92 51 17.8 5.6
Spruce 0.48 0.038 0.010 75 40 22.8 4.4
Birch 0.29 0.007 0.002 53 24 5.6 1.2

Diameter 2.5 1.98 0.000 0.000 39 20 0.1 0.0
7.5 4.21 0.001 0.000 71 36 0.7 0.2
12.5 1.81 0.011 0.002 102 51 7.1 0.7
17.5 0.70 0.029 0.004 101 53 17.4 1.9
22.5 0.19 0.052 0.010 105 55 32.3 5.2
27.5 0.04 0.030 0.010 106 55 17.8 4.7
32.5 0.01 0.035 0.014 85 44 20.1 5.7
37.5 0.01 0.037 0.017 31 17 21.9 7.3
42.5 0.00 0.038 0.019 21 12 21.1 7.9

Decay class 1 4.36 0.087 0.084 417 392 50.3 44.9
3 7.38 0.081 0.058 393 245 43.9 18.8
4 8.18 0.068 0.035 422 153 38.1 8.1
5 10.86 0.070 0.023 409 87 40.0 3.9

Position Log 1.81 0.047 0.012 125 61 27.7 5.1
Snag 0.18 0.005 0.005 22 16 3.1 2.4

Years after death 5 1.60 0.034 0.034 175 170 20.4 19.8
15 1.79 0.027 0.024 162 108 15.9 10.5
25 1.59 0.034 0.014 141 57 21.9 4.4
35 2.12 0.017 0.008 83 31 9.4 1.9
45 2.66 0.017 0.005 81 16 9.2 0.8
55 0.19 0.125 0.000 80 1 73.5 0.0
65 0.00 0.006 0.000 12 0 3.7 0.0
75 0.00 0.000 0.000 0 0 0.0 0.0
85 0.00 0.000 0.000 0 0 0.0 0.0
95 0.00 0.000 0.000 0 0 0.0 0.0

Mean ± SD 0.026 ± 0.005 0.009 ± 0.002 73 ± 15 38 ± 8 15.4 ± 3.2 3.7 ± 0.8
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of single trees in SIMO is determined by a probability model 
taking into account tree competition and aging, and the tree 
to die is selected randomly in each simulation (Hynynen 
et al. 2002).

The 158 stands with the initial deadwood characteris-
tics were simulated for 100 years into the future to account 
for climate change effects (see the paragraph “uncertainty 
scenarios” for details). The simulator produced predictions 
of stand development at 5-year time steps. To evaluate the 
highest impact of climate change on forest dynamics we 
compared the last year of each scenario (Kellomäki et al. 
2008).

2.4  Management actions

The initial deadwood values used in the simulation were 
based on the regional level deadwood characteristics of the 
Finnish NFI (Table 2). These values were used in a spin-up 
process to construct initial deadwood volumes based on a 
variation of management regimes (Table 3). We assume that 
historical management alternatives, as well as natural mor-
tality, are represented in the prevailing deadwood volumes at 
regional level. Specifically, all the 158 stands were simulated 
for each combination of management regime (either BAU, 
CCF, or SA) and deadwood removal levels from the forest 
floor (either 0%, 40% or 75%) for 30 years into the future 
at 5-year time steps. The average volume of deadwood was 
estimated by the end of the simulation horizon. A conceptual 
model explaining the flow of the deadwood initialization is 
represented in Fig. 2 (see also Mazziotta et al. 2023).

2.5  Estimate of total volume from deadwood 
characteristics

We estimated the total volume of deadwood per hectare ( Vj 
in  m3  ha−1) in each forest stand j of the total simulated stands 
(J = 158) at the end of the planning horizon. This is calcu-
lated as the sum of the combinations of the volumes for 9 
discrete diameter classes as standard output from the simu-
lator (set D, expressed in cm, with mean values from 2 to 
42 cm with 5 cm intervals), 5 discrete collapse ratio classes 
(set C, calculated as ratio between volume after death and 
volume at each time step, split according to the following 
intervals: 0.01–0.2, 0.21–0.4, 0.41–0.6, 0.61–0.8, 0.81–1), 
3 tree species (set S, i.e., Norway Spruce, Scots pine, and 
deciduous trees), 4 deadwood decay classes based on time 
since tree death (set L, i.e., recently dead tree = 1, medium 
decayed tree = 3, very decayed tree = 4, almost decomposed 
tree = 5, Stokland et  al. 2012; decay class 2 (= weakly 
decayed tree) is not reported because it lasts only for three 
years, that is for less time than the minimum 5 year time step 
of our forest simulator), and 2 positions on the forest floor 
(set P, i.e., snag, upright, or log, lying on the forest floor):

The five deadwood characteristics affecting total volume 
are simulated with the SIMO simulator (Rasinmäki et al. 
2009) on the basis of the Finnish NFI-derived distributions. 
Therefore, uncertainty affecting the predictors of total 

(1)Vj =

∑

d∈D

∑

c∈C

∑

s∈S

∑

l∈L

∑

p∈P

Vj,d,c,s,l,p∀j ∈ J

Table 3  Predicted means and 
95% confidence intervals (CI) 
of deadwood volume for each 
deadwood characteristics 
summarized for all the scenarios 
(All) and for each stakeholders 
preference (DWREM0% and 
DWREM75%), management 
action (BAU, CCF, and SA), 
and climate change scenario 
(RCP 2.6, RCP 4.5, RCP 8.5) 
(N = 158)

DW Characteristic Stakeholders Management Climate

Scenario Mean 95%CI Scenario Mean 95%CI Scenario Mean 95%CI

Decay DWREM0 14.9 0.076 BAU 6.2 0.054 RCP26 9.4 0.101
Decay DWREM75 4.0 0.020 CCF 8.4 0.082 RCP45 9.2 0.099
Decay SA 13.4 0.122 RCP85 9.8 0.105
Position DWREM0 16.2 0.189 BAU 6.3 0.108 RCP26 10.2 0.218
Position DWREM75 4.2 0.046 CCF 8.7 0.161 RCP45 9.8 0.204
Position SA 15.1 0.274 RCP85 10.5 0.230
Collapse DWREM0 14.9 0.063 BAU 6.2 0.044 RCP26 9.4 0.084
Collapse DWREM75 4.1 0.017 CCF 8.5 0.068 RCP45 9.3 0.082
Collapse SA 13.5 0.101 RCP85 9.8 0.087
Species DWREM0 23.5 0.210 BAU 9.5 0.125 RCP26 20.6 0.238
Species DWREM75 6.1 0.053 CCF 12.6 0.188 RCP45 15.2 0.249
Species SA 21.7 0.302 RCP85 14.6 0.234
Diameter DWREM0 14.1 0.037 BAU 8.3 0.027 RCP26 14.6 0.241
Diameter DWREM75 4.7 0.012 CCF 8.2 0.044 RCP45 9.2 0.045
Diameter SA 11.6 0.058 RCP85 9.9 0.047
All DWREM0 19.5 0.022 BAU 11.8 0.016 RCP26 12.8 0.029
All DWREM75 6.3 0.007 CCF 10.9 0.025 RCP45 12.8 0.028
All SA 15.6 0.036 RCP85 13.1 0.028
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deadwood volume derives both from inventory errors and 
from assumptions in the models embedded in SIMO. Our 
metric of uncertainty was the 95% confidence interval (95% 
CI), calculated as the difference between the 2.5th and the 
97.5th percentiles of the distribution of deadwood values.

To evaluate the independent impact of each source of 
uncertainty on the total deadwood uncertainty, the uncer-
tainty in the total volume was calculated as the sum of the 
fractions of deadwood volumes for each deadwood charac-
teristic. For example, to evaluate the impact of the volumes 
of each tree species  (Vs) on the uncertainty in the total vol-
ume ( Vj ), this was calculated for each stand in set J as:

To evaluate the impact of excluding one source of uncer-
tainty in a certain deadwood fraction from the overall uncer-
tainty in deadwood volume, the uncertainty in the total 
volume was calculated, via a leave‐one‐out procedure, as 
the sum of the volumes of deadwood items with all char-
acteristics but one. For example, to evaluate the impact of 
the exclusion from the variability in the total volume of the 
variability derived only from measuring the volumes by 
diameter class  (Vd), total volume was calculated as:

2.6  Uncertainty scenarios

Volumes for the deadwood characteristics of the 158 stands 
were simulated separately under 18 uncertainty scenarios, 
with a potential impact on the assessment of deadwood 

(2)Vj =

∑

s∈S

Vj,s∀j ∈ J

(3)Vj =

∑

c∈C

∑

s∈S

∑

l∈L

∑

p∈P

Vj,c,s,l,p∀j ∈ J.

volume in the forest. The uncertainty scenarios were a 
combination of three initial deadwood levels delivered by 
three management actions (BAU,CCF, and SA), two man-
agement decisions from the forest owner (75% or 0% dead-
wood removal, abbreviated as DWREM), and three climate 
change scenarios (RCP2.6, RCP4.5, and RCP8.5), as speci-
fied below:

(1) INITIAL DEADWOOD VOLUME: The initial quantity 
of deadwood depends on the history of the management 
applied in the forest. To simulate the potential dead-
wood volume assuming different management actions 
we applied two alternative growth models: both BAU 
and SA apply the models developed by Hynynen et al. 
(2002), but BAU assumes even-aged forestry and SA 
assumes ingrowth, while CCF, assuming uneven-aged 
forestry, applies the models developed by Pukkala 
et al. (2013) and Lappi and Pukkala (2020). These two 
growth models affect differently the stand develop-
ment, and consequently have a different impact on the 
quantity of deadwood. In BAU, slash from harvesting 
is left in the stand, so thinning and clear-felling will 
increase deadwood volume of small diameter. In CCF 
and SA deadwood accumulates throughout the forest 
succession, but as CCF focuses on removing the largest 
logs when harvesting, this reduces the fraction of large 
diameter deadwood that enters the litter for decomposi-
tion. Finally, in BAU competition is reduced through 
thinning, inducing faster tree growth of the remaining 
trees respect to SA and CCF, where ingrowth reduces 
the diameter growth. In this way, BAU is also likely to 
reduce the retention time of each decay class of dead-
wood respect to CCF and SA. The choice of growth 
model has only a slight impact on deadwood production 

Fig. 2  Flowchart describing the procedure of deadwood initialization
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(Pesonen 2011) and is expected to contribute to the 
overall uncertainty in total deadwood volume to the 
same extent.

(2) VALUES OF THE FOREST OWNER: The forest 
owners may have different management goals oriented 
either towards economic or ecological values (Koskela 
and Karppinen 2021), which can directly affect the 
volume of deadwood available for forest biodiversity 
(Deuffic and Lyser 2012). Therefore, we simulated two 
regimes of deadwood removal: 0% for biodiversity-
friendly forest management, and 75%, for intensive 
forestry.

(3) CLIMATE CHANGE: The three RCPs (i.e., 2.6, 4.5 
and 8.5) chosen to simulate deadwood dynamics rep-
resent low, intermediate, and high warming respec-
tively and differ from each other by emission levels. In 
Finland, the annual mean temperature is projected to 
increase by 1.9, 3.3 and 5.6 °C by the 2080s under the 
RCP2.6, RCP4.5 and RCP8.5 scenarios, respectively, 
compared to the period 1981–2010 (Venäläinen et al. 
2020). The mean annual precipitation is expected to 
increase by 6%, 11% and 18% under these RCPs by the 
2080s. The impact of climate variables on forest growth 
dynamics in SIMO was included based on climate-sen-
sitive statistical growth and yield models (Matala et al. 
2005, 2006). The three RCPs were simulated for the 
General Circulation Model CanESM2 (von Salzen et al. 
2013).

2.7  Global Uncertainty and Sensitivity Analysis 
(GUSA)

We evaluated the relative impact of the uncertainty in the 
deadwood characteristics on the total deadwood volume 
with a GUSA. GUSA assesses (1) the propagation of uncer-
tainty from input variables on model outputs and (2) the 
relative importance of uncertainties in model input variables 
and their interactions on the uncertainty in model output 
variables (Saltelli et al. 2004). A variance-based sensitiv-
ity analysis is the study of how uncertainty in the output 
of a model (numerical or otherwise) can be apportioned to 
different sources of uncertainty in the model input factors 
(Saltelli et al. 2010). GUSA evaluates the entire parameter 
space, ranking simultaneously the relative impacts of all the 
uncertainty sources at once.

We performed the GUSA according to the variance-
based Sobol method (Sobol 1993, 2001) and implemented 
it with the sensobol R package (Puy et al. 2022). The Sobol 
method provides a quantitative measure of the output vari-
ance with respect to the variance associated with the input 
parameters. These sensitivity indices are described in terms 
of direct (first order), and interaction (second and higher 
order) effects of the input parameters (Saltelli et al. 2004). 

The first-order sensitivity indices (S) are calculated as the 
ratio of the variance associated with the input variable to 
the total variance of the model output. The total-effect sen-
sitivity (T) is calculated as the ratio of the total variance 
(first order plus all interactions) associated with the input 
variable to the total variance of the model output (details in 
Lagerwall et al. 2014).

To calculate the Sobol indices we first selected an integer 
N to represent the sample size of the forest stands. The sam-
ple size was generated using a Monte-Carlo approach look-
ing at the entire distribution of the factor’s values (Saltelli 
et al. 2010). Next, we generated a matrix of size (N, 2 K), 
the Sobol matrix, where K is the number of input parameters 
and N is the number of draws to be taken from the param-
eters’ probability distribution function. This matrix is split 
into two matrices A and B of size (N, K). We then defined 
matrices Di, Ci which are respectively the same as matrix 
A and B, except with the ith column obtained from matrix 
B and matrix A. Finally, we computed the model output for 
all the input values in A, B, Ci, Di. The details of the method 
are summarized in Lagerwall et al (2014).

3  Results

3.1  Contribution of sources of uncertainties

The contribution of single sources of uncertainty, i.e., errors 
in each deadwood characteristics, on the overall uncertainty 
in deadwood volume was ranked via the GUSA. When all 
sources of uncertainties were combined, the uncertainty 
(i.e., 95% CI) was 31.0  m3  ha−1 (Fig. 3). Tree species (95% 
CI = 43.1  m3  ha−1) and deadwood position (95% CI = 30.6 
 m3  ha−1) were the deadwood characteristics projected with 
the greatest source of uncertainty (being respectively 139% 
and 98.7% of the joint uncertainties among all the 18 sce-
narios). All other deadwood characteristics, i.e., collapse 
ratio (95% CI = 23.0  m3  ha−1), decay class (95% CI = 22.8 
 m3  ha−1) and diameter class (95% CI = 21.5  m3  ha−1) were 
all less but similarly important for the total deadwood 
uncertainty (being 74.2%, 73.5%, and 69.4% of all the joint 
sources of uncertainties) (Fig. 3).

The relative contribution of each source of uncertainty 
was also evaluated for each combination of stakeholders´ 
preferences, forest management strategies, and climate sce-
narios (Fig. 4). The means and 95% CI of deadwood volume 
inferred by all the sources of uncertainty were four times 
higher in the scenarios with no deadwood removal from the 
forest floor (Fig. 4a) than in the 75% deadwood removal 
scenario (Fig. 4b) (Table 3). Additionally, the relative contri-
butions of each source of uncertainty were similar between 
Fig. 4a and b. The mean deadwood volume was generally 
comparable between BAU and CCF and the highest volume 
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was under SA. On the other hand, the 95% CI in the dead-
wood volume was generally the highest under SA, inter-
mediate under CCF, and the lowest under BAU (Fig. 4a, b, 
Table 3). The mean of the predicted deadwood volume either 
decreased (for tree species and diameter class) or remained 
stable (for decay class, tree position and collapse ratio) under 
radiative forcing scenarios of increasing greenhouse gas 
(GHG) concentration, from RCP2.6 to RCP4.5 to RCP8.5, 
while 95% CI was generally similar under the three climate 
change scenarios (Table 3, Fig. 4a, b).

3.2  Impacts of sources of uncertainties

To quantify the impact each deadwood characteristic had 
on the total uncertainty, we conducted a leave-one-out cross 
validation (Fig. 5). We found that the error in diameter class 
and tree species affected the most the total uncertainty in 
deadwood volume, with error-free estimate of these dead-
wood characteristics increasing of 30.5% and decreasing 
of 15.9% the total uncertainty, respectively. On the other 
hand, the exclusion of the uncertainty in deadwood volume 
induced by errors in volumes by collapse ratio, decay class 
and position affected only marginally the total deadwood 

uncertainty, as the total uncertainty increased only by 1.7%, 
1.5%, and 0.3%, respectively (Fig. 5).

3.3  Contributions and impacts of uncertainties 
by scenarios

The relative impact of assessing the uncertainty in total 
deadwood by excluding each deadwood characteristics was 
also evaluated for each combination of uncertainty scenar-
ios of stakeholders´ preferences, management actions, and 
climate change (Table 4, Fig. 6a, b). Beside the absolute 
magnitude of the uncertainties, the relative contributions 
of the exclusion of each source of uncertainty were similar 
between Fig. 6a and b. For the stakeholders´ preference sce-
narios, excluding the uncertainty in the decay stage, collapse 
ratio and species decreased the 95% CI in the total uncer-
tainty under both the scenarios of no deadwood removal 
(− 9.1%, − 9.1%, and − 13.6%) and 75% deadwood removal 
(− 14.3%, − 14.3%, and − 28.6%), while the uncertainty 
increased excluding the error in diameter class more under 
no deadwood removal (+ 72.7%) than under 75% removal 
(+ 42.9%) (Table 4, Fig. 6a, b). Finally, excluding the error 
in the position the uncertainty decreased (− 4.5%) under 
no deadwood removal and remained stable at 75% removal.

Fig. 3  Contribution of each 
source of uncertainty, i.e., the 
five deadwood characteristics, 
to the total deadwood volume, 
and of all sources of uncertainty 
combined among all the 18 
scenarios. The boxplots repre-
sent the predicted deadwood 
volumes based on the Global 
Uncertainty and Sensitivity 
Analysis. The box represents 
the interquartile range and 
the whiskers the reasonable 
extremes of the data, that is the 
minimum and maximum values 
that do not exceed 1.5 times 
the interquartile range from the 
middle of the data
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When assessing the scenarios associated with the man-
agement actions, the error-free estimation of the deadwood 
volume by decay class, collapse and tree species always 
caused a decrease in the 95% CI in the total uncertainty 
(for decay removal: BAU = −  6.3%, CCF = −  12.0%, 
SA = − 8.3%; for collapse ratio removal: BAU = − 6.3%, 
CCF = −  4.0%, SA = −  8.3%; for species removal: 
BAU = − 18.8%, CCF = − 8.0%, SA = − 13.9%) (Table 4, 

Fig. 6a, b). Interestingly, the exclusion of diameter class 
uncertainty caused an increase in the total uncertainty, 
the highest under CCF (+ 64.0%), intermediate under SA 
(+ 61.1%), and the lowest under BAU (+ 56.3%) (Table 4, 
Fig. 6a, b). Finally, excluding the uncertainty in the posi-
tion the uncertainty remained stable under SA and CCF 
and increased for BAU (+ 6.3%).

Fig. 4  Contribution of each source of uncertainty to total deadwood 
volume, and all sources of uncertainty combined for 9 combina-
tions of uncertainty scenarios of climate change (RCP 2.6, RCP 4.5, 
RCP 8.5) and management actions (BAU, CCF and SA), separated 

by the two stakeholders´ preference scenarios a DWREM0% and b 
DWREM75%. The boxplots represent the predicted deadwood vol-
umes based on the Global Uncertainty and Sensitivity Analysis. Defi-
nitions of the box, interquartile range and whiskers as in Fig. 3
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When assessing the impact of the climate change sce-
narios, excluding sources of uncertainty caused a simi-
lar decrease in uncertainty for all GHG concentrations 
for decay class (RCP2.6 = −  10.3%, RCP4.5 = −  7.1%, 
RCP8.5 = −  10.7%), collapse ratio (RCP2.6 = −  6.9%, 
RCP4.5 = −  7.1%, RCP8.5 = −  7.1%) and tree species 
(RCP2.6 = − 13.8%, RCP4.5 = − 14.3%, RCP8.5 = − 10.7%) 
(Table 4, Fig. 6a, b). However, in the case of the exclusion 
of the uncertainty in tree position, the uncertainty decreased 
only with RCP2.6 (-3.4%) but was stable with RCP4.5 and 
RCP8.5. On the contrary, the removal of the uncertainty in 
tree diameter caused an increase in the total uncertainty, 
the highest under RCP8.5 (+ 75.0%), intermediate under 
RCP2.6 (+ 69.0%), and the lowest under RCP4.5 (+ 64.3%) 
(Table 4, Fig. 6a, b).

3.4  Relationships between uncertainties in total 
deadwood

We plotted the relationship between the predicted overall 
uncertainty in deadwood volume (in y-axes) and the uncer-
tainty in each of the five deadwood characteristics (in x-axes) 
(Fig. 7). The deadwood fractions that gave more “shape” to 
the curves describing the relationships were the ones whose 

uncertainty affected more, i.e., were more correlated with, 
the overall uncertainty in deadwood volume. The shape of 
the curves did not vary substantially across the 18 scenarios, 
therefore we reported here the results of the relationships 
only for a sample uncertainty scenario (i.e., DWREM0 BAU 
RCP2.6) (Fig. 7), while the relationships for all the scenarios 
were reported in the Supplemental online material (Appen-
dix Scatterplots).

We found that the overall uncertainty in the total dead-
wood volume was primarily determined by the uncertainty 
in the volumes of deadwood fractions with large diam-
eter classes, especially of the last three classes, with trees 
larger than 30 cm (see Fig. 7a), recently dead (decay class 
1), (Fig. 7b) characterized by limited loss in volume due to 
decomposition (collapse ratio ≥ 0.61) (Fig. 7c), from either 
spruce or pine trees (cf., Fig. 7d) and lying as logs on the 
forest floor (Fig. 7e).

3.5  Sensitivity indices

Sobol indices were calculated by partitioning the uncertainty 
in the total deadwood volume with respect to the uncertainty 
in the five deadwood characteristics (Fig. 8). The ranking 
of the Sobol indices did not vary substantially across the 

Fig. 5  Impact of the exclusion 
of each deadwood characteris-
tics from the uncertainty in all 
deadwood characteristics. The 
boxplots represent the predicted 
deadwood volumes based on 
the Global Uncertainty and 
Sensitivity Analysis account-
ing for the uncertainties in all 
the deadwood characteristics 
but one. Definitions of the box, 
interquartile range and whiskers 
as in Fig. 3.
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18 uncertainty scenarios of stakeholders´ preferences, man-
agement actions and climate change; therefore, we reported 
here the plots for first order (S) and total order (T) Sobol 
indices for a single uncertainty scenario randomly selected 
(i.e., DWREM0 CCF RCP2.6), while the plots for all the 
scenarios are reported in the Supplemental online material 
(Appendix Sobol Indices).

For the diameter classes, we found that the uncertainty 
in total deadwood was increasingly explained (higher % 
of the Sobol index) by deadwood fractions of increasing 
diameter (Fig. 8a), with deadwood of 2 cm explaining on 
average among scenarios only -0.015% (Sobol index range: 
min. = − 0.034%, max. = 0.0042%) of the total deadwood 
uncertainty and deadwood of 42 cm explaining on aver-
age 17% of the uncertainty (range: 4.7%, 30.4%). However, 
among the diameter classes of deadwood only the items of 
42 cm diameter, whose average S value was the only one 
above the red dotted line of the S dummy parameter, could 
be considered influential for the uncertainty of total dead-
wood (Fig. 8a).

For the decay classes, deadwood in decay class 1, i.e., 
recently dead tree with the longest retention time was 
responsible on average for 44.9% of the uncertainty in total 
deadwood (range: 23%, 74.7%), while the decay classes 3 
(medium decayed tree), 4 (very decayed tree) and 5 (almost 
decomposed tree) were respectively responsible only for 

10.2% (range: 5.6%, 13.8%), 8.7% (range: 4.7%, 14%) and 
10.3% (range: 4.6%, 30.7%) of the uncertainty (Fig. 8b). 
However, only the average S value in deadwood fractions 
in decay class 1 was above the horizontal red dashed line, 
therefore their uncertainty could be considered influential 
for the uncertainty of total deadwood (Fig. 8b).

For collapse ratio, we found that the uncertainty in total 
deadwood was increasingly explained by deadwood fractions 
with lower loss in volume (Fig. 8c). Deadwood which had 
lost almost all its volume respect to the initial value (i.e., 
in collapse class 0.01–0.2) explained on average only 2.1% 
of the total deadwood uncertainty (range: 0.03%, 12.9%) 
while deadwood which still retained all its volume (in col-
lapse class 0.81–1) was responsible on average for 33.7% 
of the uncertainty (range: 10%, 68.1%). Only the average S 
value of the deadwood belonging to this latter collapse class 
could be considered influential for the uncertainty of total 
deadwood (Fig. 8c).

For tree species, spruce deadwood fractions were respon-
sible on average for 33% of the uncertainty in total dead-
wood (range: 15.5%, 45.4%) and pine fractions for 30% of 
the uncertainty (range: 13.8%, 48%) (Fig. 8d). Deciduous 
fractions were less influential, representing on average only 
the remaining 2.7% of the uncertainty (range: 0.7%, 5.9%), 
likely because the bulk of deadwood was from coniferous 
trees. Only the two coniferous deadwood fractions showed 

Table 4  Impact of the 
exclusion of each deadwood 
characteristics from the 
uncertainty in all deadwood 
characteristics

Predicted means and 95% confidence intervals (CI) of deadwood volume summarized for the exclusion 
of each deadwood characteristic from the total (All) uncertainty and for each stakeholder’s preference 
(DWREM0% and DWREM75%), management action (BAU, CCF, and SA), and climate change scenario 
(RCP 2.6, RCP 4.5, RCP 8.5) (N = 158)

DW characteristic Stakeholders Management Climate

Scenario Mean 95%CI Scenario Mean 95%CI Scenario Mean 95%CI

All-decay DWREM0 19.6 0.020 BAU 11.9 0.015 RCP26 12.8 0.026
All-decay DWREM75 6.3 0.006 CCF 11.0 0.022 RCP45 12.8 0.026
All-decay SA 15.7 0.033 RCP85 13.2 0.025
All-position DWREM0 19.7 0.021 BAU 12.1 0.017 RCP26 12.8 0.028
All-position DWREM75 6.4 0.007 CCF 11.1 0.025 RCP45 12.9 0.028
All-position SA 15.7 0.036 RCP85 13.4 0.028
All-collapse DWREM0 19.8 0.020 BAU 11.9 0.015 RCP26 13.1 0.027
All-collapse DWREM75 6.5 0.006 CCF 11.3 0.024 RCP45 12.9 0.026
All-collapse SA 16.0 0.033 RCP85 13.4 0.026
All-species DWREM0 17.3 0.019 BAU 10.1 0.013 RCP26 11.0 0.025
All-species DWREM75 5.5 0.005 CCF 9.9 0.023 RCP45 11.4 0.024
All-species SA 14.0 0.031 RCP85 11.9 0.025
All-diameter DWREM0 24.8 0.038 BAU 10.2 0.025 RCP26 15.9 0.049
All-diameter DWREM75 6.7 0.010 CCF 14.4 0.041 RCP45 15.3 0.046
All-diameter SA 22.1 0.058 RCP85 16.0 0.049
All DWREM0 19.5 0.022 BAU 11.8 0.016 RCP26 12.8 0.029
All DWREM75 6.3 0.007 CCF 10.9 0.025 RCP45 12.8 0.028
All SA 15.6 0.036 RCP85 13.1 0.028
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an average S value above the horizontal red dashed line, 
therefore their uncertainty was influential for the uncertainty 
of total deadwood (Fig. 8d).

Finally, log deadwood fractions were responsible 
on average for 67% of the uncertainty in total dead-
wood (range: 46.2%, 92.6%), while snag fractions were 
much less influential, representing on average only 6.2% 
(range: 3.6%, 14%) of the uncertainty (Fig. 8e). Only the 

uncertainties in log deadwood fractions were influential 
for the uncertainty of total deadwood (Fig. 8e).

The overlap between the confidence intervals of the first 
order (S) and total order (T) Sobol indices in all the dead-
wood fractions revealed an absence of relevant interac-
tions among uncertainties affecting the overall deadwood 
uncertainty (Fig. 8).

Fig. 6  Impact of the exclusion of each deadwood characteristics from 
the uncertainty in all deadwood characteristics for 9 combinations of 
uncertainty scenarios of climate change (RCP 2.6, RCP 4.5, RCP 8.5) 
and management actions (BAU, CCF and SA), separated by the two 

stakeholders´ scenarios a DWREM0% and b DWREM75%. The box-
plots represent the predicted deadwood volumes based on the Global 
Uncertainty and Sensitivity Analysis. Definitions of the box, inter-
quartile range and whiskers as in Fig. 3
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4  Discussion

4.1  Contribution and impact of sources 
of uncertainties

The GUSA provides evidence that the large total dead-
wood uncertainty is mainly determined by the uncertainty 
in the initial inventory data and the uncertainty in dead-
wood characteristics estimated from the projections. This 
agrees with a recent uncertainty analysis of deadwood 
empirically measured in NFI plots (Campbell et al. 2019). 
The decomposition model embedded in SIMO overesti-
mates the mean residence time of deadwood in each decay 
class (Mäkinen et al. 2006), therefore the overall uncer-
tainty in the total deadwood volume may be systemati-
cally overestimated.

4.2  Contribution of sources of uncertainties

The analysis on the contributions of single sources of uncer-
tainty revealed that the five deadwood characteristics are 
not equally important in explaining the total variability in 
deadwood. In our case study, this variability is more derived 
from the variability in volumes of deadwood items of dif-
ferent tree species and position on the forest floor and less 
from the variability in the collapse ratio, decay class, and 
diameter. This finding reflects the ranking of the impact of 
these factors on the deadwood decomposition rate found in 
a global comparative analysis conducted by Harmon et al. 
(2020). The fact that the total variability in the five dead-
wood characteristics was smaller than the variability induced 
by deadwood items of different species is likely explained 
by an interaction effect between sources of uncertainties, 

Fig. 7  Relationships between the variability in the simulated val-
ues of deadwood volumes, in x axes, of each of the five deadwood 
characteristics (in the panels: a = 9 diameter classes expressed in 
cm, b = 4 decay classes, c = 5 collapse classes, d = 3 tree species, 
e = 2 deadwood positions), and the predictions of total deadwood 
(for the Sobol´ G function, cf., Puy et  al. 2022) in y axes, for one 

uncertainty scenario (i.e., no deadwood removal from the forest floor 
(DWREM0), Business-As-usual management (BAU), GHG concen-
tration scenario = RCP2.6). Red dots represent mean predictions of 
total deadwood volume and grey dots the predicted uncertainty in its 
values. The regression model is the polynomial function from Becker 
and Saltelli (2015)
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with errors of opposite sign cancelling each other (Mäkinen 
et al. 2010).

4.3  Impacts of sources of uncertainties

The evaluation of the impacts of the exclusion of single 
sources of uncertainties in deadwood characteristics from 
the overall deadwood uncertainty showed that the uncer-
tainties induced by tree species and deadwood diameter are 
the two most crucial in altering the estimates of the total 
deadwood volume, cumulatively contributing the most to the 
total uncertainty. In a laser-scanning based inventory, this 
would be possible by moving from predicting the expected 
deadwood volume for each pixel to identifying each dead 
log lying in the forest floor separately. Such approach is only 
possible for the largest logs (> 30 cm) which can be most 
efficiently located in the forest (Heinaro et al. 2021). Iden-
tifying the large logs individually would also reduce a large 
part of their position error. It can be assumed that the option 
of locating the largest individual dead trunks will become 

more and more realistic in the future and have strong impli-
cations for tracking resources suitable for biodiversity. For 
example, knowledge about the position of large logs would 
improve the decisions also concerning the optimal level of 
firewood taken from the forests and the allocation of con-
servation areas in the production landscape (cf., Mazziotta 
et al. 2023).

Our ranking of the importance of the sources of uncer-
tainty in deadwood volume partly reflects the empirical 
results of the uncertainty analysis conducted by Campbell 
et al (2019). They also found that diameter was an impor-
tant source of uncertainty in the measurement of downed 
coarse woody debris at plot level while collapse ratio and 
decay class had minor importance. In our simulations, the 
large uncertainty in deadwood of large diameter classes 
likely derived by the initial uncertainty of the large logs. 
Our analysis confirms that minimizing the error in the infer-
ence of certain deadwood characteristics can improve the 
level of confidence to assess habitat quantity and quality 
available for species dwelling in deadwood (Tikkanen et al. 

Fig. 8  First (Si) and total (Ti) order Sobol indices (derived from the 
Sobol´ G function, cf., Puy et  al. 2022) of the total deadwood vol-
ume uncertainty partitioned by the uncertainty in each of the five 
deadwood characteristics (in the panels: a = 9 diameter classes, b = 4 
decay classes, c = 5 collapse classes, d = 3 tree species, e = 2 dead-

wood positions) for one uncertainty scenarios (no deadwood removal 
from the forest floor (DWREM0), Continuous Cover Forest manage-
ment (CCF), GHG concentration scenario = RCP2.6). The horizontal 
red dashed lines mark the upper limit of the Si indices of the dummy 
parameter. The vertical error bars are based on standard errors
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2006, 2007; Kouki and Tikkanen 2007). In our study, the 
initial uncertainty in the deadwood inventory reflects that 
of the regional NFI, meaning that the assumed uncertainty 
level is an underestimate for an actual laser-scanning-based 
forest management inventory. However, as we consider the 
relative effects of different diameter classes, it does not have 
an effect on the conclusions.

4.4  Contributions and impacts of uncertainties 
by scenarios

The GUSA for the scenarios of stakeholders´ preferences, 
management actions, and climate change showed that in 
some scenarios the prediction of deadwood volumes with 
certain characteristics could be less certain than in others. 
The impact of the exclusion of each source of uncertainty 
was also sensitive to the uncertainty scenario adopted. This 
means that in some scenarios the error-free inference of cer-
tain deadwood characteristics can be more important than 
in others to reduce the uncertainty in deadwood estimation.

The choice of the forest owners to remove deadwood 
from the forest floor decreased the variability in deadwood 
volume. The assessment of the tree species and diameter 
class was less uncertain when most of the deadwood had 
been removed from the forest floor, likely because of the 
selective removal of the less decomposed deadwood logs 
belonging to the largest diameter classes, all characteristics 
that caused most of the uncertainty. Behaviour of private 
forest owners may create bias in the snag/log ratio and NFI 
deadwood data. Based on the  9th Finnish NFI data, it is sug-
gested that removal of snags and hard deadwood from forests 
for firewood reduces the number of logs and larger diameter 
deadwood of advanced decay classes in southern Finland 
(Tikkanen et al. 2009). A similar north south bias in the 
snag/log ratio in forest inventory data has been reported in 
Sweden (Fridman and Walheim 2000).

The variability of deadwood volumes increased with 
management actions attempting a close to-nature silvicul-
ture, likely due to the increased representation of deadwood 
of large diameter classes at least in the short term (Kuulu-
vainen et al. 2012). The estimate of deadwood characteristics 
in stands under CCF was more error-prone compared with 
stands under other management actions. This is likely due 
to the presence of deadwood logs of large diameter in CCF, 
which were created more often by the mortality model in 
CCF respect to the other two regimes. Under BAU, the pre-
dicted volume of deadwood is similar or even higher than 
the deadwood in CCF (see the “All” case in Table 3). How-
ever, this high volume is not available as habitat for biodi-
versity, as site preparation after clear-cut (e.g., harrowing) 
and movements of forest machinery destroys coarse woody 
debris which has been left since the previous tree generation 
(Hautala et al. 2004). Furthermore, in BAU clear-cutting 

residues left on the ground contribute deadwood with small 
diameters and limited variability in decay classes which 
reduces the total deadwood uncertainty (Kuuluvainen et al. 
2012). The amount of tree canopy remaining after timber 
extraction is larger in CCF than in BAU, and this can affect 
the quantity of deadwood and its characteristics. This is 
likely because gaps left following clearcutting operations in 
BAU management will lead to more solar radiation hitting 
the surface of the deadwood, leading to potential photodeg-
radation and to warmer and drier conditions either favour-
ing or retarding the decomposition process (Harmon et al. 
2020). It must be noticed that the deadwood decomposition 
model adopted in our simulator has been validated on the 
material collected from commercial and dense unthinned 
single-species stands (Mäkinen et al. 2006). Therefore, its 
application might have some limitations when predicting 
deadwood volumes in mixed stands managed with CCF and 
old-growth SA. In our simulations we assumed that BAU, 
CCF and SA are equally applied in forest management. 
However, this is not currently the case, with BAU being 
the dominant management regime in Finland, CCF applied 
especially in peatlands and SA officially only in state-owned 
or voluntary nature reserves. However, it is not known how 
the proportion of these management regimes may change in 
the future to comply with sustainability goals and pressures 
to adapt forests to climate change and this represents a large 
source of uncertainty in forest planning.

Finally, climate change increased the total deadwood vol-
ume (see the “All” case in Table 3) but not the variability in 
its characteristics. This can be related to the increase in the 
decomposition rate, which reduces the deadwood residence 
time (Mazziotta et al. 2014; Russell et al. 2014; Ekman 
et al. 2024). Consequently, it might be more difficult to 
detect deadwood items with certain characteristics, as their 
presence on the forest floor is more ephemeral. However, it 
must be considered that the model parameters for decom-
position used in our forest simulator were not dependent 
on an increase in temperature and process rates, therefore 
it may well be that the actual representation of deadwood 
volumes with different characteristics, and their uncertain-
ties, could be different from our projections. Furthermore, 
our forest simulator did not incorporate forest disturbances 
(e.g., drought, windstorms, insect and disease outbreaks, 
wildfires), and the changes in their frequency and magnitude 
induced by climate change. These extreme events may fur-
ther alter the inputs into the standing and downed deadwood 
pools (Russell et al. 2014; Venäläinen et al. 2020).

4.5  Relationships between uncertainties in total 
deadwood and sensitivity indices

The analysis of the relationships between uncertainties and 
the sensitivity indices showed that the representation from 
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the simulator of the distribution of the deadwood items can 
be erroneous, i.e., with a large prediction error. The dead-
wood items whose distribution is erroneously estimated 
from the simulator predictions are: logs with large diameters, 
recently dead trees characterized by low collapse in their 
volume, coniferous rather than deciduous tree species, and 
logs rather than snags. On the other hand, at stand level, the 
large uncertainty is likely explained by the fact that buried 
logs, as they have already been almost totally decomposed, 
generally exhibit the lower decomposition rate than snags 
aboveground, allowing the coexistence of a larger variability 
in deadwood characteristics (Stokland et al. 2016), espe-
cially of large diameter classes and advanced decay stages, 
whilst the decomposition rate of conifer snags is lower than 
logs, as the snags of old pines can be very durable (Yatskov 
et al. 2003). Reducing the initial uncertainty in estimate of 
deadwood items with these characteristics may help decision 
makers and forest managers to drastically reduce the uncer-
tainty in the final estimate of the deadwood volume. The 
higher importance of the classes of deadwood with a larger 
diameter in affecting deadwood volumes might be explained 
by the fact that larger trees have larger variability in volume 
than small trees; the higher importance of coniferous rather 
than deciduous trees by their larger occurrence in the man-
aged stands. Finally, the larger impact of uncertainty on the 
early decay classes might be due to a bias in our decomposi-
tion model, caused by the low number of observations in the 
most advanced decomposition stages. In fact, the predictions 
for the most advanced decomposition phases are extrapola-
tions and, thus, less reliable (Mäkinen et al. 2006).

5  Conclusions

Our study confirms that stakeholders´ decisions, manage-
ment actions, and climate change can alter the distribution 
of the frequency classes of deadwood volumes in the forest. 
The forest owners’ decision to leave or remove deadwood 
from the forest floor respectively increased and reduced the 
availability of deadwood in the landscape for forest-dwelling 
species (Koskela and Karppinen 2020). This decision was 
certainly the one that affected the most the availability of 
deadwood on the forest floor and the certainty of its estima-
tion. When the forest management followed a decreasing 
gradient of forest intensification, from mainstream even-
aged forestry to single tree selection harvest, to closer-to-
nature development, the deadwood volume increased con-
sistently (Pohjanmies et al. 2021). Deadwood accumulated 
more in forest stands under high-end (RCP8.5) climate 
scenarios triggered by a higher forest growth (Creutzburg 
et al. 2017; Blattert et al. 2020) but also the likelihood of 
erroneous estimates.

To summarize, a reduction of the uncertainty of selected 
deadwood characteristics is instrumental in reducing the 
uncertainty in deadwood volume estimation from projec-
tions and in aligning the level of certainty in the assessment 
of the deadwood volume to the elevated level of certainty 
already achieved in biomass estimation. Better modelling of 
the deadwood decomposition pathway can be achieved by 
reducing the sources of uncertainty in the inventory of vari-
ous deadwood pools (Russell et al. 2014). In our case study, 
the uncertainty and sensitivity analysis were successful in 
ranking the factors propagating errors in the inferences of 
deadwood and helped to identify a strategy for minimizing 
uncertainty in the estimation of deadwood characteristics. 
Deadwood has the capacity to supply several forest ecosys-
tem services, including regulating services, for its capac-
ity of climate regulation by storing carbon (Stokland et al. 
2016) and maintenance services, for its capacity to create 
habitat for forest biodiversity (CICES, Common Interna-
tional Classification of Ecosystem Services, Haines-Young 
and Potschin 2018; NCP, Nature’s Contributions to People, 
Díaz et al. 2018). The capacity of deadwood to supply these 
services in the long term is continuously changing in a for-
est landscape modified by stakeholders´ preferences, man-
agement actions, and climate change. These scenarios are 
expected to have large impacts on the capacity of the forest 
to produce deadwood. In this context, the estimation of the 
uncertainty in deadwood levels under the scenarios devel-
oped in our study can help decision makers to evaluate the 
risk of decreasing its value for biodiversity conservation and 
climate change mitigation.
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