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Abstract

Brackish water ecosystems often have high primary production, intermediate salin-

ities, and fluctuating physical conditions and therefore provide challenging environ-

ments for many of their inhabitants. This is especially true of the Baltic Sea, which is

a large body of brackish water under strong anthropogenic influence. One freshwater

species that is able to cope under these conditions in the northern Baltic Sea is the

vendace (Coregonus albula), a small salmonid fish. Here, we review the current knowl-

edge of its ecology and fishery in this brackish water environment. The literature

shows that, by competing for resources with other planktivores and being an impor-

tant prey for a range of larger species, C. albula plays a notable role in the northern

Baltic Sea ecosystem. It also sustains significant fisheries in the coastal waters of

Sweden and Finland. We identify the need to better understand these C. albula popu-

lations in terms of the predator–prey interactions, distributions of anadromous and

sea spawning populations and other putative (eco)morphs, extent of gene exchange

between the populations, and effects of climate change on their future. In this regard,

we recommend strengthening C. albula-related research and management efforts by

improved collaboration and coordination between research institutions, other gov-

ernmental agencies, and fishers, as well as by harmonization of fishery policies across

national borders.

K E YWORD S

environmental change, fishing, phenotypic plasticity, population, salinity, Salmonidae

1 | INTRODUCTION TO BRACKISH WATER
ENVIRONMENTS

This review covers the current knowledge of the ecology and fishery

of a freshwater salmonid fish, the vendace (Coregonus albula L. 1758),

in the brackish waters of the northern Baltic Sea. We place this topic

within a more general framework of fish communities and fisheries in

brackish waters, and the challenges that such environments induce to

freshwater fish in general and C. albula in particular. The aim is also

to elucidate the current state of these C. albula populations and their

fisheries, and to form predictions about their future by covering rele-

vant literature and official fishery statistics. This information is useful,

for example, when deciding on how to adjust management measures

in response to the expected environmental changes. For the readers'

convenience, we also provide a glossary (Table 1) with explanations of

the key terms and geographic areas of this review.
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Brackish waters are often defined by their medium levels of salinity

(Table 1). These aquatic environments can be found around the globe,

typically where waters from sources of low and high salinity meet

(Elliott & McLusky, 2002; Pérez-Ruzafa, Marcos, Pérez-Ruzafa & Pérez-

Marcos, 2011). Such conditions in, for example, river deltas, lagoons, and

estuaries, frequently promote high primary productivity (Correll, 1978;

Houde & Rutherford, 1993; Pérez-Ruzafa, Marcos & Pérez-Ruzafa, 2011).

Indeed, many brackish waters function as nursery areas or otherwise sus-

tain large biomasses of fishes that tolerate their varying environmental

conditions (Houde & Rutherford, 1993; Whitfield, 2016), commonly sup-

porting fisheries (Table 1) of high socioeconomic importance (Costanza

et al., 1997; Joyeux & Ward, 1998; Lamberth & Turpie, 2003; Pérez-

Ruzafa & Marcos, 2012). Nevertheless, only a few species live solely in

brackish water environments. Instead, these waters are commonly inhab-

ited by a mix of freshwater, marine, and anadromous (Table 1) taxa and

are typically dominated by a low number of species, often of marine ori-

gin (Beaudreau et al., 2022; Cabrera-Páez et al., 2021; Dyldin et al., 2020;

Thiel et al., 2003; Whitfield, 1999). The abundance and diversity of

marine species tend to increase, and those of freshwater species to

decrease, along gradients of increasing salinity (Guo et al., 2022; Kindong

et al., 2020; Morin et al., 1992; Thiel et al., 1995; Whitfield, 1999).

Because of the pronounced gradients of, and fluctuations in, physical

and chemical conditions of brackishwaters, they are considered to be nat-

urally highly stressed ecosystems (Elliott & Quintino, 2007; Teichert

et al., 2017). In addition, low average depths and close connectivity to the

adjacent terrestrial ecosystems havemademany brackishwaters and their

fish populations vulnerable to over-fishing (Haimovici & Cardoso, 2017;

Jackson et al., 2001; Ulman et al., 2020), climate change (Kashkooli

et al., 2017; MacKenzie et al., 2007), eutrophication (Karadurmuş &

Sari, 2022; Soria et al., 2022; Table 1), pollution (Barletta et al., 2019;

Islam & Tanaka, 2004), and species invasions (Daskalov &

Mamedov, 2007; Feyrer et al., 2003). These anthropogenic impacts have,

in recent decades, resulted in significant declines of economically and eco-

logically important brackish water fish populations in, for instance, the

Black Sea (Demirel et al., 2020; Oguz, 2017), Caspian Sea (Daskalov &

Mamedov, 2007), Marmara Sea (Demirel et al., 2022), brackish lakes and

lagoons (Haimovici & Cardoso, 2017; Mohanty et al., 2009), and certain

major river estuaries (Shan et al., 2013; Zhou et al., 2019). Hence, many of

these brackish water areas (and their fisheries) are in urgent need of effec-

tive recovery andmanagement plans and actions.

2 | THE BALTIC SEA AS AN ENVIRONMENT
FOR FRESHWATER FISH

The Baltic Sea (Figure 1; Table 1) is one of the world's largest brackish

water areas, and it shares many challenges with other major

brackish water bodies. Notably, it is among the most human-

TABLE 1 Glossary

Anadromous A fish migrating from the sea to a river to spawn

Baltic Sea Relatively shallow brackish water sea, a component of the Atlantic Ocean and enclosed by the land masses of Denmark,

Estonia, Finland, Germany, Latvia, Lithuania, Poland, Russia, and Sweden

Bothnian Bay The northernmost part of the Gulf of Bothnia (see below), north of ~63�32'N (Finland) / ~63�59'N (Sweden), see Figure 1

Brackish water Often defined as water with salinity between 0.5 and 30 ppt

By‐catch Individuals of an aquatic species caught unintentionally while targeting other species or sizes of aquatic wildlife

Coregonid A fish of the subfamily Coregoninae in the family Salmonidae (see below)

Demersal Living (or taking place) near the bottom of a body of water

Discard The part of a catch that is not retained on board during commercial fishing

Eutrophication The process by which a water body becomes progressively enriched with nutrients, particularly nitrogen and phosphorus,

resulting in increased phytoplankton productivity

Fishery The enterprise of harvesting (or raising) fish and other aquatic life

Gulf of Bothnia The northernmost part of the Baltic Sea, between ~59�50'N and 65�54N, consisting of the Bothnian Bay and Bothnian Sea,

see Figure 1

Gulf of Finland The easternmost extension of the Baltic Sea, with Finland to the north, Estonia to the south and Russia to the east, see

Figure 1

Hypoxia The state of a low or depleted oxygen in a water body

ICES Statistical

Rectangles

A latitude‐longitude based area mapping system that covers the north‐east Atlantic, including the Baltic Sea, developed by the

International Council for the Exploration of the Sea (ICES)

PSU Practical Salinity Unit: a standardised way of measuring salinity of a water sample at 15 �C that, under most conditions, is

nearly identical with salinity measures 'ppt', '‰' and '0.1%'

Salmonid A fish of the family Salmonidae, including trout, chars, whitefishes, graylings, taimens and lenoks

TAC Total Allowable Catch: a control measure that limits the maximum overall quantity of the catch of one or multiple target

species during a set timeframe

Vendace species

complex

Coregonus albula and its closest relatives that some authors consider as conspecifics, including C. sardinella, C. vandesius, C.

trybomi, C. fontanae and C. lucinensis

Year‐class strength Usually defined as the number of fish spawned or hatched in a given year
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influenced and stressed seas in the world (Aps & Lassen, 2010;

Elmgren et al., 2015; Fleming-Lehtinen et al., 2015; Leppäkoski

et al., 2002; Möllmann et al., 2009; Viitasalo & Bonsdorff, 2022). It is

connected to the marine waters of the North Sea only through rela-

tively narrow and shallow passages at its south-western corner, mak-

ing it, in essence, a very large estuary, if not for its lack of significant

tides (McLusky, 1999; Pérez-Ruzafa, Marcos, Pérez-Ruzafa & Pérez-

Marcos, 2011). The influx of marine water to the sea is variable and

the overall turnover of its water mass is slow, resulting in a pro-

nounced salinity gradient and challenges related to eutrophication and

hypoxic (Table 1) conditions (Fleming-Lehtinen et al., 2015;

Viitasalo & Bonsdorff, 2022; Winsor et al., 2001). The salinity of the

sea stays mostly below 10 PSU (Table 1) and as low as at 2–3 PSU in

the Bothnian Bay and eastern Gulf of Finland (Figure 1; Table 1).

The relatively low and challengingly variable salinity levels of the

Baltic Sea have resulted in low species richness, yet a fish fauna that

consists of a unique mix of freshwater and marine species (MacKenzie

et al., 2007; Ojaveer & Kalejs, 2005; Olsson, 2019). The salinity varies

both among and within coastal locations, affecting fish distributions so

extensively that general models linking fish species diversity and salinity

have been based on the Baltic Sea data (Whitfield et al., 2012). Indeed,

many of the Baltic Sea fish populations live at the physiological limit of

their range (MacKenzie et al., 2007) and experience multiyear fluctua-

tions in abundance, which are, at least partly, triggered by changes in

environmental conditions or competitive interactions (Casini

et al., 2009; Lehtonen et al., 1993; MacKenzie et al., 2007; Ojaveer

et al., 2010). Interestingly, despite the young geological age of the Baltic

Sea (Björck, 1995), some of its inhabitants show signs of genetic adap-

tation to its environmental conditions or divergence between popula-

tions occupying different parts of the sea (Hill et al., 2019;

Johannesson & André, 2006; Leder et al., 2021; Wennerström et al.,

2017). For instance, in the southern Baltic Sea, European flounder (Pla-

tichthys flesus L. 1758) spawn pelagially (Table 1), whereas most of

those in the north spawn demersally (Table 1), with the two forms

showing a strong enough genetic divergence and reproductive isolation

(Momigliano et al., 2017) that the latter was recently described as a sep-

arate species, Platichthys solemdali (Momigliano, Denys, Jokinen & Mer-

ilä 2018).

Besides their intriguing ecological features, Baltic Sea fish populations

support several viable fisheries (Aps & Lassen, 2010; MacKenzie et al.,

2007; Zeller et al., 2011). The subfamily Coregoninae and other salmonids

(Table 1) are one such fish group, which has sustained recreational and

commercial fisheries of high socioeconomical importance, while being

particularly vulnerable to anthropogenic change (Dahlke et al., 2020;

Smialek et al., 2021). The Baltic Sea has both anadromous and resident

(i.e., sea spawning) salmonids (in genera Coregonus, Salmo, and Thymallus),

most of which have been important targets of fishing for hundreds of

years, if not for millennia (Lajus et al., 2013). While these fish have been

found to develop local differences in salinity tolerance (Fraser et al., 2011;

Larsen et al., 2008), the individuals that live outside their optimal salinity

(Arnesen et al., 1993) or temperature (Griffiths et al., 1992) ranges may

grow slowly and experience increased mortality.

F IGURE 1 (a) October 2021 mean salinity (PSU) in the Baltic Sea. Here, salinity is bounded to ≤10 PSU to clarify its gradient. Blue contours
highlight salinities of 2, 4, 6, and 8 PSU. (b) October 2021 mean temperature (degrees Celsius) at 1.5 m depth. The contours highlight 8, 10,
12, and 14�C. The different parts of the Baltic Sea, the Baltic Sea Proper in the south, the Gulf of Finland in the east, and the Bothnian Sea and
Bothnian Bay in the north (the latter two being collectively called the Gulf of Bothnia) are also shown. The salinity and temperature data originate
from the Swedish Meteorological and Hydrological Institute and have been modeled for the entire Baltic Sea by the ice-ocean model NEMO-
Nordic (https://doi.org/10.48670/moi-00013).
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3 | THE VENDACE IN THE BALTIC SEA

Coregonus albula is a small-sized (total length rarely exceeding 20 cm),

schooling planktivore that prefers cold water and matures early (Bøhn

et al., 2004; Gregersen et al., 2011; Lehtonen, 1981). Although both

juveniles and adults dominantly forage on zooplankton (Northcote &

Hammar, 2006; Sandlund, 1992; Viljanen, 1983), their diet is flexible,

with adults opportunistically predating on benthic crustaceans, insect

larvae, mollusks, and small fish, including conspecifics (Strelnikova &

Berezina, 2021; Urpanen et al., 2012). Their typical, but not exclusive,

living environments are large oligotrophic lakes in northern Europe,

including parts of Denmark, Estonia, Finland, Germany, Norway, Poland,

Russia, and Sweden. Both anadromous (Bogdanov et al., 2021) and sea

spawning (Björkvik et al., 2021; Enderlein, 1989; Veneranta et al., 2013)

populations reside the low-salinity waters of the northern Baltic Sea

(Gulf of Finland and Gulf of Bothnia; Figures 1 and 2). Locally, the spe-

cies may also be found, or was previously found, in more southern parts

of the sea (Lehtonen, 1981; Smitt, 1895). Similarly in lakes and the Bal-

tic Sea, C. albula spawn along the shores when the water has cooled in

October and November. The eggs then hatch the following spring

around the time the ice cover melts (Karjalainen et al., 2016; Koho

et al., 1991; Nyberg et al., 2001; Urpanen et al., 2005). The spawning is

F IGURE 2 Coregonus albula catches in different parts of the Swedish and Finnish waters of the Baltic Sea since 1998. (a) 1999–2001 (white
dots indicate additional Finnish coastal water areas where C. albula were commercially caught in 1980–1997), (b) 2002–2005, (c) 2006–2009,
(d) 2010–2013, (e) 2014–2017, and (f) 2018–2021. Colors indicate the yearly average commercial C. albula catch within each 50 � 50 km ICES
Statistical Rectangle (see Table 1) during the period stated in the panel. Note that in the Swedish fishery, effort and catch regulations (i.e., TAC,
see Table 1) affect the catches and therefore they do not necessarily correlate well with the abundance of the species.
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not concentrated within particular sites but takes place widely across

suitable areas (Björkvik et al., 2021; Karjalainen et al., 2018; Veneranta

et al., 2013). In the Bothnian Bay, important sites for reproduction are

located in both Swedish and Finnish coastal areas and river mouths,

where the fry are likely to remain for the first weeks of their lives after

hatching (Veneranta et al., 2013). Tagging experiments conducted in the

area suggest that C. albula return each year to the same region to

spawn, and then during summertime spread around wider areas to feed

(Enderlein, 1989). The typical maximum range of these migrations, how-

ever, seems to be only tens of kilometers (Enderlein, 1989).

Pronounced variability in year-class strength is typical of C. albula

populations, both in lakes (Karjalainen et al., 2000; Marjomäki, Auvinen

et al., 2021) and the Baltic Sea (Bergenius et al., 2013; Lehtonen, 1981).

This variation has been observed both as cyclic fluctuations (Marjomäki,

Auvinen et al., 2021) and more irregular alternations between strong and

weak year-classes (Axenrot & Degerman, 2016; Sarvala et al., 2020). The

postulated drivers of these oscillations include density-dependent sur-

vival of the youngest cohort, competition for food between cohorts, as

well as other intraspecific interactions (Hamrin & Persson, 1986; Marjo-

mäki Valkeajärvi et al., 2021). However, evidence also suggests that fish-

ing mortality (Sarvala et al., 2020), environmental factors (Auvinen

et al., 2004; Marjomäki et al., 2004), and interspecific interactions (see

below for details) can markedly affect the variation in population abun-

dance. Significant intraspecific and external factors are not mutually

exclusive but can have simultaneous and interacting effects on the pro-

nounced variation in C. albula abundance (Axenrot & Degerman, 2016;

Bergenius et al., 2013; Helminen & Sarvala, 1994), while high plasticity in

growth and fecundity probably dampen these fluctuations in the longer

term (Karjalainen et al., 2016).

Being a freshwater species, the spatial range of C. albula in the

Baltic Sea is presumably restricted by salinity more than any other sin-

gle factor (Enderlein, 1989; Lehtonen, 1981). Laboratory experiments

have shown that larvae are sensitive to salinities exceeding 5 PSU

(Jäger et al., 1981). Although larger juveniles and adult fish survive in

higher salinities (Jäger et al., 1981), the egg development is likely to

require even lower salinities (Veneranta et al., 2013). The presence

of additional physiological and ecological factors, such as tempera-

ture variation (Bergenius et al., 2013; Nyberg et al., 2001), eutro-

phication (Veneranta et al., 2013), intense intra- and interspecific

competition (Enderlein, 1981; Hansson, 1984), and predation

pressure, may also reduce the species' spatial range in the

sea. Indeed, these factors, together with the physiological

challenges of adapting to salinity, are among the typical limitations

to freshwater fish diversity in brackish water environments

(Whitfield, 2015).

Despite having only been able to establish within a limited spatial

range in the Baltic Sea, C. albula exhibits a significant potential to adapt

to local conditions. Sympatric forms that occupy different niches with

respect to the timing of spawning (Delling & Palm, 2019; Schulz &

Freyhof, 2003; Sendek, 2021), spawning migrations (Bogdanov

et al., 2021), body size and growth (Reshetnikov et al., 2020;

Strelnikova & Berezina, 2021), and diet (Strelnikova & Berezina, 2021)

have been documented both in lakes and the Baltic Sea. For example,

Strelnikova and Berezina (2021) reported the existence of small and

large-sized C. albula forms in the Gulf of Finland, with the latter occupy-

ing areas of deeper water. Moreover, while C. albula caught in the Gulf

of Finland are likely to be predominantly anadromous (Bogdanov

et al., 2021), those spawning in coastal waters seem to be dominating in

the Gulf of Bothnia (Enderlein, 1989; L�opez et al., 2022; Veneranta

et al., 2013). However, significant genetic differences between fish from

different parts of the Bothnian Bay indicate the potential presence of

local anadromous C. albula, besides coastal spawners (L�opez et al., 2022).

The occurrence of newly hatched C. albula fry in the lower reaches of

the river Tornionjoki that runs into the northernmost part of the Both-

nian Bay (Natural Resources Institute Finland, unpublished data) could

also indicate the presence of anadromous spawners in that river.

While the coastal spawners on the Swedish and Finnish sides of

the bay may be demographically separated (L�opez et al., 2022), cur-

rent knowledge of population boundaries and spawning migrations is

very limited and, as such, insufficient for the needs of knowledge-

based management plans. Therefore, additional spatial and temporal

sampling coverage is needed to better understand the distributions of

separate C. albula (sub)populations and the extent of gene exchange

between them. Interestingly, another species in the C. albula species

complex (Mehner et al., 2021; Sendek et al., 2013; Sendek, 2021;

Table 1), the closely related least cisco (Coregonus sardinella Valenci-

ennes 1848), which inhabits many North American and Siberian fresh-

waters, can successfully occupy estuary waters of varying salinities up

to 32 PSU (Craig, 1984). The populations assigned to each of these

two Coregonus species are not monophyletic and are so much alike

that some researchers argue that they constitute just one species

(Borovikova et al., 2013; Borovikova & Artamonova, 2021), further

suggesting a high potential for significant population-specific local

adaptations within the C. albula species complex (potentially including

the Baltic Sea populations). After having been introduced, C. albula

have also been able to rapidly invade new northern European river

and lake systems (Amundsen et al., 1999; Bøhn & Amundsen, 2001;

Kahilainen et al., 2011).

Coregonus albula is an important node in the Baltic Sea food web

because of its interactions with other species (and their fisheries). It

competes with other planktivores (e.g., young whitefish, Coregonus

lavaretus L. 1758, Baltic herring, Clupea harengus L. 1758, and smelt,

Osmerus eperlanus L. 1758) for food, with such competitive interac-

tions having potential to significantly affect the condition, and even

survival, of both C. albula and its competitors, especially during

periods of low food availability (Bøhn et al., 2008; Bøhn &

Amundsen, 2001; Enderlein, 1981; Hamrin & Persson, 1986; Nyberg

et al., 2001). Occasionally planktivorous fish (Miller et al., 1988),

including C. albula (Strelnikova & Berezina, 2021), can also be signifi-

cant predators of fish fry, which may, at least locally, affect the levels

of recruitment. Moreover, C. albula is an important prey of commer-

cially important predatory fish, including larger salmonids

(Heikinheimo, 2001; Hyvärinen & Huusko, 2005), and therefore, when

high in abundance, it has a positive effect on the survival of these cul-

turally and economically important species in the northern Baltic Sea

(Kallio-Nyberg et al., 2006). In the Gulf of Bothnia, it is also prey to
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gray seals (Halichoerus grypus Fabricius 1791) (Suuronen &

Lehtonen, 2012) and ringed seals (Pusa hispida Schreber 1775)

(Kauhala et al., 2019; Suuronen & Lehtonen, 2012). Indeed, in the Bal-

tic Sea, predation on C. albula by ringed seals can exceed the fishery

catches, potentially having a significant impact on the C. albula popu-

lations (Gilljam et al., unpublished; Hansson et al., 2018). Predation by

the European perch (Perca fluviatilis L. 1758) is also intense enough to

impact fluctuations of C. albula populations at least in a lake environ-

ment (Valkeajärvi & Marjomäki, 2004) and given that this predator is

predicted to benefit from climate change (Jeppesen et al., 2012;

Kokkonen et al., 2019) and has been increasing in commercial catches

(Official Statistics of Finland, 2023), its impact on C. albula in the Baltic

Sea may increase in the future. In contrast, if future trends also

include a continued decrease in salinity, Clupea harengus is likely to be

negatively affected (Polte et al., 2021), which can release additional

ecological space for C. albula.

4 | VENDACE FISHERIES IN THE
BALTIC SEA

4.1 | History of vendace fisheries in the Baltic Sea

Although relatively old records of C. albula fishery in the Baltic Sea's

brackish waters exist, the records are patchier than, for example,

those of the congeneric C. lavaretus (Bogdanov et al., 2021). The rea-

sons for the patchiness relate to a lower market value and extensive

abundance variations of C. albula (Bogdanov et al., 2021). Records

nevertheless show that it was a significant target species in the east-

ern Gulf of Finland in the 19th century (Bogdanov et al., 2021; Lajus

et al., 2013). Later, by the 1930s, this C. albula fishery had been con-

siderably reduced, presumably due to a decreased abundance, as a

result of (natural) changes in environmental variables, especially tem-

perature and salinity (Lajus et al., 2013). Starting from the latter part

of the 1940s, the importance of the C. albula fishery in the eastern

Gulf of Finland once again grew, with the Russian catches in this area

being as high as 1000 tonnes by the late 1950s (Bogdanov

et al., 2021; Lajus et al., 2013). The catches were still at a relatively

high level in the early 1970s, but have since then much decreased,

probably reflecting another period of a lower abundance due to both

anthropogenic pressures and natural changes in local conditions

(Bogdanov et al., 2021; Lajus et al., 2015).

Coregonus albula has, for decades, also been one of the most

important target species of commercial fisheries in the Gulf of Bothnia

in Sweden (Axenrot, 2021;Bergenius et al., 2018; Björkvik

et al., 2020) and Finland (Lehtonen, 1981; Official Statistics of Finland,

2023). The utilization of these northern stocks increased rapidly with

the use of commercial trawls, starting at the beginning and end of the

1960s in Sweden (Enderlein, 1978) and Finland (Lehtonen, 1981,

1983), respectively. The catches first peaked in the early 1970s

(Bothnian Bay: >1500 tonnes per year; Figure 3) and then decreased,

especially in Finland (Hildén et al., 1984; Lehtonen & Jokikokko, 1995;

Figure 3). Anecdotal reports (Lehtonen, 1981) suggest that during this

peak period the species was more widely distributed and harvested in

Finnish coastal waters than it has been since then. In Sweden, the C.

albula catches have remained at relatively high, albeit variable, levels

during most of the past 50 years (Figure 3), sustaining an economically

important fishery for roe (Bergenius et al., 2018; Björkvik et al., 2020).

4.2 | The current status of the Baltic Sea vendace
fisheries

In recent years, C. albula catches in the Russian part of the Gulf of

Finland have stayed at relatively stable but low (�10 tonnes) levels

(Bogdanov et al., 2021). On the Finnish side of the gulf, the commer-

cial fishing effort has in recent decades been between low and nonex-

istent (Figure 2). In the Gulf of Bothnia, in turn, the current C. albula

fisheries operate mostly north of the N 63� latitude (Figures 1 and 2).

On the Swedish side of the Gulf of Bothnia, the catches reached

almost 1700 tonnes in 2014–2015, which is the highest since modern

fishery started, but have decreased to less than 1000 tonnes during

the last few years (Bergenius, 2021; Figure 3). Catches in Sweden

have been intense enough to have a measurable effect on C. albula

recruitment, yet the impact of fishing on the population has been

smaller than that of the winter water temperature and salinity

combined (Bergenius et al., 2013). On the Finnish side, the commercial

C. albula catches have recently been increasing, reaching the highest

level since the 1970s, >500 tonnes, in 2022 (Figure 3).

In recent decades, trawling has been by far the most important fish-

ing method used by commercial C. albula fisheries in the northern Baltic

Sea (Finland �75%, Sweden �95%), followed by fish traps (fyke nets)

and gillnets (Figure 3). Gillnets dominate recreational C. albula catches

(>95% in Finland, Official Statistics of Finland, 2023). In Sweden, C.

albula are caught mainly for their highly valued roe, and only a small

proportion of the catch is consumed as fish meat. In particular, after roe

extraction, the remaining fish carcasses are either burned or used as ani-

mal feed. In Finland, the catch is used in a large part for human
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consumption as fish meat and increasingly also for roe and animal feed.

The current Baltic Sea C. albula fishery in Sweden is restricted to

40 trawl fishing licenses (Figure 4) and a fishing period of 5 weeks prior

to the spawning peaking in October. In addition, the Swedish Agency

for Marine and Water Management sets an annual catch quota after

considering the biological advice provided by the Swedish University of

Agricultural Sciences (Bergenius, 2021). Swedish gear restrictions to the

Baltic Sea C. albula fishery include a trawl modification requirement,

which prevents the catching of too-small individuals, and the size of

trawling vessels is limited to a maximum of 14 m. The allowed fishing

area is also restricted. Parallel with these general regulations, self-

regulation, such as additional area and time restrictions, is also encour-

aged. In contrast, in the Finnish waters of the Baltic Sea, the C. albula

fishing effort is currently not regulated. The profitability of the Finnish

C. albula fishery has had an increasing trend (Official Statistics of Fin-

land, 2023), while the highest trawling effort to date was reached in

2022 (Figure 5). Overall, a relatively large number of small vessels par-

ticipate in the Finnish fishery (Figure 4). The recreational C. albula fish-

ery in the Baltic Sea is important only locally, being much smaller than

the one in freshwaters (in recent years in Finland <50 tonnes per year

versus 700–2500 tonnes, respectively; Official Statistics of Finland,

2023). Note that the official catch statistics, reported above and in

Figures 2–6, are based on obligatory monthly catch reports by commer-

cial fishers. The fishers are required to report, among other things, the

gear they used, date and hours of fishing, fishing area (ICES Statistical

Rectangle, see Table 1) and the catch per species in kilograms. Data on

recreational catches are gathered less systematically and their estimates

are therefore more tentative. In absolute terms, the official statistics

may underestimate actual catches or have other inaccuracies, if the

catches are not duly reported by all fishers. We nevertheless expect the

statistics to capture temporal and other relative changes reasonably

accurately.

Regarding the ecological effects of the current fishery, it is also

relevant to consider the by-catch (Table 1), especially that of commer-

cial trawling (Figure 6), which is a key concern in fisheries manage-

ment and policy (Davies et al., 2009; Kennelly & Broadhurst, 2021).

The numbers of anadromous or sea-spawning ecotypes of C. lavaretus

caught as a by-catch of C. albula trawling can, at least occasionally, be

significant, warranting further assessment and monitoring (Leskelä &

Lehtonen, 1992; Marjomäki et al., 2016). Young individuals of other

larger species may also get caught by C. albula trawls (Jurvelius

et al., 2000). For example, sea trout (Salmo trutta L. 1758) smolts,

especially those that are reared in hatcheries to boost the threatened

populations of the Baltic Sea catchment area, may be vulnerable to

fishing practices that target other coastal species, including the sprat

(Sprattus sprattus L. 1758) and C. harengus (Degerman et al., 2012;

Kallio-Nyberg et al., 2007). Nevertheless, trout smolt mortality due to

the current commercial C. albula fishery seems to be low (Statistics

Database Natural Resources Finland, 2023; Figure 6). By-catch and

discard (Table 1) issues aside, as a fishing method, bottom trawling

can be very destructive to benthic habitats (Hiddink et al., 2017;

Thrush & Dayton, 2002). Coregonus albula fisheries, however, typically

use trawls over rocky habitats within restricted areas.

4.3 | The future of the Baltic Sea vendace

In the future, increasing temperatures in the Baltic Sea region are

likely to be particularly challenging to cold-adapted species, such as

C. albula and other native salmonids (Elliott & Bell, 2011; Graham &

Harrod, 2009; Karjalainen et al., 2014; Kumar et al., 2013). It is possi-

ble, albeit not certain, that the salinity of the Baltic Sea surface waters

will continue its recent declining trend with the warming climate

(Lehmann et al., 2022), which would stress the ecosystem (Lehmann

et al., 2022), but potentially benefit some freshwater species,
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including C. albula (Pekcan-Hekim et al., 2016). However, because the

whole food web would be affected (Lehmann et al., 2022; Pekcan-

Hekim et al., 2016) and the projections for the changes in salinity,

stratification, and oxygen levels remain uncertain (Lehmann

et al., 2022; Viitasalo & Bonsdorff, 2022), the consequences for future

aquatic communities and their fish populations cannot be predicted

with any high level of certainty (Viitasalo & Bonsdorff, 2022). Because

C. albula populations in the Gulf of Bothnia and Gulf of Finland live at

the margin of their distributions, the increasing environmental varia-

tion may well impact them more (either positively or negatively) than

many other fish populations (Bergenius et al., 2013; Pekcan-Hekim

et al., 2016). Given these uncertainties, and the demonstrated effects

of environmental factors and fishing effort on C. albula recruitment

(Bergenius et al., 2013; Huusko & Hyvärinen, 2005), future manage-

ment measures should be set with caution to ensure that C. albula

catches stay within sustainable levels. In this respect, fish populations

are oblivious to national boundaries, highlighting the value of collabo-

ration between neighboring countries in research and management

efforts. This is especially important given that the current knowledge

of the population structure of the Baltic Sea Cor. albula, including the

extent of gene exchange between the Finnish and the Swedish parts

of the Bay, is incomplete (L�opez et al., 2022).

5 | CONCLUSIONS AND
RECOMMENDATIONS

Our literature review shows that the fish fauna in the brackish waters

of the Baltic Sea are vulnerable to human impact, including eutrophi-

cation, increasing temperatures (which could be coupled with decreas-

ing salinity), overexploitation, and habitat degradation (Elmgren

et al., 2015; MacKenzie et al., 2007; Viitasalo & Bonsdorff, 2022).

Commercially important species in the Baltic Sea include both anadro-

mous and resident salmonids. One of these, C. albula, occupies the

least saline parts of the Baltic Sea. While the species' distribution is

limited by salinity in combination with other factors (Bergenius

et al., 2013; Jäger et al., 1981), it also exhibits remarkable local adap-

tations and even sympatric forms that occupy slightly different niches

(Reshetnikov et al., 2020; Strelnikova & Berezina, 2021). The vendace

fishery is economically important on the Swedish side of the Bothnian

Bay, recovering on the Finnish side (Figures 2 and 3), and much smal-

ler in volume and predominantly recreational in the Gulf of Finland.

Since projections of future changes to the Baltic Sea area are consid-

erably uncertain, research efforts are needed to ensure appropriately

adjusted fisheries management measures.

Another pertinent research need is to understand the extent to

which the C. albula populations in the Baltic Sea (Gulf of Bothnia and

Gulf of Finland) are able to exchange genes with the adjacent freshwa-

ter populations, especially given that, in most rivers, dams block access

to the sea. In the same vein, we endorse unraveling the extent to which

the different C. albula populations migrate to rivers to reproduce

(i.e., are anadromous) versus completing their entire life cycle in the sea.

The two life-history strategies can be expected to differ in the likeli-

hood of gene exchange with other populations in the Baltic Sea and the

adjacent freshwaters. More investigations are also needed on the

extent to which the C. albula fisheries of the different nations surround-

ing the Gulf of Bothnia and Gulf of Finland are targeting shared versus

separate breeding populations (see L�opez et al., 2022). Earlier work

assumed that the Swedish coast of the Bothnian Bay would be a signifi-

cant source for adult C. albula on the Finnish side (Hildén et al., 1984),

whereas a subsequent tagging assessment suggested more localized

breeding populations (Enderlein, 1989). Further research is still needed

to map the coastal spawning areas, as well as levels of philopatry and

gene exchange by distance. Indeed, the current knowledge of the
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species' population genetic structure in the Baltic Sea is still at best pat-

chy, despite the importance of such knowledge for informed manage-

ment and sustainable harvesting actions (Allendorf et al., 2008; Laikre

et al., 2005; Palsbøll et al., 2007; Wennerström et al., 2013). The effects

of the Bothnian Bay's planned wind power plant structures on the

C. albula and its fishery represent a related, timely knowledge gap.

Research, management, and policy-making parties should also

take into account that C. albula does not face environmental

changes in isolation but instead in interaction with other species

and, in many cases, their fisheries. In this regard, we endorse fur-

ther research on by-catches of the Baltic Sea fisheries. The research

efforts could, for instance, focus on whether C. lavaretus by-catches

of the C. albula fisheries are substantial enough to negatively affect

the various C. lavaretus populations and what practices could be

adopted to further reduce by-catch levels and mitigate their effects.

Such assessments should also be a part of the qualification process

of sustainable fishery certifications (Agnew, 2019; Björkvik

et al., 2020; Pappila & Tynkkynen, 2022; Pierucci et al., 2022).

More generally, we need a better understanding of the relative

impacts of the changing climate, eutrophication, habitat degrada-

tion, and fishing mortality. To attain these research and manage-

ment goals, we encourage intensified collaboration and

coordination efforts between fishers, research institutions, fisheries

management, and other governmental agencies, as well as harmoni-

zation of fishery policies among the countries surrounding the

northern Baltic Sea.
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