
          Jukuri, open repository of the Natural Resources Institute Finland (Luke) 
   
 
   

All material supplied via Jukuri is protected by copyright and other intellectual property rights. Duplication 
or sale, in electronic or print form, of any part of the repository collections is prohibited. Making electronic 
or print copies of the material is permitted only for your own personal use or for educational purposes.  For 
other purposes, this article may be used in accordance with the publisher’s terms. There may be 
differences between this version and the publisher’s version. You are advised to cite the publisher’s 
version. 

 

This is an electronic reprint of the original article.  
This reprint may differ from the original in pagination and typographic detail. 

 

Author(s): A.H. Stygar, L. Frondelius, G.V. Berteselli, Y. Gómez,  E. Canali, J.K. Niemi, P. Llonch 
& M. Pastell 

Title: Measuring dairy cow welfare with real-time sensor-based data and farm records: a 
concept study 

Year: 2023 

Version: Published version 

Copyright:   The Author(s) 2023 

Rights: CC BY 4.0 

Rights url: http://creativecommons.org/licenses/by/4.0/ 

 

Please cite the original version: 

Stygar, A. H., Frondelius, L., Berteselli, G. V., Gómez, Y., Canali, E., Niemi, J. K., Llonch, P., & Pastell, 
M. (2023). Measuring dairy cow welfare with real-time sensor-based data and farm records: a 
concept study. Animal, 17(12), 101023. https://doi.org/10.1016/j.animal.2023.101023 



Animal 17 (2023) 101023
Contents lists available at ScienceDirect

Animal

The international journal of animal biosciences
Measuring dairy cow welfare with real-time sensor-based data and farm
records: a concept study
https://doi.org/10.1016/j.animal.2023.101023
1751-7311/� 2023 The Author(s). Published by Elsevier B.V. on behalf of The Animal Consortium.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author.
E-mail address: anna.stygar@luke.fi (A.H. Stygar).
A.H. Stygar a,⇑, L. Frondelius b, G.V. Berteselli d, Y. Gómez c, E. Canali d, J.K. Niemi a, P. Llonch c, M. Pastell b

aBioeconomy and Environment, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
b Production Systems, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
cDepartment of Animal and Food Science, Universitat Autònoma de Barcelona, Campus UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
dDepartment of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy

a r t i c l e i n f o a b s t r a c t
Article history:
Received 1 June 2023
Revised 16 October 2023
Accepted 17 October 2023
Available online 27 October 2023

Keywords:
Accelerometer
Machine-learning
Monitoring
Precision livestock farming (PLF)
Welfare label
Welfare assessment of dairy cows by in-person farm visits provides only a snapshot of welfare and is
time-consuming and costly. Possible solutions to reduce the need for in-person assessments would be
to exploit sensor data and other routinely collected on-farm records. The aim of this study was to develop
an algorithm to classify dairy cow welfare based on sensors (accelerometer and/or milk meter) and farm
records (e.g. days in milk, lactation number). In total, 318 cows from six commercial farms located in
Finland, Italy and Spain (two farms each) were enrolled for a pilot study lasting 135 days. During this
time, cows were routinely scored using 14 animal-based measures of good feeding, health and housing
based on the Welfare Quality� (WQ�) protocol. WQ� measures were evaluated daily or approximately
every 45 days, using disease treatments from farm records and on-farm visits, respectively. WQ� mea-
sures were supplemented with daily temperature-humidity index to account for heat stress. The severity
and duration of each welfare measure were evaluated, and the final welfare index was obtained by sum-
ming up the values for each cow on each pilot study day, and stratifying the result into three classes:
good, moderate and poor welfare. For model building, a machine-learning (ML) algorithm based on
gradient-boosted trees (XGBoost) was applied. Two model versions were tested: (1) a global model tested
on unseen herd, and (2) a herd-specific model tested on unseen part of the data from the same herd. The
version (1) served as an example on the model performance on a herd not previsited by the evaluator,
while version (2) resembled a custom-made solution requiring in-person welfare evaluation for model
training. Our results indicated that the global model had a low performance with average sensitivity
and specificity of 0.44 and 0.68, respectively. For the herd-specific version, the model performance was
higher reaching an average of 0.64 sensitivity and 0.80 specificity. The highest classification performance
was obtained for cows in poor welfare, followed by cows in good and moderate welfare (balanced accu-
racy of 0.77, 0.71 and 0.68, respectively). Since the global model had low classification accuracy, the use
of the developed model as a stand-alone system based solely on sensor data is infeasible, and a combi-
nation of in-person and sensor-based welfare evaluation would be preferable for a reliable welfare
assessment. ML-based solutions, even with fair discriminative abilities, have the potential to enhance
dairy welfare monitoring.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Implications

This study provides insights into the potential application of
machine-learning algorithms in dairy cow welfare assessment.
We tested whether sensors and machine-learning algorithms can
replace humans in classifying dairy cows into good, moderate
and poor welfare classes. Our results show that humans cannot
yet be substituted by machine learning. However, artificial intelli-
gence can complement human evaluation. The welfare evaluation
systems that integrate the human and machine-learning evalua-
tion could improve the welfare monitoring of dairy cows, by pro-
viding real-time welfare evaluation. Solutions for a continuous
welfare monitoring support efforts to achieve more socially accept-
able dairy production.
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Introduction

Animal welfare is a complex concept (OIE, 2019), and verifying
the welfare status of animals requires intricate monitoring tools. A
recent market review of dairy welfare quality schemes revealed
that current protocols are comprehensive in welfare assessment
by covering various aspects of housing, feeding, health and beha-
viour of dairy cows (Stygar et al., 2022), but at the same time, wel-
fare schemes are lagging in terms of the number of measures
evaluated based on the animals and the utilisation of data rou-
tinely generated on farms.

Sensor technologies are commonly used on dairy farms in many
European Union countries, with approximately 40–70% of farms
using at least one technology (e.g. Lora et al., 2020; Utriainen
et al., 2019). Also, the global market of dairy sensor technologies
consists of a variety of products, with around 130 commercial sen-
sors with potential application for animal-based welfare assess-
ment (Stygar et al., 2021). Despite such a wide distribution of
sensors, so far only one welfare quality scheme allows the direct
application of sensor technologies for providing information, and
even in this scheme only on one welfare measure, i.e. grazing time
(Stygar et al., 2022). The main reason for the underutilisation of
sensors for obtaining dairy cattle welfare information is likely
the lack of algorithms aggregating information from several sen-
sors and welfare domains to provide an individual welfare score.

Recent studies demonstrated that sensor data in combination
with regression analyses or machine-learning (ML) algorithms
can be used to estimate the complex traits of animals, such as
the resilience rank of cows (Adriaens et al., 2020) or health status
(Gertz et al., 2020). At the same time, works on algorithms using
sensor data for providing animal welfare information for con-
sumers and producers have been initiated (Llonch et al., 2021).
Despite certain weaknesses of sensors, e.g. focus on measurable
indicators rather than meaningful ones (Tuyttens et al., 2022),
the application of precision livestock farming (PLF) solutions is
an opportunity for continuous monitoring of animal welfare status,
which can bring benefits for the whole dairy value chain.

Sensors provide the individual animal information on animal
activity, behaviour and productivity, and therefore have the poten-
tial for animal-based welfare assessment (Stygar et al., 2021).
However, to develop and validate a welfare classification algorithm
using sensor data, a gold standard for animal welfare is needed.
Table 1
The general information of dairy cattle farms enrolled for the study.

Herd 1 2

Country Finland Finland
Type of farming C O
Breed HF, NR HF, NR
Average number of dairy cows 130 365
Average number of heifers 76 130
Average length of productive life (months)1 55 49
Type of bedding (for milking cows)2 Wood

shavings
and mattress

Recycled manure
solids and mattress

Installed milking systems4 Parlour AMS
Access to pasture or outdoor area No Yes

Mortality rate (%) of dairy cows5 4 4

Abbreviations: C = Conventional, O = organic, HF = Holstein Friesian, NR = Nordic Red, A
1 Calculated as an average number of months from birth to slaughter for all milking c
2 All herds were kept in free stall barns.
3 Pile-matured dry manure from cows and heifers.
4 Herd 1 used parlour system; however, data on individual milking records were not
5 Percent of involuntary culling.

2

This gold standard can be based on existing protocols, such as
the Welfare Quality protocol (WQ�) for dairy cows (Welfare
Quality�, 2009). The original aggregation system of WQ� approach
permits the integration of various measures (animal, management
and resource-based) into an overall welfare classification on the
herd level. However, for animal-based sensor application, a higher
level of label granularity (increase from herd to individual level) is
needed.

The main objective of this study was to develop and test the
performance of a machine-learning algorithm based on gradient
tree-boosting approach in classifying individual dairy cattle wel-
fare status from sensor data and farm records. In this study, we
sought a welfare assessment on individual animal level on a daily
basis, therefore, animal-based measures from WQ� protocol were
assigned with weight and duration, and summed up to obtain a
daily animal welfare index. The proposed welfare index is an adap-
tation of WQ�.

Material and methods

Welfare glossary

The following terms and definitions were used in this study:

Welfare measure – measure taken on an animal that is used to
assess a welfare indicator.
Welfare index – sum of all welfare measures taken on an animal,
on a given day (ranging from 0 to 23).
Welfare class - synthesis of welfare index, allocating animal to a
welfare category (good if welfare index < 2, moderate if welfare
index = 2 or 3 and poor if welfare index > 3).
Herd welfare rank – rank of a herd within a grading system
based on the average welfare class of all assessed animals in
testing set.

Herds and data sources

The study was conducted between 3 February 2021 and 17 June
2021 in six herds located in Finland, Spain and Italy. Altogether,
318 dairy cows were included in the study. The cows were selected
to represent various lactation numbers and days in milk. The gen-
eral description of the herds is presented in Table 1. Dairy cows
3 4 5 6

Italy Italy Spain Spain
C C C C
HF HF HF HF
320 75 220 125
120 65 150 90
51 53 58 68
Straw and mattress Straw and mattress Compost3 Compost3 and rice husk

Parlour AMS Parlour Parlour
Outdoor dry cows
(1 month)

Outdoor dry cows
(2 months)

No No

2 5 2 2

MS = automatic milking system.
ows in study farms during 2021.

available.
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were kept in free stalls. During the study period, data with rele-
vance to animal welfare were collected. The sensor data (ac-
celerometers and milk recording devices) as well as farm records
(e.g. lactation stage and parity of the cows) were used as predictor
variables. The target variable (welfare class) was constructed using
animal-based evaluation performed according to WQ� protocol,
veterinary treatments and meteorological data (temperature,
humidity).

Sensor data and farm records

Neck-mounted accelerometers (Ida, Connecterra, the Nether-
lands) were deployed in all six herds. Time data obtained from
accelerometers on lying, standing, walking, rumination, eating
and other behaviours were available in 24-hour intervals. During
the 24-hour time budget, individual cow data on lying, standing,
walking, as well as rumination, eating and other behaviour sum
up to 24. Data on other behaviour should be interpreted as activity
not related to rumination or eating, e.g. drinking or inactivity.

Problems with missing data were recognised. This was mainly
due to lost connection between the sensor and the receiver. There-
fore, 6 days with accelerometers being switched off were removed.
Additionally, observations for cows with daily lying time >1 000
minutes and <333 minutes were considered as outliers and
excluded from the data set. In total, 422 observations for 149 cows
were removed. The limits for the outliers were chosen based on the
distribution of daily lying time presented in (Tucker et al., 2021).

Data on milk yield were collected from automatic milking sys-
tems (AMSs) installed in herd 2 (Finland; Lely Industries N.V.,
Maassluis, the Netherlands) and herd 4 (Italy; DeLaval Tumba,
Sweden). In herd 3 (Italy), a parlour system was implemented
using milk meters connected to Afimilk management system
(Afimilk, Kibbutz Afikim, Israel). In herds 5 and 6 (Spain), the milk
yield was recorded with GEA milking parlour (GEA Farm Technolo-
gies GmbH, Bönen, Germany). Herd 1 (Finland) did not have daily
individual milk production data available. However, milk data
were estimated using monthly milk recording system and histori-
cal data (method described in Supplementary Material S1).

Additionally, information on animals enrolled in the study, such
as lactation number and days in milk (DIM), were collected from
farm records. An overview of sensor features and farm record data
is presented in Table 2. The mean and distribution of behavioural
indicators of sensor data are shown in Fig. 1a and b.

Welfare assessment

On-farm welfare evaluation
Trained welfare assessors visited the farms three times during

the study period, on approximately days 1, 45 and 90. In each
country, the evaluations were performed by the same assessor
Table 2
Overview of sensor features and farm records collected from six dairy cattle herds.

Herd 1 2

Number of cows included in the study 52 36
Average days in milk 179 87
Average lactation number 2.2 1.5
Number of daily sensors observations 3 677 2 805
Daily average milk production (kg) ± SD 30.8 ± 6.7 33.02 ± 6.1
Lying1 (h) ± SD 9.9 ± 1.1 10.4 ± 1.1
Standing1 (h) ± SD 10.6 ± 1.2 10.8 ± 1.1
Walking1 (h) ± SD 3.5 ± 0.9 2.9 ± 0.8
Rumination2 (h) ± SD 4.3 ± 1.3 4.9 ± 1.5
Eating2 (h) ± SD 6.8 ± 1.1 7.7 ± 1.0
Other behaviour2 (h) ± SD 13.0 ± 1.8 11.5 ± 2.1

1 Lying, standing, walking time daily observations for individual cows sum up to 24 h
2 Rumination, eating, other behaviour time daily observations for individual cows sum

3

(authors L.F. herds 1–2, G.B. herds 3–4, Y.G. herds 5–6). On these
visits, on-farm animal welfare data were collected according to
the WQ� (Welfare Quality�, 2009) guidelines. Only animal-based
measures that could be assessed at individual cow level were
included. These measures covered three out of the four WQ� prin-
ciples; good feeding (1 out of 2 measures), good housing (3 out of 8
measures) and good health (9 out of 13 measures). The avoidance
distance test from the principle of appropriate behaviour had to be
excluded from the data as in both Finnish farms (1 and 2) the feed
bunk design hindered testing because of a lack of sufficient space.
Descriptive statistics of the welfare measures are presented in Sup-
plementary Table S1.

Veterinary treatment records
Farm records on animal health were used to complement the

data obtained from the on-farm welfare evaluation to account for
any health issues that could develop between farm visits. Each
farmer was asked to provide farm records of disease diagnosis
and treatments for all animals enrolled in the study for the dura-
tion of the trial. The health issues included in the data were: clin-
ical mastitis, dystocia, respiratory diseases, reproductive diseases
andmetabolic disorders. Most of these measures are evaluated also
in WQ�, e.g. recorded treatments for mastitis or dystocia are
assessed at group level, whereas symptoms of respiratory diseases
(nasal discharge) or reproductive diseases (vulvar discharge) are
evaluated during the on-farm visits. A summary of all recorded
treatments in the herds is presented in Supplementary Table S2.

Meteorological data
To incorporate information on environmental conditions and

possible heat stress, we collected meteorological data from the
locations of all farms between February and June 2021 (Visual
Crossing Corporation, 2021). The meteorological data comprised
the daily maximum temperature (T) (�C) and relative humidity
(RH) (%), and these values were used to calculate the daily
temperature-humidity index (THI) using the following equation
(NRC, 1971):

THI ¼ ð1:8 � T þ 32Þ
� ½ð0:55 � 0:0055 � RHÞ � ð1:8 � T � 26Þ�

Based on previous studies (Polsky and von Keyserlingk, 2017),
we assumed that mild heat stress was present with indices
between 71 and 79, and moderate to severe heat stress was pre-
sent with indices >79.

Welfare index and welfare class
The aim of the welfare index, similarly as in the Welfare-

Adjusted Life Year index (Teng et al., 2018), was to quantify the
degree of impaired welfare on individual animal level. A daily ani-
mal welfare index was created by combining the on-farm animal
welfare measures, farm records of diagnosed diseases and
3 4 5 6

56 51 60 63
141 218 135 146
1.8 2.2 2.1 2.2
4 812 4 438 6 050 5 920
37.0 ± 7.2 24.4 ± 11.3 40.9 ± 5.5 39.8 ± 8.9
10.1 ± 1.3 10.7 ± 1.3 9.6 ± 1.3 10.8 ± 1.3
11.3 ± 1.4 10.2 ± 1.3 10.7 ± 1.4 10.4 ± 1.2
2.5 ± 0.8 3.1 ± 0.9 3.7 ± 0.8 2.7 ± 0.7
4.9 ± 1.3 3.6 ± 1.0 3.7 ± 1.3 3.5 ± 1.2
8.0 ± 0.9 6.8 ± 1.2 7.8 ± 1.1 8.2 ± 1.2
11.2 ± 1.8 13.6 ± 2.0 12.4 ± 1.8 12.2 ± 2.0

ours.
up to 24 hours.



Fig. 1. Boxplot of (A) lying, standing, walking, (B) eating, ruminating and other behaviour time (in hours) for different dairy cattle herds (1–6) and various welfare classes.
Abbreviations: G-good, M-moderate and P-poor.
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meteorological data. The severity (0 = no welfare problem, 1 = mild
to moderate welfare problem, 2 = severe welfare problem) and the
duration (1–45 days) of the different welfare issues were estimated
by the expert opinions of the authors and based on the relevant sci-
entific literature. For those welfare measures that used information
from both theWQ� and the farm records (e.g. respiratory diseases),
the on-farm measure (e.g. nasal discharge) was allocated with
severity rate 1 and the veterinary treatment (e.g. antibiotic treat-
4

ment for pneumonia) was allocated with severity rate 2. The final
animal welfare index for each cow was obtained by summing up
the severity scores on daily basis. A cow could receive a score from
0 to a maximum of 23. The example of an index for a cow that
developed severe lameness and deteriorated in terms of cleanli-
ness and integument alterations is presented on Fig. 2. Based on
the index, each cow was classified in a good (0–1), moderate (2–
3), or poor (>3) welfare class. Descriptions of the welfare measures,



Fig. 2. The welfare index obtained from an example cow which had problems with leg cleanliness and moderate integument alterations (first Welfare Quality� assessment),
but later developed lameness and severe integument alterations (second Welfare Quality� assessment), which further deteriorated to problems with leg, udder and flank
cleanliness, severe integument alterations and lameness (third Welfare Quality� assessment). The colours denote the welfare class, with moderate (2–3) marked in yellow
and poor (>3) marked in blue. The vertical lines indicate Welfare Quality� scoring days.
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their severity and duration are presented in Table 3. The plot of
welfare index per farm is shown in Fig. 3. The total dataset con-
tained 8 166 good, 11 478 moderate and 8 108 poor welfare
classes. To assess howmuch welfare class changed after WQ� eval-
uation, we run paired sample t-test statistics on subsequent obser-
vations (the day proceeding WQ� assessment and the day with
WQ� assessment).
Model building

Two versions of the model were tested in this study: (1) a global
model tested on an unseen herd and (2) a herd-specific model
tested on an unseen part of the data from the same herd. The
general-purpose model served as an example on how the model
performs on a herd not previsited by the evaluator, while the
herd-specific model represents a scenario where information on
animal welfare gathered by human observer for this given herd
is available in the model training phase. The performance of the
models was verified using a cross-validation procedure. For a
general-purpose model, 6-fold cross-validation resampling based
on herd number was applied (data from 5 herds used in training
set, data from 1 herd used in testing set). In the herd-specific
model, 3-fold cross-validation based on time after WQ assessment
was implemented and model data from each herd were divided
into 15-day intervals. The total time was 45 days, of which 30 days
were used for training and 15 for testing.
Sensor features processing
Data used for model building and testing, after outliers’

removal, were preprocessed with smoothing and normalisation
procedures. The smoothing procedure based on moving average
was applied to remove noise (e.g., measurement error) from the
time series sensor data (milk meter and accelerometer recordings).
5

The normalisation was implemented to ensure that data between
farms were comparable.

The smoothing procedure assumed selection of window widths
(in this study, windows of 5, 7 and 10 days were tested) and
obtaining an average and SD estimate. Additional feature process-
ing concerned calculating a linear regression for different time
windows (5, 7 and 10 days) and storing the slope as well as obtain-
ing the difference between the average in various time windows
(between features means from 7- and 5-day windows as well as
10- and 5-day windows). Therefore, for example, if a decreasing
pattern in a cow’s lying time was observed over a period of 5, 7
or 10 days, the slope and difference feature will be negative, and
if the opposite was observed, the slope and difference feature will
be positive.

Two different normalisation procedures were tested, namely
daily rank and Z-score. Both procedures were applied to individual
measurements within each herd and resulted in different distribu-
tion of variables. Rank was based on rank transformation of the
sensor features within herd for each day resulting in values
between 0 and 1. The Z-score normalisation was performed using
the following equation:

Z ¼ x� X
�

r

where X
�
is the daily mean and r is the daily SD of a given sensor

feature in each herd.

Machine-learning algorithm
The XGBoost classification algorithm based on the gradient

tree-boosting approach (Chen et al., 2022) was applied. The objec-
tive of the model was multi-class classification (‘multi:softprob’)
which allowed the categorisation of the test data into the multiple
labels of good, moderate and poor welfare. The learning task was



Fig. 3. The welfare index obtained in six herds for all enrolled cows during the study period. Colours indicate various welfare classes: green colour for good (index < 2), yellow
for moderate (index = 2 or 3) and blue for poor (index > 3) welfare.

Table 3
Measures from on-farm animal welfare assessment, veterinary treatment data and meteorological data used to obtain daily individual-level dairy cow welfare index, grouped
according to Welfare Quality� principles.

Welfare
principle

Measure Severity Duration
(days)1

Reference

Good feeding Body condition score (normal, very fat, very lean)2 0/1/2 45 Roche et al., 2009
Good housing Cleanliness, udder (clean/dirty)2 0/1 45 Sant’Anna and Paranhos da Costa, 2011

Cleanliness, legs (clean/dirty)2 0/1 45
Cleanliness, flank (clean/dirty)2 0/1 45
Thermal comfort3 (no heat stress/heat stress/ severe heat stress) 0/1/2 1 Polsky and von Keyserlingk, 2017

Good health Integument alterations (not present/hairless patch/lesion and/or swelling)
2

0/1/2 45 Frondelius et al., 2020; Vokey et al., 2001

Locomotion score (not lame, lame, severely lame)2 0/1/2 45 Groenevelt et al., 2014; Hoblet andWeiss, 2001
Mastitis (not present/treatment for clinical mastitis) 4 0/2 21 Fogsgaard et al., 2015
Respiratory disease (not present/ nasal discharge based on Welfare
Quality�/treatment for respiratory disease)5

0/1/2 7 Smith, 2014

Ocular discharge (not present/present)2 0/1 7 Smith, 2014
Reproductive disease (not present/ vulvar discharge based on Welfare
Quality�/treatment for inflammatory reproduction disease)5

0/1/2 7 Neave et al., 2018

Dystocia4 (not present/ treatment for dystocia) 0/2 7 Smith, 2014
Diarrhea2 (not present/present) 0/1 7 Smith, 2014
Metabolic disorder (not present/treatment for metabolic disorder)4 0/2 7 Stangaferro et al., 2016

1 Depending on the measure, the duration will start from the day of Welfare Quality� assessment or the day of treatment registration in farm records.
2 Based on Welfare Quality� assessment performed on cows enrolled in the study.
3 Based on temperature humidity index, heat stress was present between indices 71–79, severe heat stress was present with indices >79.
4 Based on farm records (treatment records or notes with diagnosis).
5 Based on both Welfare Quality� evaluation and farm records (treatments records were checked, if cow received antimicrobial treatment due to respiratory disease or

reproduction disease vulvar or nasal discharge was changed to 2).
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set as a non-linear tree algorithm (‘‘gbtree”) with suitable booster
parameters. The model hyperparameters were tuned using a ‘‘ran-
dom search” approach on training set. To implement the random
search, firstly, we determined the range of values and increments
of the relevant parameters (Supplementary Table S3). Secondly, a
random set of parameters was sampled, used for model building
in a ten-fold cross-validation based on cows’ identification number
6

and evaluated based on classification performance. The procedure
was repeated for n = 100 times. The parameter set with the highest
predictive performance (accuracy) was selected for final model
testing.

To address the problem of unbalanced data set, namely a low
proportion of animals with good or poor welfare, compared to
moderate welfare, as well as to increase importance of observa-
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tions closer to the assessment dates, a weight vector was defined
and used as instance weights in models cost function (Chen
et al., 2022). The weight vector was calculated using the following
equation:

weighti;j ¼ 1� 1=45DayNrð Þ � nj

n

� �

where weighti;j is assigned to observation from cow i with welfare
class j, given the information on total number of animals (n), num-
ber of animals in particular welfare class nj, as well as the number of
days after the on-farm assessment visit (DayNr). Constant numbers
from the equation were used to calculate decreasing importance
between day 0 and day 45 after the welfare assessment. For exam-
ple, observations made on days 0, 10 and 45 after the WQ� assess-
ment were given weights of 1.00, 0.78 and 0.01, respectively.
Processed sensor features were supplemented with data on lacta-
tion stage (days in milk) and lactation number.

Model validation
The multiclass XGBoost algorithm returns the probability val-

ues of a cow being in a specific welfare class (good, moderate or
poor). The classification performance of the algorithm was
assessed using several measures: sensitivity, specificity, multiclass
area under the receiver operating characteristic curve (AUC), and
balanced accuracy (BA). The BA was calculated simply as the arith-
metic mean of sensitivity and specificity in predicting good, mod-
erate and poor welfare.

The classification results obtained in each tested scenario con-
cerning model type, smoothing and normalisation procedure were
Table 5
Results of model performance dairy cow welfare classification for different normalisation

Tested model versions Smoothening and
normalisation strategy1

Sensitivity S

The global model (the 6-fold cross
validation, train on five herds,
test on remaining)

None 0 0.42 ± 0.22 0
Rank 5 0.39 ± 0.22 0
Rank 7 0.43 ± 0.22 0
Rank 10 0.41 ± 0.23 0
Z-score 5 0.43 ± 0.23 0
Z-score 7 0.42 ± 0.23 0
Z-score10 0.41 ± 0.24 0

The herd-specific welfare classification
model (the 3-fold cross-validation)

None 0 0.61 ± 0.18 0
Rank 5 0.62 ± 0.16 0
Rank 7 0.63 ± 0.16 0
Rank 10 0.62 ± 0.16 0
Z-score 5 0.64 ± 0.17 0
Z-score 7 0.62 ± 0.17 0
Z-score 10 0.63 ± 0.16 0

Abbreviations: AUC = area under the operating characteristic curve.
1 Number refers to the length of the time window used for calculating moving averag

Table 4
Welfare evaluation (actual, predicted and herd ranking) for all dairy cattle herds in
the study. The predicted values of herd welfare were obtained using herd-specific
welfare classification model Z-score 5.

Herd number Actual welfare1 Predicted welfare2 Herd ranking
(actual-predicted)3

1 2.39 ± 0.63 2.27 ± 0.55 6–6
2 2.18 ± 0.68 2.11 ± 0.50 5–5
3 1.94 ± 0.76 1.79 ± 0.56 2–2
4 2.10 ± 0.75 2.09 ± 0.70 4–4
5 1.60 ± 0.68 1.36 ± 0.62 1–1
6 2.04 ± 0.78 1.98 ± 0.50 3–3

1 An average ± SD welfare class in testing data set.
2 An average ± SD predicted welfare class.
3 Herds were ranked from the best (1) to the worst welfare (6).
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presented as mean and SD. Additionally, the mean value of the
fractional contribution of each feature to the model based on the
total gain was calculated. Finally, the predictions from the model
were used to estimate the herd welfare rank.

Data management, plotting, model building and testing were
done using the R (R Core Team, 2017) language version 4.2.1
extended with XGBoost (Chen et al., 2022) and pRoc (Robin et al.,
2011) packages. All calculations were done using standard laptop
64bit Windows 10 computer equipped with Intel� CoreTM i5-
1235U processor 4.4GHZ and 16 GB RAM.

Results

Table 4 presents the actual average welfare obtained in all
herds. The worst welfare was found in herd 1 (welfare class was
on average 2.4 ± 0.6), while the best welfare was observed in herd
5 (on average 1.6 ± 0.7). The highest variation in the welfare class
was detected in the herd 6 (SD = 0.8). Paired sample t-test statistics
for welfare classes on day proceeding WQ� assessment and day
with WQ� assessment are presented in Supplementary Table S4.
The results indicate significant differences between two evaluation
days in six out of 12 analysed cases.

Model performance

Averaged results obtained from two model versions run under
different smoothing and normalisation strategies are presented
in Table 5. The results show that the classification ability for the
general-purpose model is close to a random classifier, with the
average sensitivity and specificity of 0.41 and 0.68, respectively,
and an AUC value of 0.52. The performance of the herd-specific
models varied slightly depending on the data preprocessing strat-
egy, but for selected normalisation and smoothening strategies
model reached acceptable discrimination ability (AUC � 0.70,
(Hosmer et al., 2013)).

The highest classification performance (AUC = 0.70) was
achieved using a 5-day time window for the smoothing strategy
and Z-score transformation as the normalisation strategy. The best
classification performance was obtained in the herd 1 (AUC = 0.77),
while the lowest performance evaluation was reached in herd 6
(AUC = 0.63). Based on the BA values calculated for each welfare
class, the highest classification performance was obtained for cows
in poor welfare, followed up by cows in good welfare (BA of 0.77
and 0.71, respectively). Cows in moderate welfare classes were
often misclassified by the model (BA of 0.67).
procedures and testing options (mean ± SD).

pecificity AUC Balanced accuracy for welfare class

Good welfare Moderate welfare Poor welfare

.69 ± 0.14 0.53 ± 0.04 0.51 ± 0.07 0.54 ± 0.09 0.61 ± 0.13

.68 ± 0.13 0.53 ± 0.04 0.48 ± 0.06 0.51 ± 0.07 0.61 ± 0.13

.68 ± 0.13 0.53 ± 0.03 0.52 ± 0.05 0.52 ± 0.06 0.62 ± 0.13

.69 ± 0.13 0.53 ± 0.03 0.52 ± 0.04 0.52 ± 0.03 0.60 ± 0.12

.70 ± 0.12 0.52 ± 0.02 0.53 ± 0.07 0.54 ± 0.05 0.62 ± 0.13

.68 ± 0.13 0.52 ± 0.04 0.52 ± 0.07 0.52 ± 0.05 0.61 ± 0.13

.68 ± 0.12 0.51 ± 0.03 0.53 ± 0.11 0.52 ± 0.07 0.58 ± 0.15

.78 ± 0.10 0.66 ± 0.07 0.66 ± 0.11 0.65 ± 0.08 0.78 ± 0.06

.79 ± 0.09 0.68 ± 0.06 0.67 ± 0.10 0.66 ± 0.07 0.76 ± 0.06

.79 ± 0.10 0.68 ± 0.07 0.70 ± 0.10 0.67 ± 0.08 0.76 ± 0.07

.79 ± 0.10 0.69 ± 0.08 0.69 ± 0.11 0.66 ± 0.09 0.75 ± 0.07

.80 ± 0.10 0.70 ± 0.09 0.71 ± 0.12 0.68 ± 0.09 0.77 ± 0.07

.79 ± 0.10 0.68 ± 0.07 0.69 ± 0.10 0.66 ± 0.08 0.76 ± 0.06

.79 ± 0.10 0.69 ± 0.06 0.71 ± 0.10 0.67 ± 0.08 0.75 ± 0.06

e.
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The herd welfare rank based on actual and predicted values (us-
ing herd-specific welfare classification model Z-score 5) is pre-
sented in Table 4. Even though, on average, the model predicted
herds better welfare than was observed, all herds were ranked cor-
rectly with herd 1 having the worst welfare and herd 5 having the
best welfare.

The results of the XGBoost hyperparameter optimisation for the
three best models are shown in Supplementary Table S5. The Eta
and subsample means were almost identical for all three models.
The largest differences between the tested versions were observed
for the parameter nrounds, which indicates the number of decision
trees in the final model and Gamma which specifies the minimum
loss reduction required to make a split.

The average computation time for the training and testing
phase in herd-specific model for single fold was 2 minutes 28 sec-
onds. However, this step did not include the time needed to pre-
process the data (data loading, normalisation and smoothing).
The most important predictor variables

The most important predictor variables (the first five features
with the highest relevant contribution) for all tested models are
presented in Supplementary Table S6. For the general-purpose
model, the most frequently selected variables were lactation num-
ber, daily milk yield, DIM, walking and the slope of linear regres-
sion for milk yield. In the herd-specific version daily milk yield,
DIM, lactation number, walking and other behaviour time had
the highest relative importance in the model.
Discussion

In this study, two ML-based algorithms were constructed and
tested: (1) a global model tested on an unseen herd, and (2) a
herd-specific model tested on an unseen part of the data from the
same herd. Our results indicated that the global model had a low
performance (AUC = 0.53 ± 0.03), whereas the herd-specific model
version reached an acceptable discrimination ability (AUC = 0.70
± 0.09). The best classification performance was obtained for cows
in poor welfare, followed up by cows in good welfare. Despite the
misclassification of individual animals (especially for animals with
moderate welfare), predictions obtained from the model allowed
accurate herd ranking. However, with regard to herd ranking, the
results must be interpreted with caution due to the small herd
sample size and relatively short observation period.

As an example of the difficulties in establishing a common
model structure, Adriaens et al. (2020) reported the lack of a com-
mon trend for predicting dairy cattle resilience based on sensor
data, while Naqvi et al. (2022) demonstrated reduced performance
of mastitis detection models with increased variability in milk pro-
duction. Cow behaviour is related to welfare. For example, lying
time is higher in lame cows and lower in those with mastitis
(Tucker et al., 2021). In our study, lying time increased in some
herds as welfare deteriorated, but the opposite pattern was
observed in other herds (Fig. 1a). This inconsistency may explain
why behavioural features have relatively low importance in the
model and why finding a common model across herds for welfare
prediction remains a challenge.

Cows’ welfare is usually evaluated using more than two classes
(e.g. Welfare Quality�, 2009); therefore, the algorithm presented in
this paper was defined as a multi-class classification problem.
Whereas the limits of the welfare classes were chosen to obtain
a balanced data set, the final number and limits of welfare classes
should be selected taking into account possible trade-offs in classi-
fication outcomes, as demonstrated for example in simulation
studies on lameness management (Edwardes et al., 2023). Our
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results showed that the model classification performance for cows
in moderate welfare was low, which could be caused by no
changes in behaviour or production for animals with mild welfare
problems (e.g., cows with cleanliness issues) or due to measure-
ment error originating from sensor data. Similar difficulties with
misclassification of animals with moderate welfare problems have
been noted in previous studies predicting lameness scores (e.g.
Frondelius et al., 2022; Garcia et al., 2014). In order to enhance
practical relevance, the model’s accuracy should be further
improved. For example, to increase the predictive power of beha-
vioural data, further information on the reproduction status of ani-
mals (e.g. estrus detection) could be included as model variables.
Accurate data labelling is essential for the performance of algo-
rithms. The comparison between the welfare classes obtained on
the day proceding the WQ� assessment and the day when WQ�

assessment was performed showed significant differences
between the group means of the welfare classes for select herds
and assessment days. This result may indicate a certain degree of
imprecision in the welfare label. The approach adopted in this
study, concerning the frequency of farm visits required to obtain
a welfare label, was a compromise between accuracy and cost of
the assessment. To compensate for potentially imprecise labelling,
we implemented a weighting strategy by increasing the contribu-
tion of the welfare labels closer to the assessment days to the loss
function. In order to reduce the problem of inconsistent data anno-
tations, future efforts should focus on combining human and auto-
mated data labelling approaches. For more accurate labelling,
human evaluation could be supplemented by alarms generated
by sensor systems other than those used for welfare prediction
(e.g. sensors monitoring milk properties).

Recently, Gertz et al. (2020) demonstrated that the XGBoost
classification approach can be successfully implemented to predict
‘‘sick” and ‘‘healthy” cows. When it comes to the herd-specific
model version for welfare classification, the implementation of
XGBoost yielded fair performance results. There might be several
metrics to measure the feasibility of ML models for welfare assess-
ment, but in the case of this study, perhaps the most obvious
would be to compare the accuracy (for individual animal and herd
ranking) and speed of human evaluation with the ML-based
approach. In-person animal welfare assessments are not free from
errors (e.g. Czycholl et al., 2018). Human performance in assessing
animal welfare may vary and depend on, among others, the expe-
rience of the assessor (Katzenberger et al., 2020) or the complexity
of the assessment (Schlageter-Tello et al., 2015). Therefore, further
testing is needed to provide evidence on the performance of the
model in comparison to human observers with different levels of
experience. A major difference between human and ML-based wel-
fare evaluation is in the time needed to perform the evaluation.
While the collection and processing of the multiple measures in
a single herd by a human observer can take several hours
(Welfare Quality�, 2009), application of the ML algorithm, once
the sensors are in place on the farm, could reduce this time to
few minutes. After the necessary training period with on-farm
in-person evaluation, welfare classification can be done in real-
time, as soon as the data from the herd is available for the model
inputs, and in a continuous manner. Therefore, even though the
presented models reached only acceptable classification abilities,
the tools may still be useful in practical conditions, for example
by providing day-to-day welfare assessment of individual cows.

One of the main aims of this study was to design a flexible mod-
elling framework for animal welfare classification. As there might
be more than one welfare definition, e.g. due to legal requirements
or consumer preferences (Stygar et al., 2022), we acknowledge that
the model labelling method can change based on the user prefer-
ences. Therefore, in the case of this study, as important as obtain-
ing results, was the testing process and the opportunity to learn
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about the unexplored concept of model-based welfare assessment.
This study helped us to pinpoint potential barriers and difficulties
in the development of sensor-based welfare assessment.

At this stage of the development, equally important to the
model performance statistics are design policies which could facil-
itate the successful implementation of the welfare monitoring
platform in the commercial settings. We have identified four key
elements which might impact the implementation of ML-based
welfare assessment, namely (1) model robustness, (2) welfare def-
inition, (3) missing predictors, and (4) stakeholder engagement in
the designing phase. Each of these elements is discussed below.

The results of this study suggest that due to the substantial dif-
ferences between herds, dairy cattle welfare classification on an
unseen herd seems to be unfeasible and a training period with
label data is necessary to improve model predictions. It is possible
that by significantly increasing the number of farms and the dura-
tion of training data collection in each farm for training of the algo-
rithm, better accuracy could be achieved. Anyhow, stand-alone
systems based on sensor data might still be inaccurate and a com-
bination of in-person and algorithm-based welfare evaluation will
help to develop a more reliable, real-time dairy cattle welfare
assessment. The direct consequence of low performance of the
general-purpose model is an increase in the costs of assessment,
as farms would need to be visited by evaluators to obtain initial
information on welfare status. On the other hand, one might argue
that the evaluation visits are unavoidable. The initial training per-
iod on herd-specific data might be necessary in case the algorithm
becomes a part of a larger welfare evaluation platform using
devices from different suppliers. In addition, the calibration peri-
ods with in-person evaluation might be necessary due to beha-
vioural deviations over time, caused by substantial changes in
farm management, such as adjustments in animal grouping.
Finally, the human-ML approach can be a preferable solution for
consumers who have expressed concerns about the implementa-
tion of various sensor technologies for welfare monitoring
(Krampe et al., 2021).

In the current study, WQ� (Welfare Quality�, 2009), which is
the most widely used and scrutinised animal welfare assessment
protocol (Brscic et al., 2021; Tuyttens et al., 2021), was adopted.
Nevertheless, when collecting data, difficulties with measuring
the appropriate behaviour measures, which are part of the welfare
definition according to WQ�, were encountered. Therefore, the nat-
ure of used methodology for data labelling (welfare definition)
might bring some difficulties in constructing the general method
for welfare algorithms applicable across European dairy farms. As
previous studies have criticised measures defined inappropriate
behaviour, for being insufficiently reliable for welfare assessment
(e.g. Bokkers et al., 2012), future efforts should focus on providing
simplified methods for measuring welfare.

When considering missing predictors, this study assumed the
availability of sensor data and the approach was therefore targeted
at farms using sensor technologies. In practice though, dairy com-
panies deal with farms with varying degrees of digitalisation.
Therefore, a strategy to handle missing sensor inputs needs to be
developed. In our study, one farm did not record individual milk
production. However, missing daily milk yields were extrapolated
from monthly farm milk yield test records. As a consequence, the
estimated milk yield data have a reduced variability and will not
indicate temporal pattern change due to welfare issues. In the
future, in case of missing sensor data, the potential of using alter-
native data sources, such as bulk tank registrations, should be
explored. The wider availability of sensor features (from camera-
based sensor technologies) might increase model precision but
would also limit the proposed animal welfare assessment method-
ology to only highly automated farms.
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The system should be designed to meet the needs of the end
users. For farmers, model precision and ability to provide feedback,
similarly as in WQ� (Roe et al., 2011), might be an important ele-
ment determining their interest towards on-farm application of
the system. Hence, it is essential for a welfare evaluation platform
to gather end-user opinions on the desired functionality of the sys-
tem. Consultations should be carried out with all interest groups,
including farmers, consumers, NGOs and companies, to explore
the potential of data-based solutions in providing animal welfare
information.

Conclusions

The main objective of this paper was to develop and test the
performance of a machine-learning algorithm in classifying dairy
cattle welfare status from sensor data and farm records. The final
evaluation of the performance of the proof-of-concept model for
welfare assessment will depend on the purpose of use by the end
users. If the model is intended as the tool for farmers’ decision sup-
port, accuracy should be improved to provide a reliable tool for
effective animal welfare improvements. On the other hand, for
identifying herds with specific welfare status for benchmarking
or labelling purpose, a minimum performance may have been
already achieved.

Machine-learning-based solutions, even with fair discrimina-
tive ability, have the potential to enhance the level of dairy welfare
monitoring, which is currently a concern across European Union
States.
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