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A B S T R A C T   

The role of forests in biodiversity assessment and planning is substantial as these ecosystems support approxi-
mately 80% of the world’s terrestrial biodiversity. Forests provide food, shelter, and nesting environments for 
numerous species, and deliver multiple ecosystem services. It has been widely recognised that forest vegetation 
structure and its complexity influence local variations in biodiversity. As forests are facing threats globally 
caused by human activities, there is a need to map the biodiversity of these ecosystems. The main objective of 
this review was to summarise the use of airborne laser scanning (ALS) data in biodiversity-related assessment of 
forests. We draw attention to topics related to animal ecology, structural diversity, dead wood, fragmentation 
and forest habitat classification. After conducting a thorough literature search, we categorised scientific articles 
based on their topics, which served as the basis for the section division in this paper. The majority of the research 
was found to be conducted in Europe and North America, only a small fraction of the study areas was located 
elsewhere. Topics that have received the most attention were related to animal ecology (namely richness and 
diversity of forest fauna), assessment of dead trees and tree species diversity measures. Not all studies used ALS 
data only, as it were often fused with other remote sensing data – especially with aerial or satellite images. The 
fusion of spectral information from optical images and the structural information provided by ALS was highly 
advantageous in studies where tree species were considered. Relevant ALS variables were found to be case- 
specific, so variables varied widely between forest biodiversity studies. We found that there was a lack of 
research in geographical areas and forest types other than temperate and boreal forests. Also, topics that 
considered functional diversity, community composition and the effect of spatial resolution at which ALS data 
and field information are linked, were covered to much lesser extent.   

1. Introduction 

Biodiversity refers to all the variation in lifeforms found at different 
scales of biological organisation on Earth, ranging from genes to eco-
systems. It is divided into genetic, species and ecosystem diversity 
components (United Nations, 1992). The variability between the ele-
ments within each level of organisation can be quantified as richness 
(the number of elements), evenness (the equitability of elements) and 
heterogeneity (the difference in the element form and function) (Bal-
vanera et al., 2014). Biodiversity is seen as a fundamental part of the 
Earth system as it offers a vast range of ecosystem services from which 
society obtains direct or indirect benefits (Duffy 2009). Much of the 
global biodiversity is in danger because of human-induced changes on 

ecosystems. Consequently, conservation, and future- and current-state 
assessment of biodiversity have caught both scientific and political in-
terest in recent decades (e.g. Millennium Ecosystem Assessment, 2005). 

Forests have a significant role in biodiversity-related assessment and 
planning because they support approximately 80% of global terrestrial 
biodiversity. They provide fundamental ecosystem services to society, 
such as provisioning services, e.g. timber, recreation and climate regu-
lation (Balvanera et al., 2014). While large scale biodiversity is under-
stood to be determined by climatic conditions, vegetation structure also 
has an influence on diversity and species distribution at smaller scales, 
such as within forested ecosystems (Zellweger et al., 2013a). Forest 
structure as a 3D complex is typically divided into two components: 
horizontal and vertical structures (Franklin and van Pelt, 2004; 
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McElhinny et al., 2005). Vertical structure highlights the distribution of 
the vertical vegetation profile and horizontal structure describes the 
distribution of vegetation in the horizontal dimension of a forest. Forest 
structure (and its complexity) influences species occurrence and distri-
bution in several ways: it modifies microclimatic conditions, provides 
breeding sites, affects the distribution and availability of resources and 
niches, and provides shelter from predators (Brokaw et al., 1999; LaRue 
et al., 2019; MacArthur and MacArthur 1961; Melin et al., 2014). When 
there is a greater number of niches and more resources available in a 
forest (i.e. more structural diversity), there is more likely to be greater 
diversity of species than in a forest with less of these features (Stein 
et al., 2014). For example, uneven-aged multi-species forests provide 
more micro habitats than even-aged forests (Gilbert and Lechowicz, 
2004; Savilaakso et al., 2021). In addition, the variation in terrain 
elevation (i.e. topography) has been found to influence species diversity 
at the local scale (Vogeler et al., 2014; Zhou et al., 2015). One relevant 
concept of the mutual relationship between the environment and in-
dividuals of a species is niche theory (e.g. Chase and Leibold 2003). It 
has numerous definitions, which include the requirement-based concept 
of an ecological niche that links the fitness of an individual to envi-
ronmental variables (e.g. Hutchinson 1957). As the large-scale mea-
surement of habitat structure and the reconstruction of 3-D vegetation 
characteristics using ground sampling is both time consuming and 
resource demanding, there is an evident need for more efficient methods 
of data collection. 

Current remote sensing (RS) methods, which include active and 
passive sensors, offer ecologically relevant data for large-scale biodi-
versity assessment of forests (Turner et al., 2003; Miura and Jones, 2010; 
Álvarez-Martínez et al., 2018). Remote sensing-based approaches to 
biodiversity mapping can generally be divided into modelling of habi-
tats and modelling of biodiversity distribution. The use of passive optical 
RS sensor data for biodiversity assessment has been studied extensively 
in recent decades and offers relevant data for the classification of 
vegetation types or for the definition of the horizontal structure of the 
landscape (Turner et al., 2003). However, the diversity of many taxa is 
also dependent on the vertical structure, which cannot be measured 
using solely optical sensor data (Vierling et al., 2008). One such tech-
nique to overcome this limitation is light detection and ranging (lidar) as 
it can be used to map both the horizontal and vertical vegetation 
structures at the landscape scale (Bergen et al., 2009). 

Lidar is an active remote sensing technology. As such, it does not 
require sunlight to offer reflected measurements of the targets (Dubayah 
and Drake, 2000; Wehr and Lohr, 1999). Instead, the lidar sensor emits 
light pulses (usually in the near-infrared wavelength) that reflect from 
the objects back to a detector in the sensor. Lidar systems can be 
spaceborne, airborne or terrestrial. Airborne laser scanning (ALS; or 
airborne lidar) is often used in 3D ecosystem assessments because these 
surveys cover large areas and such datasets have become increasingly 
available (Bakx et al., 2019). In general, ALS pulses penetrate the 
vegetation partially, thereby allowing the measurement of canopy and 
subcanopy conditions. Lidar data can be recorded either as discrete 
returns (DR), full-waveform (FW) or single photons. In DR-ALS systems, 
a fixed number of returns is recorded for each laser pulse (Wagner et al., 
2004). The FW-ALS system records the distribution of returned light 
energy and often contains more information than DR-ALS data (e.g. 
Adams et al., 2012). DR is the most often used form of ALS data. In-
formation offered by FW-ALS has been found to be useful in forestry 
applications that concentrate on species classification, single tree 
modelling and extraction of biophysical parameters (Maltamo et al., 
2014). In DR lidar systems, multiple (hundreds or thousands) photons 
are needed for the reliable detection of a single object. The much less 
studied single photon lidar is relatively new technology and it offers 
refined efficiency in photon collection (Yu et al., 2020). It has been 
shown to be suitable for the estimation of traditional stand attributes 
(Räty et al., 2022). Its greatest advantage over previous lidar systems is a 
larger coverage during a flight, which is due to a higher flying altitude 

(Matikainen et al., 2020). In most of the ALS systems, distance from 
object to the sensor can be calculated by determining the time interval 
between the sending of the laser pulse and the backscattered echo 
(Baltsavias 1999; Wehr and Lohr, 1999). The 3D-coordinates are pro-
vided for each echo by integrating the time measurement and infor-
mation from the GPS-IMU system, which measures the exact location 
and orientation of the ALS-platform for each submitted lidar pulse. In 
forest-related ALS analysis, the first processing step is typically the 
modelling of the ground surface, i.e. the generation of a digital terrain 
model (DTM). After this, the height of vegetation with respect to the 
ground is calculated by subtracting the DTM from height values of the 
original echoes. 

The ALS data offers multiple metrics to quantify the structural at-
tributes of forest habitats (Bakx et al., 2019; Davies and Asner, 2014; Hill 
et al., 2013). In general, they are statistics associated with the height 
and/or intensity values of the ALS echoes, which can be linked to at-
tributes of interest. These metrics can be roughly categorised into 
height, density and intensity metrics. Height metrics can further be 
divided into distribution metrics that describe the central tendency (e.g. 
mean), shape (e.g. skewness), dispersion (e.g. standard deviation) and 
percentiles of the ALS height distribution. Density metrics account for 
the proportion of returns in the fixed layers of a canopy or above/below 
a certain height limit. The intensity metrics represent the amplitude of a 
backscattered ALS echo or pulse, and they are dependent, for example, 
on the geometry and reflectance of a target. Metrics calculated from FW- 
ALS are mostly similar to DR lidar data. However, information on 
waveform enables the calculation of metrics that are inaccessible with 
DR lidar data, such as echo width. 

The two main approaches used to derive forest information from ALS 
data are the area-based approach (ABA) (e.g. Naesset 2002) and indi-
vidual tree detection (ITD) (e.g. Hyyppä et al., 2001). In ABA, ALS- 
metrics are calculated at the raster cell- or plot-level, and are used as 
predictor variables for the estimation of the attribute of interest. The 
most suitable metrics vary with regard to the variable of interest. Can-
opy height, for example, can be predicted by the mean height of the first 
echoes, maximum height or by using the height of the 95th percentile of 
echoes (Coops et al., 2016; Smart et al., 2012). In the ITD approach, the 
derivation of tree- or stand attributes is based on the prediction of tree 
characteristics from the segmented ALS data. It is also possible to 
segment the ALS echoes or a rasterised map into objects, such as trees or 
logs, for instance (Blanchard et al., 2011). This type of method is called 
the object-based approach and is more demanding both from a 
computational and technical basis than previous approaches (e.g. 
Blanchard et al., 2011). The required scale of information may also 
determine the method to be used (Maltamo et al., 2014), for example, it 
may be useful to detect dead standing trees at the tree-level. Similarly, 
when the structure of the forest stand is of interest, one could select ABA 
over ITD. 

Lidar technologies have become increasingly popular in the fields of 
ecology, biodiversity and conservation because they can characterise 
vertical and horizontal forest structures (Bergen et al., 2009; Davies and 
Asner 2014; Simonson et al., 2014). Bergen et al. (2009) suggested that 
information derived from ALS data can serve as a relevant proxy for 
species richness in vertically complex ecosystems, such as forests. 
Numerous studies have focused on the utilisation of ALS-based forest 
structural and topographical information to predict the diversity and 
richness of forest fauna, such as birds, mammals and insects (e.g. Klein 
et al., 2020; Vierling et al., 2011). Some studies have detected and 
classified dead wood (Chirici et al., 2018; Polewski et al., 2015b), which 
is an inseparable component of the diversity in forests. Furthermore, 
structural classification of a forest in terms of land cover (Bottalico et al., 
2014), canopy layering (Moran et al., 2018) and successional stage 
(Martinuzzi et al., 2013) can serve in habitat suitability assessments, for 
example. Tree size variation in the plant community is a known issue in 
forest inventories (Gobakken and Næsset 2004) and has been described 
in many studies by the coefficient of variation, standard deviation 

J. Toivonen et al.                                                                                                                                                                                                                               



Forest Ecology and Management 546 (2023) 121376

3

(Bottalico et al., 2017) and the Gini coefficient (GC) (Valbuena et al., 
2016a). 

In this paper, we provide a review of the use of ALS data in forest 
biodiversity assessment. We review studies where the main interest is 
the assessment of dead wood, lower canopy layers, fragmentation, gap 
dynamics, forest structural diversity and structural classification in 
terms of the different canopy layers, land cover classes and forest suc-
cessional stage. Also, we review topics concerning the richness and di-
versity of flora and fauna found in different types of forests and includes 
birds, mammals, insects, invertebrates, plants and trees. By structural 
diversity, we focus on variations in tree and crown heights and tree 
diameters, as well as on the spatial patterns of the trees in the forest. In 
the first stage, we describe the material gathering process and sum up 
the published studies in terms of their publication year, journal domain, 
the spatial extent and location of the study areas in order to highlight 
“hotspot areas” of research on this topic. We also present the distribution 
of study areas within ecoregions. In the second stage, we systematically 
examine the studies categorized by research topics (sections 3–9). Some 
studies covered more than one aspect and were, therefore, included in 
multiple categories. In the third stage, we summarise the current use of 
ALS data in assessments of forest biological and structural diversity and 
discuss prospects for its use in future studies. 

2. Material and methods 

In this review, literature searches in Scopus, Google Scholar and UEF 
Primo (search service for electronic materials at the University of 
Eastern Finland) were conducted between May 2021–July 2023. Key-
words used in the searches were carefully chosen to represent the topic 
of the review and to minimise the potential of excluding relevant 
studies. The selected keywords were “ALS”, “airborne lidar” or “airborne 
laser scanning” for the lidar component, “forest” or “forest structure” for 
the vegetation component and “biodiversity”, “forest type”, “dead 
wood”, “fragmentation”, “species diversity”, “species richness”, “suc-
cessional stage”, “understorey” and “animal ecology” were used sepa-
rately on each for the last component. These keywords were used in all 
possible combinations for the vegetation, lidar and last components. 
After the search, the number of articles was reduced by screening the 
articles, first by their title and then by abstract. Finally, the selected 
articles were verified by the full text. Also, a study could be included in 
this review if it was included in the references of another suitable study 
even though it was not found through a literature search. We excluded 
studies where the primary data were acquired with terrestrial, 

spaceborne or profiling lidar systems, and studies that used photo-
grammetric point clouds derived from aerial and satellite image data. In 
addition, studies where the main interest was the assessment of leaf-area 
index (LAI), canopy cover, primate habitats or were conducted in 
aquatic ecosystems, were excluded from this review. This was to limit 
the length and complexity of this paper. In total, 182 scientific articles 
were included in this review and all articles were published between 
2003 and 2022 (Fig. 1). Most of the research was conducted between 
2009 and 2018, with a peak occurring in 2016 when 17 studies were 
published (Fig. 1). There was a slight decline in the number of published 
articles during 2019 and 2020, although by 2022, the number of studies 
had rose to 2018 levels. 

The most common domain for publications was in remote sensing- 
oriented journals, which accounted for 45% of the studies (Fig. 2a). 
Approximately, one quarter of the studies were published in either 
ecology or forestry-related journals. A total of 134 studies (approxi-
mately 75%) only utilised ALS data (Fig. 2b). Both ALS and terrestrial 
laser scanning data were used in four studies, and approximately one 
quarter of studies used optical image data with ALS (Fig. 2b). There was 
a clear trend in the type of ALS data used: A total of 171 studies used 
discrete return signals from ALS in metrics calculation (Fig. 2c). Between 
2010 and 2022, FW-ALS was used only in 12 studies. Clear trends with 
regard to the use of this type of ALS data were not found. We classified 
study areas by their spatial extent, defined here as the spatial unit on 
which the study was conducted (Fig. 2d). Here, landscape level denotes 
a large heterogeneous area that consists of multiple different land-uses 
(e.g. different forest types). Stand level is defined as a rather homoge-
nous, small forest unit. 

The majority of the study areas was located in Europe and North 
America (Fig. 3). Note that there are more study areas than study arti-
cles, since some studies included data from numerous locations. A full 
list of studies categorised by their topics and the continent of the study 
areas is presented in Appendix A. 

Approximately 42% of the study areas were located in temperate 
broadleaved and mixed forests (Fig. 4). Both boreal and temperate 
coniferous forests were hosts for approximately 20% of the study areas. 
The remainder of the study areas were mainly located in Mediterranean 
and tropical forests – each accounting for < 10% of the study areas. 

Fig. 1. Histogram showing the annual frequency of forest diversity studies. Bars represent the total number of publications per year.  
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3. Forest type and successional stage 

3.1. Land cover classification 

The distribution of habitat types across large areas reflects potential 
species richness but its mapping has been a challenge for conservation 
practitioners. High-resolution maps that depict habitat distribution have 
mostly been derived from resource-consuming field inventories and 
from visual interpretation of aerial images (Evans 2006). 

In our review, the classification schemes of land covers varied be-
tween studies, but classes were typically named after the main tree 
species or the species group that was most representative of a landscape 
(Dalponte et al., 2008; Shoot et al., 2021; Simonson et al., 2013; Su et al., 
2016). Some studies defined the classes very precisely. For example, Hill 
and Thomson (2005) used the National Vegetation Classification scheme 
for woodlands and scrub of Great Britain and Bässler et al. (2010) used 
the Natura 2000 habitat classification scheme. Bottalico et al. (2014) 
employed a broader scheme as they classified forests as high forests, 
young and adult coppices. Sverdrup-Thygeson et al. (2016) used only 

two classes as they aimed to distinguish old managed and old near- 
natural forests. One study classified forests into four classes of forest 
naturalness (Sinclair 2021), while Vehmas et al. (2009 and 2011a) 
employed a very distinctive scenario with the aim to classify mature 
stands based on site fertility types. Pippuri et al. (2016) also classified 
forest plots based on site fertility, but they also used other classification 
scenarios, such as peatland type (spruce, pine and open), drainage status 
(drained vs. undrained), land use/land cover (forest vs. non-forest) and 
main soil type (mineral vs. peat). 

Terrestrial biomes in these study areas were mostly temperate 
broadleaved/coniferous and boreal forests. Two studies concentrated on 
the mapping of forest land cover classes in the tropics (Marselis et al., 
2018; Martinuzzi et al., 2013). Most of the study areas were located in a 
national park or in a protected site (e.g. Natura 2000 site). 

Methods differed to some extent between studies, although the 
classification of habitat types was generally based on supervised ma-
chine learning algorithms, such as maximum likelihood, k-NN, Random 
Forest (RF), boosted regression trees (BRT) and support vector machines 
(SVM). Álvarez-Martínez et al. (2018) used a slightly different approach 

Fig. 2. Reviewed articles by (a) domain of the publication journal, (b) type of remote sensing dataset, (c) type of airborne laser scanning (ALS) dataset, and (d) 
spatial extent of study area. Numbers above the percentages denote the actual number of the articles per class. Note that some studies belong to more than one class (c 
and d). 
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Fig. 3. Locations of reviewed study areas (a) globally, (b) in North and Central America, and (c) in Europe. Number of clustered studies is presented inside the dots. 
Colouring of the world map is based on the global terrestrial biome classification as presented by Olson et al. (2001). Map: WWF, 2021. 

Fig. 4. Histogram showing the percentage distribution of study areas in terms of the terrestrial biome, as shown in the Fig. 3. Number in parentheses denotes the 
actual number of study areas in the specific ecoregion. Abbreviations are as follows: TempBroMixed = Temperate Broadleaf and Mixed Forests, Boreal = Boreal 
Forest/Taiga, TempConif = Temperate Coniferous Forests, MediForWoodS = Mediterranean Forests, Woodlands and Scrub, TropMoist = Tropical and Subtropical 
Moist Broadleaf Forests, TropDry = Tropical and Subtropical Dry Broadleaf Forests, TempGraSavanS = Temperate Grasslands, Savannas and Shrublands, MontMoor 
= Montane Moorlands, DesertXerS = Deserts and Xeric Shrublands, TropGrassSavanS = Tropical and Subtropical Grasslands, Savannas and Shrublands. 
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for their supervised classification as they implemented a 3-stage classi-
fication strategy. At each stage, the area occupied by each habitat type 
was predicted at a finer spatial scale, which resulted in a map that 
depicted the most probable habitat type for each pixel. Unsupervised 
classification was implemented by Hill and Thomson (2005) and Su 
et al. (2016). Some studies used only one classification algorithm, and 
others compared classification results between two or more algorithms. 
For instance, Shoot et al. (2021) compared five machine learning 
algorithms. 

In general, distribution-free machine learning algorithms performed 
better than parametric classifiers, especially with the fusion of ALS and 
hyperspectral imagery when the number of explanatory variables was 
relatively high (Dalponte et al., 2008). When only ALS data was used, no 
significant differences were reported in the performance of the classi-
fiers (e.g. Sverdrup-Thygeson et al., 2016; Vehmas et al., 2009). 

In general, the overall accuracy was greater when the number of 
habitat types to be classified was small, as expected. For example, 
Sverdrup-Thygeson et al. (2016) obtained an overall accuracy of 
approximately 94% in their 2-class scenario, whereas Álvarez-Martínez 
et al. (2018) mapped 11 forest-related habitat types with an overall 
accuracy of approximately 66%. Poor class-level accuracies were 
attributed in some studies to the small number of training samples for a 
specific class (Álvarez-Martínez et al., 2018; Pippuri et al., 2016; Shoot 
et al., 2021) and to incorrect labelling of the training data (Vehmas 
et al., 2009). Also, leaf-off ALS data were found to result in poorer 
overall accuracies than leaf-on data, which would indicate that the 
mixed use of ALS data acquired under different conditions may not be 
favourable in this use case (Bottalico et al., 2014). In addition, low point 
cloud density (~0.5pt./m2) was indicated as a potential cause for low 
classification accuracy (Tijerín-Triviño et al., 2022). An increase in 
overall accuracy when using optical aerial imagery in combination with 
ALS data was reported by Shoot et al. (2021), Simonson et al. (2013) and 
Dalponte et al. (2008). The inclusion of Landsat and radar metrics were 
found to have minimal or no effect on the classification accuracy of 
forest types when used in combination with ALS metrics (Martinuzzi 
et al., 2013). 

Vertical ALS metrics were used in most studies and were found to 
perform well in the classification of forest habitat types, even when the 
point density was as low as 0.05pt./m2 (Martinuzzi et al., 2013). In 
general, the most powerful vertical ALS metrics were average/mean 
values (Álvarez-Martínez et al., 2018; Bottalico et al., 2014) and the 
coefficient of variation associated with vegetation height (Bottalico 
et al., 2014; Sinclair 2021; Sverdrup-Thygeson et al., 2016). Other useful 
vertical ALS metrics included penetration rate and height percentiles 
(80th, 90th, 95th, max. value) of the vegetation. In an assessment of old 
forest naturalness Sverdrup-Thygeson et al. (2016) observed that the 
ALS metrics that described the horizontal variation of the vegetation 
performed better than those that reflected the vertical structure. Mar-
tinuzzi et al. (2013) and Shoot et al. (2021) listed topographical vari-
ables as important in the classification of forest habitat types. The best 
performing FW-ALS metrics in the discrimination of vegetation types 
were related to canopy height, canopy cover, total plant area index (PAI) 
and PAI profile (Marselis et al. 2018). 

When broadleaved trees were used in classification, the addition of 
spectral variables (Dalponte et al., 2008) and/or ALS intensity features 
(Pippuri et al., 2016; Vehmas et al., 2011a) were found to be favourable. 
However, Dalponte et al. (2008) stated that the elevation information of 
ALS data offered much more explanatory power than ALS-intensity. 

3.2. Successional stages 

Most long-term processes in forests, such as carbon sequestration, are 
driven by successional dynamics (Shugart 2000). The precise determi-
nation of the forest successional stage in a large area helps to achieve 
many goals of sustainable forest management, although this determi-
nation is not always easy, e.g. in uneven-aged forest management, which 

is regarded as an effective way to increase structural and species di-
versity at the stand-level (Savilaakso et al., 2021). Information on the 
forest successional stage can also be used to predict future forest con-
ditions via succession models (Busing et al., 2007). 

In our review, determination of the stage to be classified was either 
based on an existing classification scheme used in forest management (e. 
g. Alberti et al., 2013; Valbuena et al., 2016b) or was tailored by the 
authors of the study (Martin and Valeria 2022; Martinuzzi et al., 2013). 
The number of successional stages to be classified ranged from 2–8. Shao 
et al. (2018) used a 2-class scenario where the purpose was to classify 
forests as early or later-stage forests. In contrast, Martinuzzi et al. (2013) 
only considered forests >30 years of age in their classification and 
classified those into three secondary forest classes (taking into consid-
eration previous land-use) and primary forests. Kane et al. (2010) did 
not classify forests by age, but examined whether young secondary 
forests could be separated from primary forests by ALS metrics. Differ-
ences in the description of successional stages were evident between 
studies. For example, Martinuzzi et al. (2013) defined stands >90 years 
old as primary forests, whereas Kane et al. (2010) used an age threshold 
value of 220 years for primary forests. In three studies, the aim was to 
derive old-growth index at the landscape-level as an indicator of old- 
growth forest conditions (de Assis Barros and Elkin 2021, Fuhr et al., 
2022, Hevia et al., 2022). These indices were based on field measure-
ments of forest maturity attributes, such as the basal area of large dead 
standing trees. 

Study areas in the terrestrial biomes were mostly temperate conif-
erous (Alberti et al. 2013; Falkowski et al., 2009) and contained trees 
from Abies, Picea and Tsuga generas. One study was conducted in a 
subtropical broadleaved dry forest (Martinuzzi et al., 2013). 

The classification of successional stages was most often based on 
machine learning algorithms. Fuhr et al. (2022), Martin and Valeria 
(2022), Martinuzzi et al. (2013) and Falkowski et al. (2009) used a RF 
algorithm in their studies, while Torresan et al. (2016) first defined the 
structural patterns in the desired classes with unsupervised clustering, 
and then used the resulting features as a basis for a supervised classifi-
cation of successional stages. Other machine learning algorithms that 
were used included SVM (Valbuena et al., 2016b) and the classification 
and regression tree (CART) (Weber and Boss 2009). Alberti et al. (2013) 
and Shao et al. (2018) used a classification based on height threshold 
values of an ALS canopy height model (CHM). 

Classification accuracy was greater in older successional stages 
(Alberti et al., 2013; Torresan et al., 2016). Errors were most common in 
forests that exhibited significant structural variability. Examples of this 
included multi-layered stages (Alberti et al., 2013; Torresan et al., 
2016), stages with a distinct understorey (Falkowski et al., 2009) and 
younger successional stages that contained a large number of small trees 
(Valbuena et al., 2016b). Small trees in the understorey were found to be 
difficult to assess using low point density ALS data (2.8pt./m2), espe-
cially with the ITD approach (Alberti et al., 2013). Moreover, ALS data 
were found to offer better classification accuracy than classification 
based on Landsat imagery (Martinuzzi et al., 2013). Kane et al. (2010) 
found no significant relationship between ALS metrics and the age of the 
primary stands, although metrics for secondary forests showed signifi-
cant relationships with stand age. The main outcome in their study was 
that stand age did not automatically indicate a specific stage of canopy 
structure (i.e. canopy structure does not develop in a linear fashion). A 
similar conclusion was reported by Weber and Boss (2009), while de 
Assis Barros and Elkin (2021) also found that tree age did not improve 
classification accuracy. Studies that predicted continuous old-growth 
indices (e.g. de Assis Barros and Elkin, 2021; Hevia et al., 2022) re-
ported moderate goodness-of-fit measures for their models (R2: 
0.35–0.77). 

The studies used a number of different ALS metrics as explanatory 
variables for successional stage classification, although the most often 
used and important metrics were those that described the vertical can-
opy structure. For example, standard deviation (Fuhr et al., 2022), 

J. Toivonen et al.                                                                                                                                                                                                                               



Forest Ecology and Management 546 (2023) 121376

7

median absolute deviation (Martinuzzi et al., 2013) and average abso-
lute deviation of vegetation height (Valbuena et al., 2016b) were found 
to perform well with ALS metrics. Other similar metrics included the 
difference between the 90th and 10th percentiles (Torresan et al., 2016) 
and the median of the absolute deviations from the overall median of 
vegetation height (Valbuena et al., 2016b). Metrics related to canopy 
cover were also reported as important in the modelling of forest matu-
rity (Falkowski et al., 2009; Hevia et al., 2022). Some studies only used 
the predicted CHM-based canopy height, and these studies often utilised 
a height threshold to classify successional stages (Alberti et al., 2013; 
Shao et al., 2018). Martin and Valeria (2022) reported that the ALS 
metrics commonly associated with structural complexity in old-growth 
boreal forests showed differing patterns compared to temperate forests 
(de Assis Barros and Elkin 2021; Kane et al., 2010). 

4. Canopy assessment 

4.1. Overall canopy structure 

Overall canopy structure assessment refers here to the separation of 
forests into classes that describe height, openness or layering of the 
canopy. This diverges from the classification scenarios presented in the 
previous section by concentrating on the structural arrangement of a 
canopy. Canopy structure (e.g. layering) is an especially important 
component of the forest ecosystem as it influences the energy fluxes 
between the atmosphere and the forest stand (Shugart et al., 2010). 

In our review, the most common attribute of interest was canopy 
layering; either single- or multi-storey (Leiterer et al., 2015; Wilkes 
et al., 2016). For example, Zimble et al. (2003) used a 2-class scenario 
where the intention was to classify forests as either single- or multi- 
storey, while Wilkes et al. (2016) predicted the actual number of can-
opy strata and Morsdorf et al. (2010) defined the extent and height of 
each stratum. Some studies derived canopy structural types, which 
included information on canopy layering (single, two-, and multi- 
layered), canopy type (broadleaved or evergreen) (Jayathunga et al., 
2018; Leiterer et al., 2015) and age (Adnan et al., 2019). A more com-
plex classification based on the proportional cover of predefined over-, 
mid- and under-storey layers was proposed by Whitehurst et al. (2013). 
They also examined canopy layering using continuous foliage area 
profiles. Some studies also predicted the crown coverage of different 
canopy layers in the classification (Guo et al., 2017; Morsdorf et al., 
2010; Pascual et al., 2008). In a study by Moran et al. (2018), the 
premise was to aggregate ecoregion-specific classes of a predominant 
canopy structure to more general meta-classes at the landscape-scale 
without using field training data. 

Study areas in terrestrial biomes were mostly temperate broadleaved 
forests that comprised of aspen, poplar or beech species (Guo et al., 
2017; Leiterer et al., 2015). Other common regions were temperate 
coniferous (Zimble et al., 2003) and Mediterranean forests (Pascual 
et al., 2008). 

A wide range of modelling and classification methods were used 
across the reviewed studies. The most used unsupervised classification 
method was k-means clustering (Guo et al., 2017; Jayathunga et al., 
2018; Pascual et al., 2008). Unsupervised classification was also utilised 
by Moran et al. (2018), although they used RF for this task in two 
separate stages, firstly to identify natural groupings within the ALS data, 
and secondly to classify landscapes using cluster labels in a supervised 
fashion. A similar approach was used by Adnan et al. (2019) and 
Morsdorf et al. (2010), although they used different algorithms. Wilkes 
et al. (2016) utilised the gap probability function, which determines the 
probability that there is a gap above a certain height in the canopy, and 
Zimble et al. (2003) classified canopies as single- or multi-storey using a 
threshold value for tree height variance. Leiterer et al. (2015) used a 
hierarchical, multi-scale classification approach with Bayesian robust 
mixture modelling. 

Overall classification accuracy in the reviewed studies varied 

between 66.9% and 97%. The studies of Zimble et al. (2003) and Lei-
terer et al. (2015) demonstrated the importance of class number for 
classification accuracy, i.e. a smaller number of classes will result in 
greater overall accuracy in general. Also, classification was more accu-
rate for structurally simpler forests and for the dominant layers of multi- 
layered forests (Morsdorf et al., 2010). Most misclassification occurred 
in classes with an open canopy structure and those that were multi- 
layered (Adnan et al., 2019; Guo et al., 2017; Leiterer et al., 2015; 
Morsdorf et al., 2010; Wilkes et al., 2016). Some studies observed that 
broadleaved canopies tended to be classified less accurately than ever-
green canopy types (Leiterer et al., 2015; Morsdorf et al., 2010). Small 
training sample size (Guo et al., 2017; Morsdorf et al., 2010; Wilkes 
et al., 2016), minor differences between classes (Adnan et al., 2019), and 
the low point density of ALS data (Zimble et al., 2003) were listed as 
possible reasons for poor classification accuracy for some canopy 
structure classes. 

Suitable ALS metrics for canopy structure classification were those 
that represented the vertical distribution of the canopy material. Metrics 
in this category include, for example, the median and standard deviation 
(Pascual et al., 2008; Guo et al., 2017), second population L-moment (L- 
scale) (Moran et al., 2018) and the coefficient of variation (Zimble et al., 
2003) associated with vegetation height. However, some studies used 
ALS canopy height to account for the classification of canopy layering 
(Morsdorf et al., 2010; Whitehurst et al., 2013). Other potential 
explanatory variables were ALS-predicted canopy cover (Adnan et al., 
2019; Guo et al., 2017; Wilkes et al., 2016) and canopy density (Guo 
et al., 2017; Jayathunga et al., 2018; Moran et al., 2018). Horizontal ALS 
metrics (e.g. horizontal standard deviation of canopy density) were 
found to offer supplementary information that aided in the characteri-
sation of the overall canopy structure, although they were not utilised 
that frequently (Leiterer et al., 2015; Moran et al., 2018). The use of ALS 
intensity was tested in one study and was found to be a powerful feature 
in the separation of layers of two different tree species with similar 
heights (Morsdorf et al., 2010). Aerial imagery metrics were also found 
to be valuable in distinguishing coniferous from deciduous canopies 
(Jayathunga et al., 2018). Wilkes et al. (2016) reported that the incre-
ment of ALS plot size provided a more robust estimate for the number of 
canopy strata. 

4.2. Understorey description 

Understorey is defined here as the vegetation layer where suppressed 
trees and shrubs exist under a dominant canopy. Understorey trees are 
fundamental components for ecosystem functioning as they influence 
stand development, fire behaviour, and provide habitats for many 
wildlife species (Hamraz et al., 2017a). 

The aims of the reviewed studies can be loosely divided into two 
groups: studies that predicted the existence of an understorey or its trees 
(Hamraz et al., 2017a; Hill and Broughton 2009; Miura and Jones 2010) 
and studies that predicted the forest features that describe the under-
storey (Crespo-Peremarch et al., 2018; Dees et al., 2012; Jarron et al., 
2020; Lindberg et al., 2012). The most commonly predicted features 
were height, cover and volume of the understory trees, although other 
aims were evident. For example, Bollandsås et al. (2008) were interested 
in depicting the growth and regeneration success of young trees in an 
uneven-aged forest, while Hamraz et al. (2017b) analysed the occlusion 
effect of higher canopy layers on the lower layers in terms of ALS point 
density, and investigated how this affected tree segmentation quality. 
Vehmas et al. (2011b) identified the differences between understories of 
canopy gap types in semi-natural and managed forests. 

Temperate broadleaved forest was the most abundant terrestrial 
biome studied in our review, followed by temperate coniferous forest. 
Most of the forests were in a natural or near-natural state. One study area 
was located in a pine plantation (Sumnall et al., 2017). 

In assessing the forest understorey, there were essentially two ways 
to process the ALS data: include all canopy points (Bollandsås et al., 
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2008) or remove the dominant canopy layer for further processing (Hill 
and Broughton 2009; Sumnall et al., 2017; Wing et al., 2012). Jarron 
et al. (2020) compared the use of these two approaches and noted that 
the dominant canopy and sub-canopy layers could be separated by 
multiple methods. A common method was histogram thresholding based 
on various height measures (Dees et al., 2012; Hamraz et al., 2017a; 
Jarron et al., 2020; Maltamo et al., 2005). This phase was usually fol-
lowed by derivation of models between field-measured variables and 
ALS data to estimate variables for the forest understory. Crespo-Per-
emarch et al. (2018) employed a different approach and used voxelised 
FW metrics to predict various understory attributes. Lindberg et al. 
(2012) compared the estimated vegetation volume profiles between FW 
and DR-ALS data. Two of the estimated vegetation volume layers were 
vegetation below 10 and 3 m above ground level. Variables that depict 
the forest understory in these studies were mostly predicted at the plot- 
level. Some studies created models at the plot-level and applied those to 
the whole study area (e.g. Jarron et al., 2020). 

The studies in our review reported moderate and substantial R2 

values for the models that estimated understorey volume (0.88–0.95), 
the number of trees (0.55–0.87) and the different height measures 
(0.76–0.96). In general, the volume of the understorey was predicted 
more accurately than height features. Segmentation of the canopy layers 
was found to increase the prediction performance of derived models 
(Crespo-Peremarch et al., 2018; Hamraz et al., 2017a; Jarron et al., 
2020), especially with variables related to understorey height. Here, 
segmentation of canopy layers refers to the removal of the upper canopy 
layers based on a field-derived height threshold of the understorey, for 
example. Lindberg et al. (2012) reported that vegetation volume esti-
mates for lower canopy layers were more accurate when FW-ALS was 
utilised over the DR-ALS. Hill and Broughton (2009) reported that both 
leaf-on and leaf-off ALS data could be used to predict absence or pres-
ence of the understorey with almost equal accuracy (72% vs. 77%). For 
point density, Hamraz et al. (2017b) noted that both understorey and 
overstorey trees could be segmented equally accurately when the overall 
point density was approximately 170/m2. Bollandsås et al. (2008) re-
ported that ALS data was able to describe regeneration success better 
than measures related to vitality (e.g. leader length). Vehmas et al. 
(2011b) found that canopy gaps with dense undergrowth could be 
distinguished from other types of gaps using spatial metrics and ALS 
return heights. 

Sumnall et al. (2017) reported cases where the understorey layer 
intersected the dominant canopy layer. This resulted in an over-
estimation of sub-dominant heights, especially in older coniferous 
stands. Hill and Broughton (2009) emphasised that the modelling of 
understorey information must consider the structure of the overstorey 
and the penetration of the laser pulse through this layer. Therefore, the 
use of simple height thresholds is not adequate under such conditions 
and will likely lead to false discrimination of the canopy layers (Hill and 
Broughton 2009). 

5. Diversity measures of trees 

5.1. Tree species 

Species richness and diversity are often reported measures of biodi-
versity, and their assessment is of major global interest as they 
contribute to ecosystem (here forest) health. This section covers the 
studies that have utilised ALS data as the main remote sensing data in 
the assessment of tree species diversity. We also reviewed studies that 
used ALS data in the inventory of ecologically important tree species. 

Some studies defined species richness (i.e. the number of species 
within a defined region) or diversity indices (e.g. Shannon diversity 
index) based only on the trees (e.g. Fricker et al., 2015; George-Chacon 
et al., 2019; Mauya 2015), although some studies also considered shrub 
and herb species (e.g. Ceballos et al., 2015; Leutner et al., 2012). A small 
number of studies concentrated on the amount of ecologically important 

tree species, for example, aspen (Maltamo et al., 2015; Sankey, 2012) 
within the forest stand. 

Study areas were most often located in boreal coniferous and 
temperate broadleaved forests. Also, tropical and sub-tropical forests 
were often studied (Hernández-Stefanoni et al., 2015; Martins-Neto 
et al., 2021). One study area was located in the urban forests of Los 
Angeles (Gillespie et al., 2017). 

Tree species diversity measures were most often predicted using 
regression techniques, such as linear regression (Ceballos et al., 2015; 
Gillespie et al., 2017; George-Chacon et al., 2019) and generalised least 
squares regression (Dalponte et al., 2018, Fricker et al., 2015, Wolf et al., 
2012). Non-parametric methods, including RF (Leutner et al., 2012; 
Mohammadi et al., 2020), k-NN (Mauya 2015; Mohammadi et al., 2020) 
and Multivariate Adaptive Regression Spline (Vaglio Laurin et al., 2016) 
were also used. Martins-Neto et al. (2021) tested multiple machine 
learning methods for the prediction of tree species richness and diversity 
among other stand variables. Sankey (2012) utilised quantile regression, 
and Säynäjoki et al. (2008) used linear discriminant analysis in the 
classification of individual deciduous canopies. 

In general, studies reported that the correlation of tree species 
richness and ALS metrics was greater than the correlation of tree species 
diversity and ALS metrics (Leutner et al., 2012; Mauya, 2015). Martins- 
Neto et al. (2021) reported contradictory results, mainly because of the 
large number of tree species found in tropical forests. Leutner et al. 
(2012) reported the lowest R2 value (0.30) for species richness of all 
canopy layers, and the best performing model of all studies (R2 = 0.89) 
was obtained by George-Chacon et al. (2019) for the Shannon diversity 
index of tree species, which utilised both ALS metrics and satellite im-
agery. Similar model performance was reported by Zhao et al. (2018) 
and Dalponte et al. (2018) for the Shannon diversity index and tree 
species richness. Kamoske et al. (2022) reported that the taxonomic 
diversity model yielded a greater explanatory power (R2: 0.46) than the 
phylogenetic (R2: 0.33) and functional diversity (R2: 0.31) models. 
Mapping of aspen was found to be difficult as it shared similar intensity 
metric values with spruce and birch (Korpela et al., 2010). Yet, other 
ecologically important species, such as Alnus incana and Salix caprea, 
could be separated based on high intensity values. However, when aspen 
trees are relatively large, they are distinguishable from other deciduous 
tree species when both intensity and height percentiles are used 
(Säynäjoki et al., 2008). Moreover, ALS-based vegetation height was 
found to improve the overall accuracy of Landsat-based aspen presence/ 
absence detection (Sankey, 2012), while Maltamo et al. (2015) reported 
that a balanced sample obtained with ALS-guided probability propor-
tional sampling generally improved the predictions of stand volume 
estimates for aspen. 

In general, studies that used both optical and ALS data reported that 
the latter provided the best performance for diversity models (Ceballos 
et al., 2015; Fricker et al., 2015; Kamoske et al., 2022; Mohammadi 
et al., 2020). The standard deviation associated with vegetation height 
was found to correlate more with tree species richness than with the 
mean value (Fricker et al., 2015; Hernández-Stefanoni et al., 2015; 
Mohammadi et al., 2020). Leaf-on ALS data were reported to explain 
slightly more of the variation in tree species richness than leaf-off data: 
R2 = 0.49 vs. 0.42 (Hernández-Stefanoni et al., 2015). Leutner et al. 
(2012) clarified that ALS provided the best predictors for total species 
richness predictions across all forest canopy layers (including herb and 
shrub species), although tree species richness was predicted most 
accurately using a fusion of hyperspectral and ALS data. Improved R2 

values when two datasets were combined were also reported by other 
studies (George-Chacon et al., 2019; Kamoske et al., 2022). Wolf et al. 
(2012) demonstrated that the inclusion of ALS terrain metrics improved 
the model performance for tree species richness in tropical forests. In 
urban forests, ALS metrics were not found to be associated with tree 
species diversity (Gillespie et al., 2017). Dalponte et al. (2018) reported 
that multispectral ALS data offered a slightly more accurate prediction 
of the Shannon diversity index for tree species compared to single 
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spectral ALS data (R2 = 0.85 vs. 0.80), although there were differences 
in the explanatory power between the multispectral ALS channels. 

5.2. Understorey species 

Studies that assessed understorey plant species most often predicted 
species richness and/or the diversity index (Shannon, Simpson, Pielou) 
associated with these species. In some cases, predictions were calculated 
separately for a different species group; for example, shrub and herb 
species (Ceballos et al., 2015; Leutner et al., 2012; Lopatin et al., 2016), 
bryophyte species (Bourgouin et al., 2022), or species-wise (Nijland 
et al., 2014), or all vascular plants were examined together (Zellweger 
et al., 2016). Moeslund et al. (2022) had a divergent objective for their 
study as they modelled the dark diversity of plant species, which denotes 
the absence of suitable species. Some studies predicted the actual yield 
of specific species, for example, fruit production (berries) (Barber et al., 
2016; Bohlin et al., 2021; Nielsen et al., 2020) or mushroom production 
(dry mass per hectare) (Pascual and de-Miguel 2022; Peura et al., 2016). 
Pascual and de-Miguel (2022) showcased the use of ALS data in various 
forest management scenarios where the aim was to increase mushroom 
yield. Korpela (2008) tested the use of ALS intensity information for the 
detection of lichen mats on a small test plot. The most commonly used 
methods in the reviewed studies were RF and Generalised Linear 
Models. 

The study areas in this topic covered different terrestrial biomes, 
from mixed mountainous to broadleaved Mediterranean forests. How-
ever, the most common terrestrial biome was temperate forests with a 
mixture of tree species. 

Model fits (R2) for understorey species richness and diversity ranged 
between 0.2–0.6. Martinuzzi et al. (2009) reported a classification ac-
curacy of 83% for the presence/absence of understorey shrub species, 
while lichen mats could be detected with an overall accuracy of 65–75% 
(Korpela 2008). Richness models usually exhibited better R2 values than 
the diversity (Leutner et al., 2012) or yield models (Peura et al., 2016). 
When all vascular plants in the understorey layer were considered 
(including trees), model accuracies did not improve noticeably. One 
possible reason could be that R2 values for species richness in the herb 
and shrub layers were greater than for the tree layer (Leutner et al., 
2012; Lopatin et al., 2016). The presented approach of using ALS data to 
guide forest management actions towards optimal mushroom yields was 
found to be informative for forest managers at the landscape scale and 
provided evidence for meaningful decision making (Pascual and de- 
Miguel 2022). 

The ALS metrics related to heterogeneity in the lower parts of the 
vegetation layers were considered the most important by the reviewed 
studies. These included proportions of returns from lower heights (e.g. 
Thers et al., 2017) and low percentiles of vegetation heights (Bourgouin 
et al., 2022; Vauhkonen, 2018). Mean canopy height was often identi-
fied as an important variable in the modelling of species richness 
(Lopatin et al., 2016). Information provided by ALS data was found to be 
especially important on sites that showed extensive heterogeneity in 
topography, for example, mountainous areas (Bouvier et al., 2017; 
Ceballos et al., 2015). Normalised ALS intensity information was found 
to be useful for the detection of lichen mats on the forest floor (Korpela 
2008). Variables related to local terrain structure were especially 
important when predicting richness and diversity of understorey species 
(Barber et al., 2016; Bourgouin et al., 2022; Moeslund et al., 2019; 
Nielsen et al., 2020; Nijland et al., 2014). Another important variable 
that was used in combination with ALS was climate (Mao et al., 2018; 
Zellweger et al., 2016). The ALS metrics were found to have greater 
explanatory power than metrics computed from aerial (Leutner et al., 
2012) and satellite images (Bouvier et al., 2017; Peura et al., 2016). The 
vegetation height information from ALS was the most important factor 
that affected dark plant diversity in forests (Moeslund et al., 2022). The 
combination of variables from both ALS and imagery data did not 
significantly improve model performance or the overall classification 

accuracy related to the understorey assessment (Singh et al., 2015). 
Some of the reviewed studies reported that there were issues with the 

suitability of ALS to assess the species richness and diversity of the 
understorey species. For example, Barber et al. (2016) reported that the 
diversity and yield prediction of buffaloberry (Shepherdia canadensis) 
with ALS data was not successful. One reason may be the randomness of 
the distribution of this species and other factors, such as competition. 
Bohlin et al., (2021) reported that their ALS-based mixed effects model 
for bilberry (Vaccinium myrtillus) and cowberry (Vaccinium vitis-idaea L.) 
yields exhibited R2 values of 0.40 and 0.53, respectively, although the 
fixed part of the models exhibited R2 values of only 0.05. Most of the 
random variation was found in the National Forest Inventory cluster 
level in both models (Bohlin et al., 2021) where the ALS predictions 
provided valuable information on the spatial location of substantial 
berry yields, a finding also supported by Nielsen et al. (2020). Marti-
nuzzi et al. (2009) reported that some of the vertically lower ALS metrics 
were problematic in understorey related assessments, as they indicated 
the presence of lower branches and saplings instead of shrubs. 

5.3. Structural diversity 

Structural diversity is regarded as a fundamental component of 
biodiversity assessment in forests (Chirici et al., 2011). Structurally 
diverse forests exhibit substantial variation in tree diameter and height, 
which results in more tree species and age classes within the stand. 

In our review, structural diversity was most often measured by the 
Gini coefficient (GC) (identical to coefficient of variation of L moments) 
associated with tree size inequality with respect to diameter at breast 
height (dbh) or tree height (Adhikari et al., 2020; Valbuena et al., 2014). 
Some studies utilised the standard deviation associated with tree height 
and dbh (e.g. Mura et al., 2015), or employed variations in crown di-
mensions (Davison et al., 2020; Ozdemir and Donoghue, 2013) and/or 
crown surfaces (Kukunda et al., 2019) as measures of structural di-
versity. In three studies, the main focus was on the functional diversity 
of trees (Kamoske et al., 2022; Zheng et al., 2021; Zheng et al., 2022). 

The main objectives of the studies can be divided into two main 
groups: studies that only predicted structural diversity measures using 
ALS variables (Dalponte et al., 2018; Mura et al., 2016) and others that 
investigated the effects of different components (e.g. ALS pulse density 
or plot size) in the modelling and prediction of these measures (Bottalico 
et al., 2017; Davison et al., 2020). Some studies also investigated the use 
of derived structural diversity measures in the characterisation of forest 
structural types (Valbuena et al., 2013; Valbuena et al., 2016a). 
Regression was the most used statistical method to estimate field- 
derived structural diversity measures from ALS variables. Other 
commonly used methods were RF (Kukunda et al., 2019) and k-NN 
(Mura et al., 2016). 

Study areas were most often located in temperate broadleaved and 
mixed, boreal, and Mediterranean forests. An African study area was 
located in tropical forests in a mountainous region (Adhikari et al., 
2020). Two study areas were located on mixed sub-tropical forests 
(Zheng et al., 2021; Zheng et al., 2022). 

The studies reported a wide range of fits (R2) for the models that 
assessed tree size inequality (e.g. GCdbh: 0.33–0.89). The poorest fits 
were related to forests with a very diverse structure. For example, 
Adhikari et al. (2020) obtained a GCdbh R2 value of 0.40 in tropical 
mountainous forests. In general, models for tree height diversity 
exhibited better fits (R2: 0.62–0.86). However, models for the standard 
deviation associated with tree height and dbh produced a better overall 
fit than GC models (Bottalico et al., 2017). Models that depicted crown 
dimensional diversity (crown length and width) did not perform as well 
as the tree height and diameter-related diversity models (R2: 0.20–0.52) 
(e.g. Ozdemir and Donoghue, 2013). Individual tree detection in tree 
size inequality assessments proved to be inferior to the ABA, mostly 
because of the poor tree detection rate of the understorey trees (Val-
buena et al., 2014). On the other hand, the ITD approach for the 
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mapping of trait-based functional diversity was more robust than ABA, 
as the larger pixel size in ABA was led to the capture of less variation 
(Zheng et al., 2022). 

The most often selected explanatory ALS variables were coefficient of 
variation, standard deviation and skewness of ALS heights, L-skewness, 
and canopy cover metrics. Other potential variables included percentiles 
of vegetation heights (Bottalico et al., 2017; Dalponte et al., 2018; Mura 
et al., 2016) and standard deviation of heights in ALS-CHM (Ozdemir 
and Donoghue, 2013). The predictive power of ALS variables was found 
to be superior to Landsat metrics, although incorporation of these var-
iables improved model R2 values from ~0.45 to ~0.60 (Adhikari et al., 
2020). Dalponte et al. (2018) reported that a model from multispectral 
ALS data, which included metrics from three channels, had a slightly 
poorer fit for GCdbh than a model based on single spectral ALS data. They 
also found that GCdbh did not correlate with ALS intensity information. 
Leaf-on and leaf-off ALS data performed equally well, but the combined 
use of leaf-on and leaf-off data in structural diversity models explained 
over 10% more variance than either dataset used alone (Davison et al., 
2020). 

Valbuena et al. (2013) reported that the GCdbh could be used to 
separate uneven- and even-sized forests. In the former, Lorenz asym-
metry (Lorenz curve indicator) was found to characterise the under-
storey development. However, the assessment of understorey 
establishment yielded the most uncertainty, as the model fit for Lorenz 
asymmetry was significantly poorer (R2: 0.25) than for GC (R2: 0.89). 
More recently, Valbuena et al. (2017) showed that the direct estimation 
of two L-moment ratios that describe ALS return distributions, the L- 
coefficient of variation (=GC) and L-skewness (=Lorenz asymmetry), 
were well-suited to separate forests in a manner similar to their earlier 
study (Valbuena et al., 2013). The use of GC was also found to be 
applicable in separating forests under different management regimes 
(Valbuena et al., 2016a). 

6. Dead wood 

The existence of dead wood in forests is important for many reasons 
as it affects forest carbon storage, nutrient cycling, and provides habitats 
and resources for many species (Harmon et al., 1986; Siitonen 2001; 
Smallman et al., 2017). In particular, large-diameter dead wood is 
considered ecologically valuable as the increment in the diameter is 
positively correlated with forest biodiversity (Jönsson and Jonsson 
2007). 

The viewpoints of the reviewed studies differed. Some studies 
focused on fallen trees (Heinaro et al., 2021; Lindberg et al., 2013), 
others on standing dead trees (Amiri et al., 2019, Hardenbol et al., 2022; 
Stitt et al., 2022a), and some took both types into consideration (Peso-
nen et al., 2008). The objective was often to identify single standing 
trees or fallen dead trees (Blanchard et al., 2011; Dobre et al., 2021; Yao 
et al., 2012), although characteristics of the dead wood, such as volume 
(Chirici et al., 2018), diameter (Stitt et al., 2022b) and the proportion of 
standing dead tree (decay) classes (Bater et al., 2009), were also esti-
mated. Pesonen et al. (2010a) investigated the use of ALS-based prob-
ability layers as auxiliary information in the design and estimation phase 
of a dead wood field inventory. These were found to increase the sam-
pling efficiency of both standing and fallen dead wood (Pesonen et al., 
2010a). The reviewed studies also employed widely differing minimum 
dbh threshold values for dead wood. For example, Mücke et al., (2013) 
used 300 mm and Nyström et al., (2014) 69 mm in their respective 
studies. In most cases, study areas were located within protected forests 
in the temperate and boreal ecoregions, which naturally exhibit a large 
amount of fallen and/or standing dead wood. 

Detection of fallen and standing dead trees differed from a classifi-
cation perspective. Fallen tree detection relied on the identification of 
line-like features (Lindberg et al., 2013; Nyström et al., 2014; Polewski 
et al., 2015a), whereas standing dead trees were generally detected 
based on their altered intensity distribution and the structure that 

resulted from missing branches and reduced foliage (Wing et al., 2015; 
Yao et al., 2012). Height-filtering of a point cloud was an important 
initial stage in the detection of fallen trees (Pesonen et al., 2008; Jarron 
et al., 2021). Then, the line-like features of the filtered point cloud were 
detected using direct line detection (Heinaro et al., 2021), raster-based 
line template matching (Lindberg et al., 2013; Nyström et al., 2014) or 
other less demanding methods, such as shape context descriptor (Pole-
wski et al., 2015b) and the normalised cut approach (Yao et al., 2012). In 
some studies, standing trees were classified as living or dead (Martinuzzi 
et al., 2009). Stitt et al. (2022a) distinguished living and dead standing 
trees by determining the canopy gaps around stems and snags. In the 
same study area, Stitt et al. (2022b) classified standing dead trees by 
their diameter and intactness (intact or a broken top). Estimation of 
dead wood volume and the proportion of different dead wood classes 
were typically based on the use of regression between the ALS features 
and the variables of interest (Bater et al., 2009; Pesonen et al., 2008). 
However, Jarron et al., (2021) estimated the volume of dead fallen trees 
using the actual dimensions of segmented logs, while Chirici et al., 
(2018) estimated the volume of windthrown trees using mean height 
and dbh of the stand where the fallen trees were found. 

Detection accuracies for both standing and fallen dead trees varied 
considerably between studies (overall accuracy: ~40% to >90%). 
Detection accuracy clearly increased with increasing diameter and 
length of the stem (Hardenbol et al., 2022; Heinaro et al., 2021; Nyström 
et al., 2014; Wing et al., 2015) but clear differences in detection accu-
racies between fallen or standing trees were not apparent. However, 
there was some evidence that the volume of fallen dead wood could be 
predicted with greater accuracy than the volume of standing dead wood 
when low pulse density ALS data (~4 pt./m2) were utilised (Pesonen 
et al., 2008). In studies where standing dead trees were detected by tree 
species, dead spruce trees were reported to be easier to identify than 
deciduous or pine trees (Amiri et al., 2019; Kamińska et al., 2018). Also, 
detection of late-stage decomposition fallen trees proved to be more 
difficult than earlier decay stage trees, mostly due to reduced height of 
the stem objects above the ground (Mücke et al., 2013; Jarron et al., 
2021). Stitt et al. (2022b) reported that the classification between 
standing dead trees and snags was difficult. Moreover, fallen trees in old- 
growth forests were detected with greater accuracy than trees in young 
forests (Heinaro et al., 2021). 

There was considerable variation in ALS point densities between the 
studies. The greatest point densities were used in studies that focused on 
the detection of fallen dead trees. In these studies, densities ranged be-
tween 10 and 69pt./m2. The use of point densities > 30pt./m2 did not 
seem to result in a noticeable improvement of the detection accuracy. 
For example, Polewski et al., (2015b) used an ALS point density of 
approximately 30pt./m2 and were able to detect fallen trees with overall 
accuracy of 80–90%. On the other hand, Lindberg et al., (2013) used an 
ALS point density of 69pt./m2 but their overall accuracy for fallen dead 
tree detection was 41%. One must note that these studies were located in 
different types of forests, and therefore it is difficult to draw conclusions 
from the effect of point density in the detection of fallen dead trees. 

Structural variables related to canopy heterogeneity, such as coeffi-
cient of variation and median absolute deviation of ALS heights, were 
most often used in the detection of dead trees (Bater et al., 2009; Mar-
tinuzzi et al., 2009). It was observed that the variables that describe the 
geometrical structure of the canopy surface were beneficial (Amiri et al., 
2019; Hardenbol et al., 2022; Yao et al., 2012) and waveform metric 
information, such as return width and amplitude, increased the detec-
tion accuracy (Mücke et al., 2012). The use of multi-wavelength ALS 
data was found to improve the accuracy of dead standing tree detection 
compared to cases when only one wavelength channel was used (Amiri 
et al., 2019). The ALS intensity features were particularly useful when 
the species of the dead trees was of interest (Amiri et al., 2019; Kamińska 
et al., 2018; Pesonen et al., 2008). Information provided by ALS showed 
a greater correlation with both standing and fallen dead trees than stand 
register data or aerial imagery (Hardenbol et al., 2022; Pesonen et al., 
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2010b). 
In general, clusters of fallen trees and dense understorey vegetation 

were considered to be the main reason why dead trees were falsely 
detected (Blanchard et al., 2011; Mücke et al., 2013; Wing et al., 2015). 
Also, roads, stone walls and ditches were problematic when line-like 
features of fallen trees were identified (Lindberg et al., 2013; Nyström 
et al., 2014). Data-related issues included insufficient density of the ALS 
point cloud (here <10 pt./m2) (Hardenbol et al., 2022; Stitt et al., 
2022b; Wing et al., 2015) and poor location accuracy of the trees 
measured in the field (Nyström et al., 2014). 

7. Forest fragmentation 

Forest fragmentation and its effects on structure, function and 
biodiversity are important issues as they are closely connected to 
changes in land use (Laurance et al., 2017). The microclimate on the 
forest edge differs from the interior of the forest, as the air is both drier 
and warmer and wind effects are much more prominent (Didham and 
Lawton 1999). 

Despite the relatively small number of forest fragmentation studies, 
the aims of these studies varied widely. Aims were classified into two 
categories: studies that focused on within-fragment properties (e.g. 
Almeida et al., 2019; MacLean 2017; Vaughn et al., 2014), and studies 
that investigated inter-fragment connections (e.g. Guo et al., 2018). Two 
studies investigated the long-term effects of fragmentation on canopy 
structure (Almeida et al., 2019; Vaughn et al., 2014) and one study 
investigated the effects of fragmentation and fragment area on bird 
species richness (Flaspohler et al., 2010). Shao et al. (2018) delineated 
interior forests and investigated the effect of considering forest succes-
sional stage in the delineation procedure. Study areas were mainly 
located in tropical moist (3 studies) and temperate broadleaved (2 
studies) forests. 

In general, ALS information was found to be suitable to expand un-
derstanding of fragmentation effects on forest structure and function (e. 
g. Vaughn et al., 2014). Almeida et al. (2019) reported that ALS infor-
mation on mean canopy height showed clear differences between near- 
edge and inner forests: canopy height decreased by 30% on the edges of 
the larger fragments (>10 ha) and in the interior of smaller fragments 
(<3 ha). Vaughn et al. (2014) reported similar results related to canopy 
height and stated that fragment area was strongly related to the devel-
opment of canopy structure. Minimum span variable, which defines “the 
minimum straight-line distance that is required to bisect the fragment 
while passing through a given point location”, was found to explain 
variations in the depth and magnitude of edge effects for canopy 
structural variables (Vaughn et al., 2014). Flaspohler et al. (2010) found 
that native and exotic bird species richness in Hawaiian forests exhibited 
a different response in the fragmented area; exotic species were more 
area-sensitive, and smaller fragments were dominated by native species. 
For the definition of edge depths, ALS-derived estimates did not differ 
significantly from the field data (MacLean, 2017). Lastly, accounting for 
forest successional stages in the delineation process of forest interiors 
proved to be well-founded as it improved the total area estimations of 
forest interiors by approximately 10% (Shao et al., 2018). 

8. Animal ecology 

Habitat structural heterogeneity has long been recognised as the 
main component that affects local variations in biodiversity (MacArthur 
and MacArthur, 1961). In forested ecosystems, this heterogeneity is 
caused by plant communities, and it has been shown to affect diversity 
and richness of multiple species including birds and mammals (Bergen 
et al., 2009). 

8.1. Species richness (α-diversity) 

To date, most of the research on faunal species richness has been 

focused on birds (Carrasco et al., 2019; Lesak et al., 2011; Melin et al., 
2018; Vogeler et al., 2022). A minority of studies were interested in the 
richness of other forest-dwelling taxa, which included butterflies (Zell-
weger et al., 2016), spiders (Vierling et al., 2011), bats (Renner et al., 
2018; Vogeler et al., 2022) and beetles (Lindberg et al., 2015; Müller and 
Brandl 2009). There was a wide range of objectives across the studies. 
Most of the studies predicted the total and/or group-wise species rich-
ness using ALS (and possibly other remote sensing data) and compared 
the importance of explanatory variables and datasets (Eldegard et al., 
2014; Ziegler et al., 2022). Some studies concentrated on the changes in 
species richness near the forest edges (Melin et al., 2019), the change in 
species richness under different forest management conditions (Klein 
et al., 2020; Renner et al., 2018) and the scale dependency in the 
heterogeneity-diversity-relationship (Weisberg et al., 2014). Earlier 
studies that predicted bird species richness with ALS used a broad 
habitat-based grouping of species (e.g. Goetz et al., 2007). More 
recently, this has shifted towards the utilisation of a grouping based on 
the nesting practises of the species (Vogeler et al., 2014; Weisberg et al., 
2014). Some bird-related studies focused on specific species that were 
presumed to be sensitive to vegetation structure (Lesak et al., 2011). One 
study predicted both taxonomic richness and the functional richness of 
bird species (Tew et al., 2022). In general, species richness was modelled 
using regression analysis. 

The most often encountered terrestrial biomes were temperate 
broadleaved forests. Other common ecoregions were coniferous 
temperate and boreal forests with a mixed set of tree species. Two study 
areas were located in the tropical ecoregion. A small number of studies 
took place in mountainous areas (Vogeler et al., 2022; Zellweger et al., 
2016; Ziegler et al., 2022) and one study was focused on urban forests 
(Sasaki et al., 2016). 

The coefficient of determination (R2) for total species richness 
models ranged from 0.18 to 0.96 across all taxa. Group-specific accu-
racies among bird species varied widely and were in some cases much 
greater (R2: ~ 0.50) than total bird species richness. Spider species 
richness could be predicted with similar accuracy as birds. Also, the 
explanatory power of bat (R2: 0.96) and bird species (R2: 0.93) richness 
models were found to be similar (Vogeler et al., 2022). The R2 values for 
forest beetles and butterflies were generally lower (Lindberg et al., 2015; 
Zellweger et al., 2016). Tew et al. (2022) reported that functional 
richness model for bird species exhibited a slightly lower explanatory 
power than model for taxonomic richness (0.78 vs. 0.89). 

The use of ALS data and satellite/aerial images in combination as 
predictors was found to improve model predictive performance only 
slightly for bird species richness (Goetz et al., 2007; Melin et al., 2019), 
and was most beneficial for species strongly associated with deciduous 
trees (Eldegard et al., 2014). In many studies, climatic variables (e.g. 
temperature, precipitation) were found to be more strongly related to 
bird species richness than ALS metrics (Carrasco et al., 2019; Coops 
et al., 2016; Vogeler et al., 2022; Zellweger et al., 2016). In addition, 
Vogeler et al. (2022) reported similar dependencies for bat species 
richness: mean annual temperature explained 93% and ALS canopy 
density 20% of the variation in bat species richness. Significantly lower 
predictive power of ALS metrics compared to field metrics was reported 
by Tew et al. (2022), who found that total area and age class of a 
compartment explained more variation in the models of bird species 
taxonomic richness and functional richness. 

Bird species richness was often found to increase with increasing 
density in the forest understorey (e.g. Klein et al., 2020). Therefore, 
metrics that describe lower vegetation density (e.g. Lindberg et al., 
2015; Melin et al., 2018; Vogeler et al., 2014), and mid-storey height 
and density, were found to be important (Lesak et al., 2011). In moun-
tainous tropical forests in Tanzania neither bird nor bat species richness 
were related to understorey or mid-storey density, but the greatest 
predictive power was observed with canopy density (Vogeler et al., 
2022). In the same study area, Ziegler et al. (2022) reported that ground 
elevation was a more important metric than ALS structural metrics in the 
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prediction of species richness for 17 taxa. Moreover, the standard de-
viation associated with vegetation height and other metrics related to 
canopy vertical heterogeneity (e.g. foliage height diversity) were found 
to be highly efficient in predicting bird species richness (Flaspohler 
et al., 2010; Melin et al., 2019; Sasaki et al., 2016). Canopy height 
variables were found to be the most important for forest beetles (Müller 
and Brandl 2009) and spider richness (Vierling et al. 2011). 

8.2. Species diversity indices 

The most often predicted diversity index with regard to forest fauna 
was the Shannon diversity index (also known as the Shannon-Wiener 
index). This index estimates the diversity of a population through en-
tropy by considering the number of species in a habitat and their relative 
abundance (MacArthur and MacArthur 1961). Another common di-
versity index used by the studies in our review was Simpson’s diversity 
index, which signifies the probability of two randomly chosen in-
dividuals as belonging to different species (Lande 1996). As previously 
stated, most of the research concentrated on bird species, although in 
some studies, spiders (Vierling et al., 2011), arthropods (Müller et al., 
2014) and butterflies (Zellweger et al., 2017) were of interest. A range of 
regression methods (generalised linear, mixed effects, best subsets) were 
used in the modelling phase. 

Temperate broadleaved and coniferous forests were the most studied 
terrestrial biomes. Other ecoregions included urban (Sasaki et al., 2016) 
and tropical moist forests (Wallis et al., 2016). 

Modelling species diversity indices yielded moderate fits: R2 values 
ranged between 0 and 0.34. Studies that modelled both indices 
commonly reported that Simpson’s diversity index was more accurately 
predicted than the Shannon diversity index (Müller et al., 2014). Taxa of 
the modelled species or forest terrestrial biome did not have any notable 
effect on model accuracy. 

In general, the ALS predictions were reported to be superior to, or at 
least as accurate as, field-derived explanatory variables (Müller and 
Brandl 2009; Sasaki et al., 2016; Vierling et al., 2011). Inclusion of aerial 
or satellite imagery variables in the modelling had little effect on 
modelling accuracy (e.g. Melin et al., 2019). The most powerful ALS 
metrics were similar to those with species richness: lower vegetation 
height and density metrics, and metrics that describe the vertical het-
erogeneity in the canopy (e.g. standard deviation associated with 
vegetation height), were most often selected. These metrics were suit-
able for various taxa, although bird and arthropod diversity displayed a 
different response to these metrics. 

Wallis et al., (2016) reported that optical texture metrics derived 
from satellite data had much more explanatory power than ALS metrics 
in tropical forests; the optical texture model for the Shannon diversity 
index of bird species had a R2 value of 0.57 and the ALS model a R2 value 
of 0.26. The poor performance was partly explained by the fact that a 
dense overstorey leads to poor penetration of laser pulses into the lower 
canopy. Tew et al. (2022) reported that in their model for Shannon di-
versity index of bird species (R2: 0.62), field-measured total area 
explained 39% of the variation and the age class of a forest compartment 
explained 15%. Moreover, climatic variables at the country-scale were 
found to be more effective than ALS variables for the prediction of di-
versity indices of birds and butterflies (Zellweger et al., 2017). 

8.3. Habitat suitability for forest fauna 

With regard to the occurrence of fauna, the studies in this review 
expressed different objectives. In some studies, the objective was to map 
the occurrence of old-growth forest species and to use their occurrence 
as indicators of suitable habitats for a specific animal or animals (e.g. 
Vogeler et al., 2013). Some studies mapped the occurrence of forest 
animal species using their priori-known habitat preferences and then 
extracting the forest areas that fulfilled these features (Coops et al., 
2010; Garabedian et al., 2014; Rada et al., 2022). There were also 

studies that compared the structure of ALS-predicted occurrence areas 
with known habitat preferences (Koma et al., 2021; Mononen et al., 
2018) and studies that predicted habitat quality classes for specific 
species (Hinsley et al., 2006). For example, the mean body mass of birds 
(Bradbury et al., 2005, Hinsley et al., 2006), and the basal area and tree 
density (Garabedian et al., 2014) have been utilised as measures for 
habitat quality. Most of the research focused on birds (e.g., Bradbury 
et al., 2005; Herniman et al., 2020; Koma et al., 2022; Zellweger et al., 
2013b), although bats (Jung et al., 2012), butterflies (de Vries et al., 
2021), saproxylic beetles (Rada et al., 2022) and deer (Lone et al., 2014; 
Melin et al., 2013) were also covered. 

Study areas focused on numerous terrestrial biomes that ranged from 
mountainous ecosystems (Zellweger et al., 2013a) to riparian forests 
(Seavy et al., 2009) and wetlands (Koma et al., 2021; Koma et al., 2022). 
However, most of the study areas were located in the boreal and 
temperate ecoregions, and included both broadleaved and coniferous 
forests. 

By far the most often adopted statistical method to model species 
occurrence was logistic regression, although RF was also commonly 
used (de Vries et al., 2021; Eldegard et al., 2014; Koma et al., 2022). 
Only one study employed a different modelling approach: Vauhkonen 
and Imponen (2016) utilised an unsupervised k-means algorithm to 
locate the potential habitats for two grouse species. 

In general, ALS information was considered suitable for the mapping 
of species occurrence. The prediction of species occurrence achieved 
AUC (area under the receiver operating characteristic curve) values that 
ranged between 0.7 and 0.9 (de Vries et al., 2021; Hagar et al., 2014; 
Koma et al., 2022; Seavy et al., 2009; Vogeler et al., 2013). These values 
indicate “acceptable” and “excellent” model discrimination, respec-
tively (Hosmer et al., 2013). There was a clear variation in the response 
to ALS variables between bird species, and species-wise models exhibi-
ted variable performance (Eldegard et al., 2014; Koma et al., 2022). In 
general, specialist bird species models were highly significant (Eldegard 
et al., 2014; Herniman et al., 2020) and low accuracy models were often 
found for generalist bird species. For the prediction of habitat quality, 
ALS variables were reported to explain between 5 and 82% of the 
observed variation in habitat quality variables (Garabedian et al., 2014; 
Hinsley et al., 2006). The greatest difference in the explained variation 
was found in the relationship between mean canopy height and mean 
chick body mass, which was used as the measure of habitat quality in 
different years (Hinsley et al., 2006). The variation was not related to 
point density of ALS data or other remote sensing characteristics, but it 
was highly related to the local climatic conditions in different years. The 
highest R2 values (up to 82%) were observed in exceptionally warm or 
cold springs, while the smallest R2 values (as low as 5%) were observed 
in average springs. The unsupervised classification approach was 
deemed unsuitable for habitat mapping of forest birds (Vauhkonen and 
Imponen 2016). 

The ALS variables that were selected most often to map occurrence 
and habitat quality for forest fauna were related to canopy vertical 
structure and heterogeneity. Examples include mean, standard devia-
tion, and both low and high percentiles associated with vegetation 
height. Also, canopy cover and its variants were often selected in these 
models (e.g. Graf et al., 2009; Koma et al., 2022; Lone et al., 2014). The 
addition of optical image data was reported to lead to only slight im-
provements in model performance, with the improvement more pro-
nounced for species related to deciduous trees (e.g. Eldegard et al., 
2014). The explanatory power of ALS variables outperformed radar data 
(Koma et al., 2022; Swatantran et al., 2012). The most often selected 
variable outside ALS in occurrence prediction of forest fauna was the 
proportion of deciduous trees, which was reported by many studies (e.g. 
Coops et al., 2010; Garabedian et al., 2014; Goetz et al., 2010). Two 
studies reported that variables other than ALS, especially elevation, had 
the most explanatory power (Herniman et al., 2020; Smart et al., 2012). 
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9. Discussion 

Forests contain a wide range of lifeforms, and provide food, shelter 
and nesting sites for numerous species. Heterogeneity in the vegetation 
structure has long been recognised to play a significant role in biological 
diversity patterns. As forested habitats and overall biodiversity face 
threats caused by human activities, there is an urgent need to map the 3- 
D structure of forested environments. Quantifying the 3-D vegetation 
structure on the ground has major drawbacks related to generalisation 
and is labour-intensive. As ALS is applicable over broad spatial extents 
and offers fine-scale 3D information on both vegetation structure and 
topography, it provides a great opportunity to bridge this gap. 

In this paper, we reviewed 182 scientific articles that used ALS data 
as the main remote sensing data to assess the numerous aspects of bio-
logical diversity of forested ecosystems. Most of the research was clus-
tered in North America and Europe, especially in the temperate and 
boreal ecoregions, on Northern Hemisphere. This is because there is a lot 
of expertise in this domain and ALS data is also widely available from 
these areas. These findings are similar to those reported in earlier ALS- 
reviews of forest ecosystem assessments (Acebes et al., 2021; Bakx et al., 
2019; Davies and Asner 2014). Topics that received the most research 
attention were related to animal ecology, tree species diversity, dead 
trees and the assessment of forest undergrowth species. Forest frag-
mentation was the least studied topic in the review. The most often 
applied forest inventory method was ABA, which was utilised in every 
topic of the review. The ITD approach seemed to be a useful method, 
mainly in the assessment of dead trees. 

The ALS data were often combined with other types of remote 
sensing data, especially with optical satellite or aerial data. The purpose 
was to create complementary information on both the structural and 
spectral structures of a forest. These fusions were most often related to 
studies where information on tree species was important either directly 
or indirectly. The prediction of tree species diversity measures and forest 
land cover classes that considered tree species were found to benefit 
from the fusion of ALS and optical data (e.g. Dalponte et al., 2008; 
George-Chacon et al., 2019; Jayathunga et al., 2018). Also, the predic-
tion of faunal species richness, especially those associated with decid-
uous trees, benefited from the inclusion of optical predictor variables 
(Eldegard et al., 2014). However, the assessment of forest successional 
stages (Martinuzzi et al., 2013), dead wood (Pesonen et al., 2010b) and 
understorey (Bouvier et al., 2017) did not benefit from the addition of 
spectral data. Radar data were also combined with ALS to assess bird 
species distributions (Swatantran et al., 2012) and to classify forest land 
cover classes (Martinuzzi et al., 2013), although information provided 
by ALS outperformed radar in both cases. A few studies tested the use of 
citizen science (CS) data in ALS-based assessment of bird habitats. They 
reported that the fusion of these datasets yielded meaningful results 
despite drawbacks related to the collection of the CS data (Mononen 
et al., 2018; Vihervaara et al., 2015). 

Relevant ALS metrics were often case-specific, as there is no single, 
universal metric that is suitable for all ALS-based forest biodiversity 
assessments. A full list of the most important ALS metrics, categorised by 
type and topic, are presented in Appendix B. The ALS metrics that are 
often used in the assessment of traditional stand attributes (e.g. volume 
or dominant height) were generally found to be sub-optimal for forest 
biodiversity studies. The vertical ALS point cloud metrics most often 
used to assess forest biodiversity were measures that described disper-
sion and the central tendency of vegetation height. In particular, stan-
dard deviation, mean and coefficient of variation were often utilised 
across studied topics (Appendix B). Higher and lower height percentiles 
were also important in the assessment of understorey shrubs and herbs 
in structural diversity studies and in the habitat assessment of birds. 
Other ALS metrics that were commonly found to be important in 
structural diversity studies were skewness and coefficient of variation of 
height of ALS echoes. Foliage height diversity was only used in animal 
ecology studies, but it was often regarded as an important ALS metric. 

Density metrics were regarded as important in the assessment of 
understorey and overall canopy structure. The importance of under-
storey density on bird and bat species assessment was demonstrated in 
many studies. Among the density metrics, canopy cover was employed 
across nearly all study topics, and it was found to be important, espe-
cially in the assessment of habitat suitability, understorey description 
and in studies related to structural diversity. Distance measures (e.g. to 
the forest edge) were utilised in studies related to forest fragmentation 
and bird species richness or diversity measures. The explanatory power 
of horizontal measures of vegetation structure were, in most cases, 
outperformed by variables that described the vertical vegetation 
structure. 

However, it is important to note that the derived ALS metrics are 
dependent on the sensor, acquisition parameters and dominant forest 
type, and so the relevant metrics and relationships in one study might 
not be the same elsewhere. It is also notable that none of the studies 
included all possible ALS metrics. Therefore, it is possible that there are 
important metrics that were not tested. The calculation of ALS metrics 
also differed between studies. 

Information on ALS intensity is known to be useful in the classifi-
cation of land cover types (Yan et al., 2015). In this review, we found 
intensity information to be useful in studies that considered tree species 
(broadleaved vs. coniferous). Examples included the classification of 
certain forest habitats and canopy types, and the identification of 
standing dead trees by species. The FW-ALS data was not used in many 
studies, but it was reported to be useful in the assessment of understorey 
description and forest fragmentation. Metrics that described terrain 
properties formed another group of ALS-derived metrics that were often 
used in the assessment of undergrowth species and their properties. 
Altitude and slope were most often utilised to describe local topography 
and were used more often in the assessment of non-flying mammals and 
arthropods (Müller and Brandl 2009; Zellweger et al., 2017) than for 
birds. This can be explained by the fact that these variables are associ-
ated with solar radiation and hydrography, which have a greater effect 
on these taxonomic groups. In an earlier review on ALS-assisted 
modelling of species-vegetation structure, Acebes et al. (2021) re-
ported that topographical metrics were not used as often as conventional 
ALS metrics to describe vegetation structure. Despite their relatively 
lesser usage, topographical metrics were found to be important when-
ever they were employed (Acebes et al., 2021). Therefore, full integra-
tion of terrain metrics, in addition to ALS structural variables in the 
assessment of forest species diversity, is recommended. 

Historically, the high cost of acquiring ALS data was often regarded 
as one of its drawbacks. However, that is not the case nowadays as 
numerous ALS campaigns have already been completed in many coun-
tries and cover the whole country. At the same time, the pulse densities 
have increased, and the processing of raw data has become more 
established. Most of the national level ALS datasets have point densities 
<5 pt./m2. Typically, low point density ALS data (<2 pt./m2) is mainly 
suitable for ABA. In the ITD method or in the object-based detection of 
fallen trees, point densities of >2 pt./m2 are required (Heinaro et al., 
2021; Kaartinen and Hyyppä 2008; Kaartinen et al., 2012). The tech-
nological development in lidar systems has been rapid and the point 
densities will further increase in the near future – expanding the us-
ability of the data. 

There are inherent difficulties related to ALS information that was 
described in some of the reviewed studies. One issue was related to the 
penetration rate; the increase in the complexity of vegetation structure 
and forest cover decreases the possibility of detecting understorey 
returns (Goodwin et al., 2007). This can decrease the explanatory power 
of the ALS metrics. For example, Torresan et al. (2016) reported that 
older successional stages, which contain the most of trees in the over-
storey layer, were predicted more accurately than other stages. Another 
issue is related to the point density of the ALS data: As the top of the 
vegetation usually has little surface area, the probability that a pulse will 
hit a tree top decreases as the distance between single points increases (i. 
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e. point density decreases). Lower-point density further decreases the 
potential number of returns that reach the lower canopy layers and may 
cause issues in ground classification. Poor ground models further 
decrease the accuracy of tree height prediction and related attributes. 
Some studies reported that a relatively low point density (<4 pt./m2) 
causes difficulties in the classification of forests that differ between their 
understorey types (Valbuena et al., 2016b), in the determination of 
canopy layer heights (Zimble et al., 2003) and in the detection of fallen 
and standing dead trees (Wing et al., 2015). High-point-density ALS data 
allows for a better description of the lower canopy structures and en-
ables new approaches to retrieve information from ALS data. For 
example, Sasaki et al. (2016) utilised high-point-density data (48 pt./ 
m2) to voxelise the point cloud at 1 m resolution. Voxel-based metrics 
were derived and were found to offer considerable explanatory power in 
the assessment of habitat use by forest birds (Sasaki et al., 2016). In this 
review, we found that many studies reported reasonable results even 
though point density was relatively low (<2 pt./m2). High point density 
data does not directly imply “better results” as there are many other 
factors that determine the feasibility of the data. 

The ALS datasets were typically acquired in leaf-on conditions. Leaf- 
off ALS data were most commonly utilised in dead wood assessment. In 
some studies, the two types of ALS data were compared, but, in general, 
only minor differences were observed between them. For example, Yao 
et al. (2012) classified standing trees as living and dead with an overall 
accuracy of 71% for leaf-off and 73% for leaf-on ALS. However, Lesak 
et al. (2011) and Bottalico et al. (2014) observed that the use of leaf-off 
ALS data leads to poor results in the prediction of bird species richness 
and classification of forest habitat types, respectively. Moreover, ALS 
data acquired during both leaf-on and leaf-off conditions were not 
favourable for the prediction of species richness for three taxa at a 
country-level (Zellweger et al., 2016). 

The suitability of ALS data to map forest land cover types was found 
to be mixed. When the goal was to map vegetation types that included 
the definition of tree species, the structural information provided by ALS 
was often insufficient (Bässler et al., 2010). In these cases, the use of 
multi- or hyperspectral imagery produced significantly better classifi-
cation accuracies as the spectral response of the tree species can vary 
considerably (Dalponte et al., 2008). It was also shown that the ALS data 
provided meaningful measures for the classification of forested areas 
based on the number of canopy layers and successional stages. In their 
review, Ganivet and Bloomberg (2019) showed that lidar data is an 
excellent option, with regarded to the quality of information, for the 
mapping of tropical forest structure and tree species diversity. Coupling 
lidar data with hyperspectral image data in tropical areas would 
potentially help in species discrimination (Féret and Asner 2012; Gani-
vet and Bloomberg 2019). 

Most of the research with regard to ALS-assisted animal ecology has 
been focused on bird species. Research interest on bird vs. habitat 
structure remains strong, although other taxonomic groups (including 
non-flying mammals and arthropods) have received scant attention. This 
is not surprising as bird diversity was investigated in the earliest studies 
that assessed the effect of vegetation structure on animal ecology. In our 
review, we identified that insects, such as butterflies and saproxylic 
beetles, have received an increasing amount of attention in recent years, 
in particular with regard to biodiversity conservation and climate 
change mitigation. Similar trends were also recognised by Acebes et al. 
(2021) in their review. 

There were some issues in animal ecology studies that were not 
inherently related to ALS data. For example, some species were too rare 
or clumped for successful modelling (Eldegard et al., 2014), while in 
other cases, the span of habitat types in a study area was too narrow for 
modelling (Mononen et al., 2018). Also, the relationships between ALS- 
derived vegetation structure were not always straightforward and 
consistent, even with the same species. For example, chick body mass 
(measure of breeding success) of the great tit (Parus major) was found to 
increase with increasing canopy height during an abnormally warm 

spring season, but a contrary relationship was noted during colder 
springs (Bradbury et al., 2005). 

Most focus on the assessment of dead wood has been on the detection 
of fallen or standing dead trees, volume and their dimension. Species 
and decay stage, which are also important factors that determine the 
suitability of dead wood for species that are dependent on dead wood, 
have received little attention. These aspects should be considered in 
future studies. 

Reviewed studies provided various approaches on how to use ALS 
data in forest conservation and planning. These included research on 
potential hotspots for saproxylic beetles (Rada et al., 2022), the provi-
sioning potential of mushrooms (Pascual and de-Miguel 2022) and forest 
berries (Bohlin et al., 2021), research on endangered species (Smart 
et al., 2012) and hotspots for forest structural diversity (Mura et al., 
2015). Maps that depict spatially explicit information from forests (e.g. 
structural diversity or mushroom yield potential) can support decision 
making in forest management planning (e.g. Simonson et al., 2014; 
White et al., 2013). This type of usage was highlighted by Guo et al. 
(2018), who integrated ALS information into scenarios for forest con-
servation planning. Moreover, this type of information is practical for 
researchers who are organising forest biodiversity-oriented studies. We 
suggest that more research resources are allocated to tropical forests, as 
these forests are the most species-rich areas in the world and their 
ecological characteristics differ substantially from those of the 
temperate and boreal regions. In addition, they are notably vulnerable to 
climate change. 

Studies that link ALS information to species richness, an iconic 
measure of biodiversity, were common in our review. A drawback of the 
species richness measure is that it does not deliver information on the 
abundance of species, i.e. there can be many sites that have same 
number of species but not necessarily the same species. Moreover, ALS 
studies on community composition assessment were also rare and 
should receive more attention in future studies. In the last few years, the 
assessment of functional diversity (e.g. Kamoske et al., 2022; Loz-
anovska et al., 2018), i.e. the range of functional variation in a popu-
lation, has received some attention but it still requires more research. 
Soundscape ecology is a relatively new and fast-developing field that 
could assist remote sensing-based assessment of forest biodiversity 
(Rappaport et al., 2020). Lastly, many studies have emphasised the ef-
fect of the spatial resolution at which ALS information and field data are 
linked as an important future research topic (e.g. Tew et al., 2022). 

10. Conclusion 

In this review, we summarised the use of ALS data as the main remote 
sensing material in the assessment of different components of forest 
biodiversity. In total, 182 scientific articles were evaluated and cat-
egorised into 12 biodiversity-related features, each comprising a specific 
biodiversity topic. Most of the studied topics were related to animal 
ecology (richness and occurrence of forest fauna) and the assessment of 
tree species diversity/richness and dead wood. Studies related to forest 
fragmentation and successional stage assessment were covered to a 
lesser extent. Most study areas were located in temperate or boreal 
ecoregions of North America and Europe. We found that there was no 
unique ALS variable that could be used in the assessment of forest 
biodiversity, although some variables were used more often than others. 
These were mainly variables related to dispersion and central tendency 
of vegetation height; standard deviation, mean and coefficient of vari-
ation, for example. In addition, height percentiles and canopy cover 
were often used. The fusion of ALS data with other remote sensing 
datasets, especially with spectral images, was reported to be beneficial, 
especially in studies that considered tree species directly or indirectly. 
Based on the reviewed studies, we conclude that ALS data provide 
valuable information on the horizontal and vertical vegetation struc-
tures and can assist in the assessment of biodiversity in forested envi-
ronments, at both fine and broad spatial scales. 
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Table A1 
Reviewed studies categorised by their features and the continent of the study area.  

Feature Europe North America Central and South America (CSA), Asia (AS), 
Africa (AF), Oceania (OC) 

Land cover 
classification 

Álvarez-Martínez et al., 2018; Bottalico et al., 2014; 
Bässler et al., 2010; Dalponte et al., 2008; Hill and 
Thomson 2005; Pippuri et al., 2016; Simonson et al., 
2013; Sinclair 2021; Sverdrup-Thygeson et al., 2016; 
Tijerín-Triviño et al., 2022; Vehmas et al., 2009; 
Vehmas et al., 2011a 

Martinuzzi et al., 2013; Shoot et al., 2021; Su et al., 
2016 

AF: Marselis et al., 2018  

Successional 
stages 

Alberti et al., 2013; Fuhr et al., 2022; Hevia et al., 
2022; Torresan et al., 2016; Valbuena et al., 2016b 

de Assis Barros and Elkin 2021; Falkowski et al., 
2009; Kane et al., 2010; Martin and Valeria 2022; 
Martinuzzi et al., 2013; Shao et al., 2018; Weber and 
Boss 2009   

Overall canopy 
structure 

Adnan et al., 2019; Leiterer et al., 2015; Morsdorf 
et al., 2010; Pascual et al., 2008 

Guo et al., 2017; Moran et al., 2018; Whitehurst 
et al., 2013; Zimble et al., 2003 

AS: Jayathunga et al., 2018. 
OC: Wilkes et al. 2016  

Understorey 
description 

Bollandsås et al., 2008; Crespo-Peremarch et al., 
2018; Dees et al., 2012; Hill and Broughton 2009; 
Lindberg et al., 2012; Maltamo et al., 2005; Moeslund 
et al., 2022; Pascual and de-Miguel 2022; Vehmas 
et al., 2011b 

Bourgouin et al., 2022; Hamraz et al., 2017a; Hamraz 
et al., 2017b; Jarron et al., 2020; Sumnall et al., 
2017; Wing et al., 2012 

OC: Miura and Jones 2010  

Tree species Dalponte et al., 2018; Korpela et al., 2010; Leutner 
et al., 2012; Maltamo et al., 2015; Simonson et al., 
2012; Säynäjoki et al., 2008 

Gillespie et al., 2017; Kamoske et al., 2022; Sankey, 
2012 

CSA: Ceballos et al., 2015; Fricker et al., 2015; 
George-Chacon et al., 2019; Hernández- 
Stefanoni et al., 2015; Martins-Neto et al., 
2021; Wolf et al., 2012 
AS: Mohammadi et al., 2020; Zhao et al., 2018 
AF: Mauya 2015; Vaglio Laurin et al., 2016  

Understorey 
species 

Bohlin et al., 2021; Bouvier et al., 2017; Leutner et al., 
2012; Moeslund et al., 2019; Moeslund et al., 2022; 
Pascual and de-Miguel 2022; Peura et al., 2016; 
Simonson et al., 2012; Teobaldelli et al., 2017; Thers 
et al., 2017; Vauhkonen, 2018; Zellweger et al., 2016 

Barber et al., 2016; Bourgouin et al., 2022; Mao et al., 
2018; Martinuzzi et al., 2009; Nielsen et al., 2020; 
Nijland et al., 2014; Singh et al., 2015 

CSA: Ceballos et al., 2015; Lopatin et al., 2015; 
Lopatin et al., 2016  

Structural 
diversity 

Bottalico et al., 2017; Dalponte et al., 2018; Davison 
et al., 2020; Kukunda et al., 2019; Mura et al., 2015; 
Mura et al., 2016; Ozdemir and Donoghue, 2013; 
Valbuena et al., 2013; Valbuena et al., 2014; 
Valbuena et al., 2016a; Valbuena et al., 2017 

Kamoske et al., 2022; Listopad et al., 2015 AS: Zheng et al., 2021; Zheng et al., 2022 
AF: Adhikari et al., 2020  

Dead wood Amiri et al., 2019; Chirici et al., 2018; Dobre et al., 
2021; Hardenbol et al., 2022; Heinaro et al., 2021; 
Kamińska et al., 2018; Lindberg et al., 2013; Mücke 
et al., 2012; Mücke et al., 2013; Nyström et al., 2014; 
Pesonen et al., 2008; Pesonen et al., 2010a; Pesonen 
et al., 2010b; Polewski et al., 2015b; Yao et al., 2012 

Bater et al., 2009; Blanchard et al., 2011; Jarron 
et al., 2021; Martinuzzi et al., 2009; Stitt et al., 
2022a, Stitt et al., 2022b, Wing et al., 2015 

OC: Miltiadou et al., 2020  

Forest 
fragmentation  

Flaspohler et al., 2010; Guo et al., 2018; MacLean, 
2017; Shao et al., 2018; Vaughn et al., 2014 

CSA: Almeida et al., 2019  

Species richness Eldegard et al., 2014; Klein et al., 2020; Lindberg 
et al., 2015; Melin et al., 2018; Melin et al., 2019; 
Müller and Brandl 2009; Müller et al., 2009; Müller 
et al., 2010; Müller et al., 2014; Renner et al., 2018; 
Tew et al., 2022; Vierling et al., 2011; Zellweger 
et al., 2016 

Boelman et al., 2007; Carrasco et al., 2019; Coops 
et al., 2016; Flaspohler et al., 2010; Goetz et al., 
2007; Lesak et al., 2011; Swift et al., 2017; Vogeler 
et al., 2014; Weisberg et al., 2014 

AS: Sasaki et al., 2016 
AF: Vogeler et al., 2022; Ziegler et al., 2022   

Species diversity 
indices 

Melin et al., 2018; Melin et al., 2019; Müller and 
Brandl 2009; Müller et al., 2014; Tew et al., 2022; 
Vierling et al., 2011; Zellweger et al., 2017 

Clawges et al., 2008 CSA: Wallis et al., 2016 
AS: Sasaki et al., 2016  

Habitat 
suitability 

Bradbury et al., 2005; de Vries et al., 2021; Eldegard 
et al., 2014; Graf et al., 2009; Hinsley et al., 2006; 
Jung et al., 2012; Koma et al., 2021; Koma et al., 
2022; Lone et al., 2014; Melin et al., 2013; Melin 
et al., 2016; Mononen et al., 2018; Rada et al., 2022; 
Vihervaara et al., 2015; Zellweger et al., 2013a; 
Zellweger et al., 2013b 

Coops et al., 2010; Garabedian et al., 2014; García- 
Feced et al., 2011; Goetz et al., 2010; Hagar et al., 
2014; Herniman et al., 2020; Seavy et al., 2009; 
Smart et al., 2012; Swatantran et al., 2012; Vogeler 
et al., 2013   
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Table B1 
The most important ALS metrics related to vegetation categorised by type in each reviewed section. Numbers in the table describe the number of studies where these metrics were reported to be among the most important. 
Abbreviations for predictor categories are as follows: h = height predictor, v. var = vertical variability, density = density metrics, h.var. = horizontal variability, h & v = horizontal and vertical variability, intensity = ALS 
intensity predictor, fw = waveform-lidar predictor. Abbreviations for predictor names are as follows: max = maximum, pXX = XXth percentile of vegetation heights, min = minimum, std = standard deviation, kurt =
kurtosis, skew = skewness, cv = coefficient of variation, hmad = median absolute deviation of vegetation heights, hmad_mode = median absolute deviation from overall mode, hmad_med = median absolute deviation 
from overall median, l_cv = L-moment coefficient of variation, l_skew = L-moments skewness of return height, FHD = foliage height diversity, CRR = canopy relief ratio, %_below Xm = percent of returns below certain 
height limit, %_betw X-Xm = percent of returns between certain height limits, %_above Xm = percent of returns above certain height limit, veg = returns from vegetation, ground = returns from ground, first = first returns, 
third = third returns, LAD = leaf area density, LAD_max_h = maximum leaf area density height, int_pXX = accumulated intensity at XXth percentile, canopy_VDR = canopy vertical distribution ratio, PAI = plant area index, 
max energy = maximum energy of a return, quantile energy = similar to height percentile but for return energy, underst. Vox. = filled voxels at understorey.    

Land cover 
class. 

Succes. 
Stages 

Overall canopy 
struct. 

Underst. 
descr. 

Tree 
species 

Underst. 
Species 

Struct. 
Div. 

Dead 
wood 

Forest 
fragm. 

Species 
rich. 

Species 
div. 

Habitat 
suitab. 

Metric 
category 

Metric name             

h canopy height 2  2 7 4 5 2  2  1 2 
h max  1 1 4 1  4 1 1 3 1 3 
h p55 – p95 4 4 1 2 2 4 5 4  1  6 
h mean 6 3  2 1 4 1 1 1 6 1 6 
h p05 – p45 2 2  2 1 2 4 1  1  5 
h min  3     2 1     
h median   1           

v. var. h_std 3 2 2 2 4 2 3 4 2 9 4 7 
v. var. h_kurt 1 1     1      
v. var. h_skew   1    5     1 
v. var. h_cv 3  1    5 2 1   1 
v. var. h_entropy       1      
v. var. hmad 1       1     
v. var. hmad_mode       1      
v. var. hmad_median       1      
v. var. l_cv       2      
v. var. l_skew       2      
v. var. FHD      1    3 2 1 
v. var. CRR  1  1    1     
v. var. rumple index  1            

density %_below 0.5 m            1 
density %_below 2 m    1  1       
density %_betw_0.15–1.37 

m      
1       

density %_betw_1.0–2.5 m      1    1   
density %_betw_0.3–3 m  1        1   
density %_betw_0-8 m          1 1  
density %_betw_12-17 m  1           
density %_above 0.5 m            1 
density %_above 1 m 1 1           
density %_above 2 m 1            
density %_above 6 m           1  
density %_above_mean            1 
density %_veg    2      1 1  
density %_ground      2  1     
density %_first        1     
density %_third        1     
density cover 2 1 1 3  1 5   2  4 
density gap_area_2m      1       
density gap_area_5m 1            

(continued on next page) 
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Heipke, C., Hirschmugl, M., Morsdorf, F., Næsset, E., Pitkänen, J., Popescu, S., 
Solberg, S., Wolf, B.M., Wu, J.-C., 2012. An international comparison of individual 
tree detection and extraction using airborne laser scanning. Remote Sens. (Basel, 
Switzerland) 4 (4), 950–974. https://doi.org/10.3390/rs4040950. 
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based prediction of coarse woody debris volumes in a conservation area. For. Ecol. 
Manage. 255 (8), 3288–3296. https://doi.org/10.1016/j.foreco.2008.02.017. 

Pesonen, A., Maltamo, M., Kangas, A., 2010a. The comparison of airborne laser scanning- 
based probability layers as auxiliary information for assessing coarse woody debris. 
Int. J. Remote Sens. 31 (5), 1245–1259. https://doi.org/10.1080/ 
01431160903380607. 

Pesonen, A., Kangas, A., Maltamo, M., Packalén, P., 2010b. Effects of auxiliary data 
source and inventory unit size on the efficiency of sample-based coarse woody debris 

J. Toivonen et al.                                                                                                                                                                                                                               

https://doi.org/10.1016/j.ecolind.2018.08.039
https://doi.org/10.2307/1932254
https://doi.org/10.1016/j.ecolind.2016.08.034
https://doi.org/10.1016/j.ecolind.2016.08.034
https://doi.org/10.1016/j.foreco.2005.05.034
https://doi.org/10.1016/j.foreco.2005.05.034
https://doi.org/10.1186/s40663-015-0037-4
https://doi.org/10.1016/j.foreco.2017.11.017
https://doi.org/10.1016/j.foreco.2017.11.017
https://doi.org/10.1016/j.rse.2018.07.023
https://doi.org/10.1016/j.rse.2009.07.002
https://doi.org/10.1111/j.1744-7429.2012.00904.x
https://doi.org/10.1111/j.1744-7429.2012.00904.x
https://doi.org/10.1016/j.isprsjprs.2020.04.021
https://doi.org/10.1016/j.isprsjprs.2020.04.021
https://doi.org/10.1016/j.foreco.2005.08.034
https://doi.org/10.1016/j.jag.2012.11.004
https://doi.org/10.1111/gcb.12405
https://doi.org/10.1016/j.rse.2015.07.025
https://doi.org/10.1016/j.rse.2015.07.025
https://doi.org/10.1007/s10980-018-0639-7
https://doi.org/10.1109/JSTARS.2019.2906940
https://doi.org/10.1109/JSTARS.2019.2906940
http://refhub.elsevier.com/S0378-1127(23)00610-2/h0680
http://refhub.elsevier.com/S0378-1127(23)00610-2/h0680
https://doi.org/10.1016/j.rse.2009.12.017
http://refhub.elsevier.com/S0378-1127(23)00610-2/h0695
http://refhub.elsevier.com/S0378-1127(23)00610-2/h0695
http://refhub.elsevier.com/S0378-1127(23)00610-2/h0695
http://refhub.elsevier.com/S0378-1127(23)00610-2/h0695
https://doi.org/10.1016/j.foreco.2018.08.040
https://doi.org/10.1016/j.foreco.2018.08.040
https://doi.org/10.1016/j.rse.2018.04.005
https://doi.org/10.1016/j.rse.2010.01.023
https://doi.org/10.1016/j.rse.2010.01.023
https://doi.org/10.5589/m13-013
https://doi.org/10.1111/j.1365-2664.2009.01677.x
https://doi.org/10.1016/j.baae.2009.03.004
https://doi.org/10.1016/j.rse.2009.10.006
https://doi.org/10.1016/j.foreco.2013.10.014
https://doi.org/10.1016/j.rse.2015.09.016
https://doi.org/10.1016/j.rse.2016.09.010
https://doi.org/10.1016/j.rse.2016.09.010
https://doi.org/10.1016/S0034-4257(01)00290-5
https://doi.org/10.1117/1.JRS.8.083572
https://doi.org/10.1117/1.JRS.8.083572
https://doi.org/10.1016/j.jag.2014.01.012
https://doi.org/10.1016/j.foreco.2012.12.044
https://doi.org/10.1016/j.foreco.2008.02.055
https://doi.org/10.1016/j.foreco.2008.02.017
https://doi.org/10.1080/01431160903380607
https://doi.org/10.1080/01431160903380607


Forest Ecology and Management 546 (2023) 121376

21

inventory. For. Ecol. Manage. 259 (10), 1890–1899. https://doi.org/10.1016/j. 
foreco.2010.02.001. 

Peura, M., Silveyra Gonzalez, R., Müller, J., Heurich, M., Vierling, L.A., Mönkkönen, M., 
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