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ABSTRACT

The role of forests in biodiversity assessment and planning is substantial as these ecosystems support approxi-
mately 80% of the world’s terrestrial biodiversity. Forests provide food, shelter, and nesting environments for
numerous species, and deliver multiple ecosystem services. It has been widely recognised that forest vegetation
structure and its complexity influence local variations in biodiversity. As forests are facing threats globally
caused by human activities, there is a need to map the biodiversity of these ecosystems. The main objective of
this review was to summarise the use of airborne laser scanning (ALS) data in biodiversity-related assessment of
forests. We draw attention to topics related to animal ecology, structural diversity, dead wood, fragmentation
and forest habitat classification. After conducting a thorough literature search, we categorised scientific articles
based on their topics, which served as the basis for the section division in this paper. The majority of the research
was found to be conducted in Europe and North America, only a small fraction of the study areas was located
elsewhere. Topics that have received the most attention were related to animal ecology (namely richness and
diversity of forest fauna), assessment of dead trees and tree species diversity measures. Not all studies used ALS
data only, as it were often fused with other remote sensing data — especially with aerial or satellite images. The
fusion of spectral information from optical images and the structural information provided by ALS was highly
advantageous in studies where tree species were considered. Relevant ALS variables were found to be case-
specific, so variables varied widely between forest biodiversity studies. We found that there was a lack of
research in geographical areas and forest types other than temperate and boreal forests. Also, topics that
considered functional diversity, community composition and the effect of spatial resolution at which ALS data
and field information are linked, were covered to much lesser extent.

1. Introduction

ecosystems. Consequently, conservation, and future- and current-state
assessment of biodiversity have caught both scientific and political in-

Biodiversity refers to all the variation in lifeforms found at different
scales of biological organisation on Earth, ranging from genes to eco-
systems. It is divided into genetic, species and ecosystem diversity
components (United Nations, 1992). The variability between the ele-
ments within each level of organisation can be quantified as richness
(the number of elements), evenness (the equitability of elements) and
heterogeneity (the difference in the element form and function) (Bal-
vanera et al., 2014). Biodiversity is seen as a fundamental part of the
Earth system as it offers a vast range of ecosystem services from which
society obtains direct or indirect benefits (Duffy 2009). Much of the
global biodiversity is in danger because of human-induced changes on

terest in recent decades (e.g. Millennium Ecosystem Assessment, 2005).

Forests have a significant role in biodiversity-related assessment and
planning because they support approximately 80% of global terrestrial
biodiversity. They provide fundamental ecosystem services to society,
such as provisioning services, e.g. timber, recreation and climate regu-
lation (Balvanera et al., 2014). While large scale biodiversity is under-
stood to be determined by climatic conditions, vegetation structure also
has an influence on diversity and species distribution at smaller scales,
such as within forested ecosystems (Zellweger et al., 2013a). Forest
structure as a 3D complex is typically divided into two components:
horizontal and vertical structures (Franklin and van Pelt, 2004;
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McElhinny et al., 2005). Vertical structure highlights the distribution of
the vertical vegetation profile and horizontal structure describes the
distribution of vegetation in the horizontal dimension of a forest. Forest
structure (and its complexity) influences species occurrence and distri-
bution in several ways: it modifies microclimatic conditions, provides
breeding sites, affects the distribution and availability of resources and
niches, and provides shelter from predators (Brokaw et al., 1999; LaRue
et al., 2019; MacArthur and MacArthur 1961; Melin et al., 2014). When
there is a greater number of niches and more resources available in a
forest (i.e. more structural diversity), there is more likely to be greater
diversity of species than in a forest with less of these features (Stein
et al., 2014). For example, uneven-aged multi-species forests provide
more micro habitats than even-aged forests (Gilbert and Lechowicz,
2004; Savilaakso et al., 2021). In addition, the variation in terrain
elevation (i.e. topography) has been found to influence species diversity
at the local scale (Vogeler et al., 2014; Zhou et al., 2015). One relevant
concept of the mutual relationship between the environment and in-
dividuals of a species is niche theory (e.g. Chase and Leibold 2003). It
has numerous definitions, which include the requirement-based concept
of an ecological niche that links the fitness of an individual to envi-
ronmental variables (e.g. Hutchinson 1957). As the large-scale mea-
surement of habitat structure and the reconstruction of 3-D vegetation
characteristics using ground sampling is both time consuming and
resource demanding, there is an evident need for more efficient methods
of data collection.

Current remote sensing (RS) methods, which include active and
passive sensors, offer ecologically relevant data for large-scale biodi-
versity assessment of forests (Turner et al., 2003; Miura and Jones, 2010;
Alvarez-Martinez et al., 2018). Remote sensing-based approaches to
biodiversity mapping can generally be divided into modelling of habi-
tats and modelling of biodiversity distribution. The use of passive optical
RS sensor data for biodiversity assessment has been studied extensively
in recent decades and offers relevant data for the classification of
vegetation types or for the definition of the horizontal structure of the
landscape (Turner et al., 2003). However, the diversity of many taxa is
also dependent on the vertical structure, which cannot be measured
using solely optical sensor data (Vierling et al., 2008). One such tech-
nique to overcome this limitation is light detection and ranging (lidar) as
it can be used to map both the horizontal and vertical vegetation
structures at the landscape scale (Bergen et al., 2009).

Lidar is an active remote sensing technology. As such, it does not
require sunlight to offer reflected measurements of the targets (Dubayah
and Drake, 2000; Wehr and Lohr, 1999). Instead, the lidar sensor emits
light pulses (usually in the near-infrared wavelength) that reflect from
the objects back to a detector in the sensor. Lidar systems can be
spaceborne, airborne or terrestrial. Airborne laser scanning (ALS; or
airborne lidar) is often used in 3D ecosystem assessments because these
surveys cover large areas and such datasets have become increasingly
available (Bakx et al., 2019). In general, ALS pulses penetrate the
vegetation partially, thereby allowing the measurement of canopy and
subcanopy conditions. Lidar data can be recorded either as discrete
returns (DR), full-waveform (FW) or single photons. In DR-ALS systems,
a fixed number of returns is recorded for each laser pulse (Wagner et al.,
2004). The FW-ALS system records the distribution of returned light
energy and often contains more information than DR-ALS data (e.g.
Adams et al., 2012). DR is the most often used form of ALS data. In-
formation offered by FW-ALS has been found to be useful in forestry
applications that concentrate on species classification, single tree
modelling and extraction of biophysical parameters (Maltamo et al.,
2014). In DR lidar systems, multiple (hundreds or thousands) photons
are needed for the reliable detection of a single object. The much less
studied single photon lidar is relatively new technology and it offers
refined efficiency in photon collection (Yu et al., 2020). It has been
shown to be suitable for the estimation of traditional stand attributes
(Raty et al., 2022). Its greatest advantage over previous lidar systems is a
larger coverage during a flight, which is due to a higher flying altitude
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(Matikainen et al., 2020). In most of the ALS systems, distance from
object to the sensor can be calculated by determining the time interval
between the sending of the laser pulse and the backscattered echo
(Baltsavias 1999; Wehr and Lohr, 1999). The 3D-coordinates are pro-
vided for each echo by integrating the time measurement and infor-
mation from the GPS-IMU system, which measures the exact location
and orientation of the ALS-platform for each submitted lidar pulse. In
forest-related ALS analysis, the first processing step is typically the
modelling of the ground surface, i.e. the generation of a digital terrain
model (DTM). After this, the height of vegetation with respect to the
ground is calculated by subtracting the DTM from height values of the
original echoes.

The ALS data offers multiple metrics to quantify the structural at-
tributes of forest habitats (Bakx et al., 2019; Davies and Asner, 2014; Hill
et al., 2013). In general, they are statistics associated with the height
and/or intensity values of the ALS echoes, which can be linked to at-
tributes of interest. These metrics can be roughly categorised into
height, density and intensity metrics. Height metrics can further be
divided into distribution metrics that describe the central tendency (e.g.
mean), shape (e.g. skewness), dispersion (e.g. standard deviation) and
percentiles of the ALS height distribution. Density metrics account for
the proportion of returns in the fixed layers of a canopy or above/below
a certain height limit. The intensity metrics represent the amplitude of a
backscattered ALS echo or pulse, and they are dependent, for example,
on the geometry and reflectance of a target. Metrics calculated from FW-
ALS are mostly similar to DR lidar data. However, information on
waveform enables the calculation of metrics that are inaccessible with
DR lidar data, such as echo width.

The two main approaches used to derive forest information from ALS
data are the area-based approach (ABA) (e.g. Naesset 2002) and indi-
vidual tree detection (ITD) (e.g. Hyyppa et al., 2001). In ABA, ALS-
metrics are calculated at the raster cell- or plot-level, and are used as
predictor variables for the estimation of the attribute of interest. The
most suitable metrics vary with regard to the variable of interest. Can-
opy height, for example, can be predicted by the mean height of the first
echoes, maximum height or by using the height of the 95th percentile of
echoes (Coops et al., 2016; Smart et al., 2012). In the ITD approach, the
derivation of tree- or stand attributes is based on the prediction of tree
characteristics from the segmented ALS data. It is also possible to
segment the ALS echoes or a rasterised map into objects, such as trees or
logs, for instance (Blanchard et al., 2011). This type of method is called
the object-based approach and is more demanding both from a
computational and technical basis than previous approaches (e.g.
Blanchard et al., 2011). The required scale of information may also
determine the method to be used (Maltamo et al., 2014), for example, it
may be useful to detect dead standing trees at the tree-level. Similarly,
when the structure of the forest stand is of interest, one could select ABA
over ITD.

Lidar technologies have become increasingly popular in the fields of
ecology, biodiversity and conservation because they can characterise
vertical and horizontal forest structures (Bergen et al., 2009; Davies and
Asner 2014; Simonson et al., 2014). Bergen et al. (2009) suggested that
information derived from ALS data can serve as a relevant proxy for
species richness in vertically complex ecosystems, such as forests.
Numerous studies have focused on the utilisation of ALS-based forest
structural and topographical information to predict the diversity and
richness of forest fauna, such as birds, mammals and insects (e.g. Klein
et al., 2020; Vierling et al., 2011). Some studies have detected and
classified dead wood (Chirici et al., 2018; Polewski et al., 2015b), which
is an inseparable component of the diversity in forests. Furthermore,
structural classification of a forest in terms of land cover (Bottalico et al.,
2014), canopy layering (Moran et al., 2018) and successional stage
(Martinuzzi et al., 2013) can serve in habitat suitability assessments, for
example. Tree size variation in the plant community is a known issue in
forest inventories (Gobakken and Nasset 2004) and has been described
in many studies by the coefficient of variation, standard deviation
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Fig. 1. Histogram showing the annual frequency of forest diversity studies. Bars represent the total number of publications per year.

(Bottalico et al., 2017) and the Gini coefficient (GC) (Valbuena et al.,
2016a).

In this paper, we provide a review of the use of ALS data in forest
biodiversity assessment. We review studies where the main interest is
the assessment of dead wood, lower canopy layers, fragmentation, gap
dynamics, forest structural diversity and structural classification in
terms of the different canopy layers, land cover classes and forest suc-
cessional stage. Also, we review topics concerning the richness and di-
versity of flora and fauna found in different types of forests and includes
birds, mammals, insects, invertebrates, plants and trees. By structural
diversity, we focus on variations in tree and crown heights and tree
diameters, as well as on the spatial patterns of the trees in the forest. In
the first stage, we describe the material gathering process and sum up
the published studies in terms of their publication year, journal domain,
the spatial extent and location of the study areas in order to highlight
“hotspot areas” of research on this topic. We also present the distribution
of study areas within ecoregions. In the second stage, we systematically
examine the studies categorized by research topics (sections 3-9). Some
studies covered more than one aspect and were, therefore, included in
multiple categories. In the third stage, we summarise the current use of
ALS data in assessments of forest biological and structural diversity and
discuss prospects for its use in future studies.

2. Material and methods

In this review, literature searches in Scopus, Google Scholar and UEF
Primo (search service for electronic materials at the University of
Eastern Finland) were conducted between May 2021-July 2023. Key-
words used in the searches were carefully chosen to represent the topic
of the review and to minimise the potential of excluding relevant
studies. The selected keywords were “ALS”, “airborne lidar” or “airborne
laser scanning” for the lidar component, “forest” or “forest structure” for
the vegetation component and ‘“biodiversity”, “forest type”, “dead
wood”, “fragmentation”, “species diversity”, “species richness”, “suc-
cessional stage”, “understorey” and “animal ecology” were used sepa-
rately on each for the last component. These keywords were used in all
possible combinations for the vegetation, lidar and last components.
After the search, the number of articles was reduced by screening the
articles, first by their title and then by abstract. Finally, the selected
articles were verified by the full text. Also, a study could be included in
this review if it was included in the references of another suitable study
even though it was not found through a literature search. We excluded
studies where the primary data were acquired with terrestrial,

spaceborne or profiling lidar systems, and studies that used photo-
grammetric point clouds derived from aerial and satellite image data. In
addition, studies where the main interest was the assessment of leaf-area
index (LAI), canopy cover, primate habitats or were conducted in
aquatic ecosystems, were excluded from this review. This was to limit
the length and complexity of this paper. In total, 182 scientific articles
were included in this review and all articles were published between
2003 and 2022 (Fig. 1). Most of the research was conducted between
2009 and 2018, with a peak occurring in 2016 when 17 studies were
published (Fig. 1). There was a slight decline in the number of published
articles during 2019 and 2020, although by 2022, the number of studies
had rose to 2018 levels.

The most common domain for publications was in remote sensing-
oriented journals, which accounted for 45% of the studies (Fig. 2a).
Approximately, one quarter of the studies were published in either
ecology or forestry-related journals. A total of 134 studies (approxi-
mately 75%) only utilised ALS data (Fig. 2b). Both ALS and terrestrial
laser scanning data were used in four studies, and approximately one
quarter of studies used optical image data with ALS (Fig. 2b). There was
a clear trend in the type of ALS data used: A total of 171 studies used
discrete return signals from ALS in metrics calculation (Fig. 2c). Between
2010 and 2022, FW-ALS was used only in 12 studies. Clear trends with
regard to the use of this type of ALS data were not found. We classified
study areas by their spatial extent, defined here as the spatial unit on
which the study was conducted (Fig. 2d). Here, landscape level denotes
a large heterogeneous area that consists of multiple different land-uses
(e.g. different forest types). Stand level is defined as a rather homoge-
nous, small forest unit.

The majority of the study areas was located in Europe and North
America (Fig. 3). Note that there are more study areas than study arti-
cles, since some studies included data from numerous locations. A full
list of studies categorised by their topics and the continent of the study
areas is presented in Appendix A.

Approximately 42% of the study areas were located in temperate
broadleaved and mixed forests (Fig. 4). Both boreal and temperate
coniferous forests were hosts for approximately 20% of the study areas.
The remainder of the study areas were mainly located in Mediterranean
and tropical forests — each accounting for < 10% of the study areas.
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a) Publication domain

M Ecology M Forest MRS M Other

c) ALS data type

M Discrete return M Full-waveform
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b) Remote sensing data

M ALS + Satellite/Aerial Images W ALS + TLS HALS only

d) Extent of study area

M Landscape level B Stand level E Plot level B Tree level

Fig. 2. Reviewed articles by (a) domain of the publication journal, (b) type of remote sensing dataset, (c) type of airborne laser scanning (ALS) dataset, and (d)
spatial extent of study area. Numbers above the percentages denote the actual number of the articles per class. Note that some studies belong to more than one class (c

and d).

3. Forest type and successional stage
3.1. Land cover classification

The distribution of habitat types across large areas reflects potential
species richness but its mapping has been a challenge for conservation
practitioners. High-resolution maps that depict habitat distribution have
mostly been derived from resource-consuming field inventories and
from visual interpretation of aerial images (Evans 2006).

In our review, the classification schemes of land covers varied be-
tween studies, but classes were typically named after the main tree
species or the species group that was most representative of a landscape
(Dalponte et al., 2008; Shoot et al., 2021; Simonson et al., 2013; Su et al.,
2016). Some studies defined the classes very precisely. For example, Hill
and Thomson (2005) used the National Vegetation Classification scheme
for woodlands and scrub of Great Britain and Bassler et al. (2010) used
the Natura 2000 habitat classification scheme. Bottalico et al. (2014)
employed a broader scheme as they classified forests as high forests,
young and adult coppices. Sverdrup-Thygeson et al. (2016) used only

two classes as they aimed to distinguish old managed and old near-
natural forests. One study classified forests into four classes of forest
naturalness (Sinclair 2021), while Vehmas et al. (2009 and 2011a)
employed a very distinctive scenario with the aim to classify mature
stands based on site fertility types. Pippuri et al. (2016) also classified
forest plots based on site fertility, but they also used other classification
scenarios, such as peatland type (spruce, pine and open), drainage status
(drained vs. undrained), land use/land cover (forest vs. non-forest) and
main soil type (mineral vs. peat).

Terrestrial biomes in these study areas were mostly temperate
broadleaved/coniferous and boreal forests. Two studies concentrated on
the mapping of forest land cover classes in the tropics (Marselis et al.,
2018; Martinuzzi et al., 2013). Most of the study areas were located in a
national park or in a protected site (e.g. Natura 2000 site).

Methods differed to some extent between studies, although the
classification of habitat types was generally based on supervised ma-
chine learning algorithms, such as maximum likelihood, k-NN, Random
Forest (RF), boosted regression trees (BRT) and support vector machines
(SVM). Alvarez-Martinez et al. (2018) used a slightly different approach
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Fig. 3. Locations of reviewed study areas (a) globally, (b) in North and Central America, and (c) in Europe. Number of clustered studies is presented inside the dots.
Colouring of the world map is based on the global terrestrial biome classification as presented by Olson et al. (2001). Map: WWF, 2021.
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Fig. 4. Histogram showing the percentage distribution of study areas in terms of the terrestrial biome, as shown in the Fig. 3. Number in parentheses denotes the
actual number of study areas in the specific ecoregion. Abbreviations are as follows: TempBroMixed = Temperate Broadleaf and Mixed Forests, Boreal = Boreal
Forest/Taiga, TempConif = Temperate Coniferous Forests, MediForWoodS = Mediterranean Forests, Woodlands and Scrub, TropMoist = Tropical and Subtropical
Moist Broadleaf Forests, TropDry = Tropical and Subtropical Dry Broadleaf Forests, TempGraSavanS = Temperate Grasslands, Savannas and Shrublands, MontMoor
= Montane Moorlands, DesertXerS = Deserts and Xeric Shrublands, TropGrassSavanS = Tropical and Subtropical Grasslands, Savannas and Shrublands.
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for their supervised classification as they implemented a 3-stage classi-
fication strategy. At each stage, the area occupied by each habitat type
was predicted at a finer spatial scale, which resulted in a map that
depicted the most probable habitat type for each pixel. Unsupervised
classification was implemented by Hill and Thomson (2005) and Su
et al. (2016). Some studies used only one classification algorithm, and
others compared classification results between two or more algorithms.
For instance, Shoot et al. (2021) compared five machine learning
algorithms.

In general, distribution-free machine learning algorithms performed
better than parametric classifiers, especially with the fusion of ALS and
hyperspectral imagery when the number of explanatory variables was
relatively high (Dalponte et al., 2008). When only ALS data was used, no
significant differences were reported in the performance of the classi-
fiers (e.g. Sverdrup-Thygeson et al., 2016; Vehmas et al., 2009).

In general, the overall accuracy was greater when the number of
habitat types to be classified was small, as expected. For example,
Sverdrup-Thygeson et al. (2016) obtained an overall accuracy of
approximately 94% in their 2-class scenario, whereas Alvarez-Martinez
et al. (2018) mapped 11 forest-related habitat types with an overall
accuracy of approximately 66%. Poor class-level accuracies were
attributed in some studies to the small number of training samples for a
specific class (Alvarez-Martinez et al., 2018; Pippuri et al., 2016; Shoot
et al.,, 2021) and to incorrect labelling of the training data (Vehmas
et al.,, 2009). Also, leaf-off ALS data were found to result in poorer
overall accuracies than leaf-on data, which would indicate that the
mixed use of ALS data acquired under different conditions may not be
favourable in this use case (Bottalico et al., 2014). In addition, low point
cloud density (~0.5pt./m?) was indicated as a potential cause for low
classification accuracy (Tijerin-Trivino et al., 2022). An increase in
overall accuracy when using optical aerial imagery in combination with
ALS data was reported by Shoot et al. (2021), Simonson et al. (2013) and
Dalponte et al. (2008). The inclusion of Landsat and radar metrics were
found to have minimal or no effect on the classification accuracy of
forest types when used in combination with ALS metrics (Martinuzzi
et al., 2013).

Vertical ALS metrics were used in most studies and were found to
perform well in the classification of forest habitat types, even when the
point density was as low as 0.05pt./m? (Martinuzzi et al., 2013). In
general, the most powerful vertical ALS metrics were average/mean
values (Alvarez-Martinez et al., 2018; Bottalico et al., 2014) and the
coefficient of variation associated with vegetation height (Bottalico
etal., 2014; Sinclair 2021; Sverdrup-Thygeson et al., 2016). Other useful
vertical ALS metrics included penetration rate and height percentiles
(80th, 90th, 95th, max. value) of the vegetation. In an assessment of old
forest naturalness Sverdrup-Thygeson et al. (2016) observed that the
ALS metrics that described the horizontal variation of the vegetation
performed better than those that reflected the vertical structure. Mar-
tinuzzi et al. (2013) and Shoot et al. (2021) listed topographical vari-
ables as important in the classification of forest habitat types. The best
performing FW-ALS metrics in the discrimination of vegetation types
were related to canopy height, canopy cover, total plant area index (PAI)
and PAI profile (Marselis et al. 2018).

When broadleaved trees were used in classification, the addition of
spectral variables (Dalponte et al., 2008) and/or ALS intensity features
(Pippuri et al., 2016; Vehmas et al., 2011a) were found to be favourable.
However, Dalponte et al. (2008) stated that the elevation information of
ALS data offered much more explanatory power than ALS-intensity.

3.2. Successional stages

Most long-term processes in forests, such as carbon sequestration, are
driven by successional dynamics (Shugart 2000). The precise determi-
nation of the forest successional stage in a large area helps to achieve
many goals of sustainable forest management, although this determi-
nation is not always easy, e.g. in uneven-aged forest management, which
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is regarded as an effective way to increase structural and species di-
versity at the stand-level (Savilaakso et al., 2021). Information on the
forest successional stage can also be used to predict future forest con-
ditions via succession models (Busing et al., 2007).

In our review, determination of the stage to be classified was either
based on an existing classification scheme used in forest management (e.
g. Alberti et al., 2013; Valbuena et al., 2016b) or was tailored by the
authors of the study (Martin and Valeria 2022; Martinuzzi et al., 2013).
The number of successional stages to be classified ranged from 2-8. Shao
et al. (2018) used a 2-class scenario where the purpose was to classify
forests as early or later-stage forests. In contrast, Martinuzzi et al. (2013)
only considered forests >30 years of age in their classification and
classified those into three secondary forest classes (taking into consid-
eration previous land-use) and primary forests. Kane et al. (2010) did
not classify forests by age, but examined whether young secondary
forests could be separated from primary forests by ALS metrics. Differ-
ences in the description of successional stages were evident between
studies. For example, Martinuzzi et al. (2013) defined stands >90 years
old as primary forests, whereas Kane et al. (2010) used an age threshold
value of 220 years for primary forests. In three studies, the aim was to
derive old-growth index at the landscape-level as an indicator of old-
growth forest conditions (de Assis Barros and Elkin 2021, Fuhr et al.,
2022, Hevia et al., 2022). These indices were based on field measure-
ments of forest maturity attributes, such as the basal area of large dead
standing trees.

Study areas in the terrestrial biomes were mostly temperate conif-
erous (Alberti et al. 2013; Falkowski et al., 2009) and contained trees
from Abies, Picea and Tsuga generas. One study was conducted in a
subtropical broadleaved dry forest (Martinuzzi et al., 2013).

The classification of successional stages was most often based on
machine learning algorithms. Fuhr et al. (2022), Martin and Valeria
(2022), Martinuzzi et al. (2013) and Falkowski et al. (2009) used a RF
algorithm in their studies, while Torresan et al. (2016) first defined the
structural patterns in the desired classes with unsupervised clustering,
and then used the resulting features as a basis for a supervised classifi-
cation of successional stages. Other machine learning algorithms that
were used included SVM (Valbuena et al., 2016b) and the classification
and regression tree (CART) (Weber and Boss 2009). Alberti et al. (2013)
and Shao et al. (2018) used a classification based on height threshold
values of an ALS canopy height model (CHM).

Classification accuracy was greater in older successional stages
(Alberti et al., 2013; Torresan et al., 2016). Errors were most common in
forests that exhibited significant structural variability. Examples of this
included multi-layered stages (Alberti et al., 2013; Torresan et al.,
2016), stages with a distinct understorey (Falkowski et al., 2009) and
younger successional stages that contained a large number of small trees
(Valbuena et al., 2016b). Small trees in the understorey were found to be
difficult to assess using low point density ALS data (2.8pt./m?), espe-
cially with the ITD approach (Alberti et al., 2013). Moreover, ALS data
were found to offer better classification accuracy than classification
based on Landsat imagery (Martinuzzi et al., 2013). Kane et al. (2010)
found no significant relationship between ALS metrics and the age of the
primary stands, although metrics for secondary forests showed signifi-
cant relationships with stand age. The main outcome in their study was
that stand age did not automatically indicate a specific stage of canopy
structure (i.e. canopy structure does not develop in a linear fashion). A
similar conclusion was reported by Weber and Boss (2009), while de
Assis Barros and Elkin (2021) also found that tree age did not improve
classification accuracy. Studies that predicted continuous old-growth
indices (e.g. de Assis Barros and Elkin, 2021; Hevia et al., 2022) re-
ported moderate goodness-of-fit measures for their models (R%
0.35-0.77).

The studies used a number of different ALS metrics as explanatory
variables for successional stage classification, although the most often
used and important metrics were those that described the vertical can-
opy structure. For example, standard deviation (Fuhr et al.,, 2022),
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median absolute deviation (Martinuzzi et al., 2013) and average abso-
lute deviation of vegetation height (Valbuena et al., 2016b) were found
to perform well with ALS metrics. Other similar metrics included the
difference between the 90th and 10th percentiles (Torresan et al., 2016)
and the median of the absolute deviations from the overall median of
vegetation height (Valbuena et al., 2016b). Metrics related to canopy
cover were also reported as important in the modelling of forest matu-
rity (Falkowski et al., 2009; Hevia et al., 2022). Some studies only used
the predicted CHM-based canopy height, and these studies often utilised
a height threshold to classify successional stages (Alberti et al., 2013;
Shao et al., 2018). Martin and Valeria (2022) reported that the ALS
metrics commonly associated with structural complexity in old-growth
boreal forests showed differing patterns compared to temperate forests
(de Assis Barros and Elkin 2021; Kane et al., 2010).

4. Canopy assessment
4.1. Overdll canopy structure

Overall canopy structure assessment refers here to the separation of
forests into classes that describe height, openness or layering of the
canopy. This diverges from the classification scenarios presented in the
previous section by concentrating on the structural arrangement of a
canopy. Canopy structure (e.g. layering) is an especially important
component of the forest ecosystem as it influences the energy fluxes
between the atmosphere and the forest stand (Shugart et al., 2010).

In our review, the most common attribute of interest was canopy
layering; either single- or multi-storey (Leiterer et al., 2015; Wilkes
et al., 2016). For example, Zimble et al. (2003) used a 2-class scenario
where the intention was to classify forests as either single- or multi-
storey, while Wilkes et al. (2016) predicted the actual number of can-
opy strata and Morsdorf et al. (2010) defined the extent and height of
each stratum. Some studies derived canopy structural types, which
included information on canopy layering (single, two-, and multi-
layered), canopy type (broadleaved or evergreen) (Jayathunga et al.,
2018; Leiterer et al., 2015) and age (Adnan et al., 2019). A more com-
plex classification based on the proportional cover of predefined over-,
mid- and under-storey layers was proposed by Whitehurst et al. (2013).
They also examined canopy layering using continuous foliage area
profiles. Some studies also predicted the crown coverage of different
canopy layers in the classification (Guo et al., 2017; Morsdorf et al.,
2010; Pascual et al., 2008). In a study by Moran et al. (2018), the
premise was to aggregate ecoregion-specific classes of a predominant
canopy structure to more general meta-classes at the landscape-scale
without using field training data.

Study areas in terrestrial biomes were mostly temperate broadleaved
forests that comprised of aspen, poplar or beech species (Guo et al.,
2017; Leiterer et al., 2015). Other common regions were temperate
coniferous (Zimble et al., 2003) and Mediterranean forests (Pascual
et al., 2008).

A wide range of modelling and classification methods were used
across the reviewed studies. The most used unsupervised classification
method was k-means clustering (Guo et al., 2017; Jayathunga et al.,
2018; Pascual et al., 2008). Unsupervised classification was also utilised
by Moran et al. (2018), although they used RF for this task in two
separate stages, firstly to identify natural groupings within the ALS data,
and secondly to classify landscapes using cluster labels in a supervised
fashion. A similar approach was used by Adnan et al. (2019) and
Morsdorf et al. (2010), although they used different algorithms. Wilkes
et al. (2016) utilised the gap probability function, which determines the
probability that there is a gap above a certain height in the canopy, and
Zimble et al. (2003) classified canopies as single- or multi-storey using a
threshold value for tree height variance. Leiterer et al. (2015) used a
hierarchical, multi-scale classification approach with Bayesian robust
mixture modelling.

Overall classification accuracy in the reviewed studies varied
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between 66.9% and 97%. The studies of Zimble et al. (2003) and Lei-
terer et al. (2015) demonstrated the importance of class number for
classification accuracy, i.e. a smaller number of classes will result in
greater overall accuracy in general. Also, classification was more accu-
rate for structurally simpler forests and for the dominant layers of multi-
layered forests (Morsdorf et al., 2010). Most misclassification occurred
in classes with an open canopy structure and those that were multi-
layered (Adnan et al., 2019; Guo et al., 2017; Leiterer et al., 2015;
Morsdorf et al., 2010; Wilkes et al., 2016). Some studies observed that
broadleaved canopies tended to be classified less accurately than ever-
green canopy types (Leiterer et al., 2015; Morsdorf et al., 2010). Small
training sample size (Guo et al., 2017; Morsdorf et al., 2010; Wilkes
et al., 2016), minor differences between classes (Adnan et al., 2019), and
the low point density of ALS data (Zimble et al., 2003) were listed as
possible reasons for poor classification accuracy for some canopy
structure classes.

Suitable ALS metrics for canopy structure classification were those
that represented the vertical distribution of the canopy material. Metrics
in this category include, for example, the median and standard deviation
(Pascual et al., 2008; Guo et al., 2017), second population L-moment (L-
scale) (Moran et al., 2018) and the coefficient of variation (Zimble et al.,
2003) associated with vegetation height. However, some studies used
ALS canopy height to account for the classification of canopy layering
(Morsdorf et al., 2010; Whitehurst et al., 2013). Other potential
explanatory variables were ALS-predicted canopy cover (Adnan et al.,
2019; Guo et al., 2017; Wilkes et al., 2016) and canopy density (Guo
etal., 2017; Jayathunga et al., 2018; Moran et al., 2018). Horizontal ALS
metrics (e.g. horizontal standard deviation of canopy density) were
found to offer supplementary information that aided in the characteri-
sation of the overall canopy structure, although they were not utilised
that frequently (Leiterer et al., 2015; Moran et al., 2018). The use of ALS
intensity was tested in one study and was found to be a powerful feature
in the separation of layers of two different tree species with similar
heights (Morsdorf et al., 2010). Aerial imagery metrics were also found
to be valuable in distinguishing coniferous from deciduous canopies
(Jayathunga et al., 2018). Wilkes et al. (2016) reported that the incre-
ment of ALS plot size provided a more robust estimate for the number of
canopy strata.

4.2. Understorey description

Understorey is defined here as the vegetation layer where suppressed
trees and shrubs exist under a dominant canopy. Understorey trees are
fundamental components for ecosystem functioning as they influence
stand development, fire behaviour, and provide habitats for many
wildlife species (Hamraz et al., 2017a).

The aims of the reviewed studies can be loosely divided into two
groups: studies that predicted the existence of an understorey or its trees
(Hamraz et al., 2017a; Hill and Broughton 2009; Miura and Jones 2010)
and studies that predicted the forest features that describe the under-
storey (Crespo-Peremarch et al., 2018; Dees et al., 2012; Jarron et al.,
2020; Lindberg et al., 2012). The most commonly predicted features
were height, cover and volume of the understory trees, although other
aims were evident. For example, Bollandsas et al. (2008) were interested
in depicting the growth and regeneration success of young trees in an
uneven-aged forest, while Hamraz et al. (2017b) analysed the occlusion
effect of higher canopy layers on the lower layers in terms of ALS point
density, and investigated how this affected tree segmentation quality.
Vehmas et al. (2011b) identified the differences between understories of
canopy gap types in semi-natural and managed forests.

Temperate broadleaved forest was the most abundant terrestrial
biome studied in our review, followed by temperate coniferous forest.
Most of the forests were in a natural or near-natural state. One study area
was located in a pine plantation (Sumnall et al., 2017).

In assessing the forest understorey, there were essentially two ways
to process the ALS data: include all canopy points (Bollandsas et al.,
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2008) or remove the dominant canopy layer for further processing (Hill
and Broughton 2009; Sumnall et al., 2017; Wing et al., 2012). Jarron
et al. (2020) compared the use of these two approaches and noted that
the dominant canopy and sub-canopy layers could be separated by
multiple methods. A common method was histogram thresholding based
on various height measures (Dees et al., 2012; Hamraz et al., 2017a;
Jarron et al., 2020; Maltamo et al., 2005). This phase was usually fol-
lowed by derivation of models between field-measured variables and
ALS data to estimate variables for the forest understory. Crespo-Per-
emarch et al. (2018) employed a different approach and used voxelised
FW metrics to predict various understory attributes. Lindberg et al.
(2012) compared the estimated vegetation volume profiles between FW
and DR-ALS data. Two of the estimated vegetation volume layers were
vegetation below 10 and 3 m above ground level. Variables that depict
the forest understory in these studies were mostly predicted at the plot-
level. Some studies created models at the plot-level and applied those to
the whole study area (e.g. Jarron et al., 2020).

The studies in our review reported moderate and substantial R?
values for the models that estimated understorey volume (0.88-0.95),
the number of trees (0.55-0.87) and the different height measures
(0.76-0.96). In general, the volume of the understorey was predicted
more accurately than height features. Segmentation of the canopy layers
was found to increase the prediction performance of derived models
(Crespo-Peremarch et al., 2018; Hamraz et al., 2017a; Jarron et al.,
2020), especially with variables related to understorey height. Here,
segmentation of canopy layers refers to the removal of the upper canopy
layers based on a field-derived height threshold of the understorey, for
example. Lindberg et al. (2012) reported that vegetation volume esti-
mates for lower canopy layers were more accurate when FW-ALS was
utilised over the DR-ALS. Hill and Broughton (2009) reported that both
leaf-on and leaf-off ALS data could be used to predict absence or pres-
ence of the understorey with almost equal accuracy (72% vs. 77%). For
point density, Hamraz et al. (2017b) noted that both understorey and
overstorey trees could be segmented equally accurately when the overall
point density was approximately 170/m2. Bollandsis et al. (2008) re-
ported that ALS data was able to describe regeneration success better
than measures related to vitality (e.g. leader length). Vehmas et al.
(2011b) found that canopy gaps with dense undergrowth could be
distinguished from other types of gaps using spatial metrics and ALS
return heights.

Sumnall et al. (2017) reported cases where the understorey layer
intersected the dominant canopy layer. This resulted in an over-
estimation of sub-dominant heights, especially in older coniferous
stands. Hill and Broughton (2009) emphasised that the modelling of
understorey information must consider the structure of the overstorey
and the penetration of the laser pulse through this layer. Therefore, the
use of simple height thresholds is not adequate under such conditions
and will likely lead to false discrimination of the canopy layers (Hill and
Broughton 2009).

5. Diversity measures of trees
5.1. Tree species

Species richness and diversity are often reported measures of biodi-
versity, and their assessment is of major global interest as they
contribute to ecosystem (here forest) health. This section covers the
studies that have utilised ALS data as the main remote sensing data in
the assessment of tree species diversity. We also reviewed studies that
used ALS data in the inventory of ecologically important tree species.

Some studies defined species richness (i.e. the number of species
within a defined region) or diversity indices (e.g. Shannon diversity
index) based only on the trees (e.g. Fricker et al., 2015; George-Chacon
et al., 2019; Mauya 2015), although some studies also considered shrub
and herb species (e.g. Ceballos et al., 2015; Leutner et al., 2012). A small
number of studies concentrated on the amount of ecologically important
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tree species, for example, aspen (Maltamo et al., 2015; Sankey, 2012)
within the forest stand.

Study areas were most often located in boreal coniferous and
temperate broadleaved forests. Also, tropical and sub-tropical forests
were often studied (Hernandez-Stefanoni et al., 2015; Martins-Neto
et al., 2021). One study area was located in the urban forests of Los
Angeles (Gillespie et al., 2017).

Tree species diversity measures were most often predicted using
regression techniques, such as linear regression (Ceballos et al., 2015;
Gillespie et al., 2017; George-Chacon et al., 2019) and generalised least
squares regression (Dalponte et al., 2018, Fricker et al., 2015, Wolfet al.,
2012). Non-parametric methods, including RF (Leutner et al., 2012;
Mohammadi et al., 2020), k-NN (Mauya 2015; Mohammadi et al., 2020)
and Multivariate Adaptive Regression Spline (Vaglio Laurin et al., 2016)
were also used. Martins-Neto et al. (2021) tested multiple machine
learning methods for the prediction of tree species richness and diversity
among other stand variables. Sankey (2012) utilised quantile regression,
and Saynajoki et al. (2008) used linear discriminant analysis in the
classification of individual deciduous canopies.

In general, studies reported that the correlation of tree species
richness and ALS metrics was greater than the correlation of tree species
diversity and ALS metrics (Leutner et al., 2012; Mauya, 2015). Martins-
Neto et al. (2021) reported contradictory results, mainly because of the
large number of tree species found in tropical forests. Leutner et al.
(2012) reported the lowest R? value (0.30) for species richness of all
canopy layers, and the best performing model of all studies (R = 0.89)
was obtained by George-Chacon et al. (2019) for the Shannon diversity
index of tree species, which utilised both ALS metrics and satellite im-
agery. Similar model performance was reported by Zhao et al. (2018)
and Dalponte et al. (2018) for the Shannon diversity index and tree
species richness. Kamoske et al. (2022) reported that the taxonomic
diversity model yielded a greater explanatory power (R% 0.46) than the
phylogenetic (R% 0.33) and functional diversity (R%: 0.31) models.
Mapping of aspen was found to be difficult as it shared similar intensity
metric values with spruce and birch (Korpela et al., 2010). Yet, other
ecologically important species, such as Alnus incana and Salix caprea,
could be separated based on high intensity values. However, when aspen
trees are relatively large, they are distinguishable from other deciduous
tree species when both intensity and height percentiles are used
(Saynajoki et al., 2008). Moreover, ALS-based vegetation height was
found to improve the overall accuracy of Landsat-based aspen presence/
absence detection (Sankey, 2012), while Maltamo et al. (2015) reported
that a balanced sample obtained with ALS-guided probability propor-
tional sampling generally improved the predictions of stand volume
estimates for aspen.

In general, studies that used both optical and ALS data reported that
the latter provided the best performance for diversity models (Ceballos
et al., 2015; Fricker et al., 2015; Kamoske et al., 2022; Mohammadi
et al., 2020). The standard deviation associated with vegetation height
was found to correlate more with tree species richness than with the
mean value (Fricker et al., 2015; Hernandez-Stefanoni et al., 2015;
Mohammadi et al., 2020). Leaf-on ALS data were reported to explain
slightly more of the variation in tree species richness than leaf-off data:
R? = 0.49 vs. 0.42 (Hernandez-Stefanoni et al., 2015). Leutner et al.
(2012) clarified that ALS provided the best predictors for total species
richness predictions across all forest canopy layers (including herb and
shrub species), although tree species richness was predicted most
accurately using a fusion of hyperspectral and ALS data. Improved R?
valu