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Upscaling field-measured seasonal ground vegetation 
patterns with Sentinel-2 images in boreal ecosystems
Yuwen Pang a, Aleksi Räsänenb, Teemu Juselius-Rajamäkia, Mika Aurelac, 
Sari Juutinenc, Minna Välirantaa and Tarmo Virtanena

aEnvironmental Change Research Unit (ECRU), Ecosystem and Environment Research Program, Faculty of 
Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland; bNatural Resources Institute 
Finland (Luke), Oulu, Finland; cAtmospheric Composition Research, Finnish Meteorological Institute, 
Helsinki, Finland

ABSTRACT
Aboveground biomass (AGB) and leaf area index (LAI) are key variables 
of ecosystem processes and functioning. Knowledge is lacking on how 
well the seasonal patterns of ground vegetation AGB and LAI can be 
detected by satellite images in boreal ecosystems. We conducted field 
measurements between May and September during one growing 
season to investigate the seasonal development of ground vegetation 
AGB and LAI of seven plant functional types (PFTs) across seven vege-
tation types (VTs) within three peatland and forest study areas in 
northern Finland. We upscaled field-measured AGB and LAI with 
Sentinel-2 (S2) imagery by applying random forest (RF) regressions. 
Field-measured AGB peaked around the first week of August and, in 
most cases, one to two weeks later than LAI. Regarding PFTs, deciduous 
vascular plants had clear unimodal seasonal patterns, while the AGB 
and LAI of evergreen vegetation and mosses remained steady over the 
season. Remote sensing regression models explained 24.2–50.2% of 
the AGB (RMSE: 78.8–198.7 g m−2) and 48.5–56.1% of the LAI (RMSE: 
0.207–0.497 m2 m−2) across sites. Peatland-dominant sites and VTs had 
a higher prediction accuracy. S2-predicted peak dates of AGB and LAI 
were one to three weeks earlier than the field-based ones. Our findings 
suggest that boreal ground vegetation seasonality varies among PFTs 
and VTs and that S2 time series data can be applied to monitor its 
spatiotemporal patterns, especially in treeless regions.
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1. Introduction

The boreal ecosystem, mosaic of forests, peatlands, and waterbodies, covers about 10% of 
Earth’s land surface area at 50–70°N (Helbig et al. 2020). It is characterized by a cool 
climate with relatively low precipitation and serves as a significant reservoir for organic 
carbon, storing about 1,000 Gt carbon above and below ground, particularly within 
peatlands (Bradshaw and Warkentin 2015). The region is susceptible to environmental 
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changes and is facing rapid climate warming (Helbig et al. 2020; Lyons et al. 2020; 
Mcpartland et al. 2020). Increasing air temperature has led to changes in vegetation 
phenology, which refers to the conjunctional seasonal trajectory of plant physiological 
activity, growth, biomass, and canopy coverage changes, consequently altering the 
carbon cycle within ecosystems (Mäkiranta et al. 2018; Richardson et al. 2013).

Two key plant traits, aboveground biomass (AGB), which is defined as the total quantity 
of aboveground dry mass and living and dead plant matter (g m−2) (Verwijst and Telenius  
1999), and leaf area index (LAI), which estimates the one-sided green leaf area per unit of 
ground area (m2 m−2) (Chen and Black 1992), are generally known to regulate plant 
productivity and are hence valuable indicators for assessing the ecosystem carbon 
balance (Peichl et al. 2018; Tian, Branfireun, and Lindo 2020). The phenology patterns of 
these traits are responding to climatic changes, for example, an earlier spring onset boosts 
AGB accumulation (Koebsch et al. 2020) and a longer growing season causes seasonal 
increases in LAI (Zhu and Zeng 2017).

Ground vegetation (the component of the understory that is <1.5 m tall) forms 
a significant part of total vegetation AGB and LAI in boreal ecosystems (Macdonald 
et al. 2012). Due to the high spatial heterogeneity along with environmental gradients 
in the boreal biome, there are various ground vegetation community types (VTs) with 
differentiated plant functional type (PFT) composition (Korrensalo et al. 2018; Lyons et al.  
2020; Pohjanmies et al. 2021; Räsänen et al. 2020). The PFTs, such as evergreen and 
deciduous shrubs, forbs, graminoids, and mosses, and consequently also VTs have diver-
gent seasonal patterns in AGB and LAI. For instance, in peatlands, VTs can include 
elongated strings dominated by Ericaceous shrubs, lawns with sedges, forbs, and 
Sphagnum, and flarks covered by brown mosses and sedges (Laitinen et al. 2017; 
Peterka et al. 2017; Räsänen et al. 2020). As reported by Korrensalo et al. (2018), the live- 
standing biomass within a growing season ranged from 211 g m−2 in bare peat surfaces 
without Sphagnum to 979 g m−2 in high hummock VTs. However, only few studies have 
reported comprehensive comparisons of how AGB and LAI vary at different scales, namely 
across landscapes, VTs, and PFTs.

There is an ever-growing trend in integrating remote sensing data with field measure-
ments to enhance our understanding of vegetation patterns, both spatially and tempo-
rally, and facilitate accurate carbon balance estimations (Juutinen et al. 2017; Linkosalmi 
et al. 2022; Skidmore et al. 2021). The satellites with high spatial and temporal resolution, 
such as Sentinel-2 (S2), allow to estimate plant biological properties and further to capture 
their seasonal development across landscapes (e.g., (Juutinen et al. 2017; Pang et al. 2022; 
Puliti et al. 2020; Räsänen et al. 2021)). Previous research has shown that S2 performs 
better than the Landsat series for estimating AGB and LAI in the boreal biome (Astola et al.  
2019; Korhonen, Packalen, and Rautiainen 2017; Majasalmi and Rautiainen 2016), provid-
ing plausible maps of these plant traits in boreal forests (Korhonen, Packalen, and 
Rautiainen 2017; Puliti et al. 2020) and peatlands (Arroyo-Mora et al. 2018; Czapiewski 
and Szuminska 2022; Räsänen et al. 2021).

Time-series S2 data has been utilized to track vegetation phenology (Descals et al.  
2020; Misra, Cawkwell, and Wingler 2020; Schiefer et al. 2023; Thapa, Millan, and Eklundh  
2021). For example, Linkosalmi et al. (2022) combined S2 data with digital photography in 
boreal peatlands and Thapa, Millan, and Eklundh (2021) assessed S2-based phenology in 
hemi boreal forests, and Tian et al. (2021) estimated the performance S2-based phenology 
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estimates with the help of Europe-wide in-situ observations. However, to the best of our 
knowledge, no studies have investigated the seasonal development of boreal ground 
vegetation AGB and LAI using S2 data and linked the S2-based AGB and LAI estimates to 
field-based PFT and VT-specific AGB and LAI estimates.

To address this gap, our objective is to monitor field layer AGB and LAI in different PFTs 
and VTs with the help of field inventory and S2 data in three boreal peatland-dominated 
ecosystems from May to October in 2017 or 2019. Our main emphasis is on treeless VTs. 
We ask the following questions: (1) what are the seasonal patterns of ground vegetation 
AGB and LAI, and how do these vary among VTs and PFTs, (2) can field measurements be 
upscaled regionally with S2 data, and (3) what are the spatiotemporal patterns of AGB and 
LAI at the landscape scale?

2. Study sites

We studied three peatland-dominated areas that are surrounded by forests in northern 
Finland (67°–69° N, Figure 1). The study sites, Pallas, Sodankylä, and Kaamanen, have 
different biological, geological, and topographical characteristics, allowing a good 
comparison among landscapes (Räsänen et al. 2020). The mean annual temperatures 
were 0.30°C, 0.03°C, and 0.02°C and the mean annual precipitations were 599 mm, 518  
mm, and 455 mm in 2008–2019 at the three sites, respectively (Fig. S1). Within this 
reference period, the average accumulation of degree-days above 5°C (DD5) was 

Figure 1. Locations and land cover classification maps of the study sites with landscape photos, in 
Pallas (a), Sodankylä (b), and Kaamanen (c) with analysis radii of 1500 m, 300 m, and 300 m, 
respectively; and the national background (d). The classification maps were produced by Räsänen 
and Virtanen (2019) for Kaamanen, Räsänen et al. (2021) for Pallas, and Mikola et al. (in prep.) for 
Sodankylä.
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approximately 1500 during the growing seasons (Fig. S1). The spatial vegetation 
characteristics of these sites have been previously reported in detail (Aurela et al.  
2015; Lohila et al. 2015; Räsänen et al. 2020), but the seasonal development of AGB 
and LAI remain undocumented.

The Pallas site (Figure 1a) consists of a rather open, nutrient-rich sedge fen-dominated 
peatland (Lompolojänkkä, 67°59.835′N, 24°12.546′E, 269 m a.s.l.) and a mixed, spruce- 
dominated forest (Kenttärova, 67°59.237’ N, 24°14.579’ E, 347 m a.s.l.). The peatland is 
characterized by four major VTs: pine bog, sedge fen, willow thicket, and flark fen 
(Table 1). The pine bog VT is located in the marginal area between the fen and the forest, 
covering dwarf shrubs (e.g. Vaccinium myrtillus, V. vitis-idaea, V. oxycoccos, and 
V. uliginosum), feather mosses (e.g. Pleurozium schreberi and Dicranum majus), and 
Sphagnum. The sedge fen is dominated by Carex rostrata and Sphagnum lindbergii; willow 
thickets (Salix phylicifolia and S. lapponum) approximately 60 cm in height line the narrow 
stream running through the fen; and wet flarks are covered in Carex spp. and brown 
mosses, especially Scorpidium scorpioides. The main tree species in the upland forest site 
Kenttärova is Norway spruce (Picea abies) mixed with deciduous trees e.g. Betula pub-
escens, Populus tremula, and Salix caprea. The field layer primarily consists of dwarf shrubs, 
and the ground layer is covered by feather mosses with occasional liverworts and lichens 
(Table S1; (Aurela et al. 2015; Lohila et al. 2015; Pearson et al. 2015)).

The Halssiaapa site in Sodankylä (67°22.117’ N, 26°39.244’ E, 180 m a.s.l.) is a patterned 
fen with a shallow string – lawn–flark microtopography (Figure 1b). The narrow (0.5–1 m 
wide) and interconnected strings are covered by various shrubs, such as Betula nana, and 
flarks are dominated by wet brown mosses (esp. Sarmentypnum spp.) and sedges, and 
a few scattered small birches (Betula pubescens) and pine (Pinus sylvestris) are found in the 
strings. Lawns are covered by Sphagnum and forbs. Flooding water from melting snow 
inundates the low surfaces from May to early June and occasionally over the summer 
(Table S1; (Haapala et al. 2009; Mörsky et al. 2012)).

The Kaamanen site is a patterned fen (69°8.435’ N, 27°16.189 E, 155 m a.s.l., Figure 1c) 
characterized by alternating strings and flarks. A pine forest (Pinus sylvestris) surrounds the 
fen. Pine bog VT is common on fen margins, covered by various ericaceous shrubs and 
forbs, and with a dense cover of feather mosses and Sphagnum. A stream runs through 
the fen from north to south. In the middle, dry strings are up to 1 m high and 5 m wide, 
their vegetation consisting of evergreen shrubs and forbs. Wet flarks with Carex spp. 
vegetation is influenced by periodical flooding. Intermediate habitats between strings 
and flarks are shrub-dominated (mostly Betula nana) with abundant Carex spp. and 
S. lindbergii carpets (Table S1; (Maanavilja et al. 2011; Räsänen and Virtanen 2019)).

3. Materials and methods

First, we measured the %-cover of plant species and the height of vascular plants to 
estimate the seasonal development of AGB and LAI in different VTs in the field. Second, 
we explored the field-measured vegetation seasonal patterns in terms of VTs and PFTs. 
Third, we upscaled field measurements with S2 time series images and random forest (RF) 
regressions (Breiman 2001) to assess spatiotemporal patterns of total ground vegetation 
AGB and LAI. Additionally, we compared the differences in field- and satellite-estimated 
vegetation patterns (Figure 2).
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3.1. Field inventories and vegetation data processing

We inventoried ground vegetation over a growing season, from May to October, in 
Kaamanen in 2017 and in Pallas and Sodankylä in 2019 (Figure 1 and Table 1). We sampled 
84 (Pallas), 43 (Sodankylä), and 18 (Kaamanen) circular plots with a 50-cm diameter, 
representing the main local VTs (Fig. S2). We visited plots biweekly; and in total, we obtained 
1147 inventory records (Table 1). During inventories, we aimed to identify the plant species 
but, in some cases, only the genera level was achieved (Table S1). We visually estimated the 
three-dimensional %-cover for each plant taxa (3D %-cover, since the ground and field layer 
were estimated separately, typically the sum of all taxa > 100%) (Figs. S3 and S4). We further 
divided the 3D %-cover into the green, photosynthesizing part and the brown, woody 
fraction. We measured the average height of each vascular plant species or genus with 
a ruler. Plot locations were measured with a Trimble R10 GPS device with a 5-cm accuracy.

We examined how a five-degree (>5°C) day temperature sum (DD5) development 
relates with AGB and LAI across sites and between years. For analyzing the vegeta-
tion data by specific growing periods, we categorized our field inventories into three 
temporal windows by DD5 developments, including early- (May to the first week of 
July, i.e. DD5 was ca. 600°C, at one-third of its highest level), mid- (mid-July to the 
first week of August, i.e. DD5 was ca. at half of its highest level), and late- (mid- 
August to October, i.e. DD5 approached its top level) seasons (Table 1 and Fig. S1).

We grouped the plant species and genera into seven PFTs: evergreen shrubs, 
deciduous shrubs, forbs, graminoids, brown mosses, feather mosses, and Sphagnum 
(Table S1). Lichens were lacking or were scarce in our study plots, so we omitted 
them from the analyses. We estimated the plot- and PFT-specific AGB and LAI by 
using our established empirical equations (Table 2), which were modified from 
Räsänen et al. (2020), Räsänen et al. (2021) and our unpublished data. In Table 2, 
3D %-cover and PFT heights were predictors and AGB or LAI from previously 
harvested samples response variables.

3.2. Sentinel-2 datasets and image processing

We collected multi-temporal S2 Level-2A (L2A, bottom of atmosphere reflectance) images 
(Table 1) and processed them in the Google Earth Engine (GEE) platform (Gorelick et al.  
2017). We obtained several cloudless S2 L2A GEE images for Pallas and Sodankylä in 2019 
(Table 1) but only a few for Kaamanen in 2017. After a pre-evaluation of the regressions for 
Kaamanen, we decided to discard this site from the S2 analyses.

To build the S2 time series datasets, we used 12 spectral bands (Table S2) and calculated 
33 vegetation indices (Table S3). As irregular collection intervals (Table 1) caused fluctua-
tions in the S2 time series metrics, we followed suggestions made by previous studies (e.g. 
(Malamiri et al. 2020; Maleki et al. 2020; Zhou, Jia, and Menenti 2015), and applied the 
harmonic analysis of time series (HANTS) function to filter outliers and fill temporal gaps 
within the data (Fig. S5). HANTS reconstructs the original data with a Fast Fourier Transform- 
based decomposition into sinusoidal components. This step has been developed for 
processing noisy time-series remote sensing data (Zhou, Jia, and Menenti 2015). 
Therefore, we independently implemented HANTS algorithm to S2 spectral bands and 
calculated vegetation indices in GEE (Zhou et al. 2023).
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3.3. Statistical analyses

The RF algorithm has demonstrated robust performance in handling non-linear patterns, 
outliers, and missing data in time-series remote sensing data for predicting AGB and LAI 
(Fan et al. 2022; Powell et al. 2010; Wang et al. 2019). Furthermore, RF has proven to be effective 
in providing landscape-level estimates of environmental characteristics in complex environ-
ments involving various VTs (Bhatti et al. 2022; Fassnacht et al. 2021). Thereby, we applied RF to 
build regression models between time-series field-measured total AGB and LAI (response 
variables) with the aforementioned S2 bands and vegetation indices (explanatory variables). 
We used 500 trees and set the number of tested features at each node to one-third of the total 
number of predictors (i.e. mtry: 15) and the minimum size of terminal nodes to three.

To train the regressions, we searched for S2 images that matched our field inven-
tories by using an eight-day search window for corresponding field inventory dates. 
Consequently, we obtained four and five paired images in Pallas and Sodankylä, 
respectively (Table 1). We conducted both single-site and two-site regressions for 
total AGB and LAI (Figure 2). We calculated three validation parameters: the percen-
tage of variance explained (pseudo R2 = 1 – (mean squared error)/variance (response)), 
root-mean-square error (RMSE), and normalized RMSE (nRMSE = RMSE/range 
(response)) based on the out-of-bag (OOB) evaluation (Breiman 2003; Canovas-Garcia 
et al. 2017). We ran 20 loops for each regression and calculated the mean, minimum, 
and maximum values for the validation parameters. We conducted these processes in 
R with the randomForest package (Liaw and Wiener 2002).

Figure 2. Flowchart of the data acquisition and analysis processes. In the figure, S2 L2A refers to 
Sentinel 2 Level 2A product, 3D %-cover to three-dimensional %-cover, AGB to aboveground biomass, 
LAI to leaf area index, VTs to vegetation types, and PFTs to plant functional types.
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In addition, to evaluate the prediction reliability of the built RF regression models, we 
performed an uncertainty analysis. There are multiple techniques for quantifying the uncer-
tainty of RF regression-type models, including Jackknife-after-Bootstrap, U-statistics, Monte 
Carlo simulations, and Quantile Regression Forests (QRF) (Hengl et al. 2018). QRF (Meinshausen  
2006) has been indicated as one of the most viable uncertainty quantification methods, 
particularly in a spatial context (Mentch and Hooker 2016; Poggio et al. 2021; Vaysse and 
Lagacherie 2017). With QRF, the complete conditional distribution of the target variable at 
prediction points is estimated, allowing computation of prediction intervals on any probability 
level. Here, we set the 0.025 and 0.975 quantiles to derive the lower and upper limits of 
a symmetric 95% prediction interval for our constructed regular RF regression models. We 
implemented QRF in R with ranger package (Wright and Ziegler 2017).

Finally, we applied the established regression models to the S2 time series data 
date by date (Table 1) to yield seasonal trends and maps of AGB and LAI in GEE. 
We adopted the cubic spline to interpolate the continuous seasonal curves of AGB 
and LAI in R using the ggplot2 package (Wickham, Chang, and Wickham 2016). 
This allowed us to compare the seasonal patterns between field- and S2-based 
results. To further examine the S2 predictions, we integrated AGB and LAI maps 
with vegetation classification maps (Figure 1b,d), generating the average seasonal 
trend by VTs.

4. Results

4.1. Measured seasonal developments of AGB and LAI

The seasonal trajectories of AGB and LAI were similar, even though their peaks varied 
among sites (Figure 3). Pallas and Sodanklä got near peaking dates of AGB and LAI 
around mid-July, when the DD5 was ca. 750°C, while Kaamanen reached the value 

Table 2. Equations to estimate the above-ground biomass (AGB) and leaf area index (LAI) of 
specific plant functional types (PFTs). c refers to three-dimensional (3D) %-cover, gc to the 
green fraction of 3D %-cover and h to plant height.

PFT
Equation 

(AGB: g m−2; LAI: m2 m−2) Adjusted R2 RMSE

Deciduous shrubs AGB = 4.034137+0.148788*c*h 0.69 54.84
LAI = −.0233321+.0156296*gc 0.66 0.21

Evergreen shrubs AGB = 8.1118+2.8013*c 0.54 49.89
LAI = .0166636+.0093295*gc 0.76 0.10

Forbs AGB = −0.170906+0.081821*c*h 0.60 15.73
LAI = −1.886e-02+1.126e-03*gc*h 0.78 0.14

Graminoids AGB = 11.201514+0.050474*c*h 0.38 24.84
LAI = 6.579e-02+3.853e-04*gc*h 0.43 0.17

Brown mosses AGB = 0.6969+2.0671*c 0.68 48.12
Feather mosses AGB = −3.8996+7.5033*c 0.68 149.84
Sphagnum AGB = −0.9634+4.6790*c 0.78 80.48
Mosses in total AGB = 3.667+4.2519*c 0.41 223.57
Total AGB1 n.a.
Total LAI2 n.a.

RMSE = root mean square error. 
1Plot-level ground vegetation total AGB refers to the field and ground-layer vegetation, estimated by 

summing the AGB amount of deciduous and evergreen shrubs, forbs, graminoids and mosses. 
2Plot-level ground vegetation total LAI refers to the field-layer vascular plants, calculated by summing the LAI 

of four vascular PFTs.
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about two-weeks later, at the end of July. DD5 approached its highest value of 
1500°C by mid-September in Pallas and Sodankylä, while DD5 at Kaamanen peaked 
at ca. 1250°C approximately two weeks later. Due to the shorter field measurement 
duration in Pallas, we were unable to record the AGB decline during the late growing 
season as we did at the other two sites.

Among the VTs, pine forest, mixed forest, and lawn fens had nearly stable AGBs throughout 
the growing season, while the other VTs composed mostly of deciduous species showed 
a strong seasonal amplitude (Figure 4). Seasonal amplitudes of AGB and LAI varied within the 
VTs from different sites. For instance, LAIs of string fens had greater seasonal amplitude in 
Kaamanen than in Sodankylä, i.e. 1 and 0.5 m2 m−2, respectively.

The three deciduous vascular plant PFTs (deciduous shrubs, forbs, graminoids) had 
clear seasonal trajectories in both AGB and LAI, while little changes were observed in 
the seasonal patterns of AGB and LAI of evergreen shrubs and mosses (Figure 5). The 
seasonality of individual PFTs still differed between sites. For example, the AGB and 
LAI of forbs peaked at an earlier date at the southernmost site, i.e. Sodankylä, where 
DD5 accumulated more rapidly and to a higher level than at the other sites (Figure 3 
and Fig. S1).

4.2. Predictive performance of random forest regressions

The RF regressions yielded a mean R2 of 48.5–56.1% for LAI and 24.2–50.2% for 
AGB (Table 3). The Sodankylä models had a higher R2 and lower error rates than 
the Pallas models (Table 3 and Figure 6). The AGB model for Pallas performed well 
only for certain VTs, while the LAI model had a better fit (Figure 6). The two-site 
models had a performance in between the single-site models, with their 

Figure 3. The seasonal development of air temperature accumulation of degree-days > 5°C (DD5, °C), 
average aboveground biomass (AGB, g m−2), and leaf area index (LAI, m2 m−2) at the study sites.
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performance closer to that of the Pallas models. However, they failed to reach 
acceptable prediction rates in Sodankylä, so we finally adopted single-site regres-
sion models to generate the following spatiotemporal AGB and LAI maps. In 
general, RF predicted relatively inaccurately low (<500 g m−2) and high AGB 
(>750 g m−2) and high LAI (>2 m2 m−2) (Figure 6).

The prediction uncertainty for single-site RF models, measured by 0.025 (the lower 
boundary) and 0.0975 (the upper boundary) quantiles with QRF in Figure 7, indicates that 
Sodankylä had relatively narrower prediction interval widths (the dashed grey shadows in 
Figure 7) for both AGB and LAI compared to Pallas. Furthermore, the estimated AGB and 
LAI in the middle value range appeared to have a relatively narrower range of prediction 
possibilities compared particularly to low AGB (<500 g m2 at both sites) and high LAI 
(>0.8 m2 m2 in Pallas or >0.4 m2 in Sodankylä).

Figure 4. The seasonal development of (a) aboveground biomass (AGB) and (b) leaf area index (LAI) by 
vegetation types (VTs) at the study sites.
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4.3. Modelled spatiotemporal patterns of AGB and LAI

Sentinel-2-based modelled AGB and LAI peaked approximately 21 d and 10 d later 
than the field-measured ones, respectively (Figure 8). The seasonal development of 
AGB and LAI in Pallas was mostly stable in forest VTs, though spruce forests in the 
south-eastern corner of Pallas showed slight variations in AGB, with accumulation 
beginning in mid-June and senescence in August (Figure 9). On the contrary, AGB 
and LAI within peatland-dominated areas were low in June, gradually increased until 

Figure 5. The seasonal development of (a) aboveground biomass (AGB) and (b) leaf area index (LAI) by 
plant functional types (PFTs) at the study sites.
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late July, and were senescent in August (Figure 9). In Sodankylä, AGB and LAI had 
rather visible spatial patterns, with lowest values recorded in flarks (Figure 10). The 
three VTs had similar temporal AGB trends, while LAI was spatially uniform before 
July, but strings and lawns subsequently had higher LAIs than flarks did (Figure 10).

5. Discussion

5.1. Field-measured AGB and LAI patterns

We found the ground vegetation total AGB and LAI to follow a unimodal seasonality 
and their peaking dates to differ (Figure 3), which is in line with previous studies 
(Heiskanen et al. 2012; Juutinen et al. 2017; Wang et al. 2019; Wilson et al. 2007). For 
example, the LAI peaking date of Lompojänkkä in this study corroborates the results 
of Raivonen et al. (2015), and various AGB peaks within boreal forests are consistent 
with the results of Ding et al. (2021). AGB and LAI had distinct seasonal patterns 
among VTs (Figure 4), echoing other studies (Arndal et al. 2009; Heiskanen et al.  
2012; Korrensalo et al. 2020; Raivonen et al. 2015). Specifically, we identified that fen 

Table 3. Random Forest regression results for ground vegetation total aboveground biomass (AGB) 
and leaf area index (LAI).

Regression

RMSE (AGB: g m−2, LAI: m2 m−2) nRMSE (%) R2 (%)

Max Mean Min Max Mean Min Max Mean Min

AGB
Pallas 200.2 198.7 197.3 13.8 13.7 13.6 25.3 24.2 23.1
Sodankylä 79.5 78.8 77.7 12.6 12.5 12.3 51.5 50.2 49.2
Two-site 163.9 163.1 162.0 11.3 11.3 11.2 28.7 27.8 27.1

LAI
Pallas 0.503 0.497 0.490 11.2 11.1 10.9 50.0 48.5 47.2
Sodankylä 0.209 0.207 0.205 13.8 13.7 13.6 56.8 56.1 55.3
Two-site 0.411 0.408 0.404 9.2 9.1 9.0 52.7 51.5 50.8

Figure 6. Scatterplots of field- and S2- estimated aboveground biomass (AGB) and leaf area index 
(LAI), which are color-coded by vegetation types (VTs). The S2 estimations derived from two types of 
RF regression models: the single-site model (single-site M) and two-site model (two-site M), respec-
tively. In the figure, the solid lines represent the 1:1 line; and the dashed lines indicate linear 
regression fits between predicted and observed values.
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VTs have greater seasonal variations than forest VTs, which is attributed to the 
phenology of dominated PFT, i.e. a larger proportion of deciduous vegetation in 
fens vs. evergreen shrub forests (Fig. S4) (Arndal et al. 2009; Rautiainen and 
Heiskanen 2013). Moreover, peatland VTs still vary considerably from each other, as 
also previously reported by (Korrensalo et al. 2020), who showed string fens (or 
hummocks) to have higher AGB and LAI peaking values and stronger seasonal 
variation than lawns (Figs. S6 and S7).

PFT-specified AGB and LAI exhibited apparent seasonal trajectories. Apart from ever-
green shrubs, vascular PFTs had unimodal curves, while moss AGB remained almost 
steady throughout the season (Figure 5). However, our moss height field measurements 
were not planned to measure differences of some millimetres, which are evidently 
occurring during the growing season. On the one hand, vascular PFTs showed differences; 
for example, graminoid LAI had a later peaking date than that of forbs and deciduous 
shrubs. On the other hand, seasonal trends of PFT-specific AGB and LAI were still disparate 
by sites and VTs (Figure 5). For instance, shrubs abundantly prevail in Kaamanen, while 
forbs and mosses form the major VTs in Sodankylä (Figs. S3 and S4). Also, vascular PFTs 
store more AGB in strings than in lawns, while Sphagnum in flarks accumulate more mass 
than species in drier areas (Fig. S6), corresponding with earlier studies (Gunnarsson 2005; 

Figure 7. The 95% prediction intervals of S2-estimated aboveground biomass (AGB) and leaf area 
index (LAI) based on single-site RF regression models, which are shown in Figure 6. The grey shaded 
regions represent the lower and upper boundaries of the 0.025 and 0.975 quantiles, respectively. For 
better visualization, the estimated samples are sorted by their AGB or LAI values.
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Kosykh et al. 2008; Laine et al. 2012; Mäkiranta et al. 2018; Murphy, Mckinley, and Moore  
2009). In this study, we did not include the moss component in the LAI estimations, as 
there is neither a generally accepted method for measuring this in the field nor can their 
LAI be directly compared with that of vascular plants. Mosses with foliage consisting of 
miniature leaves actually have a very large input on LAI (Niinemets and Tobias 2019); thus, 
their role obviously needs more attention in future remote sensing-based vegetation and 
carbon exchange studies (Shi et al. 2021).

5.2. Spatiotemporal patterns of AGB and LAI based on Sentinel-2

In S2-analysis, single-site models performed generally better than two-site ones (Table 3). 
Due to the high spatial heterogeneity and contrasting vegetation composition within 

Figure 8. Comparison between field-measured and S2-modelled (based on single-site models) 
seasonal patterns of (a) aboveground biomass (AGB) and (b) leaf area index (LAI).
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boreal ecosystems, it is reasonable that two-site models did not yield acceptable predic-
tion rates (Alexandridis, Ovakoglou, and Clevers 2020; Junttila et al. 2021; Räsänen et al.  
2021). Sodankylä models had better prediction performance than Pallas models, probably 
related to Sodankylä being nearly entirely a treeless peatland, while Pallas includes both 
treeless peatland areas and forests with relatively dense tree crown cover (typically 20– 
50%). The tree canopy layer greatly hampers the remote detectability of ground layer 
vegetation (Eriksson et al. 2006; Rautiainen and Heiskanen 2013). Moreover, covering 
broader landscapes from boreal forests to peatlands implies higher spatial variations, 
while a limited number and manual selection of field plots do not perfectly represent 
ground vegetation conditions (Table 3 and Figure 6). In other words, the study area in 
Pallas was five times larger than that of Sodankylä, and the number of plots in forest VTs in 
Pallas was relatively low.

Despite S2-modelled AGB and LAI following a similar unimodal trend with field-based 
patterns, the modelled ones had earlier seasonal peaks (Figure 8). Due to the difference 
between field-measured and S2 variables, i.e. the %-cover and number of PFTs 

Figure 9. Sentinel-2-based spatiotemporal maps (with 10-m spatial resolution) of (a) aboveground 
biomass (AGB), and (b) leaf area index (LAI); (c) land cover classification map, which is the same as in 
Figure 1; and Sentinel-2-based average seasonal line trends of (d) AGB and (e) LAI by VTs (vegetation 
types), at Pallas.
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representing photosynthetic productivity vs. remotely sensed reflectance, field-measured 
vegetation seasonal dynamics differ from S2 modelled ones (Tian et al. 2021; Vrieling et al.  
2018). AGB and LAI measured in the field rely on human visual observations and are limited 
to a few plant individuals, while the dozens of remote sensing metrics applied reflect 
a mixed response to vegetation changes, leading to internal discrepancies between these 
two data types. Moreover, field-measured AGB and LAI directly express the ground layer 
vegetation (Figures 3 and 4) within 0.2-m2 plots but 100-m2 S2 pixels are a mixture of 
vegetation information (e.g. leaf area, leaf colour, and the VT mixture), other land covers, 
and background noises (e.g. periodical flooding). The spatial resolution mismatch therefore 
brings uncertainty to regression modelling. Furthermore, the seasonal trajectory differ-
ences between boreal forests and peatlands and the combined effect of ground flooding 
conditions indicate considerable difficulties in catching vegetation phenological phases 
using remote sensing (Thapa, Millan, and Eklundh 2021). Overall, the phenological date 
variations of AGB (21 d) and LAI (10 d) between field- and S2-based estimations (Figure 8) 
correspond with previous reports (Descals et al. 2020; Thapa, Millan, and Eklundh 2021; 
Tian et al. 2021; Vrieling et al. 2018), which have reported a temporal difference of 8–30 d.

We adopted site-specific models for predicting and generating AGB and LAI maps, and 
their accuracy was close to previous results, where R2 has been 47–89% (Amin et al. 2018; 
Fassnacht et al. 2021; Pang et al. 2022; Puliti et al. 2020; Räsänen et al. 2021; Wang et al.  

Figure 10. Sentinel-2-based spatiotemporal maps (with 10-m spatial resolution) of (a) aboveground 
biomass (AGB) and (b) leaf area index (LAI); (c) land cover classification map, which is the same as in 
Figure 1; and Sentinel-2-based average seasonal line trends of (d) AGB and (e) LAI by VTs (vegetation 
types), at Sodankylä.
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2019). Regression models performed poorly with low and high AGB and LAI values 
(Table 3). Similar issues have also been pointed out by other studies. Some studies have 
indicated that RF may not predict extreme values accurately (Fassnacht et al. 2021; Wang 
et al. 2022), while others have reported that S2-based estimations were relatively inaccu-
rate during vegetation green-up and senescence periods (Tian et al. 2021; Vrieling et al.  
2018). On the one hand, following the vegetation phenological cycle, low AGB values 
occurred in the early or late growing season (in early June or mid-August), when vascular 
plant leaves have just begun turning green or senescencing, storing low amounts of AGB 
(Figures 9 and 10), but the presence of a non-photosynthetic top layer (flowers, stems, 
seed heads) may interfere with ground radiance, delivering systematic errors to regression 
models. On the other hand, high ground vegetation AGB values were found in forest 
areas. Due to rather small seasonal amplitudes of evergreen boreal forest phenology 
along with the dense canopy layer (Misra, Cawkwell, and Wingler 2020), S2 data seem to 
overestimate ground vegetation AGB in these areas. Generally, S2 models performed fairly 
well for extracting seasonal trends and phenological dates in Sodankylä, suggesting the 
great potential of applying S2 data to open peatlands. Furthermore, echoing early studies 
(Majasalmi and Rautiainen 2016; Räsänen et al. 2020; Wang et al. 2019), we also clarified 
that LAI was detected with higher accuracy than AGB; clear seasonal patterns in LAI maps 
were observed especially in peatland-dominated areas (Figures 9 and 10).

6. Conclusions

We have explored ground vegetation phenology with field observations and S2 
satellite images across boreal ecosystems. Our results show that the seasonality of 
AGB and LAI vary greatly between VTs, particularly in fens, depending on whether 
the dominant PFTs are deciduous or evergreen. Besides evergreen shrubs and 
mosses, the seasonality of other PFTs follow a unimodal curve. Our results also 
indicate that LAI peaks ca. two weeks earlier than AGB. Our results further reveal 
that the field measurements can be upscaled with S2 regression models with 
acceptable accuracy. With the help of satellite-data-based upscaling, we illustrate 
that there is a good ability to capture spatiotemporal patterns of AGB and LAI and 
that the AGB and LAI phenology differs between VTs at the landscape scale. 
Therefore, we suggest that S2 time series data, with a 10-m spatial resolution, 
allows monitoring ground vegetation seasonality in treeless boreal ecosystems.

With the advancements in artificial intelligence, machine and deep learning, and 
remote sensing sensors, future research can further explore how to improve the 
prediction accuracy in seasonal AGB and LAI estimates. Particularly, the inclusion of 
other remote sensing or ancillary data could enhance model performance. Possible 
data sources include Sentinel-1 or other SAR data sensitive to soil moisture condi-
tions and surface structure, lidar capable for capturing 3D topographical and 
vegetation information, and higher spatial resolution optical data. However, when 
producing spatial estimates of the AGB and LAI development over a growing 
season, majority of the data should have multiple observations from a single 
growing season.
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