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Abstract 

Terhi Mehtiö1, Päivi Mäntysaari1, Enyew Negussie1, Riitta Kempe1, Marja-Liisa Sevón-Aimonen1, 

Arash Chegini1, Sanna Hietala2, Joel Kostensalo3 and Martin Lidauer1 

1 Natural Resources Institute Finland (Luke), Jokioinen. 
2 Natural Resources Institute Finland (Luke), Oulu 
3 Natural Resources Institute Finland (Luke), Joensuu 

Cows consuming less feed than average of the population for a given level of production and 

body weight are considered as resource and feed efficient. The main aim of the A++Cow pro-

ject, conducted during 2019 and 2023, was to develop tools to improve the feed efficiency of 

dairy cows through animal breeding, to increase knowledge on the genetic background of 

these traits and thereby improve the environmental and economic sustainability of dairy pro-

duction. The development of reliable genomic breeding values for the Nordic dairy popula-

tion is essential to achieve this goal. Therefore, the four main objectives of the A++Cow pro-

ject were to 1) advance the development of novel phenotypes of feed efficiency, 2) model 

feed efficiency traits for Maintenance, Metabolic Efficiency and Metabolic Resilience breeding 

objectives, 3) develop single-step genomic prediction models for Nordic dairy cattle, and 4) 

assess the economic and environmental benefits, and disseminate the feed efficiency breed-

ing indices. 

During the project data were collected from dairy cows at Luke Jokioinen research farm on 

i.e., feed intakes, milk production and composition, body weights and blood NEFA and BHB 

levels. When combining the data with the data collected in previous studies, the total data set 

included 148 715 feed efficiency records from 828 primiparous Nordic Red Dairy cattle cows.  

The first Saved Feed index was published in 2019 and the index was included into the Nordic 

Total Merit index in 2020. Based on the results of A++Cow project, the new single-step ge-

nomic prediction model of Maintenance, where carcass weight was included in the model, re-

sulted in higher validation reliability and better predictive ability compared with traditional 

BLUP approach. Current genetic trend in metabolic body weight (MBW) appeared to be 

somewhat underestimated in all breeds and the new model corrected the genetic trend of 

MBW. The reliability of the Metabolic Efficiency genomic predictions has been rather low. This 

could be improved by switching to a model based on regression on expected feed intake 

(ReFI) that has been developed during the project and which has a better ability to describe 

the metabolic efficiency of a cow. In addition, more feed intake records are needed. CFIT 3D-

camera imaging could offer a technological solution for recording feed intake on-farms. The 

accuracy of measuring feed intake by CFIT 3D-cameras was studied in the project and a cor-

relation of 0.71 was found between the average feed intake of 4 to 7 days assessed by CFIT 

3D-camera and the average feed intake measured by scales. This is a reasonable correlation, 

and the technology and algorithms can be further developed in future. 

The project assessed animal breeding as highly relevant to improve the sustainability of dairy 

production – a 10% improvement in resource efficiency would reduce the carbon footprint by 

8% and reduce eutrophication impacts by 10%. In addition, the economic impact is signifi-

cant, and we found that by including two feed efficiency traits, MBW for Maintenance and 

ReFI for Metabolic Efficiency, into a selection index with production traits and fertility, im-

proved the total economic gain about 30 %. 
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In addition, the welfare of the cows in early lactation can now be considered through the pre-

diction of blood NEFA and BHB levels from the milk MIR spectral readings. The coefficients of 

determination were 0.53 and 0.63 for NEFA and BHB, respectively, indicating that the predic-

tion models perform well for both animal breeding and herd management purposes.  

Keywords: breeding, genomic predictions, dairy cow, body weight, feed intake, energy sta-

tus, milk fatty acids, methane, Nordic Red Cattle  
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Abbreviations 

 

BCS Body condition score 

BD Body depth 

BHB Beta-hydroxybutyrate 

BW Body weight 

BWG Body weight gain 

BWL Body weight loss 

CARW Carcass weight 

CFIT Cow feed intake technology (3D-camera imaging) 

CW Chest width 

DIM Days in milk 

DMI Dry matter intake 

DRP De-regressed proof 

EB Energy balance 

EBV Estimated breeding value 

ECE Energy conversion efficiency 

ECM Energy-corrected milk 

eDMI Expected dry matter intake 

ER Energy requirement 

ERC Effective record contribution 

ES Energy status 

ESI Energy status indicator 

FE Feed efficiency 

FPR Fat to protein ratio 

FY Fat yield 

GHG Greenhouse gas emissions 

HOL Holstein 

ICF Interval from calving to first insemination 

JER Jersey 

LCA Life cycle analysis 

MBW Metabolic body weight, BW0.75 

ME Metabolizable energy 

MY Milk yield 

NEFA Non-esterified fatty acids 

NTM Nordic Total Merit index 

PY Protein yield 

pMBW Predicted metabolic body weight 

RDC Nordic Red Dairy cattle 

ReFI Regression on expected feed intake 

REI Residual energy intake 

RFI Residual feed intake 

STA Stature 

TMR Total mixed ratio 

UPG  Unknown parent groups 
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1. Aim of the project 

Maintaining Finnish food security requires sufficient high national agricultural production for 

which a profitable milk production sector is central under boreal climate conditions. At the 

same time, Finland’s government has set ambitious goals to cut the greenhouse gas (GHG) 

emissions from agriculture and one key part of the strategy is to reduce methane from dairy 

cattle. Genetic improvement of feed efficiency (FE) has been identified as one of the most 

cost-effective means to improve profitability and reduce GHG emissions in dairy operations 

(Ahvenjärvi et al. 2022). The aim of the A++Cow project was, by applying an integrated ap-

proach involving diverse scientific fields and industry stakeholders, to establish genomic pre-

dictions for FE in Finnish and Nordic dairy cattle. 

Our overarching hypothesis was that by applying state-of-the-art genomic prediction meth-

odologies that have been established for Nordic dairy cattle and by utilizing all scientific 

know-how produced in previous research projects, we are able to integrate genomic breed-

ing values for FE into the Nordic Total Merit (NTM) selection index, and by this initiate a con-

tinuous improvement of our dairy cows’ resource efficiency and the lowering of GHG emis-

sions and eutrophication. Therefore, research in A++Cow focused on developing genomic 

predictions for the following breeding objectives: 

Maintenance Cost, which is determined by how much of a cow’s total feed consumption is 

used to maintain its body functions and how much to produce milk. Present-day Finnish dairy 

cows use over one third of the total feed consumption for maintaining their body functions. 

Feed requirement for maintenance is a function of the body weight (BW) and cows that have 

low maintenance requirement, relative to the amount of milk produced, are desirable. 

Metabolic Efficiency, which is the cow’s ability to efficiently use feed for all her biological 

activities. A common measure of Metabolic Efficiency is residual feed intake (RFI). It is defined 

as the difference between actual feed consumption of a cow and the expected feed con-

sumption of a cow based on the cow’s metabolic activities, which are determined by BW, 

growth, milk production, pregnancy stage, etc. More efficient cows will have a lower feed con-

sumption than expected requirements, which for instance can be due to a better ability to di-

gest feed. Modelling Metabolic Efficiency by RFI should make it uncorrelated with Maintenance 

Cost. Hence, both breeding objectives express different parts of the genetic variation in FE. 

Metabolic Resilience, which in here is referred to as the ability of a cow to withstand or 

avoid a severe negative energy status (ES) at the onset of lactation which can lead to meta-

bolic disorders and poor fertility. Best biomarkers for negative ES are the blood plasma non-

esterified fatty acids (NEFA) and beta-hydroxybutyrate (BHB) concentration, which can be 

predicted from milk mid-infrared (MIR) spectral readings. Reliable predictions for negative ES 

shall allow genetic improvement of Metabolic Resilience, which is important when breeding 

for FE to also underpin the selection for health. 

To achieve the overall aim, research in A++Cow focused on four main objectives: 

1. Advancing the development of novel phenotypes  

2. Modelling feed efficiency traits for the three breeding objectives 

3. Developing genomic prediction models for Finnish and Nordic dairy cattle 

4. Assessing the economic and environmental benefits, and dissemination of feed 

efficiency breeding indices 
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2. Project partners and collaboration 

Participating researchers and main role in the project 

 

Natural Resources Institute Finland (Luke) 
 

Genomics and breeding 

Terhi Mehtiö, Ph.D., Research Scientist, project leader 03/2021 onwards, modelling the ge-

netics of feed efficiency traits, development of prediction equations for NEFA and BHB 

Martin Lidauer, Ph.D., Research professor, project leader until 02/2021, modelling metabolic 

efficiency, genomic prediction models, milk MIR spectral readings  

Enyew Negussie, Ph.D., Senior Scientist, genetic analyses of metabolic efficiency and me-

thane emissions 

Riitta Kempe, Ph.D., Research Scientist, development of genomic predictions for mainte-

nance and inclusion of carcass weight into the genomic evaluation 

Marja-Liisa Sevón-Aimonen, M.Sc., Research Scientist, predicted genetic and economic re-

sponse, including feed efficiency into breeding goal 

Esa Mäntysaari, Ph.D., Research professor, Research Professor, modelling feed efficiency, ge-

nomic prediction models 

Timo Pitkänen, M.Sc., Research Scientist, body weight analyses 

Minna Koivula, Ph.D., Senior Scientist, genomic predictions 

 

Animal Nutrition 

Päivi Mäntysaari, Ph.D., Senior Scientist, management of feed efficiency data, CFIT trials and 

data analyses 

 

Applied statistical methods 

Joel Kostensalo, Ph.D., Senior Specialist, development of prediction equations for NEFA and 

BHB 

Jarmo Mikkola, Ph.D., Senior Specialist, development of prediction equations for NEFA and 

BHB 

 

Sustainability science and indicators 

Sanna Hietala, M.Sc., Research Scientist, environmental impacts of improving feed efficiency 

 

Personnel responsible for data collection, animal experiments and laboratory analyses 

Päivi Mäntysaari, Terhi Mehtiö, Paula Lidauer, Tomasz Stefanski, Anne Kemppainen, Minna 

Aalto, Riikka Ahonen, Tuija Hakala, Heli Harju, Taina Jalava, Sari Kajava, Annu Palmio, Riikka 

Peltonen, Marianne Saha, Jani Tuomola, Widen Juha, Martin Lidauer 

 

University of Helsinki 

 

Department of Agricultural Sciences 

Jarmo Juga, Ph.D., Ass. Prof., predicted genetic and economic response, including feed effi-

ciency into breeding goal 

Tuomo Kokkonen, Ph.D., Doc., data collection, blood NEFA and BHB assessments 
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KU Leuven 

 

Ben Aernouts, Ph.D., Research professor, development of NEFA and BHB prediction equations 

 

Valio Ltd 

 

Aleksi Astaptsev, M.Sc., Development manager, Lypsikki LCA model, environmental impacts 

of improving feed efficiency 

Juha Nousiainen, Ph.D., Senior vice president, environmental impacts of improving feed effi-

ciency 
 

Viking Genetics 

 

Søren Borchersen, Ph.D., Head of research & development, CFIT system 

Jan Lassen, Ph.D., Senior project manager, CFIT system 

 

Faba co-op 

 

Jukka Pösö, Ph.D., Research agronomist, responsible expert for NAV genetic evaluations 

Minna Toivonen, Ph.D., Development manager 

 

Nordic Cattle Genetic Evaluation (NAV) 

 

Gert Pedersen Aamand, Ph.D., General manager, modelling feed efficiency, genomic predic-

tion models 

 

SEGES 

 

Trine Andersen, Consultant, modelling metabolic efficiency 

Rasmus Stephansen, Consultant, modelling metabolic efficiency and maintenance cost 

 

Mtech Digital Solutions Ltd 

 

Hilppa Hietanen, Team leader, MIR database 

Paula Pääkkö, Lead developer, MIR database 

 

Danish Technological Institute 

 

Rikke Hjort Hansen, Senior project leader, CFIT system 

Funding partners and data acquisition partners 

MMM 

Valio Ltd 

Faba co-op 

VikingGenetics 

Mtech Digital Solutions Ltd 

Nordic Cattle Genetic Evaluation NAV 
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Project steering group 

Eeva Saarisalo, MMM, chairperson 

Sirpa Karjalainen, MMM 

Marjukka Mattio, MTK 

Minna Toivonen, Faba co-op 

Tuija Huhtamäki, ProAgria 

Juha Nousiainen, Valio Ltd 

Søren Borchersen, VikingGenetics 

 

The steering group met eight times during the project. 
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3. Project results 

All research tasks were organized in four work packages (WP). The interconnection between 

WPs is visualized in Figure 1. Arrows between work packages indicate information flow and 

likewise the chronological order of the main research activities during the course of the pro-

ject. 

 

Figure 1. Description of the different work packages and related tasks of the A++ Cow project. 
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3.1. Material and Methods 

WP1. Novel phenotypes 

Task 1.1 Feed efficiency phenotypes 

Päivi Mäntysaari, Enyew Negussie and Terhi Mehtiö 

The aim of this task was to collect comprehensive feed efficiency data to be used in model-

ling feed efficiency and metabolic resilience and for estimation of the necessary variance 

components required for model developments in WP2.  

Motivation 

Comprehensive phenotypic data is needed for reliable and accurate calculations and for de-

velopment of new traits of cow’s feed efficiency. Therefore, in this task significant efforts were 

made to collect more phenotypes to be added into the database of previous projects. The re-

sult is a rare and unique data that contain not only production traits but also feed and energy 

intake, body measurements and daily methane (CH4) output of the cows. The collected data 

were used to define efficiency traits; residual energy intake (REI, ME MJ/d), energy conversion 

efficiency (ECE, kg ECM/ME MJ) and energy balance (EB, ME MJ/d) and to build up new meta-

bolic efficiency traits. The collected data were also used for the genetic analyses of FE traits, 

associations between FE and environmental impact traits and for studying metabolic resili-

ence of the cows.   

Feed efficiency data collection 

The phenotypic data for analyses of FE and CH4 output of primiparous Nordic Red dairy cattle 

(RDC) cows were collected at Luke Jokioinen experimental farm during 1.2.2019–31.12.2022. 

Daily measurements of 145 cows included individual dry matter intake (DMI), BW and milk 

yield (MY) from lactation days 3 to 305. To correct for the daily variation in BW, the daily 

weights were smoothened using the model of Mäntysaari and Mäntysaari (2015). The milk 

samples for milk composition analyses (fat, protein, lactose, somatic cell and MIR spectra) 

were taken in lactation week 2 and 3 and thereafter on routine milk recoding test days. The 

daily composition of milk was calculated with an assumption of linear change between meas-

urements. The energy-corrected milk (ECM) was calculated according to Sjaunja et al. (1990). 

All feeds were sampled and analysed to get metabolizable energy (ME) and nutritional values 

for the feeds (Luke 2017). Based on intake and feed values the daily energy and nutrient in-

take of the cows were calculated. The body condition scores (BCS) of the cows were assessed 

on a scale of 1–5 (1=skinny to 5=very fat) with intervals of 0.25 (Edmonson et al. 1989) 

monthly. Blood samples for plasma non-esterified fatty acids (NEFA) and β-hydroxybutyrate 

(BHB) analyses were taken 1.2.2019–30.3.2021 during lactation weeks 2 and 3 of all the cows 

in FE data. Stored blood samples from the Feed Efficiency project (1.3.2013–31.10.2016) were 

analysed for BHB, to increase BHB reference database. 

Alongside intake and production recordings, the daily CH4 output of cows was monitored 

continuously 24/7 using a portable F10 multigas analyzer (Gasera Ltd, Turku, Finland) that is 

based on non-dispersive IR cantilever-enhanced photoacoustic detection system. The mul-

tipoint F10 gas analyzer was fitted to two feeding kiosks (two sampling points) for continuous 
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measurement of CH4 and CO2 outputs from individual first lactation cows at the Minkiö dairy 

farm. In this system, whenever a cow visits the feeding kiosk, her breath is sampled and ana-

lyzed for the contents of the different gases. Measurements were made alternatively between 

the two sampling points and every other minute a gas was sampled and analyzed from each 

sampling point. Sampling of the gas and its analysis took ~30 s each and a single CH4 and 

CO2 concentration measurement from one of the sampling points takes a minute. Under nor-

mal conditions, a cow visits feeding kiosks about 3 times a day and during which time cows 

have an average of 7 usable repeated measurements of the gases recorded per day. During 

each individual animal measurement, the cow ID, date, time and the concentration of the 

gases measured were recorded automatically and stored in the internal memory of the F10 

equipment. The daily CH4 output of cows was then estimated from the daily concentration 

measurements using the method by Madsen et al. (2010). In this method, measurements of 

CH4 and CO2 concentrations in breath of cows were combined with estimates of total CO2 

production from information on ME intake to quantify daily CH4 as described in Negussie et 

al. (2017). 
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Task 1.2 Feed intake predictions 

Martin Lidauer, Päivi Mäntysaari, Terhi Mehtiö, Jan Lassen (VikingGenetics) and, Rikke Hansen 

(Danish Technological Institute) 

 

The aim of this task was to install VikingGenetics’ CFIT system at Luke’s research farm in Joki-

oinen and validate against feed intake measurements.  

Motivation  

Genomic predictions for Metabolic Efficiency will require feed intake measurements from 

cows at commercial farms to achieve necessary accuracy. A new approach for measuring in-

take has been developed by one of the project partners, VikingGenetics. During the last 

seven years, VikingGenetics has been working on predicting feed intake by using a 3D cam-

era system (CFIT). This system predicts cow-specific feed intake volumes non-invasively with 

minimum interference with daily barn operations. The obtained cow-specific observations are 

shown to be highly repeatable and correlate with milk production traits similarly as DMI ob-

servations do (Lassen et al. 2018). It will be important that CFIT can accurately predict DMI. 

This can be achieved by recording feed intake for a sufficiently long period of time to reduce 

the size of the measurement error. This task examined the length of the recording time pe-

riod CFIT needs to obtain accurate DMI predictions. 

CFIT trials 

Trial 1. The first CFIT trial was postponed for one year because of COVID restrictions and was 

carried out between 13.9.2021 and 29.11.2021. There were 3 x 20 cows participating in the 

first trial. All cows ate from their own places, and between the cows there were separators on 

the feeding table. Daily feed intake was measured by the CFIT system and by scales for all 60 

cows and each cow was followed for three weeks. Daily samples of grass silage and concen-

trate were taken and analyzed for dry matter to calculate the dry matter content of the total 

mixed ration (TMR). 

Trial 2. The second CFIT trial was carried out between 12.4.2022 and 30.9.2022. There were 2 x 

20 cows participating in the second trial. In the second trial cows ate alternatively from a feed 

sward (S) or from own (O) places with the separators on the feeding table. The sward feeding 

mimic on-farm feed intake measuring situation. For each cow each feeding alternative was 

repeated, which means that a cow was for four weeks under recording, where in each week a 

cow was under different feeding alternatives, either S-O-S-O or O-S-O-S. The feeding table 

was adapted to have 10 cows under S feeding and 10 cows under O feeding at the same 

time. After each week the S and O places were switched. Alternating was done to ensure that 

observations were made at almost the same time, being in almost the same lactation stage 

and eating almost the same feed. The collected data should allow to assess how much the 

accuracy reduce when moving from a measuring situation representing Trial 1 to a measuring 

situation that is more alike on-farm situation. Daily samples of grass silage and concentrate 

were taken and analyzed for dry matter to calculate the dry matter content of the TMR. 
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Figure 2. Adaptation of feeding table for Trial I and Trial II. 

Data analyses 

Daily measurements of intake by scale and CFIT were produced for all cows in Trial 1 and for 

the cows on own places in Trial 2. In Trial 2 the cows on sward feeding got individual CFIT in-

take observations but no scale intake observations. The Pearson correlations between CFIT 

intake and scale observations were calculated using individual observations or 1-day, 2-days, 

3-days etc. averages (Trial 1) or the intake observations of the adjacent weeks (Trial 2). The 

repeatability of measures within measurement methods were estimated using SAS PROC 

MIXED with the cow as a random effect. The repeatability was calculated to access the accu-

racy of CFIT feed intake observations when cows are eating from a sward as it is the case on 

commercial farms. 

 

References 
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Task 1.3 Predicting energy status from milk MIR spectra  

Terhi Mehtiö, Joel Kostensalo, Päivi Mäntysaari, Tuomo Kokkonen (University of Helsinki), Paula 

Lidauer, Ben Aernouts (KU Leuven, Belgium) and Martin Lidauer  

 

The aim of this task was to enlarge the NEFA reference database that has been established 

during the Feed Efficiency project, and to develop a second version of prediction equations 

for blood NEFA using mid-infrared (MIR) spectra of milk samples of the enlarged reference 

database and to develop a prediction equation for BHB.  

Motivation 

When breeding cows for resource efficiency, it is important to consider Metabolic Resilience 

and ensure that there will be no emphasis for selecting cows in a severe and deep negative 

ES in early lactation. Therefore, reliable data on the ES of cows is needed. Obtaining measure-

ments from a biomarker, which is capable to describe the ES of a cow, is of interest (McPar-

land et al. 2012). Blood plasma NEFA concentration is an established indicator, but it is inva-

sive and too expensive for routine applications. We have earlier demonstrated that it is possi-

ble to develop prediction equations for plasma NEFA concentration based on milk MIR spec-

tral data (Aernouts et al. 2020). In those studies, the obtained coefficients of determination of 

cross validation varied from 0.61 to 0.67 depending on the applied cross validation proce-

dure. The analyses showed that there is room to further improvement of the accuracy of the 

predictions if the reference data will be enlarged as the models seemed to underestimate the 

level of high (>1.2 mmol/l) NEFA measurements. In addition, based on the results by Mehtiö 

et al. (2020), the genetic correlations between NEFA predictions and milk BHB predictions 

varied from 0.41 to 0.73 during the first three months in milk indicating that these energy 

status indicators are not explaining the same variation in early lactation and an ideal pheno-

type of energy status could be a combination of these indicator traits. As there were no 

blood BHB measurements available for Finnish dairy cows, there was an interest to develop 

predictions also for blood BHB levels based on milk MIR spectral data. In this task the aim 

was to enlarge the reference database for blood NEFA and update the prediction equations 

using this enlarged data set, and to develop similar predictions equations for blood BHB lev-

els. 

Collected reference data 

Before the A++Cow project started we had collected 806 NEFA observations and correspond-

ing morning and evening milk samples with MIR spectra data. We continued collecting blood 

samples once a week after morning milkings from all cows in lactation weeks 2 and 3 at Luke 

Jokioinen research barn as described in Task 1.1. The last blood samples were collected in 

spring 2021 and NEFA and BHB assessments for all blood samples were performed during 

autumn 2021. In total the reference data set had increased to 1642 blood NEFA records, 1488 

blood BHB records and 3190 milk MIR spectral readings (Table 1).  
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Table 1. Number of validated observations, means, interquartile range (IQR), minimum and 

maximum values of the reference data set of blood plasma NEFA and BHB concentrations 

(mmol/l). 

  N Mean IQR Min Max 

NEFA All 1,642 0.49 0.34 0.04 1.95 

 Week 2 598 0.58 0.35 0.09 1.95 

 Week 3 890 0.48 0.31 0.05 1.73 

 Week 20 154 0.13 0.06 0.04 0.42 

BHB All 1,488 0.95 0.44 0.29 4.66 

 Week 2 598 0.91 0.38 0.29 3.98 

 Week 3 890 0.98 0.49 0.30 4.66 

 Week 20 - - - - - 

 

MIR data pre-processing and development of prediction equations 

The MIR data pre-processing routine was developed together with Luke and Mtech and all 

MIR data, as well as predictions for NEFA and BHB levels and milk fatty acid concentrations, 

are now available routinely in Mtech database. 

The prediction models for NEFA and BHB are based on the same partial least regression (PLS) 

method applied and explained by Aernouts et al. (2020). The cross-validation procedure of 

the R-package pls was applied. In this procedure 10 splits are used, i.e., the data is fitted 10 

times with 90% training and 10% testing data. In addition, the models were cross validated by 

fitting the model using two herds and testing on third herd, which provided a test for a com-

pletely independent data set. 
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WP2. Modelling feed efficiency 

Task 2.1 Modelling maintenance cost 

Terhi Mehtiö, Anna-Maria Leino, Timo Pitkänen, Esa Mäntysaari, Riitta Kempe, Enyew Negussie 

and Martin Lidauer 

 

The aim of this task was to develop a model that will utilize all useful information for the pre-

diction of metabolic body weight breeding values for the Finnish and Nordic dairy cattle 

breeds.  

Motivation 

Larger cows need more energy for maintenance than smaller cows, and literature has shown 

that body weight (BW) has an unfavourable correlation with efficiency traits, indicating that 

heavier cows are less feed efficient (Vallimont et al. 2011). Therefore, there is an interest to 

include a trait describing the maintenance cost into the selection index.  

Basically, the energy requirement for maintenance is related to the BW, and more precisely to 

the metabolic body weight (BW0.75, MBW), of the cow. During the last decades, dairy cows’ 

BW has been recorded in Finland by heart girth measurements for feeding management pur-

poses and this has generated over 800,000 BW observations since 1990. At the same time, 

recording of BW by scale has been increasing slowly in the Nordic countries, mainly in Den-

mark. Thus, the sizeable amount of BW records available in Finland and Denmark allowed the 

development of the MBW evaluations. However, lately recording of BW by heart girth has 

been decreasing whilst recording by scale is increasing only slowly, which may weaken the 

maintenance evaluation in future. Therefore, the benefit of including also correlated traits, 

like carcass weight or conformation traits, to the maintenance evaluation is of interest. 

To study this, we estimated the genetic variation and genetic correlations for eight traits de-

scribing the energy requirement for maintenance including: first, second and third parity 

MBW based on heart girth measurements, carcass weight (CARW) and predicted MBW 

(pMBW) based on predicted slaughter weight, and first parity conformation traits stature 

(STA), chest width (CW) and body depth (BD) (Mehtiö et al. 2021). 

Data 

The data used in this study consisted of 21,329 records from RDC and 9,780 records from 

Holstein (HOL) breed cows in Finland (Table 2). 
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Table 2. Number of records, means and standard deviations for MBW in three parities 

(MBW1, MBW2, MBW3), first parity conformation traits (STA, CW, BD) and traits based on 

slaughter information (CARW, pMBW) for RDC and HOL breeds separately. 

 

 RDC HOL 

Trait Records 

no. 

Mean SD Records no. Mean SD 

MBW1 (kg0.75) 14,832 112.9 9.6 6,620 119.7 10.6 

MBW2 (kg0.75) 9,876 119.0 9.7 4,347 127.2 10.6 

MBW3 (kg0.75) 6,066 123.4 10.3 2,557 131.9 10.8 

STA (cm) 12,612 138.7 4.6 6,277 146.1 4.4 

CW (score) 12,612 5.0 1.1 6,277 5.0 1.2 

BD (score) 12,612 5.1 1.0 6,277 5.3 1.0 

CARW1 (kg) 858 253.1 40.2 363 262.3 41.4 

CARW2 (kg) 1,826 272.8 46.1 856 278.9 45.6 

CARW3 (kg) 1,734 279.7 46.1 821 285.1 46.2 

pMBW1 (kg0.75) 858 117.81 6.9 363 125.2 6.7 

pMBW2 (kg0.75) 1,826 124.4 6.4 856 131.4 5.8 

pMBW3 (kg0.75) 1,734 128.1 6.9 821 134.8 6.4 

 

Predicted metabolic body weight 

Because the relationship between CARW and MBW traits is not linear, we were interested to 

predict BW at the time of slaughtering, to see if pMBW would have a stronger genetic corre-

lation with MBW than CARW. In addition, the fat class of carcass was used in predicting MBW, 

which could bring more information and improve the breeding value estimates. The pMBW 

observations were developed as explained by Mehtiö et al. (2021). 
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Figure 3. Predicted BW (kg) across lactation for RDC cows in first three parities. 

Genetic analyses 

Two multiple trait linear mixed animal models with seven traits were applied for genetic anal-

yses where both models had the same six traits (MBW [1,2,3], STA, CW, and BD) and the sev-

enth trait was either CARW or pMBW. The models are explained in detail by Mehtiö et al. 

(2021) paper. 

 

References 

Mehtiö, T., Pitkänen, T., Leino, A.-M., Mäntysaari, E.A., Kempe R., Negussie, E. & Lidauer, M.H. 

2021. Genetic analyses of metabolic body weight, carcass weight and body confor-

mation traits in Nordic dairy cattle. Animal 15(12) doi: https://doi.org/10.1016/j.ani-

mal.2021.100398  

Vallimont, J., Dechow, C., Daubert, J., Dekleva, M., Blum, J., Barlieb, C., Liu, W., Varga, G., Hein-

richs, A. & Baumrucker, C. 2011. Heritability of gross feed efficiency and associations 

with yield, intake, residual intake, body weight, and body condition score in 11 com-

mercial Pennsylvania tie stalls. Journal of Dairy Science 94: 2108–2113. doi: 

https://doi.org/10.3168/jds.-2010-3888  

  

https://doi.org/10.1016/j.animal.2021.100398
https://doi.org/10.1016/j.animal.2021.100398
https://doi.org/10.3168/jds.-2010-3888


Natural resources and bioeconomy studies 54/2023 

21 

 

Task 2.2 Modelling metabolic efficiency 

Enyew Negussie, Martin Lidauer, Terhi Mehtiö, Päivi Mäntysaari, Esa Mäntysaari and  

Arash Chegini 

 

The aim of this task was to develop a model for predicting metabolic efficiency in dairy cows. 

Motivation 

The biological efficiency of a cow to utilize the feed, for which the term “metabolic efficiency” 

is used by the Nordic dairy cattle breeding community, is the most important efficiency trait 

as it comprises the efficiencies of all biological processes in dairy cows, i.e., the efficiency to 

digest the feed, the ability to have low energy loss by methane exhalation, and the efficiency 

of using ME for the different body functions and production.  

The most used metrics for modelling the genetic variation of metabolic efficiency is RFI, 

which is used in the breeding of other species (Gilbert et al. 2017). It is defined as the differ-

ence between actual feed intake and predicted feed intake. Predicting feed intake for dairy 

cows is difficult because the energy requirement is a sum of different physiological processes, 

which are changing significantly during lactation. Therefore, continuous recording is needed, 

and random regression models have been suggested for modelling such RFI data in dairy 

cows (e.g., Mehtiö et al. 2018). However, these models require comprehensive and complete 

data collection which is often difficult under on-farm conditions. Furthermore, numerous 

studies on applying RFI for dairy cattle give indications that the classical RFI metric may be 

not suitable for dairy cattle.   

New approaches to model metabolic efficiency 

In this research task we focused on two approaches to model metabolic efficiency. One novel 

approach is to model the component traits of RFI by a multiple-trait RFI approach, where 

applied variance components are transformed so that estimates for intake will resemble RFI. 

This multiple-trait model is robust to accommodate incomplete records. The second ap-

proach, regression on expected feed intake (ReFI), is a new approach that was developed 

in this project and aims to overcome problems associated with the classical RFI metric. 

A) Residual feed intake via multiple-trait approach 

In the classical RFI model, where partial regression coefficients and breeding values are esti-

mated in a single step (RFIST), DMI is regressed on energy sink traits ECM, MBW, BW loss 

(BWL), and BW gain (BWG). Whereas in the new multi-trait RFI (MT
RFI

) approach it involves 

Cholesky decomposition of the multi-trait variance covariance matrix of component traits to 

express DMI in a sequential relationship that is conditional on each of the energy sinks. In so 

doing, the MTRFI approach avoids some of the shortcomings of the classical RFI model and 

allows the effective use all available information on a cow. In addition, the heterogeneity of 

residual variations across lactation and modelling of body weight changes during lactation as 

body weight loss (BWLOSS) and body weight gain (BWGAIN) traits were tested. 

In this study data from 731 Nordic Red cows from four Finnish research farms that included 

20,533 weekly records were used. The effects of heterogeneity of residual variances and 



Natural resources and bioeconomy studies 54/2023 

22 

 

modelling of body weight change during lactation on the estimates of MT
RFI

 genetic parame-

ters were investigated. The whole lactation period was divided into five residual classes: <5, 

5-8, 9-12, 13-32 and >33 lactation weeks and a MT repeatability animal model was used for 

the estimation of MT variance covariance (VCV) components. Then, a square-root free and 

modified Cholesky decomposition was applied on MT-VCV matrix to derive the MT
RFI

 genetic 

parameters. Using these parameters, a comparison between the classical RFIST and MTRFI was 

made in terms of animal evaluations. Correlations between RFIST and MT
RFI

 breeding values for 

selected groups of animals and standard deviation of estimated breeding values (EBV) and 

genomic enhanced breeding values (GEBV) were calculated. Using leave-one-out method, the 

cross-validation reliability of BLUP and ssGBLUP models were also calculated. 

B) Regression on expected feed intake (ReFI) 

During the course of this project, together with the Nordic research group, we have devel-

oped genomic predictions for metabolic efficiency in Nordic dairy cattle (Task 3.2). The ge-

nomic prediction is based on a RFI model. However, when thoroughly validating the genomic 

breeding values, we observed that some breeding values are illogical. We were able to iden-

tify the problem, which is that the RFI model had problems in modelling correct expectations 

for the feed intake observations. Especially for high yielding cows the feed intake expecta-

tions where too low, which resulted for those cows incorrect genomic breeding values. Alter-

native models for RFI did not improve the modelling of expected feed intake. Similar prob-

lems have been observed in other studies (Tempelman et al. 2015). Therefore, we developed 

an approach, regression on expected feed intake (ReFI), where the expectations for feed in-

take are based on dairy cow nutrition studies, rather than estimating the expectations directly 

from the feed efficiency data. Moreover, the approach is based on a random regression 

model that allows to account for the multiplicativity of feed efficiency (Lidauer et al. 2022), 

which simplifies modelling the large variation in the daily amount of feed a cow consumes, 

and the effect of the diet on efficiency. We have tested different ReFI models and a basic ReFI 

model can be described as following: 

DMI𝑖𝑗𝑘 = 𝛽𝑖 × eDMI𝑗𝑘 + 𝜓𝑘 × eDMI𝑗𝑘 + 𝛼𝑘 × eDMI𝑗𝑘 + 𝜀𝑖𝑗𝑘, 

 

where DMI𝑖𝑗𝑘 is a feed intake observation, 𝛽𝑖 fixed regression coefficient for herd × year × 

season contemporary group i;  𝜓𝑘 is a random regression coefficient for the nonhereditary 

animal effect of cow k; 𝛼𝑘 is a random regression coefficient for the additive genetic animal 

effect of cow k; 𝜀𝑖𝑗𝑘 is the random residual effect; and eDMI𝑗𝑘 is the expected feed intake for 

cow k in her lactation week j. For calculating the expected feed intake, first we calculated the 

expected energy requirement (ER) applying the following formulation: 

ER𝑗𝑘 = 4.81 × ECM𝑗𝑘 + 0.603 × MBW𝑗𝑘 − 27.6 × BWL𝑗𝑘 + 34.8 × BWG𝑗𝑘  

 

where the ER coefficients for ECM, MBW, BWL and BWG were based on the study by Agnew 

et al. (2003). Dividing the ER values by the energy density of the feed gives expected dry mat-

ter intake (eDMI) covariables.  
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Data 

We investigated the ReFI model with weekly feed efficiency records from 645 research farm cows 

recorded in Jokioinen (n=575), Maaninka (n=36) and Viikki (n=34) research farms (Table 3). 

Table 3. Descriptive statistics of daily value of measured and derived traits for primiparous 

Nordic Red dairy cattle, recorded at Finnish research farms between 2006 and 2021. 

Trait N obs Mean SD 

DMI 18,581 19.7 2.84 

ECM 18,542 29.3 4.43 

MBW 18,573 120.0 9.19 

BWL 3,602 0.374 0.383 

BWG 14,443 0.353 0.222 

MEI 18,574 215.0 28.3 

RFI 18,030 0.085 1.98 

REI 18,027 -4.60 20.2 

ECE 18,505 0.137 0.020 

Abbreviations: DMI = dry matter intake [kg]; ECM = energy corrected milk [kg]; MBW = metabolic body 

weight [kg0.75]; BWL = body weight loss [kg]; BWG = body weight gain [kg]; MEI = metabolizable energy 

intake; RFI = residual feed intake [kg] calculated as DMI minus expected DMI; REI = residual energy 

intake [MJ] calculated as MEI minus expected energy requirement; ECE = energy conversion efficiency 

[kg/MJ] that is ECM/MEI. 

 

Comparison with a residual feed intake model and a genetic residual feed intake model 

We compared the above explained new ReFI metric with a classical RFI model, which had the 

following form:  

DMI𝑖𝑗𝑘 = HYS𝑖 + LW𝑗 + 𝛾𝐸 × ECM𝑗𝑘 + 𝛾𝑀 × MBW𝑗𝑘 + 𝛾𝐿 × BWL𝑗𝑘 + 𝛾𝐺 × BWG𝑗𝑘 + 𝑝𝑘 + 𝑎𝑘 +

𝑒𝑖𝑗𝑘, 

 

where a DMI𝑖𝑗𝑘 observation is same as for the ReFI model; HYS𝑖 is the fixed effect of herd × 

year × season contemporary group i; LW𝑗 is the fixed effect of lactation week j; 𝛾𝐸 , 𝛾𝑀, 𝛾𝐿 and 

𝛾𝐺 are partial regression coefficients on a cow k’s observations in her lactation week j for 

ECM, MBW, BWL and BWG, respectively, where inhere BWL and BWG have either zero or a 

positive value; 𝑝𝑘 is the random nonhereditary animal effect of cow k; 𝑎𝑘 is the random addi-

tive genetic animal effect of cow k; and 𝑒𝑖𝑗𝑘 is the random residual effect. 

For comparison with the genetic residual feed intake (gRFI) metric (Kennedy et al. 1993), we 

first estimated variance and covariance components by a multivariate analysis that included 

the traits DMI, ECM, MBW, BWL and BWG applying for each trait a model with the following 

effects: 

Y𝑡:𝑖𝑗𝑘 = HYS𝑡:𝑖 + LW𝑡:𝑗 + 𝑝𝑡:𝑘 + 𝑎𝑡:𝑘 + 𝑒𝑡:𝑖𝑗𝑘,   
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where Y𝑡:𝑖𝑗𝑘 is an observation for trait t,  HYS𝑡:𝑖 is a herd x year x season effect, LW𝑡:𝑗 is a lac-

tation week effect,  𝑝𝑡:𝑘 is the random permanent environmental effect, 𝑎𝑡:𝑘 is the additive 

genetic effect, and 𝑒𝑡:𝑖𝑗𝑘 is the random residual effect. Breeding values for gRFI have been 

calculated following (Kennedy et al. 1993). 

For the genetic analyses we modelled the relationship between the cows by a relationship 

matrix that included 4329 animals. We estimated variance components and breeding values 

based on the three metrics and compared the phenotypic observations of the 10% superior 

cows when selection was based either on the ReFI, on the RFI or on the gRFI model. 
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Task 2.3 Metabolic Resilience 

Terhi Mehtiö, Martin Lidauer, Enyew Negussie, Päivi Mäntysaari and Esa Mäntysaari 

 

The main aim of this task was to develop a model that describes the genetic variation in en-

ergy status at the onset of lactation by utilizing milk MIR readings collected routinely from 

dairy cows. The developed model shall allow estimating breeding values that can be used to 

enhance metabolic resilience in cows. 

Motivation 

Selecting for feed efficiency may favor cows with a disposition for negative ES unless meta-

bolic resilience is accounted properly in the selection index. The prediction equations devel-

oped for NEFA and BHB in Task 1.3 allow predicting ES at the onset of lactation from routine 

milk recording samples. In this task we were interested to study the genetic associations be-

tween traits that could serve as energy status indicators (ESI), the predicted NEFA, BHB, ace-

tone, certain milk fatty acids and fat to protein ratio (FPR), and fertility.  

Based on the results we wanted to develop a model, utilizing all collected milk MIR spectral 

data since 2015, to describe best the genetic variation in the cows’ ES at the onset of lacta-

tion, and the breeding values from this model shall enable selection for Metabolic Resilience. 

Data 

To estimate the genetic variation in ESI traits and their genetic correlation with female fertility 

in early lactation a data with 37 424 primiparous RDC cows with milk test-day records be-

tween 8 and 91 days in milk (DIM) was used. Routine test-day milk samples were analysed by 

MIR for blood plasma NEFA, milk fatty acids, milk BHB and milk acetone concentrations. Six 

ES indicators were considered and included in the analyses: plasma NEFA concentration 

(mmol/l) either predicted by multiple linear regression including DIM, milk fat to protein ratio 

(FPR), and fatty acids C10:0, C14:0, C18:1 cis-9, C14:0*C18:1 cis-9 (NEFAFA) or predicted 

directly from milk MIR spectra (NEFAMIR), C18:1 cis-9 (g/100 ml milk), FPR, BHB (mmol/l milk), 

and acetone (mmol/l milk). The interval from calving to first insemination (ICF) was 

considered as the fertility trait. The data is described in detail in Mehtiö et al. (2021) article. 

Genetic analyses 

Multivariate linear mixed animal models were applied to ES indicator traits at 8 to 35, 36 to 

63, and 64 to 91 DIM. In addition, univariate analyses were made for each lactation period 

separately. In matrix notation, the model can be written as: 

y = Xβ +Za + e, 

where y is a vector of observations, β is a vector of fixed effects of herd, year-month of the 

test-day for energy status indicator traits and year-month of calving for ICF, age at calving, 

and regression on DIM for energy status indicator traits; a is a vector of random animal addi-

tive effects; e is a vector of random residuals; and X, and Z are the corresponding design ma-

trices. Random effects were assumed to be normally distributed with means equal to zero 

and the covariance matrix for a, var(a) = G0⊗A, where G0 was the covariance matrix for the 

random additive genetic effects and A was the additive genetic relationship matrix, and the 
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covariance matrix for e, var(e)= R0⊗I, where R0 was the covariance matrix for the random re-

siduals and I was an identity matrix. 

Genetic analyses were made first within each ESI trait separately, applying a multi-trait model 

for all three periods to assess the genetic correlations between the periods as well as apply-

ing single-trait analyses within each period. Secondly, the correlations between the six differ-

ent ESI traits and ICF were assessed applying multi-trait models within each period. Variance 

components were estimated using REML applying Average Information (AI-REML) method in 

DMU package (Madsen & Jensen 2013). Standard errors for heritability estimates and genetic 

correlations were approximated using Taylor series expansions. 
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WP3. Genomic predictions 

Task 3.1 Single-step genomic predictions 

Riitta Kempe, Arash Chegini, Enyew Negussie, Martin Lidauer, Terhi Mehtiö, Esa Mäntysaari and 

Minna Koivula 

 

The aim of this task is to develop optimal single-step models for the models developed in 

WP2 for Maintenance, Metabolic Efficiency, and Resilience.  

Motivation 

Genomic prediction has been officially introduced into Finnish and Nordic dairy cattle evalua-

tions in 2012. In the current practice, the animals are first analysed with conventional pedi-

gree based genetic evaluations, and then those genetic evaluations are converted to 

“pseudo” phenotypes that are used as input for genomic evaluations. Breeding animals, usu-

ally AI bulls or top cows are first genotyped with dense whole genome SNP panels, and next 

their pseudo phenotypes are used to solve associations between SNP variants and the traits. 

After the associations are estimated, the “SNP-key” can be used to predict the breeding val-

ues of young animals with own genotypes but without phenotypes. This makes genomic 

evaluations well suited to genetic evaluations of novel traits and traits that are too expensive 

to measure from all animals. Since then, genomic methodologies have continuously evolved 

and an approach (Aguilar et al. 2010, Christensen & Lund 2010), which allows modelling sim-

ultaneously information from genotyped and non-genotyped animals, named “single-step 

model”, has been introduced. This cures the problem of having two evaluations: genomic 

evaluations for nucleus animals, and genetic evaluations for the most. Single-step genomic 

prediction models are the models of choice for developing genomic predictions for feed effi-

ciency traits. 

Development of genomic models 

A) Genomic prediction model for Maintenance Cost 

Phenotypic data and pedigree. The data contained all available BW and conformation traits 

observations of Danish, Finnish and Swedish RDC cows born in the years 1990 to 2017. This 

included BW observations from Finnish cows, which were measured by tape (heart girth), BW 

observations from Danish cows, which were measured by scale, and first parity conformation 

observations from cows of all countries. The raw BW observations were pre-processed as ex-

plained by Lidauer et al. (2019) to obtain for each lactation, that had BW records, one MBW 

observation with an associated weighting coefficient that accounted for the type and number 

of the raw BW observations. The first parity conformation observations were taken from the 

NAV routine conformation evaluation (NAV, 2019) with the following trait definition: ST (lin-

ear, cm), CW (linear score from 1 to 9) and BD (linear score from 1 to 9). After editing, the 

data consisted of 1.28 million MBW observations and 2.94 million conformation observations. 

The pedigree of the cows with observations included 2.99 million animals and the base popu-

lation was described with 182 unknown parent groups (UPG).  



Natural resources and bioeconomy studies 54/2023 

28 

 

Best linear unbiased prediction model. The BLUP model developed for the NAV routine MBW 

evaluation was the basis for building the single-step genomic predication model. The BLUP 

model is a multiple-trait animal model with six traits, which are MBW in 1st, 2nd, and 3rd parity, 

and first parity ST, CW, and BD. The applied heritabilities for these traits were 0.46, 0.51, 0.56, 

0.60, 0.18, and 0.26, respectively. A detailed description of the model and the applied vari-

ance components is given in Lidauer et al. (2019). The correlated information from the con-

formation traits is important because there is no BW information available from Swedish 

cows. Moreover, recording of BW by tape is reducing in Finland and measuring BW by scale 

is slowly becoming more common. Genetic correlations between the three MBW traits and 

the conformation traits were on average 0.67, 0.55, and 0.49 with ST, CW, and BD, respec-

tively. Furthermore, to improve predictions of Finnish herds the observations from HOL cows 

were also included to increase contemporary group sizes. The estimated breeding values 

(EBV) for MBW were used to form for each animal one combined MBW EBV by weighting 1st, 

2nd, and 3rd parity EBVs with the weights 0.30, 0.25, and 0.45, respectively, and changing the 

sign of the index values so that a higher index value refers to a lower MBW. 

Marker data. Genotype information from RDC animals only was included for developing the 

single-step model. Bulls were genotyped using the Illumina Bovine SNP50 Bead Chip (Illu-

mina, San Diego, CA) and the cows using the lower-density EuroG MD chip (http://www.-

eurogenomics.com/). The unobserved genotypes with the lower-density chip were imputed 

to the 50K density. After editing there were 46,914 single nucleotide polymorphisms (SNP) 

markers available for 51,417 animals.  

Multi-step genomic prediction model. For building the multi-step genomic prediction model, 

which was based on SNP-BLUP (msSNPBLUP), all genotyped bulls which had at least 20 

daughters and a MBW EBV reliability of at least 0.5 and all genotyped cows that had observa-

tions were included. This resulted in 5,554 bulls and 43,276 cows and in total 48,830 geno-

typed animals. De-regressed proofs (DRP) based on the combined EBV for MBW of 1st, 2nd, 

and 3rd parity were used as observations for the SNP-BLUP evaluation and each animal’s ob-

servation was weighted by the animal’s effective record contribution (ERC). In addition to 

marker effects, the SNP-BLUP model included a polygenic effect explaining 10% of the ge-

netic variation. 

Single-step genomic prediction model. Relationships between animals in the single-step ge-

nomic prediction model (ssGBLUP) were described by the H matrix (Aguilar et al. 2010, Chris-

tensen & Lund 2010) which was implemented as described by Koivula et al. (2021). The Van-

Raden method I (VanRaden 2008) was used for building the genomic relationship matrix by 

blending the G matrix with the residual polygenic effect that accounts for 10% of the genetic 

variation. The QP transformation was applied to account for the UPG. A combined genomic 

enhanced breeding value (GEBV) for MBW was formed in the same way as the combined EBV 

for MBW. 

Model validation. The ssGBLUP model was validated by forward prediction cross-validation, 

which was done for all the three models. For the cross-validation, we selected 1721 cows and 

354 bulls that had no own information in the reduced data set. For the evaluation with the 

reduced data, observations from most recent four years of bulls and their progenies were ex-

cluded. The same pedigree and genomic information were used as for the full data set evalu-

ation to obtain breeding values (either EBV or GEBV) for candidates (BVc). Thus, in the SNP-

http://www.-eurogenomics.com/
http://www.-eurogenomics.com/


Natural resources and bioeconomy studies 54/2023 

29 

 

BLUP evaluation for the reduced data all candidate animals were included but had no own 

data. The cross-validation reliability (r2
cv) was calculated as:  

r2
cv = corr (DRP, BVc)

2 / r2
DRP , 

where DRP were calculated separately for both the bull validation candidate, and the cow val-

idation candidate group, to ensure proper calculation of ERC weights used for the de-regres-

sion. The second statistic we applied was the regression of full data breeding values on re-

duced data breeding values (Legarra & Reverter, 2018), which has an expectation of b1=1.0 

B) Genomic prediction model for regression on expected feed intake 

This research is a continuation of Task 2.2. The objectives of this study were: 1) to use differ-

ent energy requirement formulations (Agnew et al. 2003, Finnish feeding norms Luke 2022, 

and NRC 2021) to calculate eDMI and apply this different expected dry matter intake values 

in predicting breeding values for metabolic efficiency by a regression on expected feed in-

take (ReFI) model, 2) to solve single-step genomic prediction models for each of above-men-

tioned ReFI models with both full- and reduced-dataset in order to compare predictive ability 

of these models. 

Data. Three data files including weekly phenotypic records (22,071 records pertained to 791 

individuals), pedigree (5,604 individuals) and SNP markers (for 1489 animals; 762 males and 

727 females) were available. 10 genetic groups were defined for animals with unknown par-

ents according to their birth year and origin. 

Statistical analysis. Three different equations were used in this study to calculate estimated 

dry matter intake. Feed requirement formulations were extracted from Agnew et al. (2003), 

from the Finnish feeding norms (Luke 2017), and Nord American nutrient requirements for 

dairy cattle (NRC 2021). Based on model selection, it was found that Herd-Production-Year 

(HPY) and Herd-Trial-Month (HTM) are the best factors to be included in the models. The 

ReFI repeatability model for the single-step genomic prediction was as follows: 

DMIijk = βi × eDMIijk+κj × eDMIijk ψk × eDMIijk+αk × eDMIijk + eijk, 

where β, ,  and α are the regression coefficients of observed dry matter intake (DMI) on ex-

pected dry mater intake (eDMI) nested within HPY, HTM, permanent environmental (PE) and 

additive animal (A) effects, respectively; e is the residual effect. The regression coefficients for 

the HTM effect were considered random since the number of records in each class of HTM 

was small. Three different formulations for calculating eDMI were tested. 

Additionally, single-step genomic predictions were carried with a residual feed intake model 

where partial regression coefficients have been replaced by a regression on eDMI (RFI*). The 

RFI* repeatability model was as follows: 

DMIijk = µ +  × eDMIijk + PEi + Aj + ek, 

where µ is the mean;  is the regression coefficients of DMI on eDMI with eDMI calculated 

based on Agnew et al. (2003); PE is a random permanent environmental effect; A is the ran-

dom additive genetic effect; and e is the random residual effect. 
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In the first step, variance components were estimated using MiX99 program which were nee-

ded for forward validations process. Data was split into two parts: a training set and a validation 

set. For the validation set 88 youngest cows with birth year in 2017 to 2019 were included. For 

the forward validation, we used two validation metrics. The first validation metric was regres-

sion of feed deviation (FD; phenotypes adjusted for fixed effects) on pedigree-based or ge-

nomic-based estimated breeding values (EBV and GEBV, respectively). The second metric was 

linear-regression validation introduced by Legarra and Reverter (2018) which was regression of 

EBVf and GEBVf using full data on EBVr and GEBVr using reduced data. Furthermore, Pearson 

correlations between GEBV from the different models for animals with record were calculated. 
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Task 3.2 Genomic predictions for Nordic countries  

Martin Lidauer, Riitta Kempe, Esa Mäntysaari, Enyew Negussie, Terhi Mehtiö, Minna Koivula, 

Trine Andersen (SEGES), Ulrik S. Nielsen (SEGES), Jukka Pösö (Faba), Freddy Fikse (Växa) and 

Gert P. Aamand (NAV) 

 

The aim of this task is to develop genomic prediction models for feed efficiency traits appli-

cable for genomic predictions in Finnish, Danish and Swedish dairy cattle. First, prediction 

models based on the currently used “multiple-step” approach will be developed following by 

the development of “single-step” genomic prediction models. 

Motivation 

Feed efficiency research carried out in the Nordic countries for more than ten years aimed to 

develop the necessary scientific knowhow, phenotypes, methods, and models that allows to 

come up with research solutions applicable in daily Nordic dairy cattle breeding. Results from 

the previous work packages (WP1 & WP2), combined with research carried out in Denmark, 

allowed Nordic Cattle Genetic Evaluation (NAV) to implement first genomic prediction mod-

els for Maintenance Costs and Metabolic Efficiency in the years 2019 and 2020, respectively.  

For Maintenance Cost, a multi-step genomic prediction is implemented. In a first step, breed-

ing values, which are estimated based on the models for genetic evaluation of MBW that we 

have developed in WP2, are de-regressed to obtain for all genotyped animals de-regressed 

proofs (DRP). In a second step these DRP’s are used to estimate genomic breeding values for 

genotyped animals based on a SNP-BLUP model. However, a genomic prediction model that 

combines all steps and estimates genomic breeding values for all animals (single-step model) 

is preferable and therefore, one aim for this task was to develop single-step genomic predic-

tion models for the Nordic dairy breeds.  

For Metabolic Efficiency, single-step genomic prediction models have been implemented by 

NAV for the Nordic dairy breeds based on our work in (see Task 3.1) and the work of the 

Danish research group. The models are based on a classical RFI model. However, in this pro-

ject we found that a new metric, ReFI, would have advantages over using the RFI metric. 

Therefore, for the extended period of the project, one aim was to investigate whether a ReFI 

model would give similar results for all three Nordic breeds as we have found for the Finnish 

RDC breed.   

A) Single-step genomic prediction models for metabolic body weight in Nordic Hol-

stein, Red dairy cattle and Jersey  

Materials & Methods  

Phenotypic data and pedigree. The data contained all available BW observations (kg), the 

first parity stature (STA) observation (cm), which was taken from the NAV routine confor-

mation evaluation (NAV, 2019) and carcass weight (kg) in five parities. Observations were 

from the Danish, Finnish and Swedish RDC, HOL, Jersey (JER) cows born in the years 1990 to 

2020. This included BW observations from Finnish cows, which were measured by tape (heart 

girth), BW observations from Danish cows, which were measured by scale, and first parity STA 

observations from cows of all countries (Table 1). The raw BW observations were pre-
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processed as explained by Lidauer et al. (2019) to obtain for each lactation with BW records 

one MBW observation (BW0.75, kg) with an associated weighting coefficient that accounted 

for the type and number of the raw BW observations. After editing, the RDC and HOL data 

consisted of 1.30 and 1.46 million MBW observations (Table 4). JER data had only 11448 

MBW observations. The number of STA and CARW records are presented in Tables 4 and 5. 

The pedigree of the RDC, HOL and JER cows with observations included 4.7, 9.3 and 0.9 mil-

lion animals and the base population was described with 182, 202 and 70 unknow parent 

groups (UPG), respectively.  

Table 4. Number of records per country per trait in RDC, HOL and JER breeds. Traits are met-

abolic BW in three parities (MBW1, MBW2, MBW3), first parity stature (STA) and carcass 

weight (CARW). 

 RDC HOL JER 

 FIN* DNK SWE FIN* DNK SWE FIN DNK SWE 

MBW1 514,809 5,915 0 200,603 90,898 4 0 6,064 0 

MBW2 315,346 3,133 1 122,792 49,580 6 0 3,458 0 

MBW3 91,905 1,383 2 45,447 26,457 1 0 1,926 0 

STA 188,850 177,746 187,577 107,534 1,004,200 195,892 0 305,861 1,548 

CARW 386,134 397,229 743,703 243,038 3,078,986 840,851 0 467,329 7,538 

*HOL records not counted in Finnish RDC data and RDC records not counted in Finnish HOL data in this table. 

Table 5. Number of records, means, and SD for metabolic BW in three parities (MBW1, 

MBW2, MBW3), first parity stature (STA) and carcass weight (CARW) in RDC, HOL and JER 

dairy cows. 

 RDC HOL JER 

 N Mean SD N Mean SD N Mean SD 

MBW1 520,724 107.89 9.63 291,505 113.26 10.38 6064 86.16 5.43 

MBW2 318,480 115.34 10.09 172,378 123.04 10.44 3458 97.18 5.72 

MBW3 93,290 120.13 11.05 71,905 128.50 10.88 1926 101.49 6.28 

STA 554,173 139.50 4.40 1,307,626 146.18 4.06 307,409 127.50 3.20 

CARW 1,527,066 286.06 50.78 4,162,875 290.10 53.06 474,867 179.18 37.52 

*HOL records not counted in Finnish RDC data and RDC records not counted in Finnish HOL data in this table. 

 

Best linear unbiased prediction (BLUP) model. The BLUP model developed for the NAV 

routine MBW evaluation (Lidauer et al. 2019) was the basis for building the single-step ge-

nomic predication model. The NAV routine BLUP model was updated by dropping the traits 

CW and BD and including CARW. This resulted a multiple-trait BLUP model with five traits, 

which are MBW in 1st, 2nd, and 3rd parity, first parity ST, and CARW. The heritabilities and 

variance components for these traits are presented in Table 6. The correlated information 

from STA and CARW is important because there is no BW information available from Swedish 

cows. Moreover, recording of BW by tape is reducing in Finland and measuring BW by scale 

is slowly becoming more common. Furthermore, to increase contemporary group size in 

Finnish herds, all observations from all breeds were included in each breed-specific model. 

The EBV for MBW were used to form for each animal one combined MBW EBV by weighting 

1st, 2nd, and 3rd parity EBV with the weights 0.30, 0.25, and 0.45, respectively, and changing 

the sign of the index values so that a higher index value refers to a lower MBW.  
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Multiple trait linear mixed animal models for the first (MBW1), second (MBW2) and third 

(MBW3) parity MBW were: 

y
ijklmn

 = ltiϕ(d) + cage
j
 + ym

k
 + h5y

l
 + hy

m
 + an + eijklmn, 

where y
ijlkmn

 is either a MBW1, MBW2 or MBW3 observation; ltiφ(d) is the fixed regression 

function on dim d nested within country × breed × time period, where φ(d) is a vector con-

taining the covariates of linear and quadratic term of Legendre polynomial for dim d plus the 

exponential e-0.1d (based on Mäntysaari & Mäntysaari, 2015); cage
j
 is a fixed effect of calving 

age j nested within breed, ym
k
 is a fixed effect of year × month k; h5y

l
 is a fixed effect of herd 

× 5-years period l; hy
m

 is a random effect of herd × year; an is the random additive genetic 

effect of animal n; and eijklmn is the random residual effect.  

The linear model for the first parity ST was: 

y
ijlkm

= cage
i
 + cmy

j 
+ 𝑙𝑠𝑡𝑔𝑘+  h5y

l
 + hy

m
 + an + eijklmn,  

where y
ijlkm

 is a ST observation;  cage
i
 is a fixed effect of calving age i × year × country,  cmy

j
 

is a fixed effect of calving year j × month × country, lstg
𝑘
 is a fixed effect of lactation stage k 

× year × month × country, h5y
l
 is a fixed effect of herd × 5-years period l, hy

m
 is a random 

effect of herd × year m, a𝑛 is a random additive genetic effect of animal n, and eijklmn is the 

random residual. 

The linear models for CARW was: 

y
ijklm

 = ltiφ(d) + parity
i
 + sage

j
+ sym

k 
+ hy

l
 + am + eijklm, 

where y
ijklm

 is a CARW observation,  ltiφ(d) is the fixed regression function on dim  nested 

within breed × parity × country -interaction i , where φ(d) is a vector containing the covari-

ates of linear and quadratic term of Legendre polynomial for DIM d plus the exponential 

e-0.1d (based on Mäntysaari & Mäntysaari, 2015); sage
j
 is a fixed effect of age in months at 

slaughtering j, sym
k
 is a fixed effect of slaughter year × month k, hy

l
 is a fixed effect of herd × 

year l, am is a random additive genetic effect of animal m, and eijklm is the random residual. 

Table 6. Heritabilities (on diagonal) and genetic correlations for RDC, HOL and Jersey breeds. 

 
MBW1 MBW2 MBW3 Stature CARW 

MBW 1 0.46 0.97 0.95 0.65 0.77 

MBW 2 - 0.51 0.98 0.70 0.84 

MBW 3 - - 0.56 0.68 0.85 

Stature - - - 0.59 (RDC & HOL) 

0.41 (JER) 

0.59 

CARW - - - 
 

0.52 (RDC & HOL) 

0.36 (JER) 
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Marker data. Genotype information from RDC, HOL and JER animals were included for de-

veloping the single-step model. Bulls were genotyped using the Illumina Bovine SNP50 Bead 

Chip (Illumina, San Diego, CA) and the cows using the lower-density EuroG MD chip 

(http://www.eurogenomics.com/). The unobserved genotypes with the lower-density chip 

were imputed to the 50K density.  

Table 7. Phenotypic and genomic data.  

 
RDC HOL JER 

Pedigree records 4,669,968 9,270,696 882,137 

Unknown parent groups (UPA) 182 202 70 

Animals in data 2,987,705 6,229,638 608,356 

Accepted data records 2,987,294 6,229,093 606,569 

Genomic data    

All genotyped animals of NAV 207,219 384,029 107,836  

Genotyped animals in MBW-CARW data 92,448  129,269 45,070 

Ref.pop. tot* 89,815 123,873 43,736 

    Ref.cows 83,419 115,527 42,082 

            Reference cows with CARW obs 37,957 (45%) 41,703 (36%) 17,535 (42%) 

Reference bulls 6,396 8,346 1,654 

SNP markers available 46,914 46,342 41,897 
*Criteria for reference population according to NAV official instructions. All genotyped bulls which had at least 20 

daughters and the MBW EBV reliability of at least 0.5, and all genotyped cows that had observations were included.  

 

Single-step genomic prediction model. Single-step models were run with ssGTaBLUP 

(Mäntysaari et al. 2017) where the key computations involving the G-1 matrix are replaced by 

a dense T matrix of size m by n where n is the number of genotyped animals and m is the 

number of SNP markers. The VanRaden method I (VanRaden, 2008) was used for building the 

genomic relationship matrix by blending the G matrix with the residual polygenic effect that 

accounts for 30% of the genetic variation. The genetic groups were accounted for in the sin-

gle-step models using the so-called partial QP transformation that omitted G-1 in QP (Koivula 

et al. 2022). The QP transformation was applied to account for the UPG. A combined genomic 

enhanced breeding value for MBW was formed in the same way as the combined EBV for 

MBW. Detailed information on genomic data is in Table 7. 

Model validation. The ssGTaBLUP model was validated by forward prediction cross-valida-

tion, which was done for two models. For the cross-validation, we selected 45388 RDC cows 

and 250 RDC bulls, 78022 HOL cows and 323 HOL bulls and 21518 JER cows and 133 JER 

bulls that had no own information in the reduced data set. For the evaluation with the re-

duced data, observations from most recent four years of bulls and their progenies were ex-

cluded. The same pedigree and genomic information were used as for the full data set evalu-

ation to obtain breeding values (either EBV or GEBV) for candidates (BVc). Thus, in the 

ssGTaBLUP evaluation for the reduced data all candidate animals were included but had no 

own data. The cross-validation reliability (r2
cv) was calculated as:  

r2
cv = corr (DRP, BVc)

2 / r2
DRP. 

The second statistic we applied was the linear regression of full data breeding values on re-

duced data breeding values (Legarra & Reverter 2018), which has an expectation of b1=1.0. 

http://www.eurogenomics.com/
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B) Genomic prediction models for Metabolic Efficiency in Nordic Holstein, Red dairy 

cattle and Jersey 

The implemented single-step genomic prediction model is based on a classical RFI model 

and is explained in detail by Stephansen et al. (2021). In this task we compared the currently 

implemented RFI model with a regression on expected feed intake (ReFI) model. The out-

come of this study should clarify whether it would be beneficial to upgrade the current sin-

gle-step evaluation to a single-step evaluation based on ReFI. 

Data sets. We used all available feed efficiency data from CFIT herds and research farm herds 

for the three breeds Holstein, RDC and Jersey, which comprised of 149288, 70292, 62760 rec-

ords, respectively. 

Models. We applied four different approaches to model Metabolic Efficiency. Approach A: 

currently applied routine RFI model, which is a two-step modelling approach, where first RFI 

observations are calculated by a least squares model, and then these observations are used 

for the single-step genomic prediction. Approach B: was same as Approach A, but in the least 

squares model the partial regression coefficients were replaced by a regression on expected 

DMI using feed requirement formulations as used in Task 2.2. Approach C: the RFI observa-

tions were defined as requirement RFI, which was the difference between feed intake and ex-

pected feed intake. Approach D: ReFI, applying a similar model as in Task 4.1. The approaches 

and models are described in detail by Lidauer et al. (2022). 

We compared the different approaches based on estimated variance components, and the 

phenotypic means of the genetically 10 % best cows. All analyses were carried out by Trine 

Andersen from SEGES Innovation, Denmark. 
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WP4. Economic and environmental benefits 

Task 4.1. Quantifying economic benefits 

Marja-Liisa Sevón-Aimonen, Terhi Mehtiö, Martin Lidauer and Jarmo Juga (University of Hel-

sinki) 

 

The aim of this task is to study the genetic and economic impacts of different breeding pro-

gram scenarios. 

Motivation 

As soon as feed efficiency breeding values are used for the selection, economic and environ-

mental benefits will be realized. Breeding values for 90 different breeding traits of dairy cattle 

are combined into five trait groups which are production, fertility, health, conformation and 

functionality. The trait groups are combined into the NTM index by weighting each trait 

based on its economic value. The NTM comprises the breeding goal for the Nordic dairy cat-

tle and is used for genomic selection of breeding candidates. Over the last years, NAV has 

been active in revising the economic weights of the NTM index, and the Saved Feed index 

was included in NTM in 2020.  

In this task we wanted to estimate the additional economic response of including the devel-

oped feed efficiency traits into the NTM. We estimated the expected genetic response for the 

feed efficiency traits by considering the economic values developed by NAV and utilizing the 

required variance components. In addition, the genetic correlations between feed efficiency, 

production and fertility were needed to design a selection index and to assess the economic 

impact of including feed efficiency into dairy cattle breeding programme. 
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Data 

The data used for variance component estimation was the FE data collected from research 

herds in Finland during 2006-2021. The data included in total 18 581 weekly records from 

645 primiparous RDC cows. The traits of interest were seven different FE, production and fer-

tility traits. The FE traits were ReFI (developed in Task 2.2), RFI and MBW. The production 

traits in this study were milk yield (MY), protein yield (PY), fat yield (FY), and the female fertil-

ity trait was ICF. For ICF yield deviations records from the official genetic evaluation of fertility 

for the cows in the pedigree were used (n=3037).  For variance component estimation rec-

ords from the data that were deviating more than 4 SD from the mean were removed. The 

pedigree included in total 5650 RDC animals.  

Table 8. Number of records, means, standard deviations (SD), minimum and maximum val-

ues for DMI, eDMI, MY, PY, FY, MBW, and ICF records. 

 N obs Mean SD Min Max 

DMI (kg/d) 18,581 19.7 2.8 8.6 31.0 

eDMI (kg/d) 18,030 19.8 2.1 8.4 29.2 

MY (kg/d) 18,559 27.4 4.6 8.7 44.5 

PY (kg/d) 18,536 1.00 0.15 0.40 1.54 

FY (kg/d) 18,556 1.21 0.21 0.37 2.05 

MBW (kg) 15,899 120.2 9.4 83.4 157.6 

MBW (kg)* 18,573 120.0 9.2 85.4 156.7 

ICF** 3,037 1.1 24.0 -77.3 107.6 
* Records modelled by Mäntysaari and Mäntysaari (2015) 

** Yield deviations from the genetic evaluations of fertility 

 

Genetic analyses 

Single-trait genetic analyses were performed to estimate the variance components of the 

traits. For ReFI the energy requirements by Agnew et al. (2003) were used and the model was: 

DMIijkl = βi×eDMIijkl+κj×eDMIijkl ψl×eDMIijkl+αl×eDMIijkl+eijkl, 

where βi is the fixed regression coefficient for the herd-feed year i, κj is the random regression 

coefficient of herd-test-month j, ψl is the random regression coefficient for the permanent 

environmental effect of cow l, αl is the random regression coefficient for the additive genetic 

effect of cow l, and eijkl is the random residual. 

For comparison we used the classical RFI, which was modelled as: 

DMIijkl = HTMi + β1ECMj+ β2MBWj+ β3BWGj+ β4BWLj + LACTCURVEk + pel + al + eijkl, 

where HTMi is the fixed effects of herd-test-month i, β1, β2, β3, β4 are the fixed regression coef-

ficients of the energy sinks nested within herd-feeding year j,LACTCURVEk is the fixed  lacta-

tion curve modelled by the 4th order Legendre polynomial and Wilmink function in days in 

milk k, pel  is the random permanent environmental effect of cow l, al is the random additive 

genetic effect of cow l, and eijkl is the random residual. The MBW, BWG and BWL records were 

modelled as by Mäntysaari and Mäntysaari (2015). 

Metabolic body weight and production traits MY, PY and FY were modelled as: 
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Yijkl = HTMi + LACTCURVEjk + CAGEl + pem + am + eijklm, 

where HTMi is the fixed effect of herd-test-month i, LACTCURVEjk is the fixed lactation curve 

modelled by the 4th order Legendre polynomial and Wilmink function in days in milk j nested 

within herd-5year-period k, CAGEl is the fixed calving age modelled by 2nd order polynomial 

in calving age, month l, pem  is the random permanent environmental effect of cow m, am is 

the random additive genetic effect of cow m, and eijklm is the random residual. 

To estimate the genetic correlations between all seven traits bi-variate analyses of yield devi-

ations from single trait analyses for all the traits were used. Genetic analyses were performed 

using MiX99 software. 

Simulation studies on MoBPS 

The genetic response and economic impact of including either ReFI or RFI into dairy cattle 

breeding program was studied. Genetic parameters obtained in this task were applied. How-

ever, for MBW we applied the variances and heritability used in the Nordic evaluation  be-

cause a higher heritability is expected for MBW from research farm data where MBW is meas-

ured daily. Economic values based to those used in NTM (NAV, 2022) were applied. For MBW 

the applied economic value was larger than that one used by NAV to account also for the 

savings in feed cost for replacement by considering that a replacement cow is during the 

whole growing period 98.8% smaller in size, which is proportional to 1 kg0.75 MBW reduction 

for an average primiparous cow, i.e., 630 kg instead of 638 kg. All economic values are pre-

sented as per cow and year and assuming that an average cow produces 10,000 kg milk, 340 

kg protein and 420 kg fat.  

Various breeding program scenarios were be compiled and compared to assess the genetic 

and economic impact using interface version of R package MoBPS (Pook et al. 2020). In all 

simulation scenarios, the same breeding program was assumed. The simulation is simplified 

and was based only on bull selection. The number of bulls was reduced to about a third of 

that of what is currently used in the RDC breeding program, but the selection intensity was 

kept the same by selecting the 2.5% bulls with the highest index. 5 repetitions and 10 breed-

ing cycles were run for each scenario. Generation interval was assumed to be three years. All 

animals were assumed to be genotyped and all the cows were phenotyped. The simulation 

included 7 traits (ReFI, RFI, MBW, MY, PY, FY, and ICF). 

Four different selection indices were compared: 

Scenario Included traits in the selection index 

1. Yield:  MY, PY, FY, ICF 

2. +MBW MY, PY, FY, ICF, MBW 

3. +MBW+RFI: MY, PY, FY, ICF, MBW, RFI  

4. +MBW+ReFI: MY, PY, FY, ICF, MBW, ReFI 

 

Breeding values were estimated by single trait GBLUP and correlations between traits were 

considered when calculating the index weights. The selection was made based on the indices 

according to scenarios. When calculating the index weights for a specific scenario, only the 

genetic parameters and economic values of the traits that were included in the index were 

considered. In the simulation, however, all 7 traits with genetic parameters were included to 

get correlated response for all traits. For all scenarios, the economic response was calculated 
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the same way by multiplying the changes in the genetic breeding values by the economic 

values for the traits MY, PY, FY, ICF, MBW and ReFI. The ReFI metrics was chosen for the met-

abolic efficiency trait because it is calculated on feed requirement formulations. 
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Task 4.2 Genetic response – environmental impact  

Enyew Negussie, Jarmo Juga (University of Helsinki) and Martin Lidauer 

 

The aim of this task is to quantify the impact of a unit change in a feed efficiency trait on CH4 

emissions. 

Motivation  

Feed efficient animals require relatively less feed and on average they are expected to pro-

duce less CH4 and N2O per unit product than the population average at a similar level of pro-

duction. Therefore, improving the feed utilization efficiency of individual animals could be a 

sustainable alternative for reducing enteric methane emissions from dairy systems (Negussie 

et al. 2014). Hegarty (2009) showed decreased methane production in animals selected for 

reduced RFI where reduced RFI is akin to selection for high feed efficiency. As broader breed-

ing goals are the norm in many livestock species, inclusion of FE in dairy cattle selection indi-

ces will have environmental impact. However, genetic parameters and particularly genetic as-

sociations between RFI, environmental impact, and other production and functional traits are 

generally lacking. In this task, these important genetic parameters were estimated and corre-

lated response, due to selection for RFI, on CH4 output and the other production traits in-

cluded in the breeding goals were calculated. The RFI trait was defined as actual DMI minus 

expected DMI, where expected DMI was calculated based on Finnish energy requirement for-

mulations. 
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Data 

In this task, production, feed efficiency and methane output traits recorded at the Jokioinen 

research dairy farm were used. Data was from 310 Nordic Red cows including 13,573 weekly 

records. Production traits were residual feed intake (RFI), milk yield (MY), fat yield (FY), protein 

yield (PY) and metabolic body weight (MBW). The CH4 phenotype included in the analyses 

was CH4 production (MeP=CH4 g/day). Mean MeP, RFI, MY, FY, PY, MBW were 413.1±32.7 

g/d, 0.0±19.8 kg/d, 28.0±4.5 kg/d, 1.27±0.19 kg/d, 1.03±0.13 kg/d, and 119.6 kg0.75, respec-

tively.   

Genetic analyses 

A multi-trait repeatability animal model was fitted for the estimation of variance components 

and to calculate the associated genetic parameters. The models included fixed effects of age, 

kiosk number, lactation week, measurement year-month and random permanent environ-

ment and animal effect.  

Analyses of genetic response 

From an economic viewpoint it is important to assess how correlated characters change when 

animals are selected for a certain characteristic. In this case, our aim was to see how CH4 

emission and other production traits change when selection is on RFI to improve feed effi-

ciency. Particularly, the focus was to see the correlated response in CH4 emission when selec-

tion is on RFI. For this, a multi-trait selection index theory as described in Kennedy et al. 

(1993) was used and the correlated response due to selection for RFI was calculated as Δg 

=b'Gi/σI, where response in component traits equals b= index weight, G= genetic variance 

covariance matrix, i= intensity of selection and σI= standard deviation of the index. 
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Task 4.3 Quantifying environmental benefits 

Sanna Hietala, Aleksi Astaptsev (Valio), Enyew Negussie, Terhi Mehtiö and Martin Lidauer 

 

The aim of this task was to quantify the environmental impact of improving feed efficiency on 

GHG mitigation and land use. Also eutrophication potential was assessed.    

Motivation  

The objective of the conducted research has been in improving the feed efficiency (FE) and 

developing tools for breeding towards FE and lowered CH4 emissions from rumination. Even 

if these breeding goals can be considered as such as improving the environmental perfor-

mance, the potential trade-offs and magnitude of the improvement remain unclear. Here in 

task 4.3 quantification and validation of the achieved impacts of breeding at product level 

were conducted. The environmental impact, and especially the change achieved with breed-

ing, was quantified at product level using Life Cycle Assessment (LCA) method. LCA is well 

adapted method for assessing environmental impact of a product and already quite stand-

ardized especially regarding global warming potential. For the LCA assessment of dairy prod-

ucts, typical system boundaries which are included in the assessment, include feed crop pro-

duction (including farms own feed crop production and purchased feeds, with their input 

use), dairy production (including emissions from animals and manure, i.e., rumination and 

manure management) and related input use, such as electricity use on animal housing, en-

ergy used in cereal drying and diesel fuels used in field work and transportation. From the 

previous LCA assessments of dairy products, it is clear that enteric fermentation and feed 

crop production are responsible for a large share of the total carbon footprint of milk. As the 

A++Cow project aims in improving dairy production sustainability by developing methods for 

selection towards more efficient feed utilization and reduced methane generation from rumi-

nation, exactly those largest contributors to CF of milk, the project findings regarding these 

aspects were integrated into LCA assessment model of dairy production. Thus, besides the 

impact to the single emission sources, LCA analysis gives a detailed overall result for the se-

lected environmental impact category and environmental benefit (or change in impact) can 

measured in relation to total burden of the production. 

Data collection from Finnish dairy farms 

The A++Cow project was conducted in close collaboration with major Finnish dairy producer 

Valio. The baseline assessment for the current average Finnish dairy production (“business-

as-usual”, BAU) was conducted utilizing real farm data collected from 700 Finnish dairy farms. 

The collected data included herd composition, feed composition and origin, details for own 

feed crop production (crops, yields, fertilizer inputs, crop protection), manure management 

system and interval for emptying manure storage, and the yields of raw milk and meat from 

cull cows.  

For assessment of the BAU milk production, data collection from 700 farms was conducted 

with Valio’s Carbo tool which is integrated to Valio’s LCA assessment model Lypsikki-LCA. The 

average farm was formed based on this data and the farm characteristics (which were not af-

fected by breeding) were kept constant for the assessment of the project findings regarding 
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breeding response. These constant characteristics included herd composition and size, feed 

composition and manure management systems. Average farm characteristics are presented 

in Table 9. Project findings regarding breeding response were integrated into the assessment 

and included DMI, methane generation from rumination, raw milk yield and quality (fat, pro-

tein) and BW.   

Table 9. Characteristic of average dairy farm, based on data collected from 700 Finnish dairy 

farms. 

Dairy cows, n 65 

Age at first calving, m 25 

Dairy cow, live weight, kg 647 

Dairy cows, pasture period 74 

Feed use, kg dry matter/day/cow  22 

Milk production, kg/year/cow 10139 

Manure system slurry, tight cover 

Feed forage, % 57 % 

Feed concentrate, % 43 % 

 

Lypsikki-LCA assessment model 

Lypsikki-LCA model has been developed by Valio for dynamic assessment of environmental 

impacts of dairy production at farm level. The model has been developed to react to the 

changes in a dairy farm's activities and to optimize diet, balance nutrient flows, simulate culti-

vation and manure management, predict milk production and herd size changes, and dynam-

ically predict GHG and nutrient emissions.  

Lypsikki-LCA model for climate impact of raw milk and beef from culled cows has been con-

ducted by partly following product environmental footprint category rules (PEFCR) of dairy 

products (European Commission 2018) and IPCC (2006) guidelines. These frameworks have 

been complemented by national emission prediction models, which present the Finnish pro-

duction environment. The model is constructed on a nutrient management model described 

in Nousiainen et al. (2011). Enteric fermentation from rumination is calculated with prediction 

model by Ramin & Huhtanen (2013) and manure storage emissions are evaluated for each 

day separately, based on daily amount of manure in the storage and average temperature of 

that day.  

In characterisation of greenhouse gases to carbon dioxide equivalents (CO2eq) the IPCC 

(2013) characterization factors with inclusion of climate carbon feedback were used. Thus, the 

biogenic methane (CH4) characterization factor was 34 kg CO2eq kgCH4
-1 and dinitrogen ox-

ide (N2O) characterization factor was 298 kg CO2eq kgN2O
-1 (Myhre et al. 2013). 

Lypsikki-LCA has system boundary from cradle to farm gate and the analysis was conducted 

with inclusion of only those feeds which were utilised in dairy production. The life cycle 

stages within the system boundary included feed crop cultivation (N2O based on soil type, 

N2O from crop residues, N2O leaching and volatilization, CO2 from liming), pasture (N2O from 

pasture), emissions from animals (methane from rumination), manure management (CH4 and 

N2O) and input production (fertilizers, lime, seeds, purchased crops, bedding materials, elec-

tricity, fuels).   
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In LCA, allocation approach between milk and beef is continuously under debate. Currently, 

the suggested approach in well adapted PEFCR and IDF guidance’s is biophysical allocation, 

although other allocation methods are also applied. Lypsikki-LCA model includes different 

allocation options for milk and beef, including also the here-utilized biophysical allocation 

method for which has been the recommended method in Dairy PEFCR (IDF 2015, European 

Commission 2018). 

The functional unit was set as 1 kg Fat and Protein Corrected Milk (FPCM) as according to 

FAO (2010), thus the impacts were reported per 1 kg of FPCM and allocated utilizing bio-

physical allocation method by IDF between milk and beef (IDF 2015).   

Besides the climate change impact assessment, the LCA included estimation of eutrophica-

tion potential and land occupation. 
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3.2. Results 

WP1. Novel phenotypes 

Task 1.1 Feed efficiency phenotypes  

Feed efficiency data 

The final Finnish feed efficiency data (FE-data) of primiparous Nordic Red cows was com-

posed from the measurements collected in current A++Cow project and the data of previous 

projects (Seosrehu, ASMO, GREENDAIRY, Feed Efficiency and A++Lehmä pilot). Data from all 

the projects were reworked and merged to be used in the statistical analyses.  In total the 

merged FE-data will include measurements from 828 cows with 148 715 records (Table 10). 

Table 10. Currently available Finnish feed efficiency data. 

Herd Years Cows Daily observations 

Rehtijärvi 1998–2001 146 5,507 

Rehtijärvi 2006–2009 145 4,231 

Minkiö 2009 → 467 122,923 

Maaninka 2013–2016 36 8,944 

Viikki 2013–2016 34 7,110 

Total  828 148,715 

 

Data description 

The average ECM yield for the cows in FE-data is 28.5 kg/d, the total intake of DM and ME 

are 19.3 kg/d and 211 MJ/d, respectively (Table 11). The mean body weight of the cows in the 

FE-data was 589 kg. The FE-data include measurements of the primiparous cow calved be-

tween 1998–2022. The development of ECM yield, DMI, ECE and BW during data collection 

period based on the calving year of the cows is presented in Figure 4. A steady increase in 

ECM yield can be seen. Cows that started lactation in 1998 had a lower BW than cows that 

calved in the 2020s, but there is no clear trend in the average weight of cows in the FE data 

during the last decade.  
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Table 11. Mean, standard deviation and range (min, max) of cow-wise average milk produc-

tion, feed intake and body weight and condition during lactation days 3-305 (N=828; N in 

cow average varied from 10 to 303). 

 Mean SD Min Max 

Milk yield, kg/d 

ECM yield, kg/d 

Milk composition, % 

   Fat 

   Protein 

   Lactose 

Intake 

   Forage, kg DM/d 

   Concentrate, kg DM/d 

   Total intake, kg DM/d 

   Energy, ME MJ/d 

   Crude protein, kg/d 

Body weight, kg 

Body condition score 

REI, ME MJ/d 

ECE, kg ECM/ME MJ 

26.9 

28.5 

 

4.43 

3.64 

4.58 

 

10.1 

9.2 

19.3 

210.9 

3.29 

589 

3.15 

-5.1 

0.139 

3.54 

3.55 

 

0.465 

0.252 

0.116 

 

1.29 

1.06 

2.19 

21.6 

0.417 

54.9 

0.287 

16.8 

0.017 

14.0 

15.7 

 

3.23 

3.00 

3.93 

 

5.7 

4.9 

10.5 

123.1 

1.73 

386 

2.26 

-70.7 

0.080 

37.2 

39.5 

 

6.65 

4.60 

5.00 

 

15.7 

12.3 

26.6 

284.7 

4.46 

809 

4.37 

70.0 

0.232 

 

Figure 4. The development of ECM yield, DMI, ECE and BW of the cows in data based on the 

calving year. 
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Task 1.2 Feed intake predictions 

Validation of CFIT  

Data of daily intakes (FI) measured by scale has been processed from both trials.  The data in-

clude weighted daily FIs and calculated daily dry matter intakes based on weighted scale FIs 

and analyzed dry matter content of the TMR. Also, the data of CFIT measurements is processed 

and available from both trials. However, one third of the dataset from Trial 1 will be processed 

once more to ensure correct values. Therefore, all results are still preliminary results. In Trial 1 

the cows ate TMR from their own place with separators on the feeding table and both the scale 

and CFIT system FI were measured. Also, in Trial 2 cows had own-place FI measurements with 

separators on the feeding table every second week, totally two weeks. All this own-place data 

from Trials 1 and 2 were combined to produce a data of 83 cows and 1518 daily observations. 

The Figure 5 shows the relationship of the scale and the CFIT system FI measures of the cows in 

the combined data. The average daily scale FI of the cows was 67.3 (SD 8.11) kg/d (= 23.9 kg 

DM/d) and the average daily CFIT system FI was 59.4 kg/d (SD 8.49) (=21.1 kg DM/d). Thus, the 

CFIT measured FIs were an average about 12% lower than the scale FIs. Daily intake observa-

tions (1-day) were used to build new variables, i.e., 2-days, 3-days etc. averages from both the 

scale and CFIT FI measurements. The correlation between the scale and CFIT FI measures in-

creased with increased number of days in averages (Figure 5). The correlation between the scale 

FI and CFIT FI was 0.59 with 1-day observations and with 4-days or more averages 0.71–0.72. 

 

Figure 5. Relationship of the scale and the CFIT feed intake measures (kg/d) (A). The correla-

tion between the scale and the CFIT feed intakes based on 1 to 7 days average intakes (B). 

In Trial 2, cows ate every second week from a feed sward (S) and every second week from 

own places (O) with the separators on the feeding table. The sward-feeding was supposed to 

mimic on-farm feed intake measuring. As in Trial 1, also in Trial 2 the scale FI measures were 

higher than the CFIT FI measures on both O- and S-feeding (Table 12). The standard devia-

tion (SD) was clearly higher for the CFIT S-feeding FI than for the scale FI measures. The SD of 

FI measures was also higher for cows on the CFIT S-feeding than the CFIT O-feeding. The re-

peatability of 7-days average FIs measured every second week were 0.87, 0.77 and 0.80 when 

measured by scale, CFIT on O-feeding or CFIT on S-feeding, respectively.  
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The correlations calculated between the scale and the CFIT O-feeding FI measures, between 

the CFIT S-feeding FI measures and the scale FI averages from the adjacent weeks, and be-

tween the CFIT S-feeding FI measures and the CFIT O-feeding FI averages from the adjacent 

weeks are presented in the Figure 6. All correlations are based on 7-days average FI 

measures. Naturally, the correlation between the CFIT O-feeding and the scale FI measured 

on the same week was higher than the correlation between the CFIT S-feeding FI and the 

scale FI measures which were taken from the adjacent weeks. The correlation between the 

CFIT S-feeding FI and the CFIT-O-feeding FI measured on the adjacent weeks was at the 

same size than the correlation between the CFIT-S-feeding FI and the scale FI from the adja-

cent weeks. This indicated that there was no marked difference in the accuracy of FI measure-

ments between the CFIT O-feeding and S-feeding. Also, the repeatability of the CFIT O-feed-

ing (0.77) and the CFIT S-feeding (0.80) 7-days average FIs of the cows were about the same. 

Table 12. Mean, standard deviation (SD) and coefficient of variation (CV) of the daily feed in-

take of the cows in Trial 2 when measured by scale or by CFIT on own-place (O) feeding or 

sward-feeding (S).  

 
Feed intake, kg/d 

Intake measured Cows N Mean SD CV 

Scale 40 560 65.5 7.51 0.11 

CFIT own-place (O) 40 560 57.6 8.98 0.16 

CFIT sward (S) 40 554 58.5 11.01 0.19 

 

 

Figure 6. The correlations between the scale and the CFIT O-feeding feed intakes measured 

on the same week, between the CFIT S-feeding feed intakes and the average scale feed intakes 

of the adjacent weeks and between the CFIT S-feeding feed intakes and the CFIT O-feeding 

average feed intakes of the adjacent weeks.  
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Task 1.3 Predicting energy status from milk MIR spectra 

Prediction equations for NEFA and BHB 

The NEFA model fit with the entire data set is illustrated in Figure 7 with the corresponding R2 

and RMSE values for the models fitted with and without the transformation of the response 

variable. In the transformed scale, no heteroscedasticity was observed and there is no obvi-

ous systematic error. With the model utilizing the transformation a coefficient of determina-

tion of R2=0.53 (RMSE = 0.206 mmol/l, RMSECV = 0.217 mmol/l) was obtained for the 10-

fold cross-validation. Furthermore, in independent herd validation RMSEP values 0.186 

mmol/l and 0.221 mmol/l were obtained. When the prediction model is built without trans-

forming the data the fit values were very similar, or even slightly better with R2=0.54 (RMSE = 

0.204 mmol/l, RMSECV=0.215 mmol/l). However, there are several systematic problems such 

as some predicted values being negative, systematic error where the predictions for concen-

trations above 1.2 mmol/l are systematically too small, while predictions for concentrations 

below this tend to be slightly too large.   

 

Figure 7. The blood test based NEFA values (observed) and the predicted values from a partial 

least squares model based on mid-infrared milk measurements in a fourth root transformed 

scale (left panel) and the original scale (right panel). 

The BHB model fit with the entire data set is given in Figure 8 with the corresponding R2 and 

RMSE values for the models fitted using the original and the root-transformed scales. While 

there is no obvious heteroscedasticity in the root-transformed scale, there is some systematic 

error where the largest values are underpredicted, resulting in fit metrics R2=0.62 (RMSE = 

0.328 mmol/l, RMSECV=0.349 mmol/l). Furthermore, independent validation values 

RMSEP=0.366 mmol/l and 0.431 mmol/l were obtained. A systematic error seems to be pre-

sent with a small overestimation for BHB<1.0 mmol/l while higher BHB concentrations are 

underestimated. The use of different transformations was explored as an option, but the re-

sults were not satisfactory. In order to address this issue, an ad hoc correction of the form 𝑥𝜆 

with 𝜆 > 1 was proposed. A value of 𝜆 = 1.4 was obtained via a fitting procedure on the 
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training data. The corrected values are graphically shown in the leftmost panel of Figure 2. In 

the original scale without the correction, the RMSE value is 0.328 mmol/l, with uncertainties 

being smaller for smaller than average concentrations and larger for large concentrations. 

With the correction the RMSE value is slightly smaller at 0.326 mmol/l (RMSECV = 0.353 

mmol/l), but more importantly, the systematic underprediction of larger values is significantly 

mitigated. The validations in using an independent herd with the ad hoc correction had 

RMSEP values 0.411 mmol/l and 0.422 mmol/l. 

 

Figure 8. The blood test based BHB values (observed) and the predicted values from a partial 

least squares model based on mid-infrared milk measurements in a fourth root transformed 

scale (left panel), the original scale (middle panel), and the original scale with an ad hoc power 

correction (right panel). 

The developed prediction equations for NEFA and BHB were delivered to Mtech in summer 

2022 and those are applied and available in the Mtech database since autumn 2022. A manu-

script with all results has been submitted to the Animal journal. 

Kostensalo, J., Lidauer, M., Aernouts, B., Mäntysaari, PB., Kokkonen, T., Lidauer, P. & Mehtiö, T. 

2023. Predicting blood plasma NEFA and BHB concentrations from milk MIR spectra. Animal, 

submitted. 
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WP2. Modelling feed efficiency 

Task 2.1 Modelling maintenance cost 

Main results 

Heritability estimates and genetic correlations are presented in Table 13. Estimated genetic 

correlations among MBW traits were strong (>0.95). Genetic correlations between slaughter 

traits (CARW and pMBW) and MBW traits were higher (from 0.77 to 0.90) than between con-

formation and MBW traits (from 0.47 to 0.70). Our results suggest that including information 

on carcass weight and body conformation as correlated traits into the Maintenance index is 

beneficial when direct BW measurements are not available or are difficult or expensive to ob-

tain.  

Table 13. Heritability estimates on diagonal, genetic correlations in upper triangle and phe-

notypic correlations in below triangle for MBW in three parities (MBW1, MBW2, MBW3), first 

parity conformation traits (STA, CW, BD), and traits based on carcass weight (CARW, pMBW) 

in Nordic dairy cattle. Standard errors for the estimates in parentheses. 

 MBW1 MBW2 MBW3 STA CW BD CARW pMBW 

MBW1 0.44 

(0.01) 

0.97 

(0.01) 

0.95 

(0.01) 

0.65 

(0.01) 

0.58 

(0.01) 

0.52 

(0.01) 

0.77 

(0.04) 

0.84 

(0.04) 

MBW2 0.65 0.53 

(0.02) 

0.98 

(0.01) 

0.70 

(0.01) 

0.54 

(0.01) 

0.47 

(0.01) 

0.84 

(0.04) 

0.89 

(0.03) 

MBW3 0.61 0.72 0.56 

(0.02) 

0.68 

(0.01) 

0.52 

(0.01) 

0.53 

(0.01) 

0.85 

(0.04) 

0.90 

(0.03) 

ST 0.44 0.48 0.49 0.60 

(0.02) 

0.18 

(0.01) 

0.21 

(0.02) 

0.59 

(0.07) 

0.67 

(0.05) 

CW 0.25 0.23 0.20 0.10 0.17 

(0.02) 

0.56 

(0.04) 

0.59 

(0.29) 

0.57 

(0.21) 

BD 0.26 0.23 0.23 0.11 0.31 0.26 

(0.02) 

0.40 

(0.29) 

0.42 

(0.21) 

CARW 0.47 0.56 0.62 0.41 0.22 0.15 0.52 

(0.02) 

 

pMBW 0.51 0.60 0.65 0.47 0.24 0.17  0.54 

(0.05) 

 

Based on these Mehtiö et al. (2021) results it was decided to collect carcass weight records 

also from Sweden and Denmark and to include carcass weight as correlated trait into the 

maintenance index. In addition, it was decided to drop CW and BD information from the in-

dex due to the low genetic correlations and heritability estimates. This work is described in 

Task 3.1. Single-step genomic predictions and Task 3.2. Genomic predictions for Nordic coun-

tries. 

The equations developed in Mehtiö et al. (2021) for predicting MBW at the time of slaughter-

ing can be utilized in estimating the energy requirement for maintenance in national GHG 

emission inventories to achieve more precise BW estimates for the Finnish dairy cattle popu-

lation.  
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Task 2.2 Modelling metabolic efficiency 

Main results 

A) Residual feed intake via multiple-trait approach  

Estimates of heritability from RFIST and MT
RFI

  

Assuming heterogeneity of residual variances, the estimates of heritability for residual classes 

of 1, 2, 3, 4-8 and 9-11 months for the RFIST model were 0.16, 0.21, 0.22, 0.22 and 0.21, re-

spectively. Whereas the heritability estimates for the MTRFI model across residual classes were 

0.09, 0.13, 0.14, 0.13, 0.10, respectively. Although the heritability estimates from both models 

were lower at the beginning and end of lactation, in all the cases, estimates from the RFIST 

model were consistently higher than those from MT
RFI

. In general, accounting for heterogene-

ity of residuals and modelling body weight change gave a more reasonable description of RFI 

across lactation stages. 

Table 14. Estimates of heritability for classical single-stage (RFIST), multi-trait RFI (MTRFI) and its 

component traits at different stages of lactation considering heterogeneity of residual variances  

 

Traits 

Heritability by residual classes (in months) 

1 2 3 4-8 9-11 

ECM 0.13 0.19 0.22 0.23 0.21 

MBW 0.75 0.83 0.88 0.90 0.85 

BWLOSS 0.02 0.05 0.05 0.02 0.05 

BWGAIN 0.13 0.26 0.36 0.42 0.39 

DMI 0.30 0.37 0.39 0.37 0.32 

MT
RFI

 0.09 0.13 0.14 0.13 0.10 

RFIST 0.16 0.21 0.22 0.22 0.21 

 

Correlation between RFIST and MT
RFI

 and SD of EBVs/GEBVs 

The SD of EBVs from conventional BLUP for cows with at least 20 observations was 0.486 for 

RFIST whilst 0.449 for MT
RFI

 model. Whereas the SD from ssGBLUP runs for RFIST and MT
RFI

 

were 0.494 and 0.463, respectively. For cows, the correlation between RFIST and MT
RFI

 EBVs 

was 0.89 whereas for ssGBLUP the correlation between the two models was 0.90. Similarly, for 

bulls with at least 10 daughters the SD of EBVs were 0.536 and 0.512 for RFIST and MT
RFI

, re-

spectively. From ssGBLUP runs, the SD of GEBVs were 0.541 and 0.524 for RFIST and MT
RFI

, re-

spectively. In general, for bulls the correlation between RFIST and MT
RFI

 models were 0.92 in 

both BLUP and ssGBLUP runs indicating a possible re-ranking in top bulls and cows.  
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Cross validation reliability 

The cross-validation reliability (CV r2) calculated using the leave-one-out method showed 

that for BLUP run the CV r2 were 0.003 and 0.142 for RFIST and MT
RFI

 models with the corre-

sponding inflation factor (b1) of 0.2 and 1.2, respectively. Whereas in the ssGBLUP runs, the 

CV r2 were 0.23 and 0.40 for RFIST and MT
RFI

 models with the corresponding b1-values of 1.44 

and 1.57, respectively. In general, the indications are that the MT
RFI

 model, by being able to 

use much more data information, gives a more accurate evaluation. 

B) Regression on expected feed intake (ReFI) 

The estimated variance components for ReFI and RFI are given in Table 15. The estimated ad-

ditive genetic standard deviation based on ReFI and RFI was 4.7 % and 0.46 kg, respectively, 

indicating that based on ReFI a twice as large genetic variation in metabolic efficiency was es-

timated compared to the estimate based on RFI. Same, also the heritability (0.23) and repeat-

ability (0.41) were significantly larger for ReFI compared to RFI. The multivariate analysis, for 

deriving gRFI, resulted heritability estimates of 0.26, 0.30, 0.90, 0.13 and 0.16 for DMI, ECM, 

MBW, BWL and BWG, respectively. The genetic standard deviation and heritability for gRFI 

were lower than those for RFI, and were 0.40 kg and 0.06, respectively. 

Table 15. Estimated variance components of metabolic efficiency for primiparous Nordic Red 

dairy cattle based on a regression on feed intake (ReFI) and a residual feed intake (RFI) model. 

 ReFI model RFI model 

Model effect Parameter Estimate (±SE) Parameter Estimate (±SE) 

Permanent  

environment 

�̂�𝜓
2 0.00169 ± 

0.00041 

�̂�𝑝
2 0.736 ± 0.10 

Additive genetic �̂�𝛼
2 0.00221 ± 

0.00058 

�̂�𝑎
2 0.208 ± 0.11 

Residual �̂�𝜀
2 2.24 ± 0.024 �̂�𝑒

2 1.70 ± 0.015 

Heritability ℎ2 0.23 ± 0.06 ℎ2 0.08 ± 0.04 

Repeatability 𝑟 0.41 ± 0.02 𝑟 0.36 ± 0.02 

 

The estimated partial regression coefficients by the RFI model were significantly lower for 

ECM, BWL and BWG compared to those applied for the ReFI model (Table 16). This means 

that by applying a RFI model to describe the metabolic efficiency of a lactating dairy cow, a 

lower expectation for the required feed intake to produce milk will be modelled, compared to 

applying a ReFI model. For this data, the estimated partial regression coefficient for ECM of 

0.251 equals a ME requirement of 2.74 MJ/kg ECM. This regression coefficient would mean 

that the kl-value, the efficiency to use ME for lactation, would have been 1.15, which is impos-

sible and indicates that the estimated partial regression coefficient for ECM is improper. In 

the literature reported kl-values are on average 0.64 (Agnew and Yan, 2000). The partial phe-

notypic regression coefficients derived from the multivariate variance components were close 

to those estimated by the RFI model (Table 14), which indicated that expected DMI modelled 

by the multivariate gRFI model is close to the expected DMI modelled by the RFI model. 

Thus, also gRFI resulted into a very low partial regression coefficient estimate for ECM and by 
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this an unrealistic high kl-value of 1.08. The partial genetic regression coefficients, which are 

the selection index weights for gRFI, were different from the partial phenotypic regression 

coefficients and closer to those applied for ReFI. 

Table 16. Applied and estimated partial dry matter intake (DMI) requirement coefficients, 

when use of feed intake is modelled by the four energy sink traits energy corrected milk 

(ECM), metabolic body weight (MBW), body weight loss (BWL) and body weight gain (BWG). 

Model for biological efficiency ECM MBW BWL BWG 

Applied coefficients in ReFI 0.430 0.0539 -2.47 3.11 

Estimated coefficients by RFI 0.251 0.0504 -0.85 1.70 

Partial phenotypic regression 

coefficients 

0.267 0.0683 -0.75 1.49 

Selection index weights for gRFI 0.359 0.0618 -1.86 4.53 

Abbreviations: ReFI = regression on expected feed intake; RFI = residual feed intake; gRFI = genetic residual feed 

intake. 

 

The difference in the regression coefficients between the three alternative metrics (Table 17) 

has significant effect on the EBV, and by this on the ranking of the animals. When selecting the 

best 10% cows based on either ReFI, RFI or gRFI, then it can be seen that rather different cow 

groups will be selected. When selection was based on ReFI EBV, cows had highest ECM which 

was 2.1 kg above the mean of all cows. In contrast, when selection was based on RFI EBV, then 

ECM of the superior cows was 1.4 kg below the mean of all cows. The same we found for MBW. 

When selection was based on ReFI EBV or RFI EBV, MBW of superior cow was 1.4 kg higher or 

3.7 kg lower compared to the mean of all cows, respectively. When selection was based on gRFI 

EBV, then the trait means of the selected cow group were between those of the groups se-

lected by ReFI EBV or RFI EBV. When selection was based on ReFI EBV, then the 10% most effi-

cient cows produced 13% more ECM per unit metabolizable energy intake, whereas the corre-

sponding values were only 4% or 8% when using RFI EBV or gRFI EBV, respectively.  

Table 17. Phenotypic means of all cows and 10% genetically superior cows based on the 

three alternative breeding values for metabolic efficiency. 

Trait 

10% genetically superior cows 

All cows ReFI RFI gRFI 

DMI 19.7 18.7 17.7 18.2 

ECM 29.3 31.4 27.9 29.4 

MBW 120.0 121.4 116.3 119.2 

BWL 0.37 0.55 0.41 0.46 

BWG 0.35 0.39 0.35 0.38 

MEI 215.5 203.8 195.2 200.2 

RFI 0.09 -1.64 -1.17 -1.35 

REI -4.60 -24.2 -15.8 -18.7 

ECE 0.137 0.155 0.143 0.147 

Abbreviations: DMI = dry matter intake [kg]; ECM = energy corrected milk [kg]; MBW = metabolic body weight 

[kg0.75]; BWL = body weight loss [kg]; BWG = body weight gain [kg]; MEI = metabolizable energy intake; RFI = re-

sidual feed intake [kg] calculated as DMI minus expected DMI; REI = residual energy intake [MJ] calculated as MEI 

minus expected MEI; ECE = energy conversion efficiency [kg/MJ] that is ECM/MEI. 
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The “Regression on expected feed intake (ReFI)” metric was clearly superior in selecting most 

efficient cows. Selected cows had higher milk production and higher energy conversion effi-

ciency (= gross efficiency of producing milk), i.e., fewer cows and less feed is needed to pro-

duce the same amount of milk. The ReFI approach allows fitting of proper expectations for 

each cow comparison group (Figure 9), which takes into account the energy density and the 

digestibility of the feed. This is important when feed intake data are collected with different 

techniques, e.g., by scales or by intake predictions based on feed intake volume that is ob-

tained from analyses of 3D images (CFIT system, see Task 1.2). 

A manuscript with all results has been submitted to the Animal journal. 

Lidauer, M.H., Negussie, E., Mäntysaari, E.A., Mäntysaari, P., Kajava, S., Kokkonen, T., Chegini, 

A. & Mehtiö, T. 2023. Estimating breeding values for feed efficiency in dairy cattle by regres-

sion on expected feed intake. Animal, submitted. 

 

Figure 9. Regression of dry matter intake on expected dry matter intake for 92 cows of the 

contemporary groups summer 2008 of herd 1 (green, �̂�=0.973), and winter 2015 of herd 2 

(blue, �̂�=1.109). 

Task 2.3 Metabolic resilience 

Main results   

Heritability estimates varied during the first three lactation months from 0.13 to 0.19, 0.10 to 

0.17, 0.09 to 0.14, 0.07 to 0.10, 0.13 to 0.17, and 0.13 to 0.18 for NEFAMIR, NEFAFA, C18:1 cis-9, 

FPR, milk BHB and acetone, respectively (Tables 18, 19, 20 and 21). Genetic correlations be-

tween all ESI traits and ICF were from 0.18 to 0.40 in the first lactation period (8 to 35 DIM), in 

general somewhat lower (0.03 to 0.43) in the second period (36 to 63 DIM), and decreased 

clearly (-0.02 to 0.19) in the third period (64 to 91 DIM). Our results indicate that genetic vari-

ation in energy status of cows in early lactation can be determined using MIR-based indica-

tors. In addition, the markedly lower genetic correlation between ESI traits and fertility in the 

third lactation month indicated that energy status should be determined from the first test-

day milk samples during the first two months of lactation.   
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Table 18. Summary statistics, variance components (genetic variance σ2
a and residual vari-

ance σ2
e) and heritability estimates (h2) of the data in (1) 8 to 35 days in milk (DIM), (2) 36 to 

63 DIM and (3) 64 to 91 DIM for plasma non-esterified fatty acid (NEFA) concentration pre-

dicted from milk mid-infrared spectra (NEFAMIR, mmol/l), plasma NEFA concentration pre-

dicted from milk fatty acids (NEFAFA, mmol/l), milk fatty acid C18:1 cis-9 (g/100 ml milk), milk 

fat to protein ratio (FPR), log-transformed milk beta-hydroxybutyrate (BHB, mmol/l milk), log-

transformed acetone (mmol/l milk) from multivariate analyses of variables in three time win-

dows and interval from calving to first insemination (ICF) from univariate analysis in primipa-

rous Nordic Red Dairy cows.  

 Records, no Mean SD σ2
a σ2

e h2 

NEFAMIR1 19,220 0.410 0.206 0.0058 0.0249 0.19 

NEFAMIR2 19,329 0.286 0.159 0.0026 0.0163 0.14 

NEFAMIR3 19,856 0.213 0.130 0.0021 0.0107 0.16 

NEFAFA1 19,214 0.470 0.183 0.0039 0.0190 0.17 

NEFAFA2 19,327 0.316 0.141 0.0014 0.0130 0.10 

NEFAFA3 19,857 0.237 0.109 0.0010 0.0079 0.11 

C18:1 cis-91 19,193 1.083 0.355 0.0122 0.0741 0.14 

C18:1 cis-92 19,313 0.947 0.266 0.0047 0.0500 0.09 

C18:1 cis-93 19,850 0.867 0.214 0.0036 0.0328 0.10 

FPR1 19,222 1.342 0.254 0.0043 0.0498 0.08 

FPR2 19,261 1.316 0.239 0.0036 0.0445 0.07 

FPR3 19,801 1.273 0.218 0.0035 0.0364 0.09 

BHB1 12,396 0.055 0.061 0.0005 0.0026 0.16 

BHB2 12,444 0.054 0.056 0.0004 0.0022 0.15 

BHB3 12,851 0.050 0.050 0.0003 0.0017 0.15 

Acetone1 12,310 0.037 0.093 0.0013 0.0060 0.18 

Acetone2 12,438 0.036 0.079 0.0008 0.0045 0.15 

Acetone3 12,848 0.028 0.069 0.0006 0.0034 0.15 

ICF 32,479 83.35 28.86 17.38 636.51 0.03 
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Table 19. Heritability estimates (on the diagonal) and genetic correlations (above the 

diagonal) with standard errors in parentheses, and phenotypic correlations (below the 

diagonal; SE not available) for plasma NEFA concentration predicted from milk mid-infrared 

spectra (NEFAMIR, mmol/l), plasma NEFA concentration predicted from milk fatty acids 

(NEFAFA, mmol/l), milk fatty acid C18:1 cis-9 (g/100 ml milk), milk fat to protein ratio (FPR), 

log-transformed milk beta-hydroxybutyrate (BHB, mmol/l milk) and log-transformed acetone 

(mmol/l milk) and interval from calving to first insemination (ICF) based on data from 8 to 35 

days in milk. 

Trait NEFAMIR NEFAFA C18:1 

cis-9 

 

FPR BHB Acetone ICF 

NEFAMIR 0.17 

(0.02) 

0.91 

(0.02) 

 

0.84 

(0.03) 

0.44 

(0.08) 

0.73 

(0.05) 

0.70 

(0.05) 

0.39 

(0.11) 

NEFAFA 0.88 0.17 

(0.02) 

0.95 

(0.01) 

0.59 

(0.06) 

0.71 

(0.05) 

0.70 

(0.05) 

0.40 

(0.11) 

 
C18:1 cis-9 0.83 0.96 0.14 

(0.02) 

0.64 

(0.06) 

0.58 

(0.07) 

0.56 

(0.07) 

0.36 

(0.12) 

 
FPR 0.50 0.71 0.78 0.08 

(0.01) 

0.38 

(0.10) 

0.30 

(0.10) 

0.18 

(0.14) 

 
BHB 0.62 0.59 0.54 0.41 0.17 

(0.03) 

0.95 

(0.01) 

0.38 

(0.12) 

 
Acetone 0.66 0.61 0.53 0.31 0.89 0.18 

(0.03) 

0.33 

(0.12) 

 
ICF 0.04 0.04 0.04 0.03 0.02 0.02 0.03 

(0.01) 
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Table 20. Heritability estimates (on the diagonal) and genetic correlations (above the 

diagonal) from 36 to 63 days in milk. 

Trait NEFAMIR NEFAFA C18:1 

cis-9 

FPR BHB Acetone ICF 

NEFAMIR 0.13 

(0.02) 

0.87 

(0.03) 

0.66 

(0.06) 

0.23 

(0.11) 

0.57 

(0.07) 

0.55 

(0.07) 

0.43 

(0.11) 

NEFAFA 0.84 0.10 

(0.01) 

0.83 

(0.03) 

0.32 

(0.10) 

0.69 

(0.07) 

0.68 

(0.07) 

0.28 

(0.13) 

C18:1 cis-9 0.77 0.94 0.09 

(0.01) 

0.40 

(0.10) 

0.53 

(0.08) 

0.52 

(0.09) 

0.17 

(0.13) 

FPR 0.45 0.69 0.76 0.07 

(0.01) 

0.44 

(0.10) 

0.28 

(0.11) 

0.03 

(0.14) 

BHB 0.55 0.51 0.47 0.36 0.13 

(0.02) 

0.92 

(0.02) 

0.29 

(0.12) 

Acetone 0.57 0.50 0.43 0.24 0.85 0.13 

(0.02) 

0.16 

(0.13) 

ICF 0.03 0.04 0.03 0.02 0.03 0.03 0.03 

(0.01) 

 

Table 21. Heritability estimates (on the diagonal) and genetic correlations (above the 

diagonal) from 64 to 91 days in milk. 

Trait NEFAMIR NEFAFA C18:1 

cis-9 

FPR BHB Acetone ICF 

NEFAMIR 0.16 

(0.02) 

0.79 

(0.04) 

0.48 

(0.07) 

-0.02 

(0.10) 

0.41 

(0.09) 

0.39 

(0.08) 

0.19 

(0.12) 

 
NEFAFA 0.76 0.12 

(0.02) 

0.71 

(0.05) 

0.19 

(0.10) 

 

0.47 

(0.09) 

0.54 

(0.08) 

0.12 

(0.13) 

C18:1 cis-9 0.66 0.90 0.10 

(0.01) 

0.42 

(0.09) 

0.23 

(0.11) 

0.26 

(0.10) 

-0.02 

(0.14) 

FPR 0.32 0.62 0.74 0.10 

(0.02) 

 

0.34 

(0.10) 

0.16 

(0.11) 

0.01 

(0.14) 

BHB 0.44 0.40 0.34 0.34 0.14 

(0.02) 

 

0.85 

(0.03) 

0.18 

(0.13) 

Acetone 0.44 0.39 0.28 0.16 0.83 0.15 

(0.02) 

 

0.13 

(0.13) 

ICF 0.02 0.03 0.02 0.02 0.02 0.01 0.03 

(0.01) 
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All results are published in: 

Mehtiö, T., Mäntysaari, P., Negussie, E., Leino, A.-M., Pösö, J., Mäntysaari, E.A. & Lidauer, M.H. 

2020. Genetic correlations between energy status indicator traits and female fertility in pri-

miparous Nordic Red Dairy cattle. Animal 14: 1588–1597. https://doi.org/10.1017/S17517311-

20000439 

WP3. Genomic predictions 

Task 3.1 Single-step genomic predictions 

Main results 

A) Genomic prediction model for Maintenance Cost 

Correlations between ssGBLUP and msSNPBLUP breeding values of genotyped Nordic Red 

Dairy cattle animals were 0.98-0.99, indicating that the models gave almost the same ge-

nomic breeding values (Table 22). The correlation between BLUP and ssGBLUP or 

msSNPBLUP breeding values was 0.97 in bulls and 0.84 to 0.86 in cows, respectively. Thus, 

BLUP breeding values were slightly different in bulls and clearly different in cows compared 

with genomic breeding values. The ssGBLUP GEBV had 5 to 12% higher standard deviation 

compared with msSNPBLUP or BLUP breeding values in cows and 0.2 to 5.5% higher in bulls.  

The correlations between candidates’ BVc and their future DRP are presented in Table 23. 

Correlations were the highest when BVc were estimated with ssGBLUP for both bulls and 

cows. This resulted also the highest r2
cv with ssGBLUP being as high as 0.91 for the bull candi-

dates. The r2
cv of BVc obtained with the msSNPBLUP model was higher than that when using 

BLUP in candidate bulls, but not in cows. For all three models, r2
cv was higher for bulls com-

pared with cows. Mean DRP reliability was for bulls 0.71 and for cows 0.61. 

The b1 estimates were closer to the expectation for ssGBLUP in candidate bulls than those for 

the BLUP model and msSNPBLUP model (Table 21). In cows, the b1 estimate for BLUP was 

slightly closer to expectation than for the ssGBLUP or msSNPBLUP models. The b1 estimates 

for msSNPBLUP were larger than 1.0 indicating that BVc underpredicted the future breeding 

values, whereas the b1 estimates for BLUP were below 1.0 indicating that BVc overpredicted 

future breeding values. 

  

https://doi.org/10.1017/S17517311-20000439
https://doi.org/10.1017/S17517311-20000439
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Table 22. Standard deviation (Std) and correlation between metabolic body weight breeding 

values and those with de-regressed proofs (DRP) for reference population animals of the 

Nordic Red Dairy cattle.  

 Prediction 

model1 Std 

Correlations 

msSNPBLUP ssGBLUP DRP 

Cows BLUP 4.11 0.86 0.84 0.88 

n=35,075 msSNPBLUP 4.36 - 0.98 0.75 

- ssGBLUP 4.59 - - 0.74 

Bulls BLUP 4.56 0.97 0.97 0.95 

n=5,539 msSNPBLUP 4.33 - 0.99 0.90 

- ssGBLUP 4.57 - - 0.91 
1BLUP=best linear unbiased prediction; msSNPBLUP=multi-step genomic BLUP, ssGBLUP=single-step genomic 

BLUP 

 

Table 23. Cross-validation and Legarra-Reverter estimates; correlation (r(DRP,BVc)), validation 

reliability (r2
cv), regression coefficient (b1) and coefficient of determination from the validation 

regression (R2) for the Nordic Red Dairy cattle bull and cow candidate groups with different 

models. 

  Cross-validation Legarra-Reverter   
r(DRP,BVc) r2

cv b1 R2 

Cows BLUP1 0.67 0.74 0.96 0.51 

n=1,721 msSNPBLUP2 0.65 0.69 1.09 0.70 

- ssGBLUP3 0.73 0.86 1.05 0.84 

Bulls BLUP 0.74 0.77 0.96 0.56 

n=354 msSNPBLUP 0.75 0.80 1.10 0.74 

- ssGBLUP 0.81 0.91 1.01 0.85 
1 BLUP=best linear unbiased prediction; 2msSNPBLUP=multi-step genomic BLUP, 3ssGBLUP=single-step genomic 

BLUP; DRP=de-regressed proofs; BVc=breeding value for candidates  

 

Discussion 

Breeding values from the single-step model were in good agreement with those from the 

multi-step model and reasonably different from those of the BLUP model. Correlations be-

tween traditional BLUP and genomic models were clearly lower than correlations among ge-

nomic models. Also, country-wise (Denmark, Finland, Sweden) investigation of the breeding 

values confirmed that the single-step model is modelling the data appropriately. The ob-

tained cross-validation reliabilities were higher than those for RDC yield traits ssGBLUP GEBVs 

(Koivula et al. 2018). This can be explained by the high heritability of the MBW and STA traits, 

and the high genetic correlation between MBW and STA. The reason why we obtained a 

lower r2
cv value for the msSNPBLUP evaluation compared with the BLUP evaluation for the 

cow candidate group was unclear and requires further assessments. 

The regression of candidates’ full data GEBV on candidates reduced data BVc were close to 

the expectation when applying ssGBLUP, and therefore ssGBLUP is preferable over 

msSNPBLUP for obtaining GEBV for candidates. The results of this study support the 
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implementation of ssGBLUP for the genomic evaluation of MBW in Nordic RDC and to de-

velop ssGBLUP also for the Nordic HOL and Jersey MBW evaluation. 

B) Genomic prediction model for regression on expected feed intake 

Heritability of ReFI models were from 0.219 to 0.232 and were close to that of RFI* (which 

was 0.239) (Table 24). However, ReFI had higher repeatability compared to RFI* (0.481 to 

0.502 compared to 0.351). 

Table 24. Estimates of genetic, residual, permanent environmental (VarG, VarR and VarPE, re-

spectively) variances and heritability (h2) and repeatability (r) for ReFI repeatability animal 

model when different energy requirement formulations are used of calculating expected dry 

matter intake. Agnew= Agnew et al. 2003; FINN= Luke 2022; and NRC2021= NRC 2021.  

Criteria\Trait VarHTM VarPE VarG VarR h2 r 

ReFIAgnew 0.874 1.355 1.115 1.759 0.219 0.484 

ReFIFINN 0.909 1.511 1.213 1.798 0.223 0.502 

ReFINRC2021 0.864 1.245 1.163 1.738 0.232 0.481 

RFI* - 0.810 1.738 4.712 0.239 0.351 

 

Correlations between FD (adjusted for fixed effects) and ssGEBVr for ReFIAgnew and ReFINRC2021 

were slightly higher than the correlation between FD and EBVr (0.164 vs. 0.159 and 0.094 vs. 

0.071, respectively) (Table 25). However, correlations between FD and ssGEBVr were lower 

than that of FD and EBVr for ReFIFINN and RFI* (0.170 vs. 0.233 and 0.194 vs. 0.207, respec-

tively). Overall, highest correlations were obtained when applying the Finnish energy require-

ment formulation and lowest when applying the NRC 2021 energy requirement formulation. 

Low correlations and inconsistent results when calculating correlation between FD and 

ssGEBVs could be due to the small data. 

Correlation between ssGEBVf and ssGEBVr for ReFI criteria were from 0.487 to 0.533 which 

were higher than that of EBVf and EBVr (from 0.325 to 0.458). Regarding to the high correla-

tion between ssGEBVf and EBVf (higher than 0.9 for all models; not shown), it indicates that 

GEBVs obtained by single-step procedure are able to predict breeding values of individuals 

with higher reliabilities. 
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Table 25. Results of validation process (regression of average of feed intake deviation (FD) 

and (G)EBVs using full dataset on (G)EBVs predicted using reduced dataset, respectively). 

Models 

 Reg. of FD on [G]EBVs  Reg. of [G]EBVf on 

[G]EBVr 

 b0 b1 corr δ corradj
¥  b0 b1 corr 

ReFIAgnew 

(1/w=2.014) 

bFD.EBVr -0.548 0.319 0.079 0.159 bPEBVf.EBVr -0.005 0.726 0.410 

bFD.ssGEBVr -0.600 0.204 0.081 0.164 bGEBVf.GEBVr 0.0008 0.645 0.533 

ReFIFINN  

(1/w=2.331) 

bFD.EBVr -0.617 0.376 0.100 0.233 bPEBVf.EBVr -0.0055 0.770 0.458 

bFD.ssGEBVr -0.680 0.182 0.073 0.170 bGEBVf.GEBVr 0.003 0.630 0.528 

ReFINRC2021 

(1/w=2.147) 

bFD.EBVr -0.438 0.125 0.033 0.071 bPEBVf.EBVr -0.001 0.564 0.325 

bFD.ssGEBVr -0.455 0.113 0.044 0.094 bGEBVf.GEBVr 0.003 0.596 0.487 

RFI* 

(1/w=1.614) 

bFD.EBVr 0.130 -0.508 0.128 0.207 bPEBVf.EBVr 0.257 -0.020 0.008 

bFD.ssGEBVr 0.083 0.285 0.120 0.194 bGEBVf.GEBVr -0.117 0.549 0.341 
*bFD.EBVf: Regression of average yield deviation on pedigree-based BLUP using full dataset; bFD.EBVr: Regression of 

average yield deviation on pedigree-based BLUP using reduced dataset; bFD.ssGEBVf: Regression of average yield de-

viation on single-step GBLUP using full dataset; bFD.ssGEBVr: Regression of average yield deviation on single-step 

GBLUP using reduced dataset. 
δ Correlation between [G]EBVs (i. e. full or reduced) with FD. 
¥ In order to adjust correlations, they should be multiplied by their corresponding adjusting coefficient (1/w). 

 

The regression coefficients (b1) were lower than 1.0 in all cases. It shows an overprediction in 

GEBVs by single-step method when using reduced data. Generally, regression coefficients ob-

tained by linear regression validation procedure were closer to 1.0 and their intercept were 

closer to zero. Similar results were found by Kudinov et al (2022). Highest and lowest correla-

tions between genomic breeding values were found between ReFIAgnew and ReFIFINN (0.989) 

and ReFINRC2021 and ReFIFINN (0.817). Also, correlation between GEBV of animals for RFI* and 

ReFINRC2021 was slightly higher than with other ReFI criteria (0.573) (Table 26). 

Table 26. Correlations between ReFI and RFI* GEBVs when applying different energy require-

ment formulations for ReFI.  

Criteria\Trait ReFIAgnew ReFIFINN ReFINRC2021 RFI* 

ReFIAgnew - 0.989 0.858 0.553 

ReFIFINN - - 0.817 0.475 

ReFINRC2021 - - - 0.573 

 

Reference 

Kudinov, A.A., Koivula, M., Strandén, I., Aamand, G.P. & Mäntysaari, E.A. 2022. Single-step ge-

nomic prediction in small breeds: Finncattle case. WCGALP. 
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Task 3.2 Genomic predictions for Nordic countries 

A) Genomic prediction models for metabolic body weight in Nordic Holstein, Red dairy 

cattle and Jersey  

Body weight recording based on heart girth measurements is decreasing in Finland and Den-

mark (Figure 10). There are no MBW data available from Sweden. In RDC the MBW data 

comes mainly from Finland and some from Denmark. In HOL data comes mainly from Den-

mark and Finland and in the case of Jersey data comes mainly from Danish cows. Therefore, 

the indicator traits carcass weight (CARW) and stature (STA), that have high genetic correla-

tion with MBW, are of interest. Each cow will get CARW at the end of its life and the number 

of STA records in each breed is large. The average number of the records (MBW, STA, CW or 

BD) used in the current evaluation was 0.40, 0.37, 0.33 per cow in RDC, HOL and JER, respec-

tively. In the new evaluation, where CARW was included, the mean of records (MBW, STA or 

CARW) was 0.71, 0.74, 0.77 in RDC, HOL and JER, respectively. This indicates that STA and 

CARW strengthen the maintenance evaluation in the Saved feed index. 

 

 

Figure 10. Number of MBW1, MBW2, MBW3, STA and CARW records by birth year in RDC, 

HOL and JER cows. 

Results showed that the genetic trend of combined MBW (MBW123) is increasing in each 

breed (Figure 11). The current BLUP model gives lower genetic trend for MBW123 than the 

new BLUP or ssGTaBLUP models. This indicates that the current trend of MBW123 is underes-

timated. The new single-step model gives a slightly higher trend compared to new BLUP-

model, which was expected result as well as the result were genotyped animals were shown 

to have slightly higher genetic trend compared to non-genotyped animals. Genetic trend of 

the future (G)EBVs, which were estimated from the reduced data, follows quite nicely the ge-

netic trend estimated from the full data in RDC and Jersey breeds.  
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Figure 11. On the left side: genetic trends of MBW123 (G)EBVs by birth year using different 

models for genotyped (solid line) and non-genotyped (dashed line) RDC, HOL and JER cows. 

On the right side: trends of MBW123 (G)EBVs by birth year from the full model (solid line) and 

reduced models (dashed line). (G)EBVs are expressed as standardized breeding values for cows 

born between the years 2005-2007. 
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Table 27. Correlation between MBW123 (G)EBVs using different models and standard devia-

tions (Std) of (G)EBVs in genotyped reference animals.  

Model BLUPnew ssGTaBLUP Std BLUPnew ssGTaBLUP Std 

 RDC cows (n=73,507) RDC bulls (n=6,155) 

BLUPcurrent 
1 0.93 0.83 4.16 0.93 0.92 4.51 

BLUPnew - 0.88 4.23 - 0.98 4.67 

ssGTaBLUP2 - - 4.77 - - 4.73 
 

HOL cows (n=103,301) HOL bulls (n=6,322) 

BLUPcurrent 0.91 0.80 3.81 0.90 0.88 4.19 

BLUPnew - 0.84 3.78 - 0.97 4.20 

ssGTaBLUP - - 4.17 - - 4.35 
 

JER cows (n=36,278) JER bulls (n=1,592) 

BLUPcurrent 0.86 0.82 2.43 0.82 0.81 3.02 

BLUPnew - 0.93 2.42 - 0.98 2.81 

ssGTaBLUP - - 2.49 - - 2.78 
1BLUP=best linear unbiased prediction; 2ssGTaBLUP=single-step genomic BLUP  

 

Correlations between new BLUP and ssGTaBLUP breeding values of genotyped reference ani-

mals were a bit lower (0.84-0.93) in cows compared to corresponding correlations in bulls 

(0.97-0.98) (Table 27). This indicates that the new BLUP and ssGTaBLUP models gave almost 

the same breeding values in genotyped bulls. The correlation between current and new BLUP 

breeding values were 0.90-0.93 in RDC and HOL animals. In JER, the correlations were lower 

(0.82-0.86). Thus, BLUP breeding values were slightly different in bulls and cows compared 

with genomic breeding values. In general, the single-step GEBVs had higher standard devia-

tion than current or new BLUP EBVS, except in genotyped reference JER bulls (Table 25). The 

ssGTaBLUP GEBV had 10 to 15% higher standard deviation compared with BLUP breeding 

values in RDC and HOL cows and 1 to 5% higher in RDC and HOL bulls. In JER cows the 

ssGTaBLUP GEBV had about 3 % higher standard deviation compared to BLUP EBVs. In JER 

bulls the results were not consistent because current and new BLUP EBVs had 1 to 8% higher 

standard deviation than ssGTaBLUP GEBVs. The overall trend was that genotyped bulls had a 

bit higher SD of (G)EBVs than genotyped cows. 

The correlations between candidates’ BVc and their future DRP are presented in Table 28. 

Correlations were the highest when BVc were estimated with ssGTaBLUP for both bulls and 

cows in all breeds. Use of ssGTaBLUP-model resulted also the higher validation reliability (r2
cv) 

compared to BLUP-model without genomic information. Validation reliabilities of ssGTaBLUP-

model ranged from 0.59 to 0.72 in the bull candidates and from 0.23 to 0.75 in cow candi-

dates.  The validation reliabilities obtained with BLUP-model were from 0.09 to 0.19 in RDC, 

HOL and JER cows and from 0.25 to 0.42 in bulls. BLUP model without genomic information 

gave, on average, 33- and 32-percentage-units lower reliability for combined MBW in bulls 

and cows, respectively. 

Mean DRP reliabilities for RDC, HOL and JER bulls were 0.89, 0.92 and 0.87, and for RDC, HOL 

and JER cows 0.32, 0.33 and 0.23, respectively. 
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Table 28. Cross-validation and Legarra-Reverter estimates; correlation (r(DRP, BVc)), regression 

coefficient (b1), validation reliability (r2
cv), and coefficient of determination from the validation 

regression (R2) for the RDC, HOL and JER bull and cow candidate groups by different models. 

 Cross-validation Legarra-Reverter 
 

r(DRP, BVc) b1 r2
cv b1 R2 

RDC cows BLUP1 0.25 1.03 0.19 1.04 0.42 

N=45388 ssGTaBLUP2 0.49 1.33 0.75 1.09 0.82 

RDC bulls BLUP 0.62 1.05 0.43 1.05 0.38 

N=233 ssGTaBLUP 0.82 1.07 0.76 1.14 0.74 

HOL cows BLUP 0.19 0.84 0.11 0.88 0.32 

N=78022 ssGTaBLUP 0.36 1.07 0.39 0.99 0.72 

HOL bulls BLUP 0.55 0.80 0.32 0.79 0.30 

N=308 ssGTaBLUP 0.75 0.85 0.60 0.94 0.65 

JER cows BLUP 0.14 0.94 0.09 0.94 0.28 

N=21518 ssGTaBLUP 0.23 1.20 0.23 1.03 0.59 

JER bulls BLUP 0.47 0.98 0.25 0.98 0.21 

N=130 ssGTaBLUP 0.72 1.02 0.59 1.08 0.59 
1 BLUP=best linear unbiased prediction; 2ssGBLUP=single-step genomic BLUP; BVc=breeding value for candidates  

 

The b1 estimates for BLUP were closer to the expectation in candidate RDC bulls and cows 

than those for the ssGTaBLUP model (Table 28). The b1 estimates for BLUP and ssGTaBLUP 

were larger than 1.0 in RDC bulls and cows indicating that BVc underpredicted the future 

breeding values in RDC. In JER candidate cows and bulls, it seemed that the BLUP-model 

overpredicted and ssGTaBLUP-model underpredicted the future breeding values. In HOL, the 

b1 estimates for ssGTaBLUP were closer to the expectation in candidate bulls and cows than 

b1 estimates for BLUP model. The b1 estimates for ssGTaBLUP were below 1.0 in HOL bulls in-

dicating that BVc overpredicted future breeding values in HOL. However, the reason for the 

found inflation of HOL bulls’ BVc is still under investigation while finalizing this report. We 

found some inconsistency in the genetic trend of CARW and it needs to be clarified whether 

this could have affected the trend in MBW. Overall, regression coefficients obtained from the 

Legarra and Reverter validation procedure were in most cases quite close to the expectation 

of 1.0, except the b1 estimates for BLUP in HOL cows and bulls. 

The coefficient of determination from the validation regression (R2) was always higher with 

the ssGTaBLUP model than by BLUP (Table 28). This indicates a better predictive ability of the 

model with genomic data. 

Discussion 

Genomic information is used in genetic evaluation to improve prediction accuracy in dairy 

cows. In this study, the impact of implementing single-step genomic BLUP was compared 

with pedigree BLUP for combined MBW in RDC, HOL and JER cattle after adding CARW data 

into the genetic evaluation as a correlated trait. CARW data significantly increased the 

amount of phenotypic information used for the genetic evaluation in all studied breeds. This 

contributes positively to the reliability of the MBW EBVs. Further, the new model, where 

CARW was included, corrected the genetic trend of MBW to be increasing compared with the 

current genetic trend which was rather flat from 2010 onwards. Increasing genetic trend of 
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MBW obtained with the new model is more in line with the increasing phenotypic trends of 

MBW, STA and CARW. Current genetic trend in MBW appeared to be somewhat underesti-

mated in all breeds, perhaps due to a decrease in the amount of MBW data in recent years. 

Breeding values from the new single-step model were in good agreement with those from 

the new BLUP model in genotyped reference bulls but differed somewhat more in genotyped 

reference cows. The correlations between EBVs obtained from the current BLUP and new 

BLUP models were high and at the same level in RDC and HOL cows and bulls. In JER the cor-

responding correlation was somewhat lower perhaps due to the limited number of geno-

typed JER reference animals along with smaller data set. We found that GEBVs obtained with 

SSGTaBLUP-model had greater standard deviation than BLUP EBVs indicating more accurate 

breeding values. Also, genotyped bulls were found to have higher SD than cows and thus 

more accurate EBVs. Thus, cows will get more accurate breeding value than before if the new 

ssGTaBLUP-model is used in genetic evaluation. 

Our results showed that differences in validation reliabilities among different methods were 

large and it appears that we achieved better validation reliabilities by using single-step ge-

nomic model than traditional BLUP model. Genomic models yielded higher validation reliabil-

ities (r2
cv), and validation regression coefficients (b1) that were closer to the expectation than 

conventional BLUP models. Thus, based on the regression coefficients b1, the GEBV from the 

genomic models seemed to be less inflated than the EBV from BLUP models. The ssGTaBLUP 

provides a good alternative to the evaluation of MBW and the use of CARW as a correlated 

trait in the model is feasible. 

B) Genomic prediction models for metabolic efficiency in Nordic Holstein, Red dairy 

cattle and Jersey 

The estimated heritabilities and genetic variances are given in Table 29 and Table 30, respec-

tively. For all breeds and data sets highest heritabilities were obtained for ReFI (approach D) 

and lowest for the current RFI (approach A) model. Similarly, also genetic variances were sig-

nificantly higher based on approach D compared to approach A.  

Table 29. Estimated heritability for metabolic efficiency based on four approaches given for 

different breeds and data sets. RFI_A is same as currently used model, ReFI_D is the proposed 

regression on expected feed intake model, RFI_B and RFI_C are two intermediate models.  

Data set RFI_A RFI_B RFI_C ReFI_D 

Jersey, CFIT data 0.12 0.19 0.16 0.22 

Nordic red cattle, CFIT data 0.11 0.21 0.09 0.28 

Holstein, CFIT data 0.13 0.19 0.08 0.32 

Nordic red cattle, Finnish research 

farms 0.10 0.13 0.09 0.26 
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Table 30. Estimated genetic variance for metabolic efficiency based on four approaches 

given for different breeds and data sets. RFI_A is same as currently used model, ReFI_D is the 

proposed regression on expected feed intake model, RFI_B and RFI_C are two intermediate 

models.  

Data set RFI_A RFI_B RFI_C ReFI_D 

Jersey, CFIT data 0.66 1.40 1.57 2.69 

Nordic red cattle, CFIT data 0.62 1.58 0.34 4.73 

Holstein, CFIT data 0.87 1.65 0.92 5.81 

Nordic red cattle, Finnish research 

farms 0.26 0.33 0.28 1.37 

 

When comparing the phenotypes of the selected 10% genetically best cows (Table 31), we 

found that rather different cow groups are selected depending which approach is applied. 

When applying the current approach, then selected cows had lower production and MBW 

compared to average cows. When selecting based on ReFI (approach D), cows had same or 

higher production and same or lower MBW compared to all cows. For all breeds and data 

sets, selected cows had highest feed conversion efficiency when selection was based on ReFI. 

This was in line with the findings presented under Task 2.2. 
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Table 31. Phenotypic means of first parity dry matter intake (DMI), metabolic body weight 

(MBW), energy corrected milk (ECM), milk yield (MY), fat yield (FY), protein yield (PY) and feed 

conversion efficiency (FCE=ECM/DMI) for all cows with at least 5 observations and for 10% 

best cows with at least 5 observations selected based on EBV estimated by four approaches. 

Approach A (RFI_A), B (RFI_B), C (RFI_C) and D (ReFI).  

 

 DMI 

(kg) 

MBW 

(kg0.75) 

ECM 

(kg) 

MY 

(kg) 

FY 

(kg) 

PY 

(kg) 

FCE 

(kg/kg) 

Jersey, CFIT data 

All cows 20.3 94.6 28.2 21.6 1.29 0.93 1.39 

top10% RFI_A 17.4 93.0 26.3 20.0 1.21 0.85 1.51 

top10% RFI_B 16.4 90.2 25.5 19.7 1.16 0.83 1.55 

top10% RFI_C 17.0 90.6 28.3 22.4 1.28 0.91 1.66 

top10% ReFI_D 16.4 90.5 27.5 21.7 1.25 0.89 1.68 

Nordic red cattle, CFIT data 

All cows 25.1 121.3 31.1 29.3 1.27 1.08 1.24 

top10% RFI_A 21.6 117.5 29.5 27.1 1.23 1.01 1.36 

top10% RFI_B 21.6 114.3 29.6 27.4 1.22 1.01 1.37 

top10% RFI_C 22.3 114.7 31.8 29.7 1.31 1.08 1.42 

top10% ReFI_D 22.0 113.2 31.5 29.6 1.31 1.07 1.44 

Holstein, CFIT data 

All cows 24.1 125.0 34.1 33.5 1.37 1.18 1.42 

top10% RFI_A 20.8 123.2 32.9 30.7 1.36 1.12 1.58 

top10% RFI_B 20.3 120.2 32.1 30.2 1.32 1.11 1.59 

top10% RFI_C 21.5 120.5 34.8 33.0 1.43 1.19 1.62 

top10% ReFI_D 20.9 118.5 34.4 32.7 1.42 1.16 1.65 

Nordic red cattle, Finnish research farms 

All cows 19.4 119.4 29.1 27.6 1.20 0.98 1.50 

top10% RFI_A 17.5 118.8 28.2 27.1 1.15 0.96 1.61 

top10% RFI_B 17.2 116.0 28.1 26.7 1.16 0.95 1.63 

top10% RFI_C 18.3 120.2 30.0 28.4 1.24 1.00 1.64 

top10% ReFI_D 17.9 119.0 29.7 27.7 1.25 0.99 1.67 

 

Results from comparison the four different approaches give strong evidence that upgrading 

the current genomic prediction model for metabolic efficiency to a genomic prediction 

model that is based on regression on residual feed intake would be beneficial to enhance ge-

netic progress in feed efficiency of Nordic dairy cows.  
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WP4. Economic and environmental benefits 

Task 4.1. Quantifying economic benefits 

Variance components and heritabilities for the traits are shown in Table 32. Heritability for 

ReFI is presented for the average eDMI (19.8 kg), and it was 0.31. Heritability estimate for RFI 

was lower than for ReFI, and heritabilities for MBW, production traits and ICF were on the ex-

pected level. 

Table 32. Variance components and heritabilities for ReFI, RFI, MBW, MY, PY, FY and ICF from 

the single-trait analyses. 

  σ2
kappa σ2

pe σ2
a σ2

e h2
 

ReFI 0.0027 0.0017 0.0030 1.9258 0.31* 
RFI - - 0.77 0.26 1.35 0.11 
MBW - - 8.93 64.40 4.07 0.83 
MY -  6.87 5.08 3.65 0.33 
PY - - 0.008 0.003 0.005 0.21 
FY - - 0.014 0.009 0.011 0.26 
ICF - - 

 
13.23 565.15 0.02 

* Heritability for ReFI calculated for the average eDMI 

 

Genetic and phenotypic correlations between the traits are presented in Table 33. The results 

showed that the genetic correlations between ReFI and production traits were favourable and 

from low to moderate. However, the classical RFI was unfavourably genetically correlated 

with production traits. This indicates that when selecting cows for ReFI, the more efficient 

cows would be also more yielding cows, but when selecting for RFI the more efficient cows 

would be less yielding cows. A high genetic correlation between RFI and MBW also indicates 

that more efficient cows would be smaller in size. These results confirm the findings from 

Task 2.2. B. There were no genetic correlation found between either feed efficiency traits or 

fertility. Due to the small data size the standard errors for genetic correlations were high. 

However, the estimates are reasonable and showing the direction of change in other traits if 

selecting for ReFI or RFI.  
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Table 33. Genetic correlations (upper triangle) and phenotypic correlations for ReFI, RFI, 

MBW, MY, PY, FY and ICF of yield deviation records from the multi-variate analyses. 

  ReFI RFI MBW MY PY FY ICF 

ReFI - 0.31 0.06 -0.12 -0.11 -0.24 0.09 

RFI 0.67 - 0.56 0.20 0.36 0.13 0.02 

MBW -0.01 0.17 - 0.27 0.35 0.07 0.23 

MY -0.20 0.09 0.20 - 0.80 0.74 0.40 

PY -0.18 0.14 0.21 0.89 - 0.66 0.23 

FY -0.29 0.00 0.21 0.76 0.76 - 0.35 

ICF 0.08 0.08 -0.06 0.01 -0.01 0.00 - 

 

Yearly genetic gain for each trait (in trait units) and economic values (in €) as total economic 

gain per year are shown for different scenarios in Table 34. In selection the traits included 

into scenario are used in total merit index and the gain in other traits based on correlated re-

sponse. In the total economic gain only the ReFI metric (and not RFI) was included into total 

economic gain to account for the contribution of metabolic efficiency. The scenario Yield+ICF 

was assumed as the basic scenario of the breeding program and contained the yield traits 

and fertility. Adding MBW to the basic program had a favorable effect of increasing economic 

response by 15%. It strongly reduced MBW and slightly reduced PY and FY. When, in addition 

to MBW, RFI was added to the breeding program to account for metabolic efficiency, then it 

weakened ReFI, PY and FY, and thus decreased the overall economic progress by 7%. Adding 

ReFI instead of RFI to the selection index, then it strongly improved ReFI, had less impact on 

MBW and yield traits, and had a favorable effect on economic gain by improving total eco-

nomic gain by 34%, where most of the increase came from the saved feed.  

In this study, the simulated breeding scheme was simpler compared to that one used in the 

Nordic dairy cattle breeding. Moreover, some of the estimated variance components were as-

sociated with large standard errors and also size of the simulated population was small. This 

all adds to uncertainty in the obtained results. Nevertheless, results give indications that in-

clusion of both metabolic cost and metabolic efficiency into the total merit index will gener-

ate additional economic response. Given the higher economic value we have applied here, 

including maintenance costs makes almost as large contribution as the inclusion of metabolic 

efficiency. For the metabolic efficiency, an additional economic benefit was only achieved by 

applying the ReFI metric.    
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Table 34. Used heritabilities (h2), yearly based economic values and annual cow based ge-

netic gain in different traits and total gain in € and % compared to basic scenario Yield+ICF. 

Total merit index traits in different scenarios are Yield+ICF: MY, FY, PY, ICF (basic); +MBW: 

basic+MBW; +MBW+RFI: basic+RFI+MBW; +MBW+ReFI: basic+MBW+ReFI. 

 

ReFi RFI* MBW MY FY PY ICF 
Total  

(€) 

Total 

(%) 

Parameters  

h2  0.28 0.11 0.46 ** 0.28 0.20 0.22 0.04 

- 

σp 1.88 1.54 7.80** 3.91 0.126 0.182 24.1 

Yearly based 

economic values  -63.6 -63.6 -6.4 -16.38 1689.4 559.7 -0.64 

Annual genetic 

gain, € 

1. Yield+ICF  1.27 -1.59 -1.56 -4.58 14.46 6.53 -0.144 15.87 100 

2. +MBW  2.56 0.54 3.32 -2.63 8.77 6.24 0.002 18.28 115 

3. +MBW+RFI  2.25 2.31 4.63 -2.53 4.85 5.55 -0.060 14.70 93 

4. +MBW+ReFI  8.28 -1.06 2.39 -2.73 7.88 5.40 -0.001 21.23 134 

 *RFI is not included into total economic genetic gain 

**h2 for MBW and σp is from NAV, other from multi-trait model of this task 

 

In Figure 12 the genetic gains for the seven traits are presented for the different scenarios. The 

simulations were sensitive to genetic parameters and the SE of estimates of correlations were 

quite high, which needs to be considered when interpreting the results. 
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Figure 12. Genetic gain for ReFI, RFI, MBW, MY, PY, FY, and ICF by different scenarios Yield+ICF 

(Scen_Milk), +MBW (Scen_MBW), +MBW+RFI (Scen_ RFI), and +MBW+ReFI (Scen ReFI). Solid 

line is average genetic gain of five repeat and colored area show 95% confidence interval. 
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Task 4.2 Genetic response – environmental impact 

Estimated heritabilities for methane production (MeP), RFI (calculated as DMI minus expected 

DMI), MY, MF, MP and MBW were 0.04, 0.06, 0.39, 0.38, 0.22 and 0.75, respectively. Genetic 

correlations (rg) between MeP and the rest of the traits namely: RFI, MY, MF, MP and MBW 

were 0.31, -0.10, 0.13, 0.26 and 0.59, respectively. On the other hand, phenotypic correlations 

between MeP and the above-mentioned traits were 0.46, -0.05, -0.05, 0.02, 0.16, respectively. 

Table 35. Multitrait estimates of genetic parameters. Heritabilities (on the diagonal) and ge-

netic correlations (below diagonal) and phenotypic correlations (above diagonal) in first lac-

tation Nordic Red cattle. 

Traits MeP RFI MY MF MP MBW 

MeP 0.04 0.46 -0.05 -0.05 0.02 0.16 

RFI 0.31 0.06 0.02 -0.05 0.12 -0.03 

MY -0.10 -0.20 0.39 0.78 0.79 -0.18 

MF 0.13 0.27 0.78 0.38 0.71 -0.10 

MP 0.26 0.19 0.67 0.64 0.22 0.10 

MBW 0.59 -0.28 -0.30 -0.31 0.05 0.75 

 

The calculation of correlated response due to selection on RFI showed that when selection is 

for feed efficiency through lowering RFI, using a selection intensity of 2.1 or improving RFI by 

about two genetic standard deviation (-2.4 kg), the corresponding correlated response would 

be that CH4 reduces by 1.89g/day, MY increases by 0.33kg/day, FY decreases by 0.02 kg/day, 

PY decreased by 0.01 kg/day and MBW increased by 1.4 kg0.75. In other words, when this ex-

pressed in proportion for instance, improving RFI by 5% would result in reduction of feed in-

take by 1.1 kg/day, CH4 output by 0.89 gm/day, increase in MY by 0.15 kg/day and no effect 

on FY (-0.009kg/day) and PY (-0.008 kg/day) but increased BW by 4.2 kg. It should be noted 

that the available genetic variation in the RDC population for CH4 is slighter lower than for 

the Holsteins and the genetic correlation between RFI and CH4 emission is moderate. The re-

sults in general suggest that improving dairy cattle feed utilization efficiency could be one 

sustainable option for mitigation of CH4 emission from dairy production systems. 

Task 4.3 Quantifying environmental benefits 

LCA assessment was conducted with Lypsikki-LCA for the baseline and with integrating the 

project findings regarding the breeding responses to the assessment. The project findings re-

garding breeding response are summarized in Table 33. For the assessment, these findings 

were adjusted to yield a 10% improvement in feed efficiency of cows (-10% from typical DMI 

22 kg/d equal -2.2 kg/d), and the remaining parameters were adjusted accordingly (Table 36). 

The estimates for genetic response are further described in Task 4.1.  
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Table 36. Summary of the project findings utilized in the LCA analysis. RFI = residual feed in-

take, MY = milk yield, FY = fat yield, PY = protein yield and MBW = metabolic body weight. 

 Breeding goal Response in 

Information on b1 b2 b3 b4 b5 B6 CH4 

(g/d) 

RFI 

(kg) 

Milk 

(kg) 

Fat 

(kg) 

Prot 

(kg) 

MBW

(kg) 

CH4+RFI+MY+FY

+PY+mBW 

0 -1 0 0 0 0 -1.89 -2.39 0.33 -0.02  -0.01 1.40 

Adjusted for 10% 

response, 

CH4+RFI+MY+FY

+PY+mBW 

- -0.92 - - - - -1.74 -2.2 0.30 -0.02 -0.01 1.29 

 

The climate change impact (carbon footprint, CF), eutrophication potential and land occupa-

tion were assessed for business-as-usual (BAU) and for the A++ breeding response, adjusted 

with 10% improvement in feed efficiency. For the baseline, the contributions of the different 

life cycle stages are presented in Figure 13 for climate change impact and Figure 14 for eu-

trophication potential. Land occupation in BAU system was 1.55 m2 kgFPCM-1. In overall, the 

baseline resulted climate change impact for FPCM of 0.977 kg CO2eq kgFPCM-1. This is a very 

typical level for CF of liquid dairy produced in a developed country. Eutrophication potential 

was 2.86 g PO4 eq kgFPCM-1. With the integration of the findings from the A++Cow project, the 

10% improvement in feed intake resulted in CF of 0.899 kg CO2eq kgFPCM-1
. 

 

Figure 13. Contribution of the life cycle stages to the climate change impact (CF) of the base-

line systems milk production (1 kg FPCM). CF = carbon footprint, FPCM = fat and protein cor-

rected milk. 
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Figure 14. Contribution of the life cycle stages to the eutrophication potential (EP) of the base-

line systems milk production (1 kg FPCM). EP = eutrophication potential, FPCM = fat and pro-

tein corrected milk. 

 

 

Figure 14. Contribution of the life cycle stages to the climate change impact (CF) of the dairy 

production with 10% breeding response to feed efficiency. CF = carbon footprint, FPCM = fat 

and protein corrected milk. 
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Figure 15. Contribution of the life cycle stages to the eutrophication potential (EP) of the dairy 

production with 10% breeding response to feed efficiency. EP = eutrophication potential, 

FPCM = fat and protein corrected milk. 

Similarly for the A++ findings, the contributions of the life cycle stages are presented in Fig-

ure 15 for climate change impact (CF) and in Figure 16 for eutrophication potential (EP). Land 

occupation in the improved system was 1.47 m2 kgFPCM-1, which was 5% less than BAU. In 

overall, the climate change impact for FPCM was 0.899 kg CO2eq kgFPCM-1. Eutrophication 

potential was 2.57 g PO4 eq kgFPCM-1. 

Comparison of the global warming potential of raw milk according to the baseline and with 

A++ findings was conducted per life cycle stage. Results are presented in Table 37.  

Table 37. Comparison of the global warming potential of raw milk, produced according to 

baseline and with A++ findings. 

 Baseline A++ Improvement, % 

 
kg CO2eq FPCM-1 

Feed crop production and pasture 

(N2O)  

0.209 0.194 -7% 

Methane from rumination (CH4)  0.551 0.509 -8% 

Manure management (N2O)  0.042 0.037 -12% 

Manure management (CH4)  0.008 0.007 -11% 

Input production (CO2eq)  0.082 0.076 -7% 

Purchased feeds (CO2eq)  0.085 0.075 -11% 

Total, kg CO2eq FPCM-1  0.977 0.899 -8% 

 

Based on the results, it was seen that the contributions of the different life cycle stages are 

affected only slightly. The methane generated in the rumination is the major contributor to 
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the CF of dairy in both cases. Overall, the improvement achieved was 8% in CF of FPCM. Larg-

est percentage of improvements were reflected to manure management and feeds. Manure 

management emissions are lowered as the DMI reduces and the efficiency of feed utilization 

increases, less nitrogen is excreted to manure. Due to improved efficiency in feed utilization, 

feed crops are also needed less, and this is reflected to a lowered contribution of purchased 

feed crops. As the feed crop production emissions are reduced more efficiently than methane 

from rumination, this leads to increased contribution of methane from rumination to the total 

GWP of dairy, even if the absolute amount of methane reduction is larger. As absolute value, 

the reduction of emissions was clearly largest from enteric fermentation methane (-0.042 kg 

CO2eq FPCM-1) and feed production was second largest (own feed crop production and pur-

chased feeds; -0.025 kg CO2eq FPCM-1), and the remaining smaller effects (manure manage-

ment and inputs) were in total (-0.012 kg CO2eq FPCM-1).  

Comparison of the eutrophication potential of raw milk according to the baseline and with 

A++ findings was similarly conducted per life cycle stage. Results are presented in Table 38.  

Table 38. Comparison of the eutrophication potential of raw milk, produced with BAU system 

and with A++ findings.  

 
Baseline A++ Improvement, % 

 g PO4eq kg FPCM-1 

P leaching, erosion 0.15 0.14 -7% 

N leaching 0.20 0.19 -8% 

NH3 fertilisers and manure application 0.80 0.69 -13% 

NH3 pasture and housing 0.47 0.44 -6% 

NH3 manure management 0.62 0.55 -11% 

PO4 Purchased feeds 0.60 0.54 -10% 

NOX energy and fuels 0.04 0.03 -6% 

Total, g PO4eq kg FPCM-1 2.86 2.57 -10% 

 

For the eutrophication potential the total reduction of emissions was -10%. Largest contribu-

tions were observed in nitrogen input use in cultivation (fertilizer and manure application) 

and manure management. Also, emissions from purchased feeds were lowered by 10%. All of 

these reductions are well explained by reduced feed requirement, which is reflected to low-

ered need of feed crop production. As absolute values, the reduction was largest from the 

same stages: N input use (-0.11 g PO4eq kg FPCM-1), manure management (-0.07 g PO4eq kg 

FPCM-1) and purchased feeds (-0.06 g PO4eq kg FPCM-1), while the remaining stages resulted 

in total -0.06 g PO4eq kg FPCM-1 reduction. 

In overall, the 10% genetic response in feed efficiency would yield a 8% reduction in carbon 

footprint, 10% reduction of eutrophication potential and 5% reduction in land occupation of 

FPCM. Here, the 10% genetic response in feed efficiency was only studied and integrated for 

adult dairy cows impact assessment. However, breeding potentially affects also the feed utili-

zation of young stock and replacement heifers. It should be further investigated how the ge-

netic improvement affects the emissions of youngstock, e.g., heifers and calves.  
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3.3 Evaluation of the project implementation 

General set up of the project and surrounding circumstances 

The A++Cow project was a large and multidisciplinary project utilising necessary research fa-

cilities and laboratories, collecting sizable data needed for genetic analyses, and carrying out 

complex analyses and developing novel deliverables by the research group. There was signifi-

cant funding by the industry, larger than the funding by MMM, which allowed conducting a 

project of this size. 

Some unforeseen circumstances were affecting this project. There were delays and re-

strictions associated with COVID19 pandemic which impacted the smooth progress of some 

tasks. In Task 1.2 the trials were delayed for one year as the installation of CFIT cameras was 

not possible during the pandemics and the experts from VikingGenetics, Denmark were not 

allowed to travel to Finland or visit the Jokioinen research farm. In addition, there was a delay 

in the blood NEFA and BHB assessment in Task 1.3 due to equipment break down at Univer-

sity of Helsinki and delays in NEFA-kit deliveries due to COVID19 pandemic. Including the de-

velopment of a reference database for BHB and the developing the prediction equations was 

not originally planned, but it was found important based on the results by Mehtiö et al. 

(2020) and also it allows Finland to have BHB phenotypes in future. Terhi Mehtiö was plan-

ning a visit to KU Leuven for 2020 for the research in task 1.3., but the visit was cancelled due 

to COVID19. 

Also, some research was allocated differently that was planned when the project started. 

More research was allocated for research into modelling of metabolic efficiency because we 

found it important for developing a model that is applicable for prediction of genomic 

breeding values. In addition, the outcome of our research regarding the use of slaughter 

weight was very positive, and therefore we started to develop an updated MBW evaluation 

model including carcass weight, which was not fully budgeted in the original research plan. 

Moreover, preparing of the necessary data from all three countries took longer than antici-

pated. 

Because of these delays a no-cost extension of the project time for another year until March 

2023 was applied and approved by the steering group. To get the planned research finalized, 

the industry partners (VikingGenetics, NAV and Faba co-op) agreed to cover the costs of 8 

more working months (60143 €).  

Project management 

The principal investigator changed during the project; Martin Lidauer led project from the 

start until January 2021 and Terhi Mehtiö started as the project leader in February 2021. 

Project management was challenged by changes in research and technical personnel beyond 

normal expectations. This was partially due to the reasons mentioned above. The changes 

were compensated by reallocating data collection, laboratory and research tasks to technical 

and research personnel who was not involved in the project originally, by a significant in-

crease in workload for researchers central for the project, and by postponing some tasks until 

a suitable person was found to continue the work. 
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The complexity of the project required a string organization. Research was organized in four 

work packages and 11 tasks, of which many tasks were rather large. Assigning for each task a 

responsible researcher was crucial to ensure progress and coordination among tasks. Pro-

gress of research was followed up in regular research group meetings, monthly meetings 

with NAV (50 meetings), Faba, Seges and Växa Sverige and a countless number of spontane-

ous meetings, and phone and e-mail conversations. 

Timetable 

The required research farm data collection was carried out over the whole project period as 

was planned originally for the majority of all data collection activities. Data collection was car-

ried out in a professional manner as well as all analyses in the laboratories. This ensured to 

make high quality data available for later statistical analyse.  

The delays due to unforeseen circumstances, mainly COVID19 pandemic, were already men-

tioned as well as the changes in allocating the research. In addition, some of the tasks were 

re-arranged and personnel changed which caused some slowdown in the progress of re-

search. Data analyses were often more demanding than originally anticipated. In addition, 

there were significant delays in receiving the data sets for analyses in tasks 1.2., 1.3., and 2.3. 

However, most of the planned research tasks were carried out as planned and agreed with 

the funding partners, and even taken beyond what was originally planned.  
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Figure 16. Summary of the Naudat, ilmasto ja ympäristö seminar in picture made by Tussi-

taikurit  
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4. Evaluation of the results 

4.1 Practical applicability of results 

The overall research aim of this project was to produce new scientific knowledge needed for 

developing genomic evaluations for feed efficiency in dairy cattle. The project continued re-

search on feed efficiency initiated by the previous “Feed efficiency” and “Lehmien rehunkäyt-

tökyky” projects and addressed important research questions identified by that latter project 

and in the literature. Interdisciplinary research in this project has produced significant amount 

of new knowledge.  

The first Saved Feed breeding values were available in 2019 in Finland, Denmark and Sweden. 

At first the NAV’s Saved Feed index was based only for Maintenance (MBW and conformation 

records of cows), but then also the Metabolic Efficiency (RFI) was included. The Saved Feed 

index was included in Nordic Total Merit index in 2020. In A++Cow project we have further 

developed the genomic predictions of Maintenance by including the carcass information as 

correlated trait into the models and by developing single-step genomic predictions. This was 

very important work as the decrease in the recording of body weights of the cows would 

have weakened the index in the future. CARW data significantly increased the amount of 

phenotypic information used for the genomic evaluation in all Nordic breeds. This along with 

the single-step genomic prediction development contributes positively to the reliability and 

unbiasedness of predictions of Maintenance. Thus, animals will get more accurate breeding 

values than before. NAV is planning to upgrade the current official genomic prediction for 

Maintenance to the single-step genomic prediction for Maintenance developed within the 

A++Cow project.  

In addition, the model for Metabolic Efficiency has been revised and improved. We simulated 

alternative breeding programs to study which breeding programme would be the best from 

an economic and environmental point of view in practical animal breeding. Based on the re-

sults, applying the ReFI metric developed in this project would yield in better genetic pro-

gress in reducing feed consumption and increasing economic gain when compared to the 

currently used RFI metric. A more accurate Metabolic Efficiency evaluation developed in this 

study allows more accurate selection of top bulls and cows with better feed efficiency than 

the average of the population. This implies that cows with better feed efficiency consume less 

feed than average of the population for a given level of production and body weight. This in 

turn practically means reduced feed cost to the farmer and reduced emission of enteric me-

thane which will contributes to the environmental sustainability.  

The positive correlations we found between methane production and feed efficiency in dairy 

cows indicate that selection for feed efficiency is one sustainable strategy to lower methane 

emissions from dairy production systems. Environmental impact assessment was conducted 

for average typical Finnish dairy production, according to data collected from 700 Finnish 

dairy farms, and for improved production, when projects findings were applied to dairy cow 

processes. It was found that in all three investigated impact categories (climate change im-

pact, eutrophication and land occupation) the project findings of supported mitigation of en-

vironmental impacts. It was seen that eutrophication potential was affected most, with 10% 

decrease in comparison to business as usual. Climate change impact is globally most im-

portant of the studied impact categories, in this investigation it was found to decrease by 8% 
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with breeding towards improved feed efficiency. Globally, but also locally arable land de-

mand is becoming all the time more important. With growing populations adequate nutrition 

is needed to be produced with more efficient land utilization. In this investigation, it was 

found that land occupation, the demand for arable land was reduced by 5% when project 

findings were applied. By observing the impact across different impact categories, it was seen 

that effect was toward reduction in all cases and no trade-offs between impact categories 

were found. Even if the investigated findings (improved feed efficiency, lower feed intake, 

lower methane generation, higher milk yield) can all be considered as reducing environmen-

tal impacts of raw milk, new knowledge was produced to understand the magnitude of the 

effects. In overall, it could be seen that breeding can be considered as powerful tool in miti-

gating environmental impacts of dairy production. 

Research on developing a predictor trait for negative energy status based on MIR spectral 

data of milk samples has resulted in new opportunities applicable for the practice by devel-

oping prediction equations for NEFA and BHB. Cooperation with the OptiMIR partners since 

the Feed Efficiency project has also allowed Valio Ltd and Luke to use prediction equations 

developed in the OptiMIR consortium to predict fatty acid profiles for milk samples from 

Finnish routine milk recording. A routine collection of MIR spectra and transfer to Mtech Dig-

ital Solutions Ltd has been established and milk fatty acid, NEFA and BHB predictions are 

available for all milk samples in the milk recording scheme analysed in Valio laboratory. This 

allows future utilization of MIR spectral information for animal breeding, animal nutrition and 

milk quality purposes.  We have shown that NEFA and BHB predictions have the potential to 

be implemented into genetic evaluations and are good indicators of early lactation energy 

status. In addition, the development of BHB prediction equations allows now also Finland to 

have BHB phenotypes for the general health selection index. 

4.2 Scientific significance of the results 

One aim of the project was to publish all results with scientific significance according to the 

publication activities explained in the report. Results with significant interest for the scientific 

community are: novel models of Maintenance and Metabolic Efficiency, which strengthen the 

genetic improvement of feed efficiency; prediction equations developed for NEFA and BHB; 

and the economic and environmental effect of improving feed efficiency in dairy cows. The 

scientific significance of the results of the project is notable; the A++Cow project was the first 

one in the world to solve the challenge of using RFI metric in dairy cattle breeding by devel-

oping the ReFI model as well as including of carcass weight information of the Maintenance 

index. In addition, the FE data collected from RDC breed are very unique and made it possi-

ble to develop the genomic predictions for the breed. Also, the prediction equations devel-

oped for NEFA are unique.  

The scientific novelties were published through 9 peer-reviewed scientific articles, 1 PhD-the-

sis, 19 scientific congress presentations, and numerous of other publications and presenta-

tions. Furthermore, 2 scientific manuscripts were submitted before the end of the project in 

2023. All publications are listed in 3.4. Publications.  



Natural resources and bioeconomy studies 54/2023 

 

 

You can find us 

online 

luke.fi 

 

Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland 

https://www.luke.fi/en
https://www.facebook.com/Luonnonvarakeskus
https://twitter.com/LukeFinland
https://www.linkedin.com/company/lukefinland
https://www.youtube.com/@LuonnonvarakeskusLuke
https://www.instagram.com/luonnonvarakeskus

