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Abstract

The condition of the root system affects the quality of seedlings in forestry and horti-

culture. Previously, the electrical impedance loss factor (δ) and the reverse-flow

hydraulic conductance (Kr) of the roots of Scots pine seedlings were found to

increase when assessed a few days after frost damage. How these variables change

with time after the root damage is unknown. We arranged an experiment with

1.5-year-old Scots pine seedlings exposed to �5�C or � 30�C, with the control seed-

lings kept at 3�C. Then, δ and Kr of roots were monitored for 5 weeks in favorable

growing conditions. The properties of the roots were observed to be in a dynamic

state after the damage. A significant difference in δ was found between the test tem-

peratures �30�C versus �5�C and 3�C (p = 0.004 and p < 0.001, respectively). The

clearest effect of freezing injuries on δ of roots was observed in the first measure-

ment 1 week after the freezing test. The temperature significantly affected Kr, too,

with a significant difference between the low-temperature treated plants �30�C ver-

sus �5�C and control (p < 0.001, respectively). The difference in Kr between �30�C

and the other two temperatures increased with time and was the largest in the last

samples, taken after 5 weeks. We conclude that the impedance loss factor may

detect root damage if the measurements occur early enough after the damage, but a

longer time difference (3–5 weeks) is needed according to the reverse-flow hydraulic

conductance.

1 | INTRODUCTION

The condition of the root system is an important trait that affects the

survival and growth of seedlings in forestry and horticulture, as well

as defining the quality of nursery seedlings (Grossnickle &

MacDonald, 2018; Ritchie et al., 2010). The condition may be affected

by different abiotic stress factors, such as frost, drought, and excess

of water, in different phases of seedling production, as well as after

planting in field conditions. It is important to know the state of roots

before the seedlings are dispatched from the nurseries for planting in

the forests and gardens in the spring, and also in the fall before the

seedlings are moved to frost storage for overwintering. If the roots are

damaged, the effects will appear in the growth of the shoot, with a

delay typically after the growing season has started, thus, affecting

regeneration success (Grossnickle & MacDonald, 2018; Nilsson

et al., 2010; Riikonen & Luoranen, 2018). Failures in forest regeneration
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may require replanting of the stand, which causes economic losses for

both the seedling producers and forest owners.

There are limited direct methods for assessing the condition of

root systems, as well as for the early detection of potential damage,

and therefore, new methods to study the belowground processes of

trees are needed. If the roots are damaged, their physiological condi-

tion is unstable and probably changes with time depending on the

growth conditions. In bare root seedlings, relative electrolyte leakage

(REL) has been successfully used to detect frost injuries in roots; how-

ever, in some cases, it has failed (Ritchie et al., 2010). In pot seedlings

of Scots pine (Pinus sylvestris L.), the leakage of electrolytes from

frost-damaged roots took place into the soil and/or by washing the

roots with water (Repo & Ryyppö, 2008). Therefore, the REL method

failed to detect root damage unless the root samples were cleaned

from the soil and placed in the test tubes before the freezing tests

(Radoglou et al., 2007; Repo & Ryyppö, 2008). Root growth potential

(RGP) is based on detecting the number of new root tips on the sur-

face of the root plugs of seedlings after growth under favorable condi-

tions for 10–14 days (Grossnickle, 2000; Grossnickle & South, 2014;

McKay, 1998; Ritchie et al., 2010). RGP varies during the annual cycle,

which may limit the applicability to assess the physiological condition

of the root system (Grossnickle & Ivetic, 2022). In the triphenyltetra-

zolium chloride (TTC) test, changes in root color may indicate whether

the root is damaged (Richter et al., 2007; Sutinen et al., 1996). The

method is laborious and undamaged roots may have chemicals that

give a similar color change as damaged ones, which may bias the

results.

The hydraulic and electrical properties of the roots of forest tree

seedlings have been shown to change through changes in frost hardi-

ness and freezing injuries (Colombo & Asselstine, 1989; Di

et al., 2019; Korhonen et al., 2019; Repo et al., 2016). Hydraulic prop-

erties of roots can be measured by pressurizing roots from outside of

the roots in a chamber or through the cut surface of the stem. In the

former case, the weight of the roots changes according to the water

protruding through the cut surface of the stem, with the amount of

change depending on the condition of the root system (Ritchie, 1990).

In the latter case, pressurized water is driven into the root system

through the cut surface of the stem, and hydraulic conductance is

obtained by pressure-volume analysis (therefore termed as the

reverse-flow hydraulic conductance, Kr) (Tyree et al., 1995). Because

damaged roots, especially root tips, leak water more easily than intact

roots, their hydraulic conductance is higher (Korhonen et al., 2019;

Leinonen et al., 2011; Ritchie, 1990). Hydraulic properties of roots of

black spruce (Picea mariana Mill.) and Douglas fir (Pseudotsuga menzie-

sii Mirb.) seedlings were found to change with root growth after

soil thawing in spring or after freezing damage (Colombo &

Asselstine, 1989; Ritchie, 1990). In freeze-damaged seedlings, those

changes were correlated with seedling vigor and mortality

(Ritchie, 1990). In controlled freezing tests of Scots pine seedlings

during hardening and dehardening, reverse-flow hydraulic conduc-

tance of roots increased if damaged (Di et al., 2019; Korhonen

et al., 2019; Leinonen et al., 2011; Repo et al., 2016). In the regrowth

tests, those changes were connected with new root tip formation and

root biomass (Di et al., 2019; Korhonen et al., 2019).

Electrical impedance spectroscopy (EIS) has been used for above-

ground tree organs (Glerum, 1985; Repo et al., 1994; Repo, Zhang,

Ryyppö, & Rikala, 2000; van den Driessche & Cheung, 1979; Zhang &

Willison, 1992) and roots (Cao et al., 2011; Di et al., 2019; Repo

et al., 2012, 2016) to detect their responses to environmental stres-

ses. In EIS, an electric current of different frequencies is driven

through the sample. The current carrying capacity of different cell

compartments depends on the electrolyte balance between the apo-

plast and symplast, which is further affected by the condition of cell

membranes. Due to the cell membrane damage and consequent leak-

age of the symplastic ions to the apoplastic space, the apoplastic

electrical resistance decreases. Changes in the current carrying

properties are used for assessing the frost hardiness of plants after

controlled freezing tests (Repo et al., 1994, 2000; Zhang &

Willison, 1992). The equivalent model for the root/soil system is

more complex than for aerial parts, which poses a challenge for the

formulation of a proper model and the estimation of the model

parameters (Cao et al., 2011; Dalton, 1995; Repo et al., 2012).

Therefore, a simpler form of EIS, that is, a single frequency (50 kHz)

measurement of the impedance loss factor (δ), was used for the

detection of root damage (Di et al., 2019). The loss factor increased

with freezing injuries. Recently, a classification analysis of the

impedance spectra of roots of Scots pine seedlings, using the

approach of machine learning, could separate damaged and unda-

maged root systems and detect the mycorrhizal colonization of the

roots (Repo et al., 2014, 2016).

It is unknown how the biophysical properties of roots, that is, the

impedance loss factor and reverse-flow hydraulic conductance,

change with time after freezing injuries. If they change, it will affect

the diagnostic value of these variables for detecting injuries in roots.

We, therefore, aimed to monitor δ and Kr of roots of Scots pine

(P. sylvestris L.) for 5 weeks after the controlled freezing tests at tem-

peratures that caused either serious, slight, or no root damage. We

hypothesized that the δ and Kr of roots change after cellular injuries,

and the time after the occurrence of damage should therefore be con-

sidered in the application of those methods.

2 | MATERIALS AND METHODS

The experiment was run with 1.5-year-old Scots pine (P. sylvestris L.)

seedlings (pot type Pine 81, pot volume 100 cm3, Pohjan Taimi Ltd.)

that were cultivated and freezer stored (�3�C) at a tree seedling nurs-

ery in Eastern Finland (Pohjan Taimi Ltd., Juuka, Finland, 63�140 N,

29�150 E). Seeds were sown in the pots on May 5, 2018, raised in the

greenhouse until mid-July, when they were moved to a nursery field

to harden for winter, and moved to freezer storage (�3�C) on

December 20, 2018. In the nursery cultivation, fertilization took

place after germination with Kekkilä Forest-Superex (NPK 22-5-16,

Kekkilä-BVB), and in the nursery field first with Kekkilä Peat-Superex
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(NPK 11-5-26) and at the end of August with Kekkilä Autumn-

Superex (NPK 0-20-24).

For the experiment, four cardboard boxes with 80 seedlings in

each were taken from the freezer storage in the early summer of

2019 and transported to the Biosphere Laboratory in Joensuu

(Natural Resources Institute Finland and University of Eastern

Finland). Because it was aimed to monitor the changes in the imped-

ance loss factor and hydraulic conductance with time after root inju-

ries, not to assess the threshold temperature of freezer-stored

seedlings, the seedlings were allowed for some degrees of deharden-

ing before the start of the freezing tests at �5�C and � 30�C with the

control 3�C. Dehardening took place in a growth chamber (PGW36,

Conviron Ltd.) at 18�C with the boxes closed for 1 day to slow down

thawing and then with the boxes open for 4 days in long-day condi-

tions (16/8 h for day/night, photon flux density 200 μmol m�2 s�1).

Ninety seedlings were taken from the cardboard boxes and

placed in plastic containers for each temperature in the whole-plant

freezing tests. In the freezing test chambers (ARC 300/ �55/+20,

Arctest), the cooling rate from 5�C to �3�C was 2�C h�1. The temper-

ature of �3�C was maintained for 5 h to freeze the soil. Then the

cooling continued at 2�C h�1 to the target temperatures (�5�C

and � 30�C), which were maintained for 4 h. The rate of thawing to

5�C was 5�C h�1. The control seedlings were maintained at 3�C. After

the treatments, the seedlings were raised in a growth chamber in

long-day conditions (16/8 h for day/night, 18�C temperature, RH

75%, photon flux density 200 μmol m�2 s�1). Watering occurred by

immersing the pots in tap water to a depth of 3 cm for 30 min, 2–3

times per week.

At each sampling time (5 times at 1-week intervals), nine ran-

domly selected seedlings per treatment were used to measure the

electrical impedance spectra (EIS), that is, real (ZRe) and imaginary (ZIm)

part of impedance, and hydraulic conductance of roots. The different

seedlings were measured by both methods at each sampling time. In

EIS, a non-destructive set-up with two electrodes was used. A

stainless-steel needle electrode (diameter 0.3 mm, Kangsheng Europe

GmbH) was pushed into the stem 2 mm above the point of the first

lateral root. Another electrode was a stainless-steel plate electrode

with peaks protruding into the soil substrate at the bottom of the

pots. The measurements were carried out at 42 frequencies between

90 and 200 kHz (EIS-101, Simitec Ltd.). The measurement of each

seedling was repeated twice, with the stem electrode set perpendicu-

larly between the measurements. The input voltage level was 200 mV

(Vpp). The impedance loss factor (Equation (1)) was calculated at

50 kHz (β-dispersion range; for dispersion ranges, see Schwan, 1988)

that was previously found to give the best resolution for root damage

in Scots pine (Di et al., 2019).

δ¼ tan�1 ZIm

ZRe

� �
ð1Þ

At each sampling time, the reverse-flow root hydraulic conduc-

tance (Kr, in grams per megapascal per second) was measured for nine

seedlings per treatment using a high-pressure flow meter (HPFM)

(Dynamax). The stem was cut 15 mm above the root collar while the

root system remained intact. The bark was peeled off below the cut

point of the stem, and the capillary tube of the HPFM was connected

to the cut surface with a coupling set. The measurement is based on

monitoring water flow by gradually pressurizing the root from 0 to

0.55 MPa (Tyree et al., 1995). The reverse-flow Kr was obtained from

the linear relationship between water flux and applied pressure (Tyree

et al., 1995; Voicu et al., 2008). The mean value of three repeated

seedling measurements was used in further analyses. At the last sam-

pling time, the length of the new shoot and the length of five new

needles of each seedling were measured with a ruler with 1-mm

accuracy.

The impedance loss factor and hydraulic conductance data

were analyzed through liner regression (“lsmeans” package in R).

F IGURE 1 Impedance loss factor of roots (A) and hydraulic
conductance of roots (B) of Scots pine seedlings, which were exposed
to 3�C (control), and to �5�C and � 30�C in one phase of
dehardening in the whole-plant freezing tests. Different seedlings
were measured at 1-week intervals after the temperature treatments
(n = 9 for each treatment at each sampling time). The regression line
of �30�C differs significantly from �5�C and 3�C (p = 0.004 and
p < 0.001 for the loss factor and p < 0.001 for the hydraulic
conductance, respectively).
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We compared whether the regression slopes differed between tem-

perature treatments. Time (weeks 1–5) and temperature treatments

(�30�C, �5�C, and +3�C) were treated as categorical factors. Specifi-

cally, we wanted to know whether the loss factor or the hydraulic

conductance differed between the temperature treatments and

whether interactions existed between time and temperature

treatments. First, we examined the ANOVA p-value from the interaction

of loss factor and temperature treatments and then compared the

slopes with pairwise comparisons with Tukey's correction for

p-values. Needle and shoot length data were analyzed using the

Kruskal–Wallis rank sum test and, subsequently, the Wilcoxon rank

sum test with pairwise comparisons.

3 | RESULTS

The impedance loss factor significantly increased as a result of root

injuries (Figure 1A, Table 1). A significant difference in δ was found

between the test temperatures �30�C vs. �5�C and 3�C (p = 0.004

and p < 0.001, respectively), and the clearest effect was observed in

the first measurement after 1 week from the freezing test. The differ-

ences disappeared during the observation period of 5 weeks, how-

ever. Temperature had a significant effect on Kr, with significant

differences between the test temperatures �30�C vs. �5�C and 3�C

(p < 0.001 respectively). There was no difference in Kr among the

treatments after 1 week from the freezing treatment (Figure 1B,

Table 1), but the difference between �30�C and the other two tem-

peratures developed with time. The difference was the largest in the

last sampling after 5 weeks in the growth chamber.

There were no new shoots or needle growth in the seedlings that

were exposed to �30�C and all the seedlings exposed to this temper-

ature died (Figure 2). Shoot and needle elongation slightly decreased

after exposure to �5�C compared to 3�C, but the decrease was signif-

icant for shoot growth only (Figure 2A). No root growth was observed

in the seedlings exposed to �30�C whereas new root tip formation

was observed on the surface of the peat plug in the other two tem-

perature treatments.

4 | DISCUSSION

The results support our hypothesis that the root systems are physio-

logically in continuous change after the damage occurred. This affects

their electrical and hydraulic properties and should therefore be con-

sidered in the applications of these methods. In laboratory studies, the

occasion of damage is usually known quite accurately, especially if the

treatments are projected to the roots. It is, therefore, possible to

schedule the measurements properly for the detection of root

TABLE 1 ANOVA table for the effects of time since temperature exposure (time), exposure temperature (temp) and their interaction on
impedance loss factor and reverse-flow hydraulic conductance of roots of 1-year-old Scots pine seedlings that were exposed to two freezing
temperatures (�30�C and � 5�C, and control (3�C) in one phase of dehardening in controlled conditions.

Loss factor Hydraulic conductance

Df F-value p-Value Df F-value p-Value

Time 1 3.9 0.0504 1 22.4 5.813E-6

Temp 2 37.6 1.41E-13 2 25.6 4.311E-10

Time � temp 2 8.5 0.0003 2 22.3 4.771E-9

F IGURE 2 The length of the new shoot (A) and needles (B) of
Scots pine seedlings exposed to different temperatures in whole-plant
tests and raised in favorable growth conditions for 5 weeks. The
different small-case letters indicate significant differences (p ≤ 0.05)
between the treatments. The bars indicate standard errors (n = 9).
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damage. However, in the field conditions, that is, in the tree seedling

nurseries, the damage may have occurred at different times during

the annual cycle depending on the stress factor, and therefore the

occasion of damage will most probably remain unknown. Meanwhile,

the physiological condition of the root system may have changed,

which affects the results, depending on the assessment method. In

addition, the seasonal changes in the physiological properties of the

root system may add an amount of variation/change to the loss factor

and hydraulic conductance, too (Di et al., 2019).

The impedance loss factor of the seriously damaged roots increased,

as assessed shortly after the freezing test and thawing of the soil in the

pots. This accords with the previous study, in which the δ increased,

especially in the seedlings that were not considerably frost-hardened (Di

et al., 2019). However, the difference in δ between damaged and unda-

maged roots decreased over time after the damage. This may be con-

nected to the leakage of the electrolytes from damaged roots to the soil,

as observed previously by REL (Repo & Ryyppö, 2008), whereupon a

new balance of the electrolyte concentrations between root cells and soil

was formed. The results suggest that it is possible to assess root damage

by δ if the measurement takes place within 2 weeks from the occurrence

of the damage. If the measurements were conducted later, the assess-

ment might fail. In that case, the values of the damaged roots returned

near the level of the undamaged roots of non-frost-exposed seedlings.

This may not be explained by the recovery of root cells from damage in

favorable growing conditions but by processes other than those directly

connected with the cell membrane damage. To identify the differences

between damaged and undamaged roots by the EIS method after three

or more weeks, an approach other than the measurement of δ at a single

frequency, for example, classification analysis of the electrical impedance

spectra (Repo et al., 2016), is needed.

The reverse-flow hydraulic conductance of roots increased as a

result of serious root damage (exposed to �30�C), but there was no

difference between control and mild-frost exposed seedlings. Further-

more, the difference in Kr between undamaged and seriously damaged

seedlings increased with time. In the previous study with Douglas-fir

seedlings, freezing injuries of roots cleaned of soil and fully hydrated

were detected by pressure-volume analysis too, based on the weight

loss by pressurization of roots in a chamber (Ritchie, 1990). In the

reverse-flow measurement of Kr, no cleaning of soil from roots is

needed, and therefore root system stays intact, which makes the mea-

surements easier. The results of the current study accord with the

previous study, in which Kr of roots of Scots pine seedlings, as

assessed after 3 weeks from freezing treatment, increased exponen-

tially with respect to the decrease of the exposure temperature

(Korhonen et al., 2019). In another experiment with unhardened

Norway spruce (Picea abies L. Karst) seedlings exposed to a series of

low temperatures between 5�C and � 12�C, Kr of roots also increased

in relation to the exposure temperature if measured immediately after

the freezing test (Leinonen et al., 2011). However, the difference in Kr

between the undamaged and damaged roots was almost one order of

magnitude less than here or in the previous study (Korhonen

et al., 2019), which is probably due to the change of Kr with time after

damage, as observed in the present study. Both the previous and

present studies indicate that it is possible to detect root damage by Kr.

The new finding here was that the difference between undamaged and

damaged roots increased with time, being the largest in the last mea-

surement 5 weeks after the occurrence of the damage. This indicates

that the hydraulic resistance of the water conduits in the xylem cells of

the stem and roots gradually decreased during the 5 weeks. It is proba-

ble that with a prolonged time, that is, longer than 5 weeks, drying

blocks the stem vessels, leading to a decrease in hydraulic conductance,

even though the decomposition of the damaged roots may have the

opposite effect. This would deserve further studies, however.

In conclusion, to our knowledge, this was the first time to show

that the electrical impedance loss factor and reverse-flow hydraulic

conductance of roots change with time after freezing injuries but in a

different manner, depending on the time scale since the damage

occurrence. Both methods are nondestructive for roots, although the

measurement of hydraulic conductance is destructive for the shoot.

The measurement of the impedance loss factor is fast, whereas the

measurement of the reverse-flow hydraulic conductance takes some

more time to be completed. Since the difference in the hydraulic con-

ductance between nondamaged and seriously damaged roots

increased with time after the occurrence of damage, it would have a

higher diagnostic value than the loss factor in assessing the condition

of the root system in cases where the occasion of damage is

unknown. The measurements were carried out in one phase of dehar-

dening for the seedlings with no, mild or serious injuries in their root

systems. Further studies would be deserved for roots with different

frost hardiness levels and freezing test temperatures covering the

range of different degrees of injuries, the effects of other abiotic

stressors than frost, as well as the effect of soil in the root/soil-

measurements of impedance loss factor.
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