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A computationally efficient method 
for approximating reliabilities in large-scale 
single-step genomic prediction
Hongding Gao*  , Andrei A. Kudinov, Matti Taskinen, Timo J. Pitkänen, Martin H. Lidauer, Esa A. Mäntysaari and 
Ismo Strandén 

Abstract 

Background In this study, computationally efficient methods to approximate the reliabilities of genomic estimated 
breeding values (GEBV) in a single-step genomic prediction model including a residual polygenic (RPG) effect are 
described. In order to calculate the reliabilities of the genotyped animals, a single nucleotide polymorphism best 
linear unbiased prediction (SNPBLUP) or a genomic BLUP (GBLUP), was used, where two alternatives to account for 
the RPG effect were tested. In the direct approach, the genomic model included the RPG effect, while in the blended 
method, it did not but an index was used to weight the genomic and pedigree-based BLUP (PBLUP) reliabilities. In 
order to calculate the single-step GBLUP reliabilities for the breeding values for the non-genotyped animals, a simpli-
fied weighted-PBLUP model that included a general mean and additive genetic effects with weights accounting for 
the non-genomic and genomic information was used. We compared five schemes for the weights. Two datasets, i.e., a 
small (Data 1) one and a large (Data 2) one were used.

Results For the genotyped animals in Data 1, correlations between approximate reliabilities using the blended 
method and exact reliabilities ranged from 0.993 to 0.996 across three lactations. The slopes observed by regressing 
the reliabilities of GEBV from the exact method on those from the blended method were 1.0 for all three lactations. 
For Data 2, the correlations and slopes ranged, respectively, from 0.980 to 0.986 and from 0.91 to 0.96, and for the 
non-genotyped animals in Data 1, they ranged, respectively, from 0.987 to 0.994 and from 0.987 to 1, which indicate 
that the approximations were in line with the exact results. The best approach achieved correlations of 0.992 to 0.994 
across lactations.

Conclusions Our results demonstrate that the approximated reliabilities calculated using our proposed approach 
are in good agreement with the exact reliabilities. The blended method for the genotyped animals is computation-
ally more feasible than the direct method when RPG effects are included, particularly for large-scale datasets. The 
approach can serve as an effective strategy to estimate the reliabilities of GEBV in large-scale single-step genomic 
predictions.

Background
Genomic selection can improve significantly the rate of 
genetic gain in animal breeding programs [1]. In particu-
lar, the use of single-step methods [2, 3] allows comput-
ing genomic estimated breeding values (GEBV) for both 
the genotyped and non-genotyped individuals simultane-
ously, even for large populations [4]. To assist selection 
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decisions in practical breeding programs, the reliability 
of GEBV as a measure of the accuracy of the EBV can be 
provided along with the GEBV. In general, calculations of 
the reliability of GEBV use elements of the inverse left-
hand side (LHS) matrix of the mixed model equations 
(MME) to obtain the prediction error variances (PEV). 
For large MME, inverting the LHS matrix is not com-
putationally feasible, thus, approximated reliabilities are 
used.

Several methods to approximate the reliabilities of EBV 
from the pedigree-based best linear unbiased prediction 
(PBLUP) have been proposed and implemented [5–10]. 
In these methods, the first step is to account for only the 
most important non-genetic effects such as the contem-
porary group effects in the LHS matrix to approximate 
the effective record contributions (ERC) for the animals. 
In the second step, the ERC is combined with the ped-
igree-based relationship matrix information to calculate 
approximated reliabilities.

Misztal et  al. [11] extended the PBLUP-based algo-
rithm in [5] for the single-step method. They proposed 
two methods to approximate the reliabilities of GEBV 
from the single-step genomic BLUP (ssGBLUP). Their 
methods involved first approximating reliabilities by 
ignoring the genomic information, then converting those 
reliabilities into ERC for the genotyped animals, and sub-
sequently obtaining the diagonal elements of the inverse 
of the LHS matrix of the MME in a genomic BLUP 
(GBLUP) model. Their methods are limited to the calcu-
lation of about 100,000 genotyped animals because the 
approach requires inverting the genomic and pedigree-
based relationship matrices which are memory-inten-
sive. The memory limitations can be overcome by using 
Markov chain Monte Carlo (MCMC) techniques and a 
single-step Bayesian regression model [12]. Gao et al. [13] 
demonstrated that exact PEV can be obtained by com-
puting the posterior variance of GEBV samples, and then 
these PEV can be used to obtain the reliabilities of GEBV. 
However, MCMC is computationally demanding because 
it needs many iterations to obtain accurate PEV.

A multi-step procedure for approximating the reli-
abilities of GEBV was developed and introduced by Liu 
et al. [14]. Their method is based on a single nucleotide 
polymorphism BLUP (SNPBLUP) model with the poly-
genic effect accounted for in the calculation of the relia-
bilities of GEBV for the genotyped animals. The genomic 
information was propagated to the non-genotyped ani-
mals via ERC. Edel et  al. [15] developed an approach 
using a single-step SNPBLUP model where genotypes 
for the non-genotyped animals are imputed from the 
observed genotypes with a reduced pedigree. The PEV 
matrix of the marker effects is based on all markers 
(observed and imputed) taking the imputation residuals 

into consideration. Recently, Bermann et  al. [16] pre-
sented a method to approximate the reliabilities of GEBV 
using the Algorithm for Proven and Young (APY) [17] 
and showed that, with the reduced dimensionality, their 
approach can approximate reliabilities for a large popu-
lation. Ben Zaabza et al. [18] used a similar approach as 
Liu et al. [14], in which a weighted GBLUP or SNPBLUP 
model with the inclusion of the extra information from 
the non-genotyped animals was used to compute the reli-
abilities of GEBV for the genotyped animals. For the non-
genotyped animals, they used a procedure to integrate 
the genomic information gained from the genotyped ani-
mals in terms of the additional ERC into the conventional 
PBLUP model.

SNPBLUP and GBLUP are equivalent models of which 
either one can be used to compute the PEV needed for 
the reliabilities. The most significant advantage of the 
marker-based model such as SNPBLUP, is the con-
stant dimension of the MME with respect to the num-
ber of genotyped animals because the size of the MME 
depends only on the number of markers. Therefore, with 
an increasing number of genotyped animals, the SNPB-
LUP model is preferred over the GBLUP-based model 
that uses the genomic relationship matrix. However, 
when the RPG effect is included in the SNPBLUP model, 
this advantage will no longer hold. The inversion of the 
LHS matrix of the MME, with more genotyped animals, 
becomes computationally demanding with both GBLUP 
and SNPBLUP. Attempts have been made [19, 20] to use 
Monte Carlo (MC) sampling to calculate the reliabilities 
of GEBV using SNPBLUP with RPG, but the MC meth-
ods can be too demanding computationally as many MC 
samples for traits having a high proportion of RPG effects 
are required. Hence, methods that are computationally 
efficient for the calculation of reliabilities when using a 
SNPBLUP or a GBLUP model with the RPG effects are 
needed.

A document distributed by Interbull in 2018 on the 
calculation of effective daughter contributions (EDC) 
of bulls and ERC for cows (https:// inter bull. org/ static/ 
web/A_ suppl ement ary_ docum ent_ to_ the_ Inter bull_ 
genom ic_ relia bility_ method- 1. pdf ), can be used to com-
pute the weights for animals compared to deregressing 
the reliability values. This method has been implemented 
by all countries of the Interbull dairy evaluation since 
2001. Another commonly used strategy for propagating 
the genomic information to approximate the reliabilities 
of GEBV for the non-genotyped animals has two steps. 
First, weights based on the differences between the 
genomic and conventional reliabilities are derived for 
the genotyped animals. Second, these weights are used 
to represent the extra genomic information on the tradi-
tional PBLUP [14, 15, 18]. It should be noted that, with 

https://interbull.org/static/web/A_supplementary_document_to_the_Interbull_genomic_reliability_method-1.pdf
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the above strategy, the original full PBLUP model has to 
be reconstructed with the derived weights to obtain the 
reliabilities of GEBV for the non-genotyped animals. 
Thus, the same procedure to absorb effects in the coef-
ficient matrix needs to be performed twice, which means 
doubling the computing time of the PBLUP model. More-
over, double-counting of the genomic information has to 
be avoided, or at least minimized, when propagating the 
genomic information into the non-genotyped animals. 
Therefore, the method for approximating the reliabili-
ties of GEBV for the non-genotyped animals should be 
optimized to avoid double-counting and enable efficient 
computation for large-scale datasets.

In this study, we present computational approaches for 
approximating the reliabilities of GEBV with a single-step 
model including RPG effects. Specifically, we provide 
computationally efficient and simplified procedures for 
both the genotyped and the non-genotyped animals. We 
also derived and compared different correction terms for 
the genomic information. The aims of this study were: (1) 
to describe a multi-step approach for approximating the 
reliabilities of GEBV with optimized procedures for both 
the genotyped and non-genotyped animals; (2) to investi-
gate whether the choice of different schemes that propa-
gate the genomic information could affect the accuracy of 
the reliabilities of GEBV for the non-genotyped animals; 
and (3) to demonstrate the accuracy and efficiency of the 
derived methods using two dairy cattle datasets.

Methods
We present a seven-step method to approximate the reli-
abilities of GEBV in a single-step model with RPG effects. 
The first step computes the reliabilities of traditional EBV 
for all the animals in the pedigree without accounting 
for genomic information. This is followed by the com-
putation of the reliabilities of GEBV for the genotyped 
animals (Steps 2 and 3) and then for the non-genotyped 
animals (Steps 4–7).

Steps for approximating single‑step reliabilities
Step 1: reliabilities of EBV using PBLUP
The reliabilities of traditional EBV for all the animals in a 
PBLUP model can be approximated by many approaches 
[10, 21] but we used the method of Tier and Meyer [6] to 
approximate the reliabilities of EBV because it allows for 
a multi-trait animal model. This step requires phenotypic 
data, full pedigree information, the model effects from 
the corresponding single-step model, and its variance 
components for all random effects to calculate the relia-
bilities of EBV ( r2p ) for all animals and traits. For each 
trait, the reliabilities are then split into two vectors, i.e., 

r2p =
[
r2p,n
r2p,g

]
 , where r2p,n and r2p,g are the reliabilities of EBV 

for the non-genotyped and genotyped animals, 
respectively.

Step 2: reverse reliabilities for the genotyped animals
An iterative procedure called the reverse reliability 
approach [22] was used to compute the ERC by reversing 
the method of Tier and Meyer [6] using the reliabilities of 
the EBV of the genotyped animals from Step 1 ( r2p,g ), the 
full pedigree information, and the variance components. 
We denoted the resulting ERC for the genotyped animals 
as  ERCg.

Step 3: reliabilities of GEBV for the genotyped animals
In this step, genomic and pedigree information are com-
bined to compute the reliabilities of GEBV for the geno-
typed animals. Two approaches to account for the RPG 
effects (see Section “Reliabilities for the genotyped ani-
mals”), called the direct method and the blended method 
are given.

Step 4: weights for the non‑genotyped animals
The reverse reliability approach [22] was used to calculate 
the ERC corresponding to the reliabilities r2p of EBV from 
Step 1. We denote these ERC as ERCf  and partitioned 

ERCf =
[
ERCf ,n

ERCf ,g

]
 , where ERCf ,n is for the non-geno-

typed animals (used in Step 7), and ERCf ,g is for the gen-
otyped animals.

Step 5: weights for the genotyped animals
The ERC calculated in this step ( ERCg ,g ) accounts for 
the genomic information and is used in Step 7 as weights 
for the genotyped animals. Five different schemes to 
compute ERCg ,g are described (see Section "Alternative 
weights for genotyped animals").

Step 6: combining the weights for all the animals
The vector of weights for all the animals is formed by 
aggregating the ERC values generated from Steps 4 and 5 
for the non-genotyped ( ERCf ,n ) and genotyped animals 
( ERCg ,g ), respectively. The combined ERC matrix is 

denoted as ERCss =
[
ERCf ,n

ERCg ,g

]
 . In order to avoid possible 

problems caused by extreme weights, ERC values less 
than 0.01 were set to 0.01.

Step 7: reliabilities of GEBV for the non‑genotyped animals
A simplified weighted-PBLUP model with pseudo pheno-
types (which can be any real random number since com-
putation of PEV does not require the right-hand side of 
MME) for all animals in the pedigree was used to obtain 
the reliabilities of GEBV for the non-genotyped animals. 
The single-trait weighted-PBLUP model was:



Page 4 of 14Gao et al. Genetics Selection Evolution            (2023) 55:1 

where y is a p × 1 vector of pseudo phenotypes with p 
equal to the number animals in the pedigree; µ is the gen-
eral mean; 1 is a p × 1 vector of 1s; a represents a p × 1 
vector of additive genetic effects; e is a vector of residuals. 
It is assumed that a ∼ N (0,Aσ 2

u ) and e ∼ N (0,D−1
p σ 2

e ) , 
where A is the numerator relationship matrix and Dp is 
a diagonal matrix with elements of ERC from Step 6, and 
σ 2
u and σ 2

e  are the additive genetic and residual variances, 
respectively.

Reliabilities for the genotyped animals
Reliabilities for the genotyped animals can be calculated 
with GBLUP [23] or SNPBLUP [24] in this step. When the 
number of genotyped animals ( n ) is smaller than the num-
ber of SNPs ( m ), a simplified GBLUP model with the RPG 
effects can be computationally more efficient than SNPB-
LUP [18]. However, when n > m , the SNPBLUP model is 
often computationally less demanding. Two alternative 
methods can be used for including the RPG effects (illus-
trated here using SNPBLUP).

Direct method
The single-trait SNPBLUP model with RPG effects is:

where y is an n  × 1 vector of (pseudo) phenotypes; µ is 
the general mean; 1 is an n × 1 vector of 1s; 
W =

[√
1− ωZ

√
ωIn

]
 , and ω represents the RPG pro-

portion to the total additive genetic variance, Z is an 
n×m matrix of SNP covariates centered by −2pi and 
scaled by 

√
2
∑

pi(1− pi) using VanRaden’s method 1 
[23] (where pi is the frequency of the second allele at 

locus i ), In is an identity matrix of order n ; u =
[
g
a

]
 , 

where g is an m × 1 vector of the effects of SNPs and In is 
a n × 1 vector of the RPG effects; e is a vector of residu-
als. It is assumed that a ∼ N (0,A22σ

2
u ) , g ∼ N (0, Imσ

2
u) , 

and e ∼ N (0,D−1
n σ 2

e ) , where A22 is the submatrix of A 
corresponding to the genotyped animals, Dn is a diagonal 
matrix with element dii = ERCg ,i equal to the ERCg value 
for genotyped animal i calculated at Step 2, and σ 2

u and 
σ 2
e  are the additive genetic and the residual variances, 

respectively.
The MME for Model (1) is:

where � =
[
Im 0
0 A22

]
 and � = σ 2

e

σ 2
u
 . We denote the inverse 

of the LHS matrix of the MME as 
[
Cµµ Cµu

Cuµ Cuu

]
 . The relia-

y = 1µ+ a + e,

(1)y = 1µ+Wu + e,

[
1
′
Dn1 1

′
DnW

W
′
Dn1 W

′
DnW + ��

−1

][
µ̂

û

]
=

[
1
′
Dny

W
′
Dny

]
,

bility of the GEBV for genotyped animal i is 
r2g ,g ,i = 1− �

WiC
uuW

′
i

Gω ii
 , where Wi represents row i in W , 

and Gωii is the diagonal element i of the matrix 
Gω = (1− ω)ZZ

′
+ ωA22.

Blended method
The single-trait SNPBLUP model without the RPG effects 
is:

where the same notation and assumptions as in Model 
(1) are used. Thus, it is assumed that g ∼ N (0, Imσ

2
u) and 

e ∼ N (0,D−1
n σ 2

e ) . The MME for Model (2) is:

We partitioned and denoted the inverse of the LHS 

matrix of the MME as 
[
Cµµ Cµg

Cgµ Cgg

]
 . The reliability of 

GEBV for genotyped animal i is r2∗g ,g ,i = 1− �
ZiC

ggZ
′
i

Gii
 , 

where Zi represents row i in Z , and Gii is the diagonal ele-
ment i of the genomic relationship matrix G = ZZ

′.
The RPG effects can be accounted for in the final reli-

ability of GEBV by blending the Model (2) reliabilities 
with the reliabilities of the traditional EBV from PBLUP 
in Step 1 using the following equation:

where A22ii is the diagonal element i of the A22 matrix 
which is equal to 1+ Fi with Fi equal to the pedigree-
based inbreeding coefficient of animal i.

Alternative weights for genotyped animals
For the computation of the reliabilities of GEBV for the 
non-genotyped animals in Step 7, the genomic infor-
mation is included by using weights for the genotyped 
animals. To compute the weights, the pedigree and the 
genomic information need to be separated from the reli-
abilities of the genotyped animals computed in Step 3. 
This is because the same information is assigned to an 
individual and its relatives in the computed reliabilities 
(Steps 1 and 3), hence the use of reliabilities from Step 
3 to compute corresponding ERC values can lead to 
double-counting of information. However, the original 
record information without genomics, i.e.,  ERCg, is free 
from double-counting and independent for each indi-
vidual. Similarly, it is necessary to calculate a measure of 
genomic information that does not double count infor-
mation. Several ways to compute this added information 
due to genomics can be constructed. The following five 

(2)y = 1µ+ Zg + e,

(3)
[
1
′
Dn1 1

′
DnZ

Z
′
Dn1 Z

′
DnZ+ �Im

][
µ̂

ĝ

]
=

[
1
′
Dny

Z
′
Dny

]
.

r2g ,g ,i =
(1− ω)Giir

2∗
g ,g ,i + ωA22iir

2
p,g ,i

(1− ω)Gii + ωA22ii

,
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approaches present such measures in the order which is 
expected to result in less double-counting of information.

Scheme A

where r2g ,g is the reliability of GEBV from Step 3 for geno-
typed animals. This scheme does not take into account 
that r2g ,g also includes pedigree information.

Scheme B

where ERCf ,g is as defined in Step 4, r2g ,g is as defined in 
Step 3, and r2p,g is the reliability of EBV from Step 1 for the 
genotyped animals. This scheme is similar to that given 
in Ben Zaabza et al. [18].

Scheme C

where ERCf ,g is as defined in Step 4, r2g ,g is as defined in 
Step 3, ERCi,g is the ERC value for the genotyped animals 
calculated using the Interbull method [25] and PBLUP 
model to account for the information from the genotyped 
progeny. This approach is similar to Liu et al. [13].

Scheme D

ERCg ,g = �
r2g ,g

1− r2g ,g
,

ERCg ,g = ERCf ,g + �

(
r2g ,g

1− r2g ,g
−

r2p,g

1− r2p,g

)
,

ERCg ,g = ERCf ,g + �
r2g ,g

1− r2g ,g
− ERCi,g ,

ERCg ,g = ERCf ,g + �
r2g ,g

1− r2g ,g
− ERCg ,

where ERCf ,g is as defined in Step 4, r2g ,g is as defined in 
Step 3, ERCg is the ERC value calculated in Step 2.

Scheme E

where ERCf ,g is as defined in Step 4, ERCg is the ERC 
value calculated in Step 2, ERCg ,g ,rev is the ERC value for 
the genotyped animals calculated using the reliabilities 
of GEBV from Step 3 ( r2g ,g ), full pedigree, and the reverse 
reliability approach. It is important to note that all ERC 
values in this scheme are based on the reverse reliability 
approach to minimize double-counting of information.

Data
Two datasets, a small (Data 1) and a large (Data 2) one, 
were used to assess and compare the methods. Data 1 
consisted of 47,124 Finnish Red dairy cows with 305-day 
milk yield records from lactations one to three. Data 2 
was from 341,784 Nordic Jersey dairy cattle with stature 
records from lactations one to three. In total, 46,914 and 
41,897 SNPs were used in the analyses with Data 1 and 
Data 2, respectively. Table 1 presents the number of gen-
otyped animals, the number of pedigree animals, and the 
number of animals with records in the first, second, and 
third lactation for Data 1 (milk yield) and Data 2 (stature). 
The datasets, model and (co)variances components were 
supplied by Nordic Cattle Genetic Evaluation (NAV).

Study design and comparison statistics
The reliabilities of GEBV from the direct and blended 
methods were compared with the exact reliabilities of 
GEBV from ssGBLUP, for Data 1. The PEV computed by 
inverting the LHS matrix of the MME for Data 1 were 
used to calculate the exact reliabilities of GEBV. The com-
parisons used the following statistics: (1) Pearson’s corre-
lation between the exact reliabilities and the approximate 
reliabilities; (2) the intercept and slope derived by the 
regression of the exact reliabilities on the approximate 
reliabilities; and (3) the mean squared error (MSE) 

ERCg ,g = ERCf ,g + ERCg ,g ,rev − ERCg ,

Table 1 Number of genotyped animals, of animals in the pedigree, and of animals with records in the first, second, and third lactation 
for Data 1 (milk yield) and Data 2 (stature)

a Total number of genotyped animals across lactations

Data set (trait) Data 1 (milk) Data 2 (stature)

Lactation 1 2 3 1 2 3

Animals with records 46,535 35,290 23,780 317,560 30,031 30,483

Genotyped  animalsa 19,757 19,757 19,757 110,876 110,876 110,876

Animals in the pedigree 64,808 64,808 64,808 583,916 583,916 583,916



Page 6 of 14Gao et al. Genetics Selection Evolution            (2023) 55:1 

between the exact reliabilities and the approximate reli-
abilities. The same statistics were applied to assess the 
quality of the approximate reliabilities of GEBV from the 
direct and blended methods for the genotyped animals 
and the five schemes for the non-genotyped animals.

For the genotyped animals in Data 2, Pearson’s cor-
relation between the reliabilities of GEBV from the 
direct method and the blended method, and the inter-
cept and slope of the regression of the reliabilities of 
GEBV from the direct method on the blended method 
were computed. For the non-genotyped animals in Data 
2, Pearson’s correlations were computed between the 
approximate reliabilities of GEBV from the five schemes.

Computations
In Step 3, a multi-trait GBLUP model was used to com-
pute the reliabilities of GEBV for Data 1, and a single-trait 
SNPBLUP model for the reliabilities of GEBV for Data 2. 
It is noteworthy that the reliabilities of EBV used in the 
blended method for Data 2 have to be computed based 
on the single-trait PBLUP model. The direct and blended 
methods were performed and compared for both data-
sets. A proportion of RPG effects ( ω) of 0.3 was used as in 
the NAV genetic evaluations. In Step 5, the five described 
schemes from A to E were used to compute weights for 
the genotyped animals in Step 7. In Step 7, a multi-trait 
weighted-PBLUP model was used to compute the reli-
abilities of GEBV for the non-genotyped animals for both 
Data 1 and Data 2. All analyses were performed using the 
MiX99 software package [26, 27] on a server with Intel 
Xeon Gold 6248 CPU (2.5 GHz) and 1 TB RAM using 10 
cores.

Results
Reliabilities for the genotyped animals
For Data 1, the mean (SD) reliability of GEBV from the 
exact method was 0.65 (0.090), 0.62 (0.087), and 0.59 
(0.087) for the first, second, and third lactation, respec-
tively. When the multi-step approach with the direct 
method was used to approximate the reliabilities, corre-
sponding values were 0.65 (0.098), 0.61 (0.096), and 0.59 
(0.096) for the first, second, and third lactation, respec-
tively. The multi-step approach with the blended method 
gave mean reliabilities of 0.68 (0.090), 0.65 (0.086), and 
0.63 (0.087) for the first, second, and third lactation, 
respectively. Thus, the mean reliabilities by the exact and 
direct methods were close but the blended method had 
a slightly higher mean. The SD values of the exact and 
the blended methods were close, but the direct method 
showed a larger variation in the reliabilities.

A plot of the reliabilities of GEBV from the exact 
method versus those from the blended method for Data 1 
is in Fig. 1. In general, the correlations between these two 

methods were close to 1 for all three lactations although a 
slight decline can be seen from the first to the third lacta-
tion (see Fig. 1). The slopes of the linear regression of the 
reliabilities of GEBV obtained from the exact method on 
those from the blended method were 1 for all three lac-
tations, but the general mean estimates were slightly less 
than zero indicating small inflation in the blended reli-
abilities (Fig.  1). MSE between the reliabilities of GEBV 
from the exact method and those from the blended 
method were 0.0009, 0.0013, and 0.0014 for the first, sec-
ond, and third lactation, respectively.

For the young genotyped animals in Data 1, which were 
born in the last five years without own phenotypes and 
progeny, the mean (SD) reliabilities of the GEBV of the 
genotyped animals from the exact method were 0.57 
(0.042), 0.54 (0.043), and 0.52 (0.044) for the first, second, 
and third lactation, respectively. When the multi-step 
approach with the direct method was used, correspond-
ing values were 0.57 (0.045), 0.54 (0.045), and 0.52 (0.046) 
for the first, second, and third lactation, respectively. The 
multi-step approach with the blended method gave mean 
reliabilities of 0.60 (0.040), 0.58 (0.040), and 0.56 (0.041) 
for the first, second, and third lactation, respectively.

Figure 2 shows a similar scatter plot as in Fig. 1 but for 
the young genotyped animals. The slopes were greater 
than 1, indicating slight deflation of the approximate reli-
abilities of GEBV by the blended method for the young 
genotyped animals.

The approximate reliabilities of GEBV from the direct 
method agreed well with those obtained by the exact 
method in Data 1. Compared to the results from the 
blended method, the correlations between the reliabili-
ties of GEBV from the exact method and those from the 
direct method (ranging from 0.993 to 0.996) were simi-
lar to those using the direct method. The slopes ranged 
from 0.90 to 0.92 for all the genotyped animals as well 
as for the young genotyped animals, indicating inflation 
of the approximate reliabilities of GEBV from the direct 
method. For all the genotyped animals, MSE between the 
reliabilities of GEBV from the exact method and those 
from the direct method were 0.0012, 0.0019, and 0.0020 
for the first, second, and third lactation, respectively, 
which were larger than those from the blended method.

For Data 2, the mean (SD) reliabilities of GEBV for the 
genotyped animals from the direct method were 0.68 
(0.063), 0.49 (0.066), and 0.45 (0.070) for the first, second, 
and third lactation, respectively. For the blended method, 
the corresponding values were 0.70 (0.067), 0.51 (0.067), 
and 0.48 (0.073) for the first, second, and third lactation, 
respectively. Thus, the average reliability was slightly 
larger for the blended method than for the direct method 
but the SD of reliabilities were similar between these two 
methods. Additional file 1: Table S1 provides the number 
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of animals, mean and SD of the reliabilities of GEBV by 
birth year for all the genotyped animals using the blended 
method for three lactations for Data 2.

Figure 3 displays a scatter plot for the reliabilities of 
GEBV from the direct method versus those from the 
blended method for the genotyped animals in Data 2. 
The correlations between the reliabilities of GEBV from 
these two approximate methods ranged from 0.980 to 
0.986. The slopes of the regression of the reliabilities 
of GEBV from the direct method on those from the 
blended method were 0.91, 0.96, and 0.94 for the first, 

second, and third lactation, respectively. In addition, 
the intercepts were all close to 0.

For the young genotyped animals in Data 2, which 
were born in the last five years without own pheno-
types and progeny, the mean (SD) reliabilities of GEBV 
for the genotyped animals from the direct method 
were 0.64 (0.050), 0.45 (0.048), and 0.41 (0.047) for the 
first, second, and third lactation, respectively. For the 
blended method, the corresponding values were 0.66 
(0.047), 0.47 (0.046), and 0.43 (0.045) for the first, sec-
ond, and third lactation, respectively. Figure  4 shows 
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Fig. 1 Scatter plot of the reliabilities of genomic estimated breeding values (GEBV) for the genotyped animals by the blended (x-axis) and the exact 
(y-axis) methods in Data 1 (milk yield). Pearson’s correlation coefficients (r), and linear regression coefficients of the reliabilities of GEBV by the exact 
method on the blended method are included in the figures. The solid yellow line is the regression line and the dashed red line acts as a reference 
line with intercept 0 and slope 1
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similar scatter plot as in Fig. 3 but for the young geno-
typed animals.

For Data 2, the wall clock time to conduct Step 3 
using the direct method was approximately 7  h for 
each trait. The time was reduced to about 30  min 
using the blended method. The size of MME was 
152,774 and peak memory usage was 323  GB for the 
direct method, whereas the size of MME was 41,898 
and peak memory usage was 47 GB for the SNPBLUP 
model in the blended method.

Reliabilities for the non‑genotyped animals
Tables 2, 3, 4 present statistics for the exact and approxi-
mated reliabilities of GEBV for the non-genotyped ani-
mals from the different schemes in the analysis of Data 
1. The average difference between the approximated 
and exact reliabilities of GEBV for the non-genotyped 
animals was small, ranging from − 0.02 to 0.00 for milk 
yield across three lactations. The results show a decline 
in the reliability of GEBV from the first lactation to the 
subsequent lactations, which was expected following the 
decrease in the number of observations by trait. In gen-
eral, the approximate reliabilities were equivalent to the 
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Fig. 2 Scatter plot of the reliabilities of genomic estimated breeding values (GEBV) for the young genotyped animals which were born in the last 
five years without own phenotypes and progeny by the blended (x-axis) and the exact (y-axis) methods in Data 1 (milk yield). Pearson’s correlation 
coefficients (r), and linear regression coefficients of the reliabilities of GEBV by the exact method on the blended method are included in the figures. 
The solid yellow line is the regression line and the dashed red line acts as a reference line with intercept 0 and slope 1
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exact reliabilities. The correlations between the exact 
and the approximated reliabilities were slightly lower 
for subsequent lactations (second and third) compared 
with those of the first lactation. Similarly, MSE increased 
slightly as the lactation number increased. The slopes 
and intercepts of the exact reliabilities on the approxi-
mate reliabilities were close to 1 and 0, respectively. As 
expected, Scheme E yielded the highest correlation 
between the exact and the approximate reliabilities of 
GEBV, whereas Scheme A yielded the lowest correlation. 
This pattern was clearest for lactation 3 (Table 4).

For Data 2, the average reliabilities of GEBV ranged 
from 0.44 to 0.47 for stature across the three lactations. 
Similarly, as in Data 1, the highest reliabilities were 
obtained at the first lactation. Tables 5, 6, 7 show the cor-
relations among the five types of reliabilities of GEBV 
obtained from the different schemes for the non-geno-
typed animals. Overall, the correlations between the reli-
abilities were high (around 0.99). High correlations (close 
to 1) between the reliabilities of GEBV from Schemes A, 
B, C, and D were observed for each lactation; however, 
slightly lower correlations (0.994) were found between 
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Fig. 3 Scatter plot of the reliabilities of genomic estimated breeding values (GEBV) for the genotyped animals by the blended (x-axis) and the 
direct (y-axis) methods in Data 2 (stature). Pearson’s correlation coefficients (r), and linear regression coefficients of the reliabilities of GEBV from 
the direct method on the blended method are included in the figures. The solid yellow line is the regression line and the dashed red line acts as a 
reference line with intercept 0 and slope 1



Page 10 of 14Gao et al. Genetics Selection Evolution            (2023) 55:1 

the reliabilities of GEBV from Scheme E and those from 
Schemes A, C, and D.

Discussion
In this paper, we present computationally efficient and 
simplified procedures to calculate the reliabilities of 
GEBV. Separate steps were applied for the genotyped 
and non-genotyped animals. The calculation of reliabili-
ties for the genotyped animals used information from 
a PBLUP model as weights to the observations in the 
SNPBLUP or GBLUP model which included the observed 
genomic information. Likewise, for the non-genotyped 

animals, the genomic information was included as addi-
tional weights for genotyped animals in the weighted-
PBLUP model. An important feature of our method is 
that the models for computing reliabilities (Steps 3 and 7) 
have only general mean and genetic effects but use differ-
ent weights and relationship structures. This gives com-
putational simplicity and speed. However, because of the 
multi-step nature of the approach, it is essential to cor-
rectly define the ERC weights used in these models (Steps 
3 and 7). The results demonstrated that the reliabilities of 
GEBV from the single-step method can be accurately and 
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Fig. 4 Scatter plot of the reliabilities of genomic estimated breeding values (GEBV) for the young genotyped animals which were born in the last 
five years without own phenotypes and progeny by the blended (x-axis) and the direct (y-axis) methods in Data 2 (stature). Pearson’s correlation 
coefficients (r), and linear regression coefficients of the reliabilities of GEBV from the direct method on the blended method are included in the 
figures. The solid yellow line is the regression line and the dashed red line acts as a reference line with intercept 0 and slope 1
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efficiently approximated with the proposed multi-step 
method.

Reliability and the residual polygenic effect
When the blended method was applied to approximate 
the reliabilities of GEBV for the genotyped animals, the 
dimension of the coefficient matrix of MME in the SNPB-
LUP model was reduced from (n+m+ 1)× (n+m+ 1) 
to (m+ 1)× (m+ 1) because the genotyped animals ( n ) 
representing the polygenic effects were ignored in the 
model, and the genetic part of the SNPBLUP model only 
contained the effects of SNPs ( m ). Therefore, the major 
advantage of the SNPBLUP model is preserved, that is, in 
spite of the increase in the number of genotyped animals, 
the dimension of the coefficient matrix of MME remains 
constant with the number of SNPs. Consequently, the 
memory used for the MME remains low in the blended 

Table 2 Mean and standard deviation (SD) of the reliabilities of 
genomic estimated breeding values (GEBV) calculated by the 
exact and approximate methods from five schemes

Pearson’s correlations (r) and mean squared errors (MSE) between the 
reliabilities of GEBV, the intercept  (b0) and slope  (b1) from the regression of the 
exact reliabilities on the approximate reliabilities of GEBV for the non-genotyped 
animals based on Data 1 (milk yield) and lactation 1
a Exact reliabilities of GEBV computed by inverting the coefficient matrix of the 
mixed model equations

Scheme Mean(SD) r MSE b1 b0

Exacta 0.47(0.161)

A 0.46(0.155) 0.991 0.0005 1.03 − 0.01

B 0.46(0.157) 0.993 0.0005 1.02 0.00

C 0.46(0.158) 0.991 0.0006 1.01 0.00

D 0.46(0.155) 0.992 0.0005 1.03 0.00

E 0.45(0.160) 0.994 0.0005 1.00 0.01

Table 3 Mean and standard deviation (SD) of the reliabilities of 
genomic estimated breeding values (GEBV) calculated by the 
exact and approximate methods from five schemes

Pearson’s correlations (r) and mean squared errors (MSE) between the 
reliabilities of GEBV, the intercept  (b0) and slope  (b1) from the regression of the 
exact reliabilities on the approximate reliabilities of GEBV for the non-genotyped 
animals based on Data 1 (milk yield) and lactation 2
a Exact reliabilities of GEBV computed by inverting the coefficient matrix of the 
mixed model equations

Scheme Mean(SD) r MSE b1 b0

Exacta 0.44(0.150)

A 0.44(0.146) 0.988 0.0005 1.02 0.00

B 0.43(0.146) 0.991 0.0005 1.01 0.00

C 0.43(0.148) 0.988 0.0007 1.00 0.01

D 0.44(0.146) 0.989 0.0005 1.02 0.00

E 0.43(0.151) 0.992 0.0007 0.99 0.02

Table 4 Mean and standard deviation (SD) of the reliabilities of 
genomic estimated breeding values (GEBV) calculated by the 
exact and approximate methods from five schemes

Pearson’s correlations (r) and mean squared errors (MSE) between the 
reliabilities of GEBV, the intercept  (b0) and slope  (b1) from the regression of the 
exact reliabilities on the approximate reliabilities of GEBV for the non-genotyped 
animals based on Data 1 (milk yield) and lactation 3
a Exact reliabilities of GEBV computed by inverting the coefficient matrix of the 
mixed model equations

Scheme Mean(SD) r MSE b1 b0

Exacta 0.42(0.144)

A 0.42(0.140) 0.987 0.0005 1.01 0.00

B 0.41(0.141) 0.990 0.0005 1.01 0.00

C 0.41(0.143) 0.987 0.0007 1.00 0.01

D 0.42(0.141) 0.988 0.0005 1.01 0.00

E 0.41(0.145) 0.992 0.0007 0.98 0.02

Table 5 Pearson’s correlation between the reliabilities of 
genomic estimated breeding values (GEBV) from different 
schemes for stature from lactation 1 in Data 2 (stature) for the 
non-genotyped animals

Scheme A B C D

B 0.999

C 1 0.999

D 1 0.999 1

E 0.994 0.998 0.995 0.995

Table 6 Pearson’s correlation between the reliabilities of 
genomic estimated breeding values (GEBV) from different 
schemes for stature from lactation 2 in Data 2 (stature) for the 
non-genotyped animals

Scheme A B C D

B 0.998

C 1 0.998

D 1 0.998 1

E 0.994 0.999 0.994 0.994

Table 7 Pearson’s correlation between the reliabilities of 
genomic estimated breeding values (GEBV) from different 
schemes for stature from lactation 3 in Data 2 (stature) for the 
non-genotyped animals

Scheme A B C D

B 0.998

C 1 0.998

D 1 0.998 1

E 0.994 0.999 0.994 0.994
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approach but grows in squared power of n in the direct 
method. Furthermore, the computational time is O(m3) 
instead of O((m+ n)3) . This highlights the potential use-
fulness of the SNPBLUP model and is particularly rele-
vant for large-scale genomic evaluations.

To overcome the computational challenges in the 
SNPBLUP model with the polygenic effects, Ben Zaabza 
et al. [19] proposed a Monte Carlo (MC)-based sampling 
method to approximate the reliability of the SNPBLUP 
model with the polygenic effects (MC-SNPBLUP), where 
the dimension of the MME depends on the number of 
SNPs and MC samples. They reported that the approxi-
mate reliabilities of GEBV from the MC-SNPBLUP 
method were highly correlated with those from the exact 
method with as few as 5000 MC samples. However, larger 
MC samples were needed to achieve a good approxima-
tion when the trait had a larger proportion of polygenic 
effects. More recently, Ben Zaabza et  al. [20] extended 
the MC-SNPBLUP approach with full MC sampling to 
further reduce the computational burden from SNPB-
LUP with the polygenic effects. They demonstrated lower 
computational demands, but a tendency to overestimate 
the reliabilities of individuals with low reliability. There-
fore, the number of generated MC samples must be suf-
ficient to ensure sufficient accuracy, while it should be 
limited to keep the computational costs low.

In practice, reliabilities are useful for animals that are, 
for example selection candidates, when their genotype 
becomes available. An advantage of using the blended 
method is that a precomputed inverse of the coeffi-
cient matrix of the MME in the SNPBLUP model from 
the reference animals can be used. The precomputed 
PEV matrix of the markers can then be used with new 
genotypes without the large computational cost needed 
for making the complete MME and inverting its coef-
ficient matrix. This approach can be used because the 
information of these new genotypes is not needed 
in computing the PEV of marker effects. In contrast, 
when an RPG effect is present in the model, such as in 
the direct approach, the MME having the reference and 
the candidate animal genotypes as well as the pedigree 
information needs to be computed and the coefficient 
matrix inverted. Thus, the blended method allows a fast 
approach for computing the reliabilities of GEBV for the 
new genotypes.

GBLUP model with polygenic effects
When the number of genotyped animals is smaller than 
the number of SNPs, as in Data 1 of the current study, the 
use of a GBLUP model can be preferred over the SNPB-
LUP model when computing the reliabilities of GEBV. 
More specifically, an attractive feature of the GBLUP 
model is that the inclusion of the RPG effects is through 

a genomic relationship matrix combined with the A22 
matrix. Therefore, unlike the SNPBLUP model, the 
dimension of the MME for the GBLUP model remains 
unchanged. However, with a larger number of genotyped 
animals, the GBLUP model becomes computationally 
more burdensome due to the need to invert two dense 
matrices ( G and the coefficient matrix of MME). A possi-
ble alternative, proposed by Bermann et al. [16], is to use 
the GBLUP model with APY where a sparse inverse of an 
APY genomic relationship matrix ( G−1

APY  ) is used instead 
of the original dense G−1 . The authors showed that the 
reliabilities of GEBV can be approximated accurately and 
efficiently with their method. They also showed that their 
method does not need to construct and invert the MME, 
but it needs to approximate the weight to be added to the 
diagonal elements of the inverse of the genomic relation-
ship matrix. Similar to the SNPBLUP approach using 
the blended method, the G−1

APY  matrix can be saved in a 
file and used later in the calculation of the reliabilities of 
GEBV for the newly genotyped animals.

A simplified procedure for the non‑genotyped animals
To compute the reliabilities of GEBV for the non-geno-
typed animals, a commonly-used technique is to propa-
gate the genomic information to the non-genotyped 
relatives [14–16]. The process of propagation generally 
starts with the computation of the difference between 
the reliabilities of GEBV and the reliabilities of PBLUP 
EBV for the genotyped animals. Subsequently, these 
gained reliabilities are transformed into ERC to add to 
the conventional PBLUP model. The computation for 
this step can vary depending on the modeling strategy. 
For example, Ben Zaabza et  al. [18] used a procedure, 
where the step of computing the reliabilities of PBLUP 
EBV (analogous to Step 1 in this study) was augmented 
by extra phenotypes from the genotyped animals for the 
computation of reliabilities for the non-genotyped ani-
mals. The extra phenotypes were weighted with a type of 
ERC value called  ERCadd, which reflects the differences 
between the ERC transformed from the reliabilities of 
GEBV and those from the reliabilities of traditional EBV. 
A disadvantage of their approach is that the original full 
PBLUP model for the computation of the reliabilities 
of EBV (Step 1) needs to be used also in the computa-
tion of reliabilities for the non-genotyped animals. This 
increases the computational complexity because these 
extra records from the genotyped animals were treated as 
“repeated records” and augmented to the original PBLUP 
model. We proposed to use a weighted-PBLUP model for 
the same task where weights are used to account for the 
information from the original PBLUP model. The weight 
in Scheme B uses the same formulas as in their study to 
combine the pedigree and genomic information for the 
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genotyped animals without the need to use the original 
PBLUP model.

Impact of double counting
The computation of the reliabilities of GEBV for the 
non-genotyped animals using the weighted-PBLUP 
model in Step 7 attempts to combine information from 
the original PBLUP (Step 1) and the genomic (Step 3) 
models by assigning appropriate weights for all animals. 
These weights are computed using the reverse reliabil-
ity approach which is expected to account for the origi-
nal information in the PBLUP model of Step 1. Care is 
needed to calculate the weights for the genotyped ani-
mals to avoid double-counting of information. This is 
because closely-related animals can use the same infor-
mation to calculate the EBV and its reliability. For exam-
ple, when both the sire and its daughter are genotyped, 
but only the daughter has an observation, the sire EBV 
and its reliability in PBLUP will include the daughter 
phenotype information. Therefore, we considered sev-
eral schemes to compute the ERC values to be used as 
weights in the weighted-PBLUP model of Step 7.

We hypothesized that Scheme E would achieve the best 
results whereas Scheme A the worst results. This is 
because all the ERC values for the genotyped animals in 
Scheme E ( ERCg ,g ) were calculated by the reverse relia-
bility approach, whereas the ERC values in Scheme A 
were simply transformed reliabilities of GEBV for the 
genotyped animals in Step 3. Scheme E gave the highest 
correlation with the exact reliabilities for Data 1 and had 
the lowest correlations with the other schemes for Data 2. 
The outcome of Scheme B, which produced the second 
best results, was somewhat unexpected. A possible expla-
nation for this might be that the double-counted infor-
mation canceled out each other between the ERC of 
GEBV and the ERC of EBV for the genotyped animals in 
the term �(

r2g ,g
1−r2g ,g

−
r2p,g

1−r2p,g
) of Scheme B. In general, the 

differences between the schemes were negligible such 
that the amount of double-counting was small in our 
examples.

We applied the multi-step GEBV reliability approach 
in analyses of two multi-trait models. A multi-trait 
GBLUP model was used for the smaller dataset, but a 
single-trait SNPBLUP was used for the larger dataset. 
Although our approach was able to compute reliabili-
ties that were highly concordant with the exact reliabil-
ities using a single-trait SNPBLUP model, this may not 
be optimal. In practice, BLUP is often used in multiple-
trait models so that information is shared across genet-
ically correlated traits. Thus, a multi-trait SNPBLUP 
model might be more appropriate.

Step 3, which includes making and inverting the coef-
ficient matrix in the SNPBLUP model, was the most 
time-consuming part, while all the other steps were 
processed in seconds for the datasets in our example. 
Although this process can be further improved with 
the saved inverse matrix [28], further investigations 
should be carried out to assess the impact of using sub-
sets of SNPs or genotyped animals on the quality of the 
approximated reliabilities of GEBV. Moreover, a large 
dataset and a complex model can have a large compu-
tational load in Step 1, particularly when the number 
of data records exceeds the number of pedigree records 
such as in test day models. Thus, the computational 
needs can depend on the model and data, and have rel-
ative costs that differ from those in our examples.

Conclusions
We present approaches that are suitable to approxi-
mate reliabilities from multi-trait ssGBLUP. In these 
approaches, we propose computationally efficient and 
simplified procedures for both genotyped and non-
genotyped animals. The approximated reliabilities 
from our approach were in good agreement with the 
exact reliabilities using the full dataset in a ssGBLUP 
evaluation. The blended method for the calculation of 
the reliabilities of GEBV for the genotyped animals is 
more feasible than the direct method when the RPG 
effects are accounted for, particularly for large datasets. 
Scheme E gave the most accurate reliabilities for the 
non-genotyped animals, followed by Scheme B, with 
respect to minimizing the double-counting of informa-
tion. The approach provides an effective strategy for 
obtaining the reliabilities of GEBV from a ssGBLUP 
model in practice.
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