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Abstract: Tree growth in Korean red pine (Pinus densiflora, hereafter Pd), Korean white pine
(Pinus koraiensis, hereafter Pk), and Japanese larch (Larix kaempferi, hereafter Lk) was modeled using
Logistic, Korf, Gompertz, Chapman-Richards, and Weibull equations and stem analysis data from
sample trees: 38 trees for Pd, 46 trees for Pk, and 45 trees for Lk. The models were fitted to the total
increment of tree size variables, diameter at breast height (DBH), height, basal area, and stem volume,
as a function of age. After selecting the best-fit growth function, the current annual increment (CAI)
and mean annual increment (MAI) were compared for each variable by species. The optimal growth
functions were Chapman-Richards for DBH and stem volume, Korf for height, and Gompertz for
basal area. The parameter estimates in the final models were all significant (p < 0.01) with best-fit
statistics and unbiased residual plots. When plotted with observed values, the growth patterns of
each variable were represented properly. The predicted growth curves over age were concave with
respect to the Y-axis in DBH and height but lightly convex in basal area, and explicitly convex in stem
volume, whereas an asymptote of sigmoid curve in stem volume was not apparent until 100 years.
Age with the maximum MAI among variables was arranged similarly to CAI; the age with maximum
MAI was earliest for DBH and latest for volume. The maximum growth was achieved earliest in Lk,
followed by Pk and Pd. The developed models were able to predict tree size variables and serve as a
reference to understand growth characteristics by species.

Keywords: sigmoid growth function; total increment; current annual increment; mean annual
increment; dominant trees

1. Introduction

Korean red pine (Pinus densiflora Siebold & Zucc., hereafter Pd), Korean white pine
(Pinus koraiensis S. & Z., hereafter Pk), and Japanese larch (Larix kaempferi (Lamb.) Carrière,
hereafter Lk) are the major plantation species in South Korea because they are fast-growing
and commercially used for lumber [1–3]. These species have been intensively planted since
the 1970s. In 2020, approximately 36.9% (2,319,832 ha) of forested land in South Korea
was occupied by coniferous species [4]. Out of the total coniferous forested area, 68.1%
(1,579,787 ha), 6.5% (151,946 ha), and 11.2% (260,255 ha) was occupied by Pd, Pk, and Lk,
respectively [4]. Due to the continued importance of these tree species as commercial wood
supply, concerns have increased regarding their growing methods and management, as
well as future expectations for the growth and development of these species.

In contemporary stand management planning, selecting a tree growth function is an
important task of forest science. Growth functions, which are statistical expressions of
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biological growth principles, form the basis for the realistic determination of stand produc-
tivity level, tree dimensions, and potential structure assortments [5–7]. Growth functions
describe the incremental growth changes of an individual or population over time [8].
Selecting the appropriate growth functions for tree and stand modeling is important for
developing growth and yield models.

Sigmoid growth functions are more commonly used than non-sigmoid growth func-
tions in forest modeling as the diameter at breast height (DBH), height, and basal area
of trees are asymptotic with age [9–11]. The growth functions have been associated with
immediate application in regard to forestry management planning. The functions are based
on knowledge, definition, and usage of characteristics on the growth curve, and periodic
and average increment curves [12].

For these reasons, the models using sigmoid growth functions have been developed
to understand growth characteristics and predict tree size in the forestry in advanced
countries [10,13–19]. In addition to the total increment of tree size, current annual increment
(CAI) and mean annual increment (MAI) are important growth characteristics because
those indicate a quantitative amount of increment in relation to the change in age and
provide an implication of growth rate, which is also used for economic assessment [8,11].
They can help to evaluate the age at which a tree achieves the maximum size [20–22]. Yet,
there is a lack of relevant studies even for the major commercial species such as Pd, Pk, and
Lk. Thus, the information on tree growth remains unknown and any comparisons among
species incomplete. At present, the variables of tree size in South Korea cannot be predicted
because research on growth functions is lacking.

This study aimed to fit the growth models of DBH, height, basal area, and stem
volume for Pd, Pk, and Lk using widely used sigmoid growth functions in the field of
forest biometrics and to identify the best-fit growth model for each variable of the three
species. After determining the best growth model, the total increment, CAI, and MAI
of each variable over age were derived from the best growth models of the three species.
Based on the simulation, additionally, the growth processes of each variable were compared
for the three species.

2. Materials and Methods
2.1. Study Area
2.1.1. Location and Site Characteristics

For this study, Pd, Pk, and Lk plantations were targeted, and the selected experimental
plots were located in the national forests of the north-eastern region of South Korea. A
total of 129 sites were selected as study areas: 38 sites for Pd, 46 sites for Pk, 45 sites for
Lk (Figure 1). The experimental plots were situated between 36◦33′ and 38◦18′ N latitude
and 127◦34′ E and 129◦21′ E longitude and represented the typical forests of South Korea
formed in mountain areas. According to the Korea Meteorological Administration [23], the
30-year averaged mean annual temperature was 7.1–13.5 ◦C, the minimum was 2.3–9.6 ◦C,
and was the maximum 12.2–18.3 ◦C among municipalities where the plots were located.
The mean annual precipitation ranged from 1112.2 to 1695.1 mm in the recent 30-year
average (1991–2020), with most of the precipitation occurring during the rainy season in
summer, which is a typical climate phenomenon in South Korea.

2.1.2. Plot Characteristic with Stand Density

The experimental plots were established to study the growth and yield according to
the thinning intensity. For this purpose, one of the prerequisites of a permanent plot was a
stand that was as heavily dense as possible without thinning. The plots were installed in
the forest where the most recent thinning was conducted at least more than 7 years ago.
The selected target stands had a relatively high stand density before installing the plots and
executing the thinning operation [24,25]. The relative density (stand density index divided
by maximum stand density index) before thinning was mostly above 0.7 in each stand type
by species, according to the models of Lee and Choi [24,25].
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Figure 1. Study sites and plot location by species from which sample trees were collected for stem
analysis and model development.

2.2. Data Collection
2.2.1. Sample Tree Selection and Wood Disc Collection

All the analyses in this study were based on sample trees of each site studied for stem
analysis. To collect stem profile data, we selected a representative sample tree that was
either dominant or codominant in a stand, free of damage, and desirable in terms of stem
quality, that is, straight, unforked, and uncrooked stem for sawtimber felled at each of the
129 sites [20,21]. After selecting a sample tree, it was felled, and 3–5 cm thickness of wood
discs were collected from the sectioned stem. The discs were collected at a height of 0.2 m
for the first wood disc (W0), 1.2 m for the second one (W1; corresponds to breast height
in South Korea), 3.2 m (W2), and from this point onward at two-meter intervals until the
second to the last disc (Wn−1). The last wood disc (Wn) was collected 1 or 2 m from the
previous (Wn−1), depending on the total stem height. For example, the distance between
Wn−1 and Wn was 1 m if the cone length is shorter than 1 m and the distance was 2 m
if the cone length is longer than 1 m to collect an appropriate sample disc size, e.g., disc
diameter > 1 cm. All the collected wood discs were naturally dried for several days, and
then sanded using a sanding machine to prepare the surface for tree ring measurements.
The fieldwork was carried out between 2012 and 2017, depending on the experimental site
and target species.
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2.2.2. Tree Ring Measurements and Stem Analysis

After completing the field works, the number of annual rings were recorded, and the
5-year increment was measured using the SENC 150 Precision Glass Scale Linear Encoder
(HEIDENHAIN Corp., Schaumburg, IL, USA), the MEIJI EMZ-5TR microscope (MEIJI
TECHNO CO., LTD., San Jose, CA, USA), and the advanced digital readout system Quadra-
Chek 10 (METRONICS Inc., Bedford, NH, USA), which allow single-axis measurements at
very high levels of precision and accuracy. The tree age was assigned as the number of tree
rings on wood disc 0 (W0) plus 2 as conventionally applied for coniferous tree species in
South Korea. The summary statistics of the sample trees are given in Table 1.

Table 1. Summary statistics of sample trees per species at the time of tree felling for stem analysis.

Species Statistics Age
(Year) DBH (cm) Height (m) Volume (m3)

No. of
Trees

No. of Sample Points at
5-Year Interval

Pinus
densiflora

Mean 47 30.5 17.0 0.6707

38 331
SD 16 8.4 4.0 0.3940

Minimum 9 5.2 3.6 0.0067
Maximum 99 47.3 23.8 1.6448

Pinus
koraiensis

Mean 40 29.8 17.2 0.6935

46 351
SD 16 7.9 4.4 0.4743

Minimum 15 13.9 7.4 0.0527
Maximum 77 45.9 24.6 1.9642

Larix
kaempferi

Mean 38 27.8 22.8 0.7480

45 321
SD 12 7.9 4.4 0.5160

Minimum 19 17.0 12.2 0.1614
Maximum 60 47.9 30.6 2.2803

SD: standard deviation.

The total increment in DBH, height, basal area, and stem volume was measured at
5-year intervals (e.g., age 5, 10, 15, etc.). The 5-year increment of DBH and basal area was
calculated based on the wood disc 1 (W1), and the height increment was computed on a
5-year basis by interpolation method using the number of tree rings on a wood disc and
the length between the wood discs. The 5-year increment of the stem volume was the
difference between the stem volumes before and after 5-year growth, and the stem volume
at each age was a result of the total sum of all log volumes at the corresponding age. The
log volume was calculated according to the Smalian’s method, which estimates the volume
of a log by averaging the areas of the two log ends and multiplying the length of the log
(mostly 2 m in our study, except for the 1-m length between W0 and W1) by the averaged
area. Detailed descriptions of the traditional stem analysis can be found elsewhere [26].

2.3. Modeling Approach
2.3.1. Selection of Candidate Growth Functions

To fit the total increment of DBH, height, basal area, and stem volume of each species
over age, growth functions, which are widely used in forest biometrics, were examined
for this study: Logistic, Korf, Gompertz, Chapman-Richards, and Weibull [8,10,17,27].
These growth functions present a sigmoid curve, which often hypothesizes an asymptotic
biological growth. A different background was developed for each model such as ecology,
height growth of the forest stand, age distribution of the human population, animal growth,
and probability distribution for the failure rate, and intrinsic characteristics varied according
to the equations [10]. The sigmoid pattern is assumed as reasonable and largely applied
for tree growth. Thus, the growth functions were compared and tested to find the best fit
for this study. The integral and differential forms of each growth function are described
in Table 2. In our study, the total increment corresponded to the integral form, and model
parameters were fitted using the integral form of each function.
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Table 2. Growth functions of integral and differential form used in this study.

Function Integral Form Differential Form

Logistic Y = a/
(

1 + ce(−bt)
)

∆Y = abce−bt/(1 + ce−bt
)2

Korf Y = ae−bt−c
∆Y = abct−(c+1)e−bt−c

Gompertz Y = ae−be−ct
∆Y = abce−cte−be−ct

Chapman-Richards Y = a(1− e−bt)
c

∆Y = abce−bt(1− e−bt)
(c−1)

Weibull Y = a(1− e−btc
) ∆Y = abctc−1e−btc

Note: Y is the diameter at breast height (cm), height (m), basal area (m2), or stem volume (m3) at age t; ∆Y is the
current annual increment of tree size at age t; e, also known as Euler’s number, is the base of natural logarithms;
a, b, c are parameters to be determined by this study.

2.3.2. Statistical Modeling and Validation

The model fitting was conducted using the R statistical software, and nls function in
stats packages was applied for estimating parameters of nonlinear regression [28]. The
response variables of the models were DBH, height, basal area, and volume from all
5-year measurement instances. The explanatory variable was tree age in the corresponding
size. Autocorrelation should be considered when several measurements are used from
the same sample, although this correlation can be disregarded in stem analysis [9,18]. The
5-year interval is also regarded as less autocorrelated than the 1-year interval; therefore,
the modeling can proceed without severe issues [29]. Consequently, the modeling method
with only fixed effects was applied without considering autocorrelation and other random
effects.

Model validity was evaluated by examining the parameter estimates together with
standard error. The significance of p-value with t statistic was also checked to evaluate the
stability of parameters. The coefficient of determination, or R-squared (R2), was calculated
as a fit statistic; however, R2 alone may not be a sufficient metric as the models were fitted
based on nonlinear regression. Accordingly, the root mean squared error (RMSE), the mean
absolute error (MAE), and the mean absolute percentage error (MAPE) were also used to
examine the model performance. The specific equations were as follows:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (1)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(2)

MAE =
∑n

i=1|yi − ŷi|
n

(3)

MAPE =
100%

n ∑n
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣, (4)

where y is a tree parameter such as DBH (cm), height (m), basal area (m2), and stem volume
(m3); yi is the observed value of sample i; ŷi is the predicted value of the sample i; y is the
observed average value; and n is the number of samples.

For the model validation after model fitting, the residual plots of each growth function
were plotted by the variables and species. Additionally, the predicted growth curves with
observed sample points were displayed over tree age. The model bias was analyzed using
these residual plots and scatterplots. The final model for each variable by species was
then selected synthetically, considering the parameter estimates, standard error, p-value, fit
statistics, and the degree of bias in residuals.

Using the models selected by the variables, the total increment was demonstrated
to show the representative growth curve in the age range of collected trees by species.
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Additionally, the CAI and MAI were calculated in simulations by variables. The CAI and
MAI were calculated based on the differential equations and on the integral form divided
by tree age, respectively (Table 2). The CAI and MAI were described separately and
collectively in figures to analyze the validity in terms of the growth pattern and intersecting
point between two types of annual increment curves.

3. Results and Discussion
3.1. Parameters Estimates and Fit Statistics

Generally, all models were adequately fitted, and parameters were estimated without
any singularity or convergence problem (Tables 3–6). The predicted growth curves were
practically identical within the range of observations, but they varied outside the range of
fitted tree age according to innate characteristics of the growth functions (Supplementary
files). The parameters and standard errors ranged within the logical values in accordance
with each growth function characteristic when compared with previous studies [13–17,30].
However, several unstable parameters and standard errors were with insignificant p-value
(p > 0.01). For example, among DBH models, Korf function of Pd was not significant due
to the parameter a (p > 0.01) (Table 3), while all parameters of each function in height
models were significant (Table 4). In the basal area growth models, Korf for Pd and
Pk and Korf, Chapman-Richards, and Weibull for Lk contained insignificant parameters
(p > 0.01) (Table 5). In the case of volume models, Korf function for all species and Weibull
function for Pd and Lk included insignificant parameters (p > 0.01) (Table 6). The logistic
function performed much worse than all other functions in terms of the predicted curve
with an extreme asymptote. Therefore, these models with unstable parameter estimates
and/or unreliable prediction behavior were excluded from the best function (Tables 3–6
and Figures S1–S12).

Table 3. Model parameters of DBH growth functions and indicators of fit.

Species Variables
Parm a Parm b Parm c Fit Statistics

Estimate S.E. Estimate S.E. Estimate S.E. R2 RMSE MAE MAPE

Pinus densiflora
(n = 303)

Logistic 35.7659
(<0.0001) 1.3117 0.0847

(<0.0001) 0.0053 11.8485
(<0.0001) 1.2272 0.8291 4.0989 3.2799 0.5316

Korf 134.3419
(0.0113) 52.7221 10.8703

(<0.0001) 1.6634 0.5042
(<0.0001) 0.1035 0.8412 3.9507 3.1056 0.3499

Gompertz 39.8321
(<0.0001) 1.9710 3.3558

(<0.0001) 0.1921 0.0499
(<0.0001) 0.0040 0.8375 3.9962 3.1779 0.4498

Chapman-
Richards

47.4990
(<0.0001) 4.7042 0.0278

(<0.0001) 0.0053 1.6201
(<0.0001) 0.1748 0.8410 3.9537 3.1232 0.3843

Weibull 44.1380
(<0.0001) 4.2293 0.0047

(<0.0001) 0.0010 1.4011
(<0.0001) 0.0886 0.8405 3.9590 3.1357 0.3984

Pinus koraiensis
(n = 324)

Logistic 37.5633
(<0.0001) 0.6866 0.0980

(<0.0001) 0.0040 12.7995
(<0.0001) 1.0008 0.9125 3.2541 2.5803 0.4549

Korf 82.1652
(<0.0001) 9.9198 14.0460

(<0.0001) 1.8092 0.7005
(<0.0001) 0.0657 0.9315 2.8781 2.1464 0.1926

Gompertz 40.3021
(<0.0001) 0.9038 3.5817

(<0.0001) 0.1525 0.0606
(<0.0001) 0.0028 0.9243 3.0261 2.3421 0.3319

Chapman-
Richards

44.5393
(<0.0001) 1.6455 0.0393

(<0.0001) 0.0035 1.8676
(<0.0001) 0.1294 0.9294 2.9217 2.2029 0.2484

Weibull 42.2732
(<0.0001) 1.5261 0.0047

(<0.0001) 0.0007 1.4882
(<0.0001) 0.0567 0.9280 2.9509 2.2372 0.2784
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Table 3. Cont.

Species Variables
Parm a Parm b Parm c Fit Statistics

Estimate S.E. Estimate S.E. Estimate S.E. R2 RMSE MAE MAPE

Larix kaempferi
(n = 314)

Logistic 30.9468
(<0.0001) 0.8779 0.1130

(<0.0001) 0.0069 10.8427
(<0.0001) 1.1272 0.8507 3.6823 2.8871 0.5809

Korf 86.7510
(0.0002) 22.6673 9.5077

(<0.0001) 1.2776 0.5696
(<0.0001) 0.0951 0.8744 3.3769 2.5151 0.2813

Gompertz 33.3797
(<0.0001) 1.2273 3.2992

(<0.0001) 0.1944 0.0708
(<0.0001) 0.0051 0.8634 3.5213 2.7202 0.4476

Chapman-
Richards

39.1338
(<0.0001) 3.0142 0.0398

(<0.0001) 0.0068 1.5779
(<0.0001) 0.1638 0.8712 3.4201 2.5994 0.3629

Weibull 37.5837
(<0.0001) 3.1412 0.0091

(<0.0001) 0.0016 1.3459
(<0.0001) 0.085 0.8701 3.4339 2.6253 0.3937

S.E.: standard error. R2: coefficient of determination. RMSE: root mean squared error. MAE: mean absolute error.
MAPE: mean absolute percentage error.

Table 4. Model parameters of height growth functions and indicators of fit.

Species Variables
Parm a Parm b Parm c Fit Statistics

Estimate S.E. Estimate S.E. Estimate S.E. R2 RMSE MAE MAPE

Pinus densiflora
(n = 331)

Logistic 18.7523
(<0.0001) 0.3992 0.1097

(<0.0001) 0.0055 12.763
(<0.0001) 1.2794 0.8825 2.0430 1.5882 0.3479

Korf 38.8374
(<0.0001) 5.6742 12.832

(<0.0001) 2.1414 0.7140
(<0.0001) 0.0871 0.8848 2.0225 1.5436 0.2555

Gompertz 20.1584
(<0.0001) 0.5500 3.5208

(<0.0001) 0.1950 0.0674
(<0.0001) 0.0039 0.8883 1.9921 1.5135 0.2848

Chapman-
Richards

21.7626
(<0.0001) 0.9170 0.0460

(<0.0001) 0.0049 1.8879
(<0.0001) 0.1715 0.8886 1.9890 1.5016 0.2519

Weibull 20.5390
(<0.0001) 0.7875 0.0055

(<0.0001) 0.0011 1.5140
(<0.0001) 0.0718 0.8890 1.9857 1.4970 0.2588

Pinus koraiensis
(n = 351)

Logistic 20.5229
(<0.0001) 0.2727 0.1128

(<0.0001) 0.0037 11.6502
(<0.0001) 0.7722 0.9348 1.6225 1.3120 0.2559

Korf 41.1095
(<0.0001) 3.2831 11.3164

(<0.0001) 1.0129 0.6949
(<0.0001) 0.0485 0.9510 1.4074 1.0828 0.1383

Gompertz 21.7925
(<0.0001) 0.3299 3.3721

(<0.0001) 0.1156 0.0706
(<0.0001) 0.0024 0.9461 1.4761 1.1706 0.1881

Chapman-
Richards

23.6574
(<0.0001) 0.5455 0.0459

(<0.0001) 0.0029 1.7276
(<0.0001) 0.0914 0.9504 1.4154 1.0956 0.1468

Weibull 22.8045
(<0.0001) 0.5183 0.0082

(<0.0001) 0.0009 1.4080
(<0.0001) 0.0417 0.9492 1.4326 1.1195 0.1621

Larix kaempferi
(n = 321)

Logistic 24.6783
(<0.0001) 0.4069 0.1341

(<0.0001) 0.0063 9.8793
(<0.0001) 0.8678 0.8995 2.4378 1.9596 0.2788

Korf 48.1994
(<0.0001) 5.3799 9.2619

(<0.0001) 1.0353 0.6928
(<0.0001) 0.0697 0.9156 2.2340 1.7319 0.1806

Gompertz 26.0162
(<0.0001) 0.5230 3.1811

(<0.0001) 0.1575 0.0873
(<0.0001) 0.0044 0.9095 2.3140 1.8123 0.2247

Chapman-
Richards

28.1977
(<0.0001) 0.9276 0.0570

(<0.0001) 0.0055 1.6441
(<0.0001) 0.1279 0.9142 2.2528 1.7540 0.2001

Weibull 27.2797
(<0.0001) 0.9147 0.0133

(<0.0001) 0.0019 1.3617
(<0.0001) 0.0599 0.9132 2.2658 1.7651 0.2093
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Table 5. Model parameters of basal area growth functions and indicators of fit.

Species Variables
Parm a Parm b Parm c Fit Statistics

Estimate S.E. Estimate S.E. Estimate S.E. R2 RMSE MAE MAPE

Pinus densiflora
(n = 303)

Logistic 0.1222
(<0.0001) 0.0075 0.0824

(<0.0001) 0.0054 40.6221
(<0.0001) 6.0108 0.7974 0.0132 0.0098 9.3810

Korf 1.2308
(0.2652) 1.1027 20.7981

(0.0001) 5.3120 0.5068
(0.0005) 0.1447 0.8092 0.0128 0.0090 1.5625

Gompertz 0.1578
(<0.0001) 0.0161 5.3828

(<0.0001) 0.3859 0.0384
(<0.0001) 0.0039 0.8067 0.0129 0.0093 4.8037

Chapman-
Richards

0.2152
(<0.0001) 0.0486 0.0215

(0.0002) 0.0056 2.6596
(<0.0001) 0.3882 0.8088 0.0128 0.0091 2.3751

Weibull 0.1632
(<0.0001) 0.0281 0.0002

(0.0081) 0.0001 2.0586
(<0.0001) 0.1441 0.8079 0.0128 0.0092 3.0804

Pinus koraiensis
(n = 324)

Logistic 0.1300
(<0.0001) 0.0043 0.0902

(<0.0001) 0.0043 37.9451
(<0.0001) 4.1735 0.9000 0.0112 0.0082 9.7820

Korf 0.7276
(0.0153) 0.2985 22.6280

(<0.0001) 4.5783 0.6046
(<0.0001) 0.1010 0.9141 0.0104 0.0068 0.6608

Gompertz 0.1581
(<0.0001) 0.0085 5.3982

(<0.0001) 0.2984 0.0449
(<0.0001) 0.0030 0.9103 0.0106 0.0073 4.2698

Chapman-
Richards

0.1992
(<0.0001) 0.0226 0.0272

(<0.0001) 0.0042 2.7702
(<0.0001) 0.2860 0.9131 0.0104 0.0070 1.6581

Weibull 0.1597
(<0.0001) 0.0145 0.0003

(0.0002) 0.0001 2.0530
(<0.0001) 0.1011 0.9118 0.0105 0.0072 2.5677

Larix kaempferi
(n = 314)

Logistic 0.1048
(<0.0001) 0.0093 0.0976

(<0.0001) 0.0086 35.2623
(<0.0001) 5.8297 0.7502 0.0137 0.0089 10.6329

Korf 9.3665
(0.7741) 32.6058 14.8994

(<0.0001) 0.6978 0.2927
(0.1204) 0.1880 0.7567 0.0135 0.0082 2.1481

Gompertz 0.1420
(<0.0001) 0.0238 4.9745

(<0.0001) 0.3850 0.0440
(<0.0001) 0.0066 0.7550 0.0136 0.0085 6.1127

Chapman-
Richards

0.2583
(0.1026) 0.1578 0.0178

(0.1013) 0.0108 2.1727
(<0.0001) 0.4391 0.7567 0.0136 0.0083 2.9777

Weibull 0.1616
(0.0201) 0.0691 0.0004

(0.0039) 0.0001 1.9114
(<0.0001) 0.2065 0.7567 0.0135 0.0083 3.3699

In addition, goodness-of-fit was examined with R2, RMSE, MAE, and MAPE. Some of
the models presented the best-fit statistics (Tables 3–6). The functions with best-fit statistics
differed among variables and species, even though the metrics were comparable in some
cases. Residual plots were also plotted over the predicted values and independent variable,
which was tree age. No model showed an unusual or biased residual trend in variables
and species (Supplementary files). When the predicted growth curve regarding total
increment was graphically illustrated with observed sample points, the predicted lines over
age generally traversed in the center of observations, and this characteristic represented
the reasonable model fit. The biological concepts were examined assuming that tree size
followed a sigmoid growth, and the CAI and MAI intersected at a mature stage. The
prediction suitability, such as asymptote, growth rate, and inflection point, was evaluated
for the final model selection in addition to the statistical assessment (Supplementary files).
Considering all these evaluations, namely parameter estimates, fit statistics, residuals, and
prediction suitability, we selected the best growth function for each variable. Consequently,
the selected models were Chapman-Richards function for DBH and stem volume, Korf
function for height, and Gompertz function for basal area.
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Table 6. Model parameters of stem volume growth functions and indicators of fit.

Species Variables
Parm a Parm b Parm c Fit Statistics

Estimate S.E. Estimate S.E. Estimate S.E. R2 RMSE MAE MAPE

Pinus densiflora
(n = 303)

Logistic 1.2895
(<0.0001) 0.085 0.0899

(<0.0001) 0.0061 88.0312
(<0.0001) 16.9867 0.7866 0.1326 0.0891 6.8688

Korf 8.2089
(0.1461) 5.6334 43.3596

(0.0265) 19.4449 0.7223
(0.0001) 0.1831 0.7957 0.1298 0.0817 1.0726

Gompertz 1.7361
(<0.0001) 0.204 7.1821

(<0.0001) 0.6973 0.0394
(<0.0001) 0.0043 0.7946 0.1301 0.0832 2.6467

Chapman-
Richards

2.1471
(<0.0001) 0.4443 0.0268

(<0.0001) 0.0060 4.0338
(<0.0001) 0.7078 0.7955 0.1298 0.0820 1.4566

Weibull 1.5350
(<0.0001) 0.2069 0.00002

(0.0767) 0.00001 2.6495
(<0.0001) 0.1816 0.7944 0.1302 0.0832 2.1675

Pinus koraiensis
(n = 323)

Logistic 1.6238
(<0.0001) 0.0694 0.0844

(<0.0001) 0.0037 64.6695
(<0.0001) 6.4897 0.9200 0.1030 0.0756 12.2879

Korf 45.0916
(0.299) 43.3502 22.8314

(<0.0001) 3.4632 0.444
(<0.0001) 0.0999 0.9337 0.0937 0.0591 0.8214

Gompertz 2.3206
(<0.0001) 0.1952 6.2032

(<0.0001) 0.2834 0.0358
(<0.0001) 0.0026 0.9299 0.0964 0.0649 4.8052

Chapman-
Richards

3.8923
(0.0001) 0.9583 0.0175

(<0.0001) 0.0040 2.9132
(<0.0001) 0.2992 0.9328 0.0944 0.0613 1.7015

Weibull 2.5051
(<0.0001) 0.4821 0.00005

(<0.0001) 0.00001 2.2834
(<0.0001) 0.1106 0.9318 0.0951 0.0635 2.5439

Larix kaempferi
(n = 313)

Logistic 1.2817
(<0.0001) 0.1067 0.1126

(<0.0001) 0.0092 81.0024
(<0.0001) 17.1789 0.7870 0.1495 0.0902 12.8173

Korf 21.2675
(0.5182) 32.8801 25.1394

(0.0083) 9.4589 0.5363
(0.0164) 0.2222 0.7885 0.1489 0.0834 0.5679

Gompertz 1.8400
(<0.0001) 0.3157 6.7796

(<0.0001) 0.7206 0.0475
(<0.0001) 0.0068 0.7892 0.1487 0.0850 4.3490

Chapman-
Richards

2.5000
(0.0066) 0.9134 0.0293

(0.0048) 0.0103 3.5893
(<0.0001) 0.7982 0.7891 0.1487 0.0835 1.2202

Weibull 1.4885
(<0.0001) 0.2979 0.00003

(0.1138) 0.00002 2.6557
(<0.0001) 0.2351 0.7899 0.1484 0.0837 1.9647

3.2. Growth Simulation and Characteristics

After determining the most suitable model for each variable, the total increment, CAI,
and MAI were visually displayed to examine growth patterns over age and compare them
between species (Figures 2–5). Although the predicted sigmoid growth curves traversed
the observed sample points properly, it should be noted that some trees could have a larger
tree size than the estimated asymptote because the parameters were fitted for unbiased,
accurate predictions (Figure 2).
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Lk: Larix kaempferi.
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Figure 4. Simulated current annual increment and mean annual increment of DBH, height, basal
area, and stem volume in different species. The best models by variables are based on fit statistics
and model performance of the results; the selected growth functions are Chapman-Richards for DBH
and stem volume, Korf for height, and Gompertz for basal area.

The age at maximum growth differed according to the variable and species. The total
increment in DBH in Lk followed a similar pattern to that in Pk until 40 years of age, but
later, Pk was the largest among species (Figure 3). The age at which the DBH reached a
diameter of 30 cm was 50 years for Pd, 42 years for Pk, and 47 years for Lk. In contrast,
Lk constantly showed a superior growth in height compared to Pd and Pk. The height at
40 years of age, an average felling age for the species in South Korea, was 15 m for Pd,
17 m for Pk, and 23 m for Lk. The inflection point in both the DBH and height curve was
situated at an early age, and then the growth decreased reaching the asymptote, which is
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concave with respect to the Y-axis as reported in many other studies on DBH and height
growth [30–34].
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Figure 5. Simulated annual increment by tree size variables and species to examine current annual
increment (CAI) and mean annual increment (MAI). The best models by variables are based on fit
statistics and model performance of the results; the selected growth functions are Chapman-Richards
for DBH and stem volume, Korf for height, and Gompertz for basal area.

The order of basal area by species was similar to that of DBH, but the basal area of
Pk was largest after 35 years of age, followed by that of Lk and Pd. However, the volume
curve was distinct from that of the other variables. The volume was larger in Lk than in Pd
and Pk from an early age, and this trend continued (Figure 3). The age with 1 m3 of stem
volume was the shortest, with 51 years for Lk, followed by 56 years for Pk and 65 years for
Pd. Moreover, the volume presented vigorous growth even after the age at the inflection
point of other variables, which stood for concave shape with respect to the Y-axis. In other
words, the asymptote pattern of the basal area appeared later, at nearly 80 years of age, and
that of the volume was not clearly defined until 100 years of age (Figure 3).

This concurs with the results of previous studies on volume growth [35–40]. Addi-
tionally, the one-dimensional growth pattern, such as DBH and height, was similar to
that reported in previous studies [13–16]. However, the growth of a two- (basal area)
or three-dimensional size (stem volume) exhibited a constant incremental pattern as the
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sigmoidal asymptote was not apparent and the pattern was further prolonged. It should
be noted that the growth characteristics in our study were analyzed at the tree level, and
carrying capacity was not considered at the stand level.

The growth characteristics, such as maximum growth and inflection point, became
clearer when the CAI and MAI were analyzed (Figure 4). In the CAI analysis, the age with
maximum increment differed among species, and it was in the range of 10–17 years for
DBH, 5–10 years for height, 36–44 years for basal area, and 45–61 years for stem volume
(Figure 4). The order of age with maximum increment was the same in MAI, but the
culmination of MAI for each variable occurred at an older age than that of CAI in all species
(Figure 4). Thus, the age with maximum MAI among species was 21–32 years for DBH,
15–22 years for height, 58–69 years for basal area, and 74–106 years for stem volume.

When CAI and MAI were analyzed by variables and species, the growth pattern and
characteristics were evident in regard to the culmination, intersecting point, and its age
(Figure 5). For DBH and height growth, the age of the intersection point was earliest in Lk,
followed by that in Pk and Pd. For basal area growth, the age intersection points by species
were in the same order as that for DBH and height growth, although these points were
reached at a later age. Lee et al. [41] reported that CAI of Pd in DBH was mostly less than
0.5 cm year–1 after 40 years of age, which was analogous to our results. In volume growth,
the age at the intersection point was different from the other variables: 86 years for Pd,
106 years for Pk, 74 years for Lk. This indicated that stem volume growth before 70 years of
age was incremental at individual trees level (Figure 5). Similar results were reported in
studies on the stem volume growth of Japanese cedar (Cryptomeria japonica (Thunb. ex L.f.)
D.Don) [42] and basal area growth of Norway spruce (Picea abies (L.) H. Karst.) [39]. This
resulted from the three-dimensional growth of stem volume being influenced by both basal
area and height.

The CAI and MAI of the stem volume can be different from those of the basal area
because the stem volume is a three-dimensional growth that combines DBH and height.
Consequently, the age at the intersection of CAI and MAI varied by tree size variable and
species in our study (Figure 5). This is considered the usual increment trend of the major
coniferous species in South Korea. Nonetheless, it is noteworthy that the age for maximum
growth of an individual tree does not conform with the age at the stand level. This is
because the stand dynamics, including between-tree competition for resources, mortality,
and ingrowth, were not taken into account [11]. Therefore, long-term monitoring with
repeated measurements using permanent plots is considered indispensable and must be
carried out persistently to study the growth and yield of a forest stand.

3.3. Model Evaluation and Applicability

Although the best models fit well with significant parameters and are statistically sup-
ported (Tables 3–6), tree ages should be verified when predicting the dependent variables
of tree size. The best model was validated as unbiased and accurate within the sample
range. However, there is still uncertainty beyond the modeling range because the age
range of samples collected was covered restrictively and differed among species (Table 1,
Figures 4 and 5). The growth curves could be changed with additional data on the age
range; thus, they should be carefully handled for extrapolation. The spatial range should
be referenced for application as the samples were collected from the stands of each species
in Gangwon and North Gyeongsang provinces of South Korea. Those regions are known
as suitable and favorable sites in South Korea for Pd, Pk, and Lk [43].

Moreover, tree parameters, especially those related to diameter growth such as DBH,
basal area, and stem volume, were regarded to be linked to stand density. Thus, the stand
density should be referenced as the background when examining the growth status of
sample trees. The trees sampled in the present study were dominant or codominant in
the plots where the relative density was higher than 0.7. These plots represent dense
stands, where the growth of biometric features, for example, diameter vs. height, may
differ from that in low-density stands [24,25]. Nevertheless, the study plots cannot be
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considered as unthinned stands because the history of silvicultural treatments and stand
density during the entire period of tree growth is unknown. Even though some variations
cannot be removed due to the inherent background of sample trees, the selected models
were assessed to offer the representative growth curve for each tree size variable by species.
Thus, the developed models in this study were considered to be helpful for understanding
and managing the target species.

4. Conclusions

This study aimed to fit the model parameters and examine growth characteristics for
major tree size variables of Pd, Pk, and Lk using the widely used sigmoid growth functions
in forest biometrics. The selection of applied growth functions for all species was based
on variables such as Chapman-Richards for DBH and stem volume, Korf for height, and
Gompertz for the basal area. The final models revealed the applicable parameter estimates
and properly depicted the overall growth pattern and characteristics of the trees. Contrary
to DBH and height, the total increment of stem volume showed convex growth curves with
respect to the Y-axis, suggesting that the volume pattern in three-dimensional growth was
different from the one-dimension growth of DBH and height. Additionally, the age with
maximum CAI and MAI was different among species and variables. The earliest age by
variable was height, followed by DBH and basal area, and volume.

When using the models, especially for DBH, basal area, and volume, the applied
stand density should be referenced because the size can vary with stand density. The
temporal and spatial range should be noted for unbiased estimation, for example, for
tree age and study area in the data, because it could lead to extrapolation and possibly
unstable prediction outside the modeling range. The developed models were based on
the growth characteristics of a tree in each stand; thus, they do not represent growth and
yield characteristics at the stand level. Even though the sample data may not include
tree growth characteristics from all stand conditions, our results provided the general
growth patterns appropriately for the target species. Therefore, our model parameters and
simulated growth patterns can be used as references to predict tree size by variables and
understand growth characteristics for Pd, Pk, and Lk, particularly in South Korea.
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