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ABSTRACT

Estimating the efficiency of N utilization for milk 
production (MNE) of individual cows at a large scale is 
difficult, particularly because of the cost of measuring 
feed intake. Nitrogen isotopic discrimination (Δ15N) 
between the animal (milk, plasma, or tissues) and its 
diet has been proposed as a biomarker of the efficiency 
of N utilization in a range of production systems and 
ruminant species. The aim of this study was to assess 
the ability of Δ15N to predict the between-animal vari-
ability in MNE in dairy cows using an extensive data-
base. For this, 20 independent experiments conducted 
as either changeover (n = 14) or continuous (n = 6) 
trials were available and comprised an initial data set 
of 1,300 observations. Between-animal variability was 
defined as the variation observed among cows sharing 
the same contemporary group (CG; individuals from 
the same experimental site, sampling period, and di-
etary treatment). Milk N efficiency was calculated as 
the ratio between mean milk N (grams of N in milk per 
day) and mean N intake (grams of N intake per day) 
obtained from each sampling period, which lasted 9.0 ± 
9.9 d (mean ± SD). Samples of milk (n = 604) or plas-
ma (n = 696) and feeds (74 dietary treatments) were 
analyzed for natural 15N abundance (δ15N), and then 
the N isotopic discrimination between the animal and 
the dietary treatment was calculated (Δ15n = δ15Nanimal 

− δ15Ndiet). Data were analyzed through mixed-effect 
regression models considering the experiment, sampling 
period, and dietary treatment as random effects. In ad-
dition, repeatability estimates were calculated for each 
experiment to test the hypothesis of improved predic-
tions when MNE and Δ15N measurements errors were 
lower. The considerable protein mobilization in early 
lactation artificially increased both MNE and Δ15N, 
leading to a positive rather than negative relationship, 
and this limited the implementation of this biomarker 
in early lactating cows. When the experimental errors 
of Δ15N and MNE decreased in a particular experiment 
(i.e., higher repeatability values), we observed a greater 
ability of Δ15N to predict MNE at the individual level. 
The predominant negative and significant correlation 
between Δ15N and MNE in mid- and late lactation 
demonstrated that on average Δ15N reflects MNE 
variations both across dietary treatments and between 
animals. The root mean squared prediction error as a 
percentage of average observed value was 6.8%, indicat-
ing that the model only allowed differentiation between 
2 cows in terms of MNE within a CG if they differed by 
at least 0.112 g/g of MNE (95% confidence level), and 
this could represent a limitation in predicting MNE 
at the individual level. However, the one-way ANOVA 
performed to test the ability of Δ15N to differentiate 
within-CG the top 25% from the lowest 25% individu-
als in terms of MNE was significant, indicating that it 
is possible to distinguish extreme animals in terms of 
MNE from their N isotopic signature, which could be 
useful to group animals for precision feeding.
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INTRODUCTION

Dairy products are important sources of food protein 
along with a range of other essential nutrients (Visioli 
and Strata, 2014), and their increased consumption is 
driven by the growth of the world human population 
and their average incomes (Scott, 2017). Total food 
production is a significant contributor to global green-
house gas emissions, which are undeniably related to 
climate change (Clark et al., 2020; Ocko et al., 2021). 
There are 2 main sources of environmental pollution 
in livestock systems: greenhouse gas emissions per se 
(carbon dioxide, methane, and nitrous oxide; Uwizeye 
et al., 2020; Ocko et al., 2021) and the negative impact 
of excreta (mainly N and P) on the quality of surface 
and ground water (Castillo et al., 2000; Uwizeye et al., 
2020). In this context, mitigation strategies for the live-
stock industry are highly needed (Uwizeye et al., 2020).

In the lactating cow, the efficiency of N utilization 
for milk production (MNE; g of milk N/g of N intake) 
is commonly used to describe the conversion of feed N 
inputs into dairy products (Cantalapiedra-Hijar et al., 
2016) and also as an indicator of N losses to the envi-
ronment (Jonker et al., 1998; Castillo et al., 2000; Nou-
siainen et al., 2004). The main constraint to collection 
of accurate estimations of MNE at the individual cow 
level is the determination of feed intake, which is costly 
and laborious (Hellwing et al., 2015). The identifica-
tion and consolidation of techniques to predict MNE 
accurately from easy-to-collect samples will contribute 
to the design of feed rations according to nutritional 
status and to increasing the collection of records for 
breeding programs (Brito et al., 2021).

In the context of animal physiology, a biomarker can 
be defined as “a naturally occurring molecule, gene, 
or characteristic by which a particular pathological or 
physiological process, disease, etc., can be identified or 
referred to” (Oxford Dictionary; https:​/​/​www​.lexico​
.com). Ruminants have an effective internal N recycling 
system, where most of the excess dietary N is converted 
to urea in the liver through ureagenesis, designed to 
avoid toxic effects if ammonia enters the systemic circu-
lation (Lapierre et al., 2005). In turn, urea is transport-
ed from the plasma to other body fluids such as saliva 
to be recycled, as well as to the kidneys to be excreted. 
Because of its low molecular weight and neutral charge, 
urea easily diffuses across cellular membranes where it 
is incorporated to milk as MUN (Jonker et al., 1998). 
On this basis, MUN has been proposed as a biomarker 
for MNE and N excretion in dairy cows. However, the 
evidence regarding the potential of this biomarker to 
reflect the between-animal variation in MNE (Spek et 

al., 2013; Huhtanen et al., 2015) and its association 
with N partitioning at the individual animal level (Spek 
et al., 2013; Beatson et al., 2019) is inconclusive.

Alternatively, the natural 15N abundance (δ15N; 
15N/14N ratio relative to atmospheric N2) in animal 
protein is a promising biomarker for predicting MNE 
because of its direct link with ruminal microbial N 
metabolism (Wattiaux and Reed, 1995) and with the 
catabolism of AA in the liver (Cantalapiedra-Hijar et 
al., 2015). In short, it has been demonstrated across 
a variety of conditions and species that 15N natural 
abundance in animal proteins is higher than in the 
diet consumed (Deniro and Epstein, 1981) and that N 
isotopic discrimination (Δ15N = δ15Nanimal − δ15Ndiet) 
is negatively correlated with N use efficiency (NUE), 
estimated as g of milk N or retained body N per grams 
of N intake (Cantalapiedra-Hijar et al., 2018). This dis-
crimination phenomenon has been confirmed to differ 
at the individual level, which could be advantageous 
in the attempt to rank ruminants reared under similar 
conditions for NUE (Cheng et al., 2013; Cantalapiedra-
Hijar et al., 2018) or for feed efficiency (Wheadon et 
al., 2014; Guarnido-Lopez et al., 2021). However, not 
all studies found a significant negative relationship be-
tween MNE and Δ15N in lactating dairy cows (Cheng et 
al., 2011; Chen et al., 2020). In a recent study by Chen 
et al. (2020), the N isotopic signatures were strongly in-
fluenced by protein mobilization occurring during early 
lactation, and this resulted in positive, rather than 
negative, associations with MNE. Another explanation 
for the disparity in the associations between MNE and 
Δ15N could be related to a high experimental error as-
sociated with the measurements of N intake, milk N, 
or N isotopic signatures. This experimental error can 
be assessed statistically by analyzing the consistency 
of repeated measurements (Harper, 1994). Although 
guidelines and quality standards for measuring these 
traits exist, it has been hypothesized that higher re-
peatability values (i.e., lower experimental errors) of 
both NUE and Δ15N measurements could lead to im-
proved model MNE prediction.

In the present study, we explored the ability of Δ15N 
to predict between-animal variability in terms of MNE 
in lactating dairy cows and potential factors affecting 
the prediction ability of Δ15N. In our previous meta-
analysis (Cantalapiedra-Hijar et al., 2018), the asso-
ciation between NUE and Δ15N was explored as the 
proof of concept from a range of ruminant species and 
production conditions, employing a smaller data set. 
The present study brings an update and refinement 
of the model, with a larger data set comprising only 
lactating dairy cows.

Correa-Luna et al.: BIOMARKER FOR MILK N USE EFFICIENCY IN DAIRY COWS
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MATERIALS AND METHODS

Experimental Data

A database including individual animal measure-
ments was created from experiments proposed by the 
partners of the SmartCow Project (grant agreement 
no. 730924), a collaborative EU project aiming at the 
integration of research infrastructures for the European 
cattle sector (https:​/​/​www​.smartcow​.eu). Data origi-
nated from 20 dairy milk production experiments (ID1 
to ID20) conducted in Belgium (n = 1), England (n 
= 1), Finland (n = 2), Denmark (n = 6), and France 
(n = 10). These experiments were conducted as either 
changeover (e.g., Latin square; n = 14) or continuous 
(n = 6) experiments. The initial data set included 
multiple observations from 425 cows (i.e., different 
sampling period and dietary treatments) representing a 
total of 1,300 individual observations of N intake, milk 
N, MNE, and Δ15N. A summary of studies, along with 
their corresponding designs, is presented in Table 1.

Laboratory Analysis and Calculations

For both individual animal observations and dietary 
treatment (DT) means, values of MNE were calcu-
lated as the ratio between milk N (MN, g/d) and N 
intake (NI, g/d), considering all observations of the 
corresponding sampling period (SP) to account for 

daily variability in the observations. Nitrogen intake 
was calculated by multiplying dietary N content (g of 
N/100 g of DM) by the daily DMI corresponding to 
each SP for each cow. In the same manner for those 
experiments not including MN, this was calculated 
from average milk yield and the corresponding milk 
CP percentage reported for the same SP, which ranged 
from 4 to 42 d and averaged 9 d [standard deviation 
(SD) = 9.9]. The large SD corresponds to the differ-
ence in the experimental setup between changeover and 
continuous experiments. It was assumed that milk CP 
contained on average 95% of protein N, and thus total 
N was estimated with the following equation: [(milk 
yield × protein percentage)/6.38]/0.95 (DePeters and 
Ferguson, 1992). Milk composition, including fat, pro-
tein, and lactose, was provided from each independent 
experimental data set and determined by infrared spec-
troscopy.

Samples of plasma (696 samples from 13 experiments) 
or milk (604 samples from 7 experiments) provided by 
the SmartCow partners were processed and analyzed 
for N isotopic signatures at the INRAE laboratory 
(INRAE, Saint-Genès-Champanelle, France). Simi-
lar relationships with NUE were previously reported 
when analyzing Δ15N in either plasma or milk samples 
(Cantalapiedra-Hijar et al., 2018). Thus, only 1 of 
the 2 matrices was analyzed in those occasions where 
samples of plasma and milk were available for a single 
observation. Because the within-sample repeatability of 

Correa-Luna et al.: BIOMARKER FOR MILK N USE EFFICIENCY IN DAIRY COWS

Table 1. Description of experiments included in the present meta-analysis study

Experiment   Design
Sampling 
periods

Dietary 
treatments

 
Reference1

ID1   Changeover 4 2 Saro et al., 2019
ID2   Changeover 2 2 Herremans et al., 2020
ID3   Continuous 36 3 Reynolds et al., 2021
ID4   Continuous 3 4 Pourazad et al., 2021
ID5   Changeover 4 8 Johansen et al., 2017
ID6   Changeover 4 6 Damborg et al., 2019
ID7   Changeover 4 4 Unpublished data2

ID8   Changeover 4 6 Giagnoni et al., 2021
ID9   Changeover 4 4 Unpublished data3

ID10   Changeover 4 4 Martin et al., 2019
ID11   Continuous 4 3 Bayat et al., 2022
ID12   Continuous 13 1 Wallace et al., 2019
ID13   Changeover 2 2 Guyader et al., 2016
ID14   Changeover 2 2 Guyader et al., 2017
ID15   Changeover 4 8 Mendowski et al., 2019
ID16   Changeover 4 4 Mendowski et al., 2020
ID17   Changeover 4 4 Edouard et al., 2018
ID18   Changeover 4 2 Unpublished data4

ID19   Continuous 1 3 Coppa et al., 2020
ID20   Continuous 4 2 Bahloul et al., 2021
1Details of references are included in the Appendix.
2Brask-Pedersen et al. (Department of Animal Science, Aarhus University, Tjele, Denmark).
3Brask-Pedersen et al. (Department of Animal Science, Aarhus University, Tjele, Denmark).
4Edouard et al. (INRAE, Agrocampus-Ouest, PEGASE, Saint-Gilles, France).

https://www.smartcow.eu
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isotopic analysis is always greater when using plasma 
versus milk samples, we decided to prioritize analyzing 
samples of plasma over milk. Once thawed, milk and 
plasma samples were vortex-mixed for homogenization, 
pipetted onto tin capsules, and dried for 24 h at room 
temperature before analysis. Samples were analyzed 
for the determination of N isotopic signatures (δ15N) 
using an isotope-ratio mass spectrometer (Isoprime Vi-
sion; Elementar) coupled to an elemental analyzer (EA 
Vario Cube; Elementar), with glutamic acid used as the 
in-house standard. In the same manner, all dried feed 
ingredients or TMR samples received were analyzed to 
obtain their δ15N values for each dietary treatment and 
measurement period. For this, subsamples of feed ingre-
dients and TMR were weighed into the tin capsules (be-
tween 2 and 4 mg, according to N content). In the case 
of diets comprising separated ingredients, the average 
δ15N of each ingredient was weighted by the percentage 
of N the ingredient represents in the diet to obtain a 
single value of δ15N for each diet and period. To ensure 
reliable δ15N determinations, 2 replicates for milk and 
plasma samples and 3 to 4 replicates for dietary ingre-
dients were analyzed to obtain an average value with 
SD <0.2‰. Then, the isotopic discrimination between 
animal proteins and diet (Δ15N, ‰) was calculated for 
each animal as the δ15N in animal proteins minus δ15N 
of the corresponding diet.

Statistical Analysis

The primary objective of the present study was to 
assess the ability of Δ15N to predict the between-animal 
variability in MNE of lactating dairy cows. Therefore, 
the notion of a contemporary group (CG) is defined 
here as a set of experimental animals sharing the same 
DT and SP within a particular experiment (i.e., ani-
mals fed the same diet, at the same time and place). 
According to this definition, an experiment with a 4 
× 4 Latin square design would have 16 CG, unless the 
period effect was not observed significant, in which 
case there would be only 4 CG (further explained). 
Between-animal variability will then be approached 
in the present study, through different statistical ap-
proaches, as the variance within CG, also including 
the experimental error in addition to the true animal 
variance. Consequently, when discussing the between-
animal variability or relationships between 2 variables 
at the individual level, we refer to the within-CG level. 
For experiments containing CG with 3 or fewer obser-
vations (10 out of 20), a preliminary adjustment by SP 
was conducted on MN, NI, Δ15N, and MNE, according 
to the methodology described by St-Pierre (2001). For 
this, data were adjusted by SP using a simple linear 
model with SP (within experiment) as fixed factor, and 

then the obtained residuals were added to the mean 
value (i.e., intercept) for that experiment. In situations 
where the period effect was not significant (P > 0.05), 
all animals sharing the same dietary treatment within 
experiment were considered as a CG. This process al-
lowed us to include those CG with a limited number 
of observations (e.g., in the case of experiments with 
an unreplicated Latin square design). Otherwise, it 
would not have been possible to calculate regressions 
for those conditions with a low number of observations. 
For continuous variables, the distribution of values was 
checked for normality and analyzed for outliers (biolog-
ically impossible or unlikely values) using the boxplot 
function in R software version 3.7.2 (R Development 
Core Team, 2009). Observations with a residual beyond 
± 3 SD were rejected if biological reasons justified their 
elimination.

Sources of Variation for N Isotopic  
Discrimination and MNE

Estimates of variance components were evaluated 
using a random intercept model, through the ‘nlme’ 
package (version 3.1-153) using R software with experi-
ment, DT within experiment, and SP within experi-
ment as grouping random factors. In this analysis, the 
sources of variability for MN, NI, Δ15N, and MNE were 
separately analyzed using the following model:

	 Yij = β0 + βi + eij,	 [1]

where Yij is the observed variable (MN, NI, Δ15N, or 
MNE) for observation j in group i, β0 is the mean value 
for the population, βi is the random variable represent-
ing the deviation for the population mean for the ith 
group, and eij is the random variable error for observa-
tion j in group i. The residual error of this model repre-
sented the within-CG variance and thus included both 
the between-animal variability and the experimental 
error.

Repeatability accounts for the contribution of in-
dividual animal variability to the total variance not 
explained by the known experimental factors. In other 
words, repeatability provides an estimate of the cor-
relation between values from consecutive measurements 
conducted on the same cow once the known experimen-
tal factors (dietary treatment and experimental period 
within the same experiment) have been accounted for. 
The repeatability of MN, NI, Δ15N, and MNE was 
calculated for each experiment separately with the fol-
lowing equation:

	 Repeatability =  +  ,Cow
2

Cow 
2

Residual
2σ σ σ( ) 	 [2]

Correa-Luna et al.: BIOMARKER FOR MILK N USE EFFICIENCY IN DAIRY COWS
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where σCow
2  and σResidual 

2 are the animal variance (be-
tween-animal variability) and experimental error 
(within-animal variability), respectively. Accordingly, 
we estimated σCow

2  and σResidual 
2  for each experiment and 

variable by including the fixed effects of SP and DT 
and the random effect of the cow. In each case, the 
confidence intervals of estimates were checked after fit-
ting the model, to monitor for potential problems in 
model definition (i.e., abnormally wide intervals; Pin-
heiro and Bates, 2000).

Analysis of the Relationship Between MNE  
and N Isotopic Discrimination

Initially, the ‘lmList’ function of the ‘nlme’ package 
(Pinheiro and Bates, 2000) was employed to fit linear 
regressions relating MNE to Δ15N within experiment 
and within diet and experiment separately. The sta-
tistical significance of the response of MNE to Δ15N 
variations was also computed with Pearson correlation 
coefficients and declared significant at P ≤ 0.05.

The relationship between MNE and Δ15N at the 
individual animal level was explored following dif-
ferent statistical approaches. In the first approach, 
the between-animal variability in Δ15N was assessed 
separately along with that of MNE once the random 
effects of the experiment, SP and DT (i.e., between-
CG variability), were removed from the actual values 
(i.e., MNE and Δ15N) according to Equation [1], to 
assess the ability of Δ15N to predict between-animal 
variation. If a relationship between Δ15N and MNE was 
still significant once the between-CG variability was 
removed from actual values, their residuals, the ability 
of the biomarker to capture between-animal variation 
in MNE would be demonstrated (Cantalapiedra-Hijar 
et al., 2018). In addition, a one-way ANOVA on the 
Δ15N residuals of the 25% highest and 25% lowest cows 
in terms of MNE within CG was conducted to test on 
half of the population whether Δ15N allowed us to dif-
ferentiate these 2 contrasting groups of animals.

The second approach involved fitting mixed-effects 
models (St-Pierre, 2001) using the ‘nlme’ package in 
R to test the ability of Δ15N to predict MNE varia-
tions at 2 levels. For this purpose, 2 tiers of equations 
were developed: predictions of MNE variations across 
dietary conditions within experiment using mean di-
etary values (tier 1) and prediction of the within-CG 
variability of MNE using individual observations (tier 
2). Whereas tier 1 models were tested only at the level 
of the superior grouping factor (i.e., experiment level), 
tier 2 models were tested across all grouping factors 
proposed (i.e., experiment, period within experiment, 
and CG random effects). The random effects of these 

structures were tested on the intercept, the slope, or 
both. A general positive-definite matrix was employed 
as variance-covariance structure. These variance-cova-
riance structures obtained from the candidate models 
were evaluated with the Akaike information criterion 
to identify the best random effect structure to predict 
MNE [lowest Akaike information criterion and root 
mean square prediction error (RMSPE)]. Random 
effect structures were always compared using the re-
stricted maximum likelihood method. The general form 
of the mixed-effect model was as follows:

	 Yij = (β0 + b0i) + (β1 + b1i) Xij + eij,	 [3]

where Yij is the MNE observed, Xij corresponds to the 
observed values of Δ15N, β0 and β1 are the fixed effects 
for the intercept and the slope, respectively; bi are the 
random effects of experimental factors; and eij is the 
identically distributed within-group error, assumed to 
be independent of the random effects. The coefficient 
of determination (R2) was determined for all candidate 
models via the ‘r.squaredGLMM’ function of the R 
package ‘MuMIN’ (version 1.43.17). Residuals were 
checked for homoscedasticity (i.e., the dependent vari-
able exhibits similar variance across the range of values 
for an independent variable). The models derived from 
this section were evaluated against the same develop-
mental database (observed vs. predicted). This evalu-
ation focused on evaluating the performance of Δ15N 
to capture the between-animal variation in MNE from 
the selected models based on their best random effect 
structure. For this evaluation, the concordance correla-
tion coefficient (CCC; Lin, 1989) was used, which was 
calculated as

	 CCC = r × Cb,	 [4]

where r is the Pearson correlation coefficient and Cb is 
the bias correction factor. The CCC indicates how far 
the best fit line deviates from the concordance or unity 
line of the observed values predicted values plot. The 
CCC ranges from 0 to 1, with greater values indicat-
ing better model performance. Although the r value 
provides a measure of precision, the CCC is indicative 
of the model accuracy. In addition, the ratio of the RM-
SPE and SD of observed values (RSR) was computed 
to compare the prediction performance of models.

How the Repeatability of Evaluated  
Traits Affects Model Fit

The present study tested the hypothesis that better 
repeatability values of both dependent and independent 

Correa-Luna et al.: BIOMARKER FOR MILK N USE EFFICIENCY IN DAIRY COWS
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variables would enhance model prediction performance. 
The selected mixed-effects model of Δ15N to predict 
MNE resulting from the mixed-effects meta-analysis in 
tier 2 was then evaluated for each experiment sepa-
rately. Then, the coefficients of regression obtained 
during this model evaluation analysis were regressed on 
the repeatability values of MNE and of Δ15N obtained 
separately for each experiment (according to equation 
[2]). These relationships were computed with Pearson 
correlation coefficients and declared significant at P 
≤ 0.05. If the repeatability of MNE and Δ15N values 
significantly correlated with the model fitting, our hy-
pothesis about the influence of measurement precision 
on the ability of Δ15N to predict MNE was accepted.

RESULTS

Description of the Data Set

Descriptive statistics for animal performances and 
diet composition are shown in Table 2. Consistency ex-
isted in the number of observations across animal per-
formance data; however, fewer records were available 
for some of the feed chemical composition variables. 
Only 13% of the data set (165 out of 1,300 observations) 
were from experiments conducted with cows in early 
lactation (<50 DIM on average), with the remaining 

87% of observations corresponding to the mid- and late 
lactation stages (DIM ≥50). Most of the experiments 
were conducted using Holstein Friesian cows, and only 
ID11 and ID12 were conducted using Nordic Red cows. 
From a total of 490 cows, 71% were multiparous. A 
wide range of DT (n = 74) was included in the initial 
data set. Corn silage, grass silage, and grass hay were 
the main forage ingredients used, but they were not 
present in all diets from all experiments. Feed chemical 
composition varied widely as a result of the heterogene-
ity of the experimental diets used in each independent 
experiment. Crude protein and NDF concentrations, 
measured in all experimental diets, averaged 157 and 
379 g/kg of DM, respectively, and ranged from 110 
to 268 and from 202 to 607 g/kg of DM, respectively. 
Large variation was also observed in ADF content, 
which ranged from 131 to 351 g/kg of DM. Based on 
the available information on chemical composition of 
diets, net energy content for lactation averaged 1.56, 
with a range of 1.44 to 1.70 Mcal/kg of DM.

Data Editing for Model Development

In the exploratory analysis of the initial data set, 
it was observed that the relationship between MNE 
and Δ15N in early lactation (DIM <50) was different 
compared with those observed in mid- and late lac-

Correa-Luna et al.: BIOMARKER FOR MILK N USE EFFICIENCY IN DAIRY COWS

Table 2. Descriptions of animal performances and diets from experimental studies

Item n Mean SD Minimum Maximum

Production data          
  Days in milk 1,300 139 83 4 1,074
  DMI, kg/d 1,300 22.4 3.5 12.0 35.4
  BW, kg 1,300 663 79 394 1,033
  Milk yield, kg/d 1,300 32.8 8.05 3.5 60.1
  Milk fat concentration, g/kg 1,300 39.8 5.9 21.1 61.9
  Milk protein concentration, g/kg 1,300 33.5 3.6 25.2 50.6
  Milk lactose concentration, g/kg 1,219 48.5 2.6 37.4 57.1
  Fat:​protein ratio 1,300 1.19 0.16 0.70 1.93
  Fat yield, kg/d 1,300 1.30 0.35 0.13 2.79
  Protein yield, kg/d 1,300 1.09 0.28 0.12 1.96
  Lactose yield, kg/d 1,219 1.58 0.40 0.13 3.05
Feed composition data          
  Diet composition1          
    Concentrate, % of DM 74 37.28 15.27 8.79 82.64
    Corn silage, % of DM 55 30.77 17.66 4.63 75.76
    Grass silage, % of DM 45 42.90 17.17 16.50 70.00
    Grass hay, % of DM 28 22.44 8.88 3.03 35.78
    Urea, % of DM 6 1.40 0.19 0.78 1.78
  Chemical composition2          
    CP, g/kg of DM 74 157 25 110 268
    NDF, g/kg of DM 74 379 94 202 607
    ADF, g/kg of DM 36 241 66 131 351
    Starch, g/kg of DM 52 186 56 92 293
    NEL, Mcal/kg of DM 48 1.56 0.06 1.44 1.70
    OM, g/kg of DM 62 861 94 653 955
1According to diet formulation.
2According to data availability.
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tation (Figure 1). For instance, a strong and positive 
correlation (r = 0.88; P < 0.01) between Δ15N and 
NUE was observed in one of the experiments (ID20), 
conducted with high-producing dairy cows during the 
first 50 d of lactation. Therefore, in the present meta-
analysis we decided to restrict the analysis of MNE to 
mid- and late lactation stages (DIM ≥50) to improve 
modeling quality in terms of MNE prediction accuracy 
by using Δ15N. This resulted in the exclusion of experi-
ment ID20, dedicated to examining the performance 
of 8 cows on 2 diets in the peripartum period (n = 32 
observations), and the removal of some observations 
corresponding to cows in experiments transiting the 
declared early lactation period (Figure 2).

Table 3 describes statistics and repeatability values 
for MN, NI, MNE, and Δ15N for the experiments in-
cluded in this meta-analysis. A large variation in these 
traits was expected due to the contrasting experimental 
methods and designs. For instance, NI ranged from 271 
(ID4) to 1,152 g of N/d (ID5), and average MN ranged 
from 19 (ID9) to 291 g of N/d (ID8). As a result, the 
data set covered a large range of MNE values (from 
0.04 to 0.47 g/g) and showed a moderate variability 
[coefficient of variation (CV) = 13%] in relation to its 
mean value (0.30 g/g). The difference in 15N natural 

abundance between the cow and its diet (Δ15N) aver-
aged 2.143‰ and ranged from 0.101‰ (ID1) to 4.457‰ 
(ID8) across diets and experiments.

The repeatability of all traits across experiments 
varied widely. For instance, repeatability values aver-
aged from 36.1% (for NI in ID14) to 95.3% (for MN in 
ID14). The high overall repeatability values obtained 
for MNE (63.0%) was mainly due to the overall high 
mean repeatability of MN observed across experiments. 
Removing observations from the early lactation period 
(column 3 of Table 3) led to greater repeatability es-
timates for all the variables analyzed when compared 
with the initial data set (column 2 of Table 3).

Sources of Variation for Nitrogen Partitioning  
and N Isotopic Discrimination

This analysis showed that the effect of experiment 
(ID) was the main grouping factor explaining the total 
variance for all traits included (Table 4). For instance, 
more than one-third of the variability observed in 
values for MNE and Δ15N was explained by between-
experiment variability. Around half of the variability 
observed in MN was explained by the experiment effect, 
and the largest source of variation for NI was captured 
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Figure 1. Relationship between milk N efficiency (MNE, g/g) and N isotopic discrimination (Δ15N, ‰) in lactating cows using individual 
values (n = 1,300) for early (solid line and closed circles), mid- (dashed line and open circles), and late lactation (dotted line and open triangles). 
Overall relationships: MNEEARLY = 0.408 − 0.011 × Δ15N [n = 165; R2 = 0.02; residual standard error (RSE) = 0.08; P = 0.08]; MNEMID = 0.388 
− 0.035 × Δ15N (n = 610; R2 = 0.25; RSE = 0.04; P < 0.001); MNELATE = 0.374 − 0.039 × Δ15N (n = 525; R2 = 0.28; RSE = 0.04; P < 0.001).



5011

Journal of Dairy Science Vol. 105 No. 6, 2022

Correa-Luna et al.: BIOMARKER FOR MILK N USE EFFICIENCY IN DAIRY COWS

Figure 2. Diagram illustrating the experiment (ID) compilation, data screening, and model development with its evaluation. AIC = Akaike 
information criterion; RMSPE = root mean square prediction error; CCC = concordance correlation coefficient; RSR = ratio of square root of 
the mean square prediction error to SD of observed values.
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by the dietary treatment effect. Approximately 20% of 
variance was captured by the dietary treatment (diets 
within each sampling period and experiment) in MNE 
and Δ15N. In the same manner, the random effect of 
experimental period further captured around 13% of 
the variability in Δ15N and MNE. Furthermore, the re-
sulting residuals for the variables analyzed were mainly 
due to between-animal variation and to unidentified 
random sources of error (within-animal variation).

Relationship Between MNE and N  
Isotopic Discrimination

The response of MNE to Δ15N variation (slope) was 
negative within experiment for observations from 18 
out of 19 experiments (Figure 3b and Table 3), and was 
different from 0 (P < 0.05) for 14 out of 19 experiments. 
Likewise, although most slopes were negative within 
diet (67 out of 72 diets; Figure 3c), only slopes for 29 
out of 72 diets were different (P < 0.05) from 0, likely 
because the number of observations within diet was 
rather small (mode = 4 observations per condition). A 
high variability in the response of MNE to Δ15N varia-
tion among experiments and dietary treatments was 
thus evident, suggesting the need for different response 
(slope) coefficients across experimental conditions in 
our model.

Relationships Between MNE and N Isotopic 
Discrimination at the Individual Level

When individual data for MNE and Δ15N were in-
dependently adjusted by the random effects of experi-
ment, sampling period (within experiment), and dietary 
treatment (within period and experiment), their residu-
als were still negatively correlated with each other (P 
< 0.001) with a moderate fit (R2 = 0.29; Figure 4). 
Moreover, the one-way ANOVA performed to test the 
ability of Δ15N to differentiate the top 25% from the 
lowest 25% of individuals in terms of MNE within CG 
was statistically significant (P < 0.001; Figure 5), indi-
cating that it is possible to distinguish extreme animals 
in terms of MNE from their N isotopic signature in a 
given CG.

Tier 1 and 2 Models. Table 5 presents the mixed-
effect regression predictive models of MNE from Δ15N. 
These models are displayed according to the data em-
ployed for their development: dietary treatment means 
(tier 1) and individual observations (tier 2). Although 
the overall slope obtained with the different models 
of MNE prediction from Δ15N were all negative and 
highly significant (P < 0.001), the slope of model 4 was 
more pronounced and had a slightly lower error than 
the others (models 2 and 3). Additionally, model 4 had 
a better modeling fit than the model obtained from the 

Correa-Luna et al.: BIOMARKER FOR MILK N USE EFFICIENCY IN DAIRY COWS

Table 4. Variance-component estimates of animal performances, N isotopic discrimination (Δ15N), and milk 
N efficiency (MNE) from experimental studies used in the mixed-effect model analysis

Item1 Mean value ± SD Estimate 95% CI ICC2 (%)

Milk N, g/d (n = 1,135) 168.5 ± 40.1      
  ID   29.1 20.7–41.0 45.3
  SP   0.9 0.1–5.8 1.3
  DT   6.8 4.6–10.1 10.6
  Residual   27.5 26.3–28.7 42.7
N intake, g/d (n = 1,135) 560.7 ± 128.4      
  ID   75.8 48.7–117.9 34.3
  SP   5.8 0.3–98.9 2.6
  DT   73.8 60.1–90.5 33.4
  Residual   65.6 62.6–68.7 29.7
Δ15N, ‰ (n = 1,135) 2.239 ± 0.667      
  ID   0.558 0.386–0.806 42.6
  SP   0.177 0.150–0.209 13.3
  DT   0.286 0.225–0.364 21.8
  Residual   0.289 0.276–0.303 22.1
MNE, g/g (n = 1,135) 0.30 ± 0.05      
  ID   0.067 0.039–0.083 41.0
  SP   0.019 0.015–0.024 13.7
  DT   0.024 0.019–0.032 17.5
  Residual   0.039 0.037–0.041 27.8
1ID = experiment; SP = sampling period within experiment; DT = dietary treatment within period and ex-
periment.
2Intra-class correlation coefficient = total variance explained by the corresponding random variable. For in-
stance, for the nested random variables of DT, it refers to the proportion of variance explained only by the 
dietary treatment from the total variance.
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Figure 3. Relationship between milk N efficiency (MNE) and N isotopic discrimination (Δ15N) in lactating cows using individual values (n 
= 1,135): (a) Simple linear regression analysis {overall relationship: MNE = 0.385 − 0.038 × Δ15N [n = 1,135; R2 = 0.26; residual standard er-
ror (RSE) = 0.04; P < 0.001]}, where open triangles represent multiparous cows and closed circles represent primiparous cows; (b) simple linear 
regression for each independent study (n = 19; within-study regression); (c) simple linear regression analysis for each independent diet (n = 72; 
within-diet regression). In (b) and (c), solid lines represents negative slopes, and dashed lines represents positive slopes. Correlation coefficients 
(and statistical significances) between MNE and Δ15N are presented in Table 3.
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dietary treatment mean observations (model 1). Based 
on the Akaike information criterion, the best mixed-
effects model for Δ15N included the random effects of 
all known experimental factors defining the CG level 
(i.e., experiment, sampling period, and dietary treat-
ment) on both the intercept and the slope; that is the 
most complex model structure (model 4).

Model Evaluation. The overall fit statistics of the 
selected tier 2 model for Δ15N are presented for each 
experiment in Table 6. In line with the fluctuating over-
all correlation between MNE and Δ15N observed from 
one experiment to another (Table 3), it was observed 
that the modeling performance, this time at the CG 
level, varied widely between experiments. Correlation 
coefficients (r) between actual and predicted MNE 
ranged between 0.20 and 0.91, but increases in these 
correlations did not necessarily result in lower RMSPE 
in a given experiment. For instance, ID9 had the high-
est r but also the highest RMSPE. The inclusion of 
RSR, which includes the SD of the observed MNE at 
the CG level, allowed us to evaluate the fitness of the 
selected model on contrasting subsets (experiments).

Analysis of Repeatability for Explaining Variations  
in MNE Prediction Across Studies

A significant correlation was found between the coef-
ficients of regression obtained during model evaluation 
analysis (observed vs. predicted correlation coefficient) 
and the repeatability values of MNE (R2 = 0.49, P = 
0.06; Figure 6a) or Δ15N (R2 = 0.54, P = 0.03; Figure 
6b) obtained separately for each experiment. In other 
words, increases in repeatability of either MNE or Δ15N 
enhanced the prediction fitness of the model.

DISCUSSION

The compilation of experiments conducted across 5 
countries in Europe and resulting in a data set compris-
ing 1,300 individual observations of MNE in lactating 
dairy cows allowed us to explore the ability of Δ15N as 
a candidate biomarker to predict the between-animal 
variability of MNE across a wide range of experi-
mental conditions. In line with previous research, we 
observed that, on average, Δ15N was negatively and 

Correa-Luna et al.: BIOMARKER FOR MILK N USE EFFICIENCY IN DAIRY COWS

Figure 4. Simple linear regression between residuals of milk N efficiency (MNE) in lactating dairy cows and N isotopic discrimination (Δ15N). 
CG = contemporary group. Residuals were obtained when variables were independently adjusted for the random effects of the study, period 
(within study), and diet (within period and study). Equation: MNE = −0.067 (± 0.003) × Δ15N, ‰ [n = 1,135; R2 = 0.29; residual standard 
error (RSE) = 0.028; P < 0.001].
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significantly correlated with MNE at the individual 
level (Cantalapiedra-Hijar et al., 2018), but, in agree-
ment with the recent study by Chen et al. (2020), this 
association could not be confirmed in early lactation, 
given the considerable body protein mobilization oc-
curring at this stage. Finally, we identified that higher 
repeatability estimates for both dependent (MNE) and 
independent variables (Δ15N) resulted in models with 
better prediction fitness.

Associations Between MNE and N Isotopic 
Discrimination in Periparturient Dairy Cows

In the peripartum, dairy cows often undergo a period 
of negative energy balance because of the inability to 
increase energy intake at the same rate at which the en-
ergy requirements for milk production increase (de Vries 
and Veerkamp, 2000; Xu et al., 2018). Body reserves 
are used (mobilized) to compensate for the resulting 
energy deficit, and this could alter the estimations of 
MNE if this phenomenon is not properly accounted for 
(McNamara et al., 2016; Daniel et al., 2017). Unless 
body mobilization is adequately measured (Friggens 
and Newbold, 2007), it is difficult to ascertain how 

much of the feed N intake is actually contributing to 
the total N supply for milk synthesis.

In the same way as MNE measurements, N isotopic 
signatures are affected by protein mobilization occur-
ring during early lactation. Recently, a study by Chen 
et al. (2020) tested the ability of milk isotopic signa-
tures (15N and 13C) to predict MNE, energy balance, 
and milk production of early lactation cows. Our results 
support their conclusions and suggest that the natural 
15N enrichment of animal proteins relative to the diet 
(Δ15N) could have some drawbacks and limitations 
when dairy cows are experiencing net protein mobili-
zation. Indeed, it is well demonstrated from ecophysi-
ological research and human longitudinal studies that 
protein mobilization and body weight loss may lead 
to greater 15N enrichment of animal pools relative to 
diets received (Fuller et al., 2005; Barboza and Parker, 
2006). This is because organisms are using their own 
already 15N-enriched proteins in addition to N from the 
diet for maintenance or functional purposes. The study 
by Chen et al. (2020) observed a positive and linear 
correlation of 0.55 between Δ15N and MNE in healthy 
cows from 4 to 11 wk postpartum. In the present study, 
a strong and positive correlation between Δ15N and 

Correa-Luna et al.: BIOMARKER FOR MILK N USE EFFICIENCY IN DAIRY COWS

Figure 5. Within-contemporary group (CG) values for N isotopic discrimination (Δ15N) in the top 25% highest and lowest efficient animals 
within CG, according to milk N efficiency (MNE). Error bars represent SEM.
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MNE was observed in one of the experiments (ID20) 
conducted with high-producing dairy cows in the early 
lactation stage (Correa-Luna et al., 2021). Moreover, 

the coefficient of determination (R2) between MNE and 
Δ15N in the present study for observations across all 
experiments in the first 50 d of lactation was lower 

Correa-Luna et al.: BIOMARKER FOR MILK N USE EFFICIENCY IN DAIRY COWS

Figure 6. Relationship between mixed-effects model of milk N efficiency (MNE) from N isotopic discrimination (Δ15N; MNE = 0.415 − 0.052 
× Δ15N) model evaluation (correlation coefficient between observed vs. predicted MNE) at the within-study level (Table 5) and repeatability 
of either (a) MNE (R2 = 0.49; P = 0.06) or (b) Δ15N (R2 = 0.54; P = 0.03). Experiments ID12, ID13, and ID19 are not included because they 
lack repeated measurements.
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(R2 = 0.02) and nonsignificant compared with the R2 
obtained from the mid- and late lactation stages (Fig-
ure 1). In early lactation, body protein mobilization 
contributes to alterations in the natural 15N enrichment 
of milk (or plasma) over the diet, which in turn affects 
the response in Δ15N due to MNE variation.

Mobilization of body reserves has been associated 
with dairy cow milk production and reproduction per-
formance (Buckley et al., 2003), and with health status 
(de Vries and Veerkamp, 2000; Xu et al., 2018). The 
alteration of isotopic signatures due to body reserves 
mobilization might provide additional evidence toward 
indirect or proximal detection for health events. More 
studies, ideally based on larger databases generated 
from real-world farming conditions, are required to 
confirm whether Δ15N is suitable for these purposes.

N Isotopic Discrimination as a Predictive  
Biomarker of MNE

In line with the results by Cantalapiedra-Hijar et al. 
(2018), our analysis confirmed that the most important 
variance component for MNE (NUE in their study) was 
between-experiment variation. The contribution of ex-
periment to the variance of MNE in the present study 
was around a third lower compared with Cantalapiedra-
Hijar et al. (2018), probably due to differences between 
diets and production systems employed in both meta-
analyses (dairy cows vs. multiple ruminant systems). 
Similarly, experiment was the main grouping factor 
for total variance of Δ15N, and it was observed that 
reduced mean MNE was associated with higher mean 
Δ15N (Cantalapiedra-Hijar et al., 2018). Although, on 
average, a negative association between MNE and Δ15N 
was observed in the present study, the responses were 
not the same across experiments and diets. The use 
of mixed-effects models on individual observations al-
lowed the effects of experiment, sampling period, and 
diet to be removed and, thus, allowed evaluation of the 
overall association between this biomarker and MNE at 
the individual level.

Residual standard errors of models obtained in this 
present study and those reported by Cantalapiedra-Hi-
jar et al. (2018) are comparable and ranged from 0.020 
to 0.030 g/g of NUE or MNE, respectively. The differ-
ences in slopes obtained between this study and those 
obtained by Cantalapiedra-Hijar et al. (2018) could 
be due to the contrasting sets of diets employed. In 
Cantalapiedra-Hijar and colleagues’ study, diets corre-
sponded to different production systems, including beef 
cattle, dairy goats, and nonlactating sheep, whereas in 
the present study, diets were only from dairy produc-
tion systems. Also, the larger intercepts obtained for 
the models of the present study are probably related 

to employing observations from only lactating cows, 
specifically in mid–late lactation. A meta-analysis to 
evaluate the ability of MUN to predict MNE at the 
individual level was conducted by Huhtanen et al. 
(2015). In their study, the model residual error reported 
as residuals was in the range of what was obtained in 
this study and represented a slightly larger RMSPE 
percentage (8.1% vs. 6.8%). In the same way, the error 
obtained by Jonker et al. (1998) when using MUN for 
predicting MNE at the individual level was higher than 
ours (14.7% vs. 6.8%). Huhtanen et al. (2015) showed 
that employing MUN was not robust enough as a pre-
dictive biomarker of N partitioning at the individual 
level, and that the systematic addition of animal fac-
tors such as milk yield, BW, stage of lactation, dietary 
CP, and DMI had to be considered to achieve better 
characterizations of between-animal variability in N 
partitioning. The lack of response of MUN to predict 
between-cow variations in MNE could be due to diurnal 
variations in MUN (Spek et al., 2013), and some of 
this variation could depend on time of feeding and on 
milking time with respect to milk sampling (Gustafsson 
and Palmquist, 1993; Broderick and Clayton, 1997). 
Another factor of variation in MUN could depend on 
the method of analysis. A recent study by Portnoy et 
al. (2021) identified the need to perform regular cali-
brations for the mid-infrared spectroscopy method, as 
considerable within- and between-laboratory variation 
can occur in the reference values for MUN; frequent 
calibration can therefore improve the precision of a 
laboratory’s determination. Alternatively, mid-infrared 
spectra of milk have been proposed as a proxy to pre-
dict animal variation in MNE in early lactation dairy 
cows (Grelet et al., 2020), but this methodology could 
be also conditioned to calibrations to achieve precise 
determinations, especially when the determination of 
mid-infrared spectra is performed in different labora-
tories. Compared with the selected model at the indi-
vidual level in this study, the RMSPE percentage of the 
predictive model by Grelet et al. (2020) was more than 
2-fold larger (6.8 vs. 17%). The large error obtained 
by Grelet et al. (2020) was considered not suitable to 
discriminate between low- and high-NUE cows, and, 
in this case, this was attributed to the artificially high 
MNE observed in early lactation related to the severe 
mobilization of body reserves in this period of the lac-
tation. In this last study, as in that of Huhtanen et al. 
(2015), the researchers had to include additional pa-
rameters such as parity and milk production to reduce 
the residual error in the predictions. In our case, the 
significant association between MNE and Δ15N across 
different experiments and dietary treatments confirmed 
the suitability of this biomarker to significantly dis-
criminate between cows randomly selected from the 

Correa-Luna et al.: BIOMARKER FOR MILK N USE EFFICIENCY IN DAIRY COWS
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same CG if they differ by at least 0.112 g/g of MNE 
(±1.96 × RMSEP at 95% confidence level). At this 
stage, even though 15N signature in plasma has been 
proven to be a moderate heritable trait in ruminants 
(Guarnido-Lopez et al., 2021), the minimum detectable 
difference of MNE found here (0.112 g/g) is considered 
too high for use as a tool to assist genetic selection on 
MNE. Further studies are warranted to confirm this 
point.

Model Evaluation and Trait Repeatability

Based on different criteria employed to evaluate Δ15N 
as a biomarker of MNE within CG, we observed con-
trasting performance across experiments (Table 6). The 
different modeling data set sizes from one experiment 
to another could have influenced some of these results 
(Fuentes-Pila et al., 2003). The RSR is a useful tool to 
compare the performance of models when different data 
are used. Ideally this indicator should be less than 0.70 
for satisfactory prediction models (Moriasi et al., 2007). 
Moreover, the different prediction fitness between exper-
iments may also be a consequence of the diets employed 
in each experiment. For instance, Cantalapiedra-Hijar 
et al. (2016) identified that the association between 
Δ15N and NUE could be compromised when diets are 
high in rumen-degradable N. If the parallel between 
NUE and feed efficiency is permitted, Guarnido-Lopez 
et al. (2021) observed that feed conversion efficiency 
was poorly correlated with Δ15N when employing diets 
high in fiber relative to diets high in starch, and attrib-
uted this to the rumen protein balance. Greater rumen 
ammonia concentration will increase fractionation of N 
isotopes at the rumen level (Wattiaux and Reed, 1995). 
Although beyond the objectives of this present study, 
mean increases in grass silage at the experiment level 
resulted in poorer prediction fitness (lower r and higher 
RSR; data not shown) due to the increased RDP in 
diets with higher proportions of grass silage relative to 
more starchy diets (Cantalapiedra-Hijar et al., 2018).

The consistency of a trait or phenotype across time 
(i.e., repeatability) is of utmost importance for genetic 
studies (Friggens and Newbold, 2007). For instance, in 
genetic evaluations, repeatability models based on test-
days are used for production traits, to differentiate ge-
netic from phenotypic variance (Berry et al., 2014). In 
the present study, the mean repeatability estimate for 
Δ15N across experiments was higher than that observed 
by Wheadon et al. (2014) in growing heifers over a 3-mo 
period (0.62 vs. 0.56). Across experiments, the mean 
repeatability estimate for MNE was higher in the pres-
ent study compared with another study (Ariyarathne et 
al., 2021) in 2 grazing herds with contrasting farming 
management in New Zealand. Ariyarathne and col-

leagues observed that the repeatability for efficiency 
of crude protein utilization (CP in milk divided by CP 
intake) fluctuated from 0.60 to 0.13 according to the 
stage of lactation throughout the grazing season, but 
their mean repeatability was still lower than our mean 
repeatability estimate for MNE across studies (0.38 vs. 
0.65). Although both studies had access to individual 
records of milk N (often generated from calibrated 
milk-meters), the observations of the present study 
were generated in housed conditions with individual 
records of N intake, and in the study by Ariyarathne 
et al. (2021), the repeatability was computed based on 
estimations of N intake on herd level calculated from 
pasture disappearance, which might have resulted in 
lower figures (Berry et al., 2014). Moreover, repeat-
ability can also be referred to as the consistency of 
repeated measurements (Harper, 1994). In other words, 
a repeatability of 1 indicates that the measurement is 
perfectly consistent, with no experimental error. The 
present study confirmed the hypothesis that better 
repeatability values of both dependent (MNE) and 
independent variables (Δ15N) would enhance model 
prediction performance, as we observed a positive and 
strong correlation along with the fitness prediction of 
the selected model (Figure 6a and 6b). This strong 
association highlights the importance of measurement 
precision for the identification of proxies for phenotyp-
ing animals.

Although in the present study we managed to es-
tablish and confirm the negative association of MNE 
with Δ15N over a range of experimental conditions, 
some potential limitations of the predictive ability for 
MNE of this biomarker must be highlighted. The fact 
that in some particular CG the negative association 
of MNE with Δ15N was not observed could be attrib-
utable to the uncertainly of reaching a new isotopic 
equilibrium when animals shifted from one dietary 
treatment to another, especially for those experiments 
with a changeover design. Nonetheless, in this study 
strong correlations were observed in 2 changeover 
studies (ID9 and ID15), which means that even if the 
isotopic equilibrium had not reached 100%, the bio-
marker is still working to predict MNE at the indi-
vidual level if cows differed by at least 0.112 g/g. It 
was suggested that the period of transitioning between 
diets should be no less than 27 d to reach a new isoto-
pic equilibrium, to ensure appropriate analysis of Δ15N 
data (Cantalapiedra-Hijar et al., 2015). Moreover, the 
determination of the isotopic signatures of diets could 
also be a limitation. Even though it is more feasible to 
pipette liquid subsamples (milk or plasma) to a higher 
level of accuracy and consistency onto the tin capsules, 
it is difficult to accurately collect minuscule portions of 
homogeneous dried feed ingredients. Although samples 
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were ground after drying, those feed ingredients repre-
senting a combination of large and small particles, such 
as silages of pasture or corn, posed a major challenge, 
considering that the tiny fraction subsampled could 
substantially change from one portion to another. To 
avoid this, several repetitions had to be undertaken to 
reduce the CV, aiming to achieve reliable δ15Ndiet de-
terminations. Nonetheless, our results show that Δ15N 
is still a powerful biomarker for discriminating within 
CG a group of extreme cows in terms of MNE (Figure 
5). This approach was recently employed to distinguish 
Brahman steers in terms of feed efficiency from isotopic 
signatures measured from tail hair and fed low-quality 
senesced C4 grasses (Costa et al., 2021). In line with 
our results, the steers with lower δ15N had higher feed 
efficiency, less N excreted in the urine, and higher NUE 
compared with steers having higher δ15N. Also, δ15N 
of the 20% highest feed efficiency steers proved to be 
statistically different from the δ15N of the 20% lowest 
feed efficiency steers, indicating that N isotopic signa-
tures could be used as a tool to identify animals with 
contrasting NUE. In our case, N isotopic signatures of 
milk or plasma could not differentiate all cows in terms 
of MNE in a given CG, but this biomarker permitted us 
to significantly differentiate the highest from the lowest 
quartile of lactating cows fed the same diet at the same 
place and time, in terms of MNE, without the necessity 
of measuring feed intake. In the context of precision 
feeding, the implementation of nutritional grouping 
aims at providing different diets to different groups of 
animals to better fulfill their nutrient requirements. 
For instance, N isotopic signatures could be used as 
a tool to subgroup cows with the highest Δ15N values 
(recognized as of having less MNE) and assigned diets 
with enzyme or inoculant additives to protect CP from 
rumen degradation, or fed restricted-CP diets, aiming 
to increase their MNE and reduce their N excreta. 
Hence, cluster subgroupings toward more precise feed-
ing without compromising the farm management would 
improve the overall feed efficiency while reducing the 
environmental footprint, which should be translated 
into economic and social benefits (Cabrera and Kalan-
tari, 2016).

CONCLUSIONS

In the present study, we confirmed the negative and 
significant correlation between Δ15N and MNE in lac-
tating dairy cows regardless of experimental site, sam-
pling period, and dietary treatment in mid- and late 
lactation stages. However, the obtained prediction error 
of the developed model (0.028 g/g) reveals that Δ15N 
only allows us to differentiate extreme cows in terms 
of MNE. Hence, Δ15N can be implemented as a tool to 

group animals (25% highest vs. 25% lowest MNE) for 
precision feeding. In early lactation, both MNE and 
Δ15N values might be artificially increased because of 
the considerable protein mobilization of body reserves. 
This was confirmed by observing a positive (rather than 
negative) association of Δ15N along with MNE in early 
lactation. Increases in repeatability of either MNE or 
Δ15N, or both, improved the prediction fitness of the 
model to differentiate cows in terms of MNE when fed 
the same diet at the same time. This emphasizes the 
need to identify best sampling protocols and to monitor 
the accuracy of measurements toward the identification 
and improvement of proxies to phenotype animals.
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