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ABSTRACT

For genomic prediction of crossbred animals, models 
that account for the breed origin of alleles (BOA) in 
marker genotypes can allow the effects of marker alleles 
to differ depending on their ancestral breed. Previous 
studies have shown that genomic estimated breeding 
values for crossbred cows can be calculated using the 
marker effects that are estimated in the contributing 
pure breeds and combined based on estimated BOA in 
the genotypes of the crossbred cows. In the presented 
study, we further exploit the BOA information for im-
proving the prediction of genomic breeding values of 
crossbred dairy cows. We investigated 2 types of BOA-
derived breed proportions: global breed proportions, 
defined as the proportion of marker alleles assigned to 
each breed across the whole genome; and local breed 
proportions (LBP), defined as the proportions of alleles 
on chromosome segments which were assigned to each 
breed. Further, we investigated 2 BOA-derived mea-
sures of heterozygosity for the prediction of total genetic 
value. First, global breed heterozygosity, defined as the 
proportion of marker loci that have alleles originating 
in 2 different breeds over the whole genome. Second, lo-
cal breed heterozygosity (LBH), defined as proportions 
of marker loci on chromosome segments that had alleles 
originating in 2 different breeds. We estimated variance 
related to LBP and LBH on the remaining variation 
after accounting for prediction with solutions from the 
genomic evaluations of the pure breeds and validated 
alternative models for production traits in 5,214 Dan-
ish crossbred dairy cows. The estimated LBP variances 
were 0.9, 1.2, and 1.0% of phenotypic variance for milk, 
fat, and protein yield, respectively. We observed no 
clear LBH effect. Cross-validation showed that models 
with LBP effects had a numerically small but statisti-
cally significantly higher predictive ability than models 
only including global breed proportions. We observed 

similar improvement in accuracy by the model having 
an across crossbred residual additive genetic effect, ac-
counting for the additive genetic variation that was not 
accounted for by the solutions from purebred. For ge-
nomic predictions of crossbred animals, estimated BOA 
can give useful information on breed proportions, both 
globally in the genome and locally in genome regions, 
and on breed heterozygosity.
Key words: crossbreeding, genomic selection, breed of 
origin of alleles, heterozygosity, heterosis

INTRODUCTION

Crossbreeding (i.e., the mating of animals from dif-
ferent breeds) is a common practice in many livestock 
production programs. Crossbred animals show superior 
performance for many important traits compared with 
purebred animals, so-called heterosis (Falconer and 
Mackay, 1996). Traditionally, crossbreeding has been 
more common in meat production systems, such as 
for beef cattle, pigs, and poultry, than for dairy cattle. 
However, the benefit of crossbreeding for dairy cattle 
has gained interest in recent decades (Sørensen et al., 
2008; Kargo et al., 2014; Clasen et al., 2020).

Crossbreeding gives challenges to genomic prediction. 
Among those is the difference in the linkage disequilib-
rium (LD) between markers and QTL between breeds, 
and thus higher LD within breeds than between breeds 
(Ibánẽz-Escriche et al., 2009; Lund et al., 2014). To 
accommodate for this difference, models that account 
for the breed origin of alleles (BOA) in genotypes of 
crossbred animals were proposed (Ibánẽz-Escriche et 
al., 2009; Christensen et al., 2014). However, these 
models have not always resulted in more accurate pre-
dictions than the models that assume the same marker 
allele effects across breeds (Ibánẽz-Escriche et al., 2009; 
Sevillano et al., 2017; Guillenea et al., 2022).

For dairy cattle, VanRaden et al. (2020) calculated 
genomic EBV (GEBV) for crossbred animals using 
solutions from purebred evaluations weighted by breed 
proportions. Eiríksson et al. (2021, 2022) presented a 
method based on BOA where the GEBV of crossbred 
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were also based on solutions from purebred evaluations. 
Such methods require breed level estimates, weighted 
by the breed proportions, to account for the different 
genetic levels of the breeds (VanRaden et al., 2020; 
Eiríksson et al., 2021). VanRaden et al. (2020) used 
multiple breed genetic evaluation models, which esti-
mated the breed levels. However, it is practical to use 
solutions from routine genetic evaluations. The routine 
evaluations are often performed for each of the pure 
breeds separately, and these do not provide breed level 
estimates. Eiríksson et al. (2022) suggested estimating 
the breed levels from purebred phenotypes. Their ap-
proach, however, requires assumptions that are unlikely 
to hold in all instances. In particular, they assumed that 
the level differences between breeds were only genetic 
and not related to the different breeds being raised in 
different environments. An alternative is to estimate 
the breed levels from phenotypes of crossbred animals.

Estimated BOA (Vandenplas et al., 2016) of crossbred 
animals can be used to calculate 2 types of estimates 
for each breed contribution: global breed level and lo-
cal breed level. The global breed proportion (GBP) is 
the proportion of alleles throughout the genome that 
originate from the breed in question, and the local 
breed proportion (LBP) is the proportion of alleles 
locally for segments of the genome that originate from 
the breed. Thus, a GBP effect attempts to account for 
the different overall levels of the breeds contributing 
to crossbred animals, and an LBP effect attempts to 
indicate segment-specific breed levels contributing to 
crossbred animals.

In addition to the differences in LD and breed levels 
between breeds, the mixture of genetic backgrounds 
complicates predictions for crossbred animals. In par-
ticular, the increased heterozygosity in the genomes of 
crossbred animals, which contributes to heterosis, is of 
interest to study. Genomic predictions for heifers and 
cows can be used for 2 types of selection. First, which 
type of semen should be used in their insemination, and 
second, whether the animal should enter the herd or be 
sold (Calus et al., 2015; Hjortø et al., 2015; Clasen et 
al., 2021). In the latter case, it is not only the breeding 
value that matters, but the level of heterosis also con-
tributes to the genetic potential for production. There-
fore, estimated total genetic value (ETGV), including 
heterosis, for crossbred heifers can be useful. Expected 
heterosis based on pedigree information can be fitted 
in genetic evaluations (e.g., Lidauer et al., 2006). This 
kind of heterozygosity estimate accounts for the differ-
ence in the average performance of crossbred animals 
due to the expected increase in heterozygosity when 
alleles come from different breeds. However, for animals 
with at least 1 crossbred parent (e.g., 3-way crosses and 
backcrosses), the true number of loci that carry alleles 

from different breeds may differ from the expectation. 
Thus, more accurate estimates of heterozygosity, based 
on genomic information could be useful for predicting 
heterosis for crossbred dairy heifers.

Chromosome segments that have different BOA of 
the 2 haplotypes are more likely to have heterozygous 
QTL, than when both haplotypes have the same BOA. 
Estimated BOA can therefore give important informa-
tion about increased heterozygosity of QTL in crossbred 
animals. First, estimated BOA gives the proportion of 
marker loci over the whole genome that have alleles 
originating in different breeds [i.e., global breed hetero-
zygosity (GBH)]. Second, BOA could give information 
on whether the 2 alleles in marker loci or chromosome 
segments originated from the same breed or from 2 dif-
ferent breeds. We call this local breed heterozygosity 
(LBH). The LBH allows estimation of the effect of 
genome region-specific breed heterozygosity. An alter-
native could be to include genotype heterozygosity with 
dominance model (Xiang et al., 2016; Doekes et al., 
2020).

The aims of this study were, first, to present how 
estimated BOA can be used to model the effects of 
GBP, LBP, GBH, and LBH in the genome of cross-
bred animals. Second, to compare model fit of genomic 
models with or without LBP or LBH effects. Third, to 
compare cross-validation predictive ability for GEBV 
and ETGV calculation using the same models. The 
investigation was made for milk production traits in 
Danish crossbred dairy cows. All models used solutions 
from the genomic evaluations of the contributing pure 
breeds as a starting point, but our aim was to inves-
tigate whether additional effects (e.g., effects of LBP 
and LBH) estimated from phenotypes and genotypes 
of the crossbred cows could improve the model fit and 
predictive ability.

MATERIALS AND METHODS

No animals were used in this study, and ethical ap-
proval for the use of animals was thus deemed unneces-
sary.

Data

Data had 5,214 Danish crossbred dairy cows born in 
the years 2012 to 2018 from 74 herds. The study focused 
on crosses of the Holstein (H), Jersey (J), and Nordic 
Red dairy cattle (R) breeds. Therefore, we excluded 
crossbred cows with contribution of more than 1/16 
from other breeds according to registered pedigree. The 
cows were genotyped using EuroG MD chip (EuroGe-
nomics, 2019). In addition, genotypes of 7,500 purebred 
animals, 2,500 from each of the 3 breeds, H, J, and 
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R, genotyped on various 50k SNP chips, were included 
for the imputing, phasing, and assigning BOA steps. 
Figure 1 has a principal component plot, showing the 
first 2 principal components of the genomic relationship 
matrix between the crossbred cows, as well as 3,000 
purebred animals, 1,000 from each of the 3 breeds. We 
phased and imputed the genotypes to a set of 50,684 
markers using FImpute (Sargolzaei et al., 2014). We 
estimated BOA in the genotypes of the crossbred cows 
using the AllOr method (Eiríksson et al., 2021). Most 
of the cows included in this study were also included in 
Eiríksson et al. (2022), which contains further details 
on genotypes, imputation, and the BOA assignment. 
The phenotypes were 305-d lactation milk (MY), fat 

(FY), and protein (PY) yields for the first 3 parities of 
the cows, a total of 11,001 records.

We calculated GEBV for the crossbred cows based on 
BOA as described in (Eiríksson et al., 2022). In short, 
the GEBV were calculated using solutions from the 
separate genomic evaluations of the pure breeds. Using 
estimated BOA, we split the gene content of the cross-
bred cows into components, each component counting 
the reference alleles with assigned origin in one of the 
pure breeds. We multiplied each component with es-
timated marker effects from the respective breed. We 
call these GEBV primary genomic estimated breeding 
values (pGEBV). The separate purebred evaluations 
came from the milk production breeding value estima-

Eiríksson et al.: LOCAL BREED PROPORTIONS FOR CROSSBRED PREDICTIONS

Figure 1. First (PC1) and second (PC2) principle components of genomic relationships for 1,000 Holstein (black), 1,000 Jersey (yellow), 
1,000 Red dairy cattle (red) and 5,214 crossbred (dark gray) animals. Percentages are proportion of variance explained by the respective prin-
ciple components.
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tions computed by Nordic Cattle Genetic Evaluation 
in December 2021 (NAV 2021) for each of the breeds 
(H, J, and R). Because we wanted to investigate if use-
ful breed level correction factors could be estimated 
from the phenotypes of crossbred, we did not correct 
pGEBV for differences in breed levels.

We constructed 2 sets of corrected phenotypes, y1
* 

and y2
*, with and without correction for breed heterozy-

gosity, respectively. In both cases, we corrected the 
original phenotypes for fixed effects and pGEBV. The 
phenotype corrected for heterozygosity was

	 y y X Za1 1 1
* ˆ ˆ ,= − −β pGEBV 	

where the y vector contains the original phenotypes, 
the X1 matrix connects the fixed effects to the pheno-
types, the β̂1 vector contains the fixed effect solutions of 
parity, herd-year, calving age, and breed heterozygosity 
from an animal model, Z is an incidence matrix con-
necting phenotypes to cows, and âpGEBV  is the vector of 
pGEBV for the cows. The β̂1 solutions were estimated 
with a pedigree-based animal model using a larger da-
taset, which had 207,116 lactation yields from 96,798 
crossbred and purebred cows. The cows were in the 
same herds as the genotyped crossbred cows with phe-
notypes in y. In that way, information from the pure-
bred cows, and the crossbred cows without genotypes, 
strengthened the estimation of the fixed effects. Simi-
larly, for the phenotypes not corrected for heterozygos-
ity, we had

	 y y X Za2 2 2
* ˆ ˆ ,= − −β pGEBV 	

where X2 2β
�  includes the same effects as X1 1β

� , except 
the breed heterozygosity effect was left out. The β̂1 and 
β̂2 fixed effects were estimates from the same model.

Global and Local Effects

Here, we explain the construction of global (across all 
loci) and local (for individual marker loci or chromo-
some segments) indicators of breed proportions and 
breed heterozygosity. The BOA output from AllOr 
contains, separate for the 2 gametes of the crossbred 
cows, an estimate of which breed the allele originated. 
From that, we built vectors of length equal to the num-
ber of markers (m = 50,684) for each animal i, gamete 
j (j = 1, 2) and breed b (b = H, J, R), denoted si j

b
,  (i.e., 

6 vectors for each animal). A marker in vector si j
b
,  had 

the value 1 for allele j assigned to breed b but 0 for al-
lele j assigned to another breed. If the allele could not 
be assigned to a definite BOA, the corresponding value 
in si j

b
,  was a number between 0 and 1, according to the 

rules described for the output of AllOr (Eiríksson et al., 
2021). For each marker and gamete, the sum across 
breeds was 1; that is, si j

b

b H J R
,

, ,

.
∈{ }
∑ = 1

Based on vectors si j
b
, , we built 2 types of estimates of 

the breed composition for each animal: GBP and LBP. 
We defined the LBP vector for animal i as 
p s si
b

i
b

i
b= +( ) / ., ,1 2 2  The GBP of animal i, denoted as pi

b , 
was the average of the values in pi

b . Figure 2 presents 
the distribution of GBP pi

b( ) in the crossbred animals. 

Additionally, to show the deviation in GBP from the 
expectation based on pedigree, we looked separately at 
the 695 3-way crossbred with H maternal grandsire or 
maternal granddam in the data. Figure 3 presents the 
distribution of GBP of H in this subset.

In addition to the single marker-based LBP vector, 
we defined LBP considering segments of 100 adjacent 
markers. For each animal i and breed b, the segment-
based LBP vectors were constructed as an average of 

Eiríksson et al.: LOCAL BREED PROPORTIONS FOR CROSSBRED PREDICTIONS

Figure 2. The distribution of breed proportions of Holstein, Jersey, and Red dairy cattle (RDC) in the 5,214 crossbred cows based on as-
signed breed of origin of alleles.
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nonoverlapping chromosome segments of 100 adjacent 
values from pi

b , resulting in vector p( ),100 i
b  of length 506 

marker segments. The last segment of each chromo-
some was combined with the second-to-last segment if 
its length was less than half of the defined segment 
length.

Similarly to the LBP vector, we constructed LBH for 
animal i between breeds b and bʹ as 
t s s s si
b b

i
b

i
b

i
b

i
b, '

, ,
'

,
'

, ,= +1 2 1 2� �  where ◦ is the element-wise 
multiplication and b b≠ ' . We estimated GBH as the 
average of the values in ti

b b, ' , denoted ti
b b, ' , which repre-

sents the proportion of loci that are assigned to 2 dif-
ferent breeds over the whole genome. Further, we con-
structed LBH of chromosome segments of length 100, 
denoted t

( ),

, '

100 i
b b , which were based on the average of 

values from ti
b b, ' as described for LBP. Figure 4 presents 

the distribution of GBH values for the crossbred ani-
mals.

Models for GEBV

Four types of models for predicting the part of the 
breeding values of crossbred cows that was not captured 
by pGEBV are presented. First, a simple model hav-
ing GBP, second, models having GBP and LBP effects, 
third, a model having GBP and a residual additive 
genetic (RA) effect by integrating an across crossbred 
genomic relationship matrix, and fourth, a model hav-
ing GBP, LBP, and RA effects.

The simplest model for predicting GEBV had only re-
gression on GBP and was named base model (BaseM). 
The model was

	 y 1 Zf Zf Ze e
1

*
,� � � � �� � �H H J J

pe 	 [1]

where μ is the intercept, 1 is a vector of ones, vector fb 
contains breed proportions pi

b  for breed b H J R∈ { }, ,  for 
all animals, ηb is the fixed effect of GBP of breed b, epe 
is vector of random permanent environment effects and 
e is the vector of random residuals. It was assumed that 
e 0 Ipe pe∼ N( , σ2 ) and e 0 I∼ N( , σe

2), where σpe
2  is the per-

manent environment variance and σe
2 is the residual 

variance. Note that fb were only included for 2 breeds 
(H and J), because when an intercept is included in the 
model and fH + fJ + fR = 1, there is no need to include 
fixed regression on all 3 breed proportions.

The local breed proportion model (LBPM) extended 
BaseM by including regression on LBP as random ef-
fects in a manner similar to having marker effects in 
a SNP-BLUP model. The LBP effects were included 
either for individual markers [LBPM(1)] or segments 

Eiríksson et al.: LOCAL BREED PROPORTIONS FOR CROSSBRED PREDICTIONS

Figure 3. Distribution of global breed proportions of Holstein in 
695 3-way crossbred cows with Holstein maternal grandsire or mater-
nal granddam.

Figure 4. The distribution of global breed heterozygosity for Holstein/Red dairy cattle pairs (H×R), Holstein/Jersey pairs (H×J), and 
Jersey/Red dairy cattle pairs (J×R), for the 5,214 crossbred cows based on assigned breed of origin of alleles.
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of 100 [LBPM(100)] markers. The model had the same 
general structure whether LBP was modeled for indi-
vidual markers or for marker segments:

y 1 Zf Zf ZP ZP ZP Ze e1
* * * * ,= + + + + + + +µ η ηH H J J H H J J R R

peγ γ γ

� [2]

where P*b = Pb – fb1ʹ, and γb is a vector with the re-
gression coefficients on LBP for breed b. Here, matrix 
Pb contains the p pi

b
i

b
( ),100� � for each animal as a row. 

Consequently, P*b contains the deviations from the 
breed proportion for each marker (segment). It was as-
sumed that γb b∼ N( , ),,0 Iσγ

2  where σγ,b
2  is LBP marker 

(segment) variance for breed b.
When there are more marker segments than animals, 

a computationally more efficient equivalent LBPM can 
be constructed using LBP similarity matrices. The size 
of the resulting system of equations becomes propor-
tional to the number of animals, rather than the num-
ber of markers, which is computationally advantageous, 
and the solutions are invariant to the transformation. 
Then, the LBP effect of breed b for the crossbred cows 
is vb = P*b γb, and the LBP similarity matrix Qb for 

breed b was constructed as Q
P Pb
b b

v
=

′* *

,
λ

 where λv is a 

normalizing constant defined as λ
v

b b

n
=

′tr(P P* * )
, where 

n is the number of animals. The related LBP variance 
for breed b is σ σ λγv b b v, , .2 2=

An alternative to using LBP to model the remaining 
genetic variation in y1

*, unexplained by pGEBV, is to 
use the genotypes directly. Thus, we investigated 
whether there was an additive genetic effect left in the 
crossbred data, here named RA genetic effect. The 
theoretical background for coding and scaling based on 
allele frequencies of base population for genetic rela-
tionship matrices, such as VanRaden (2008), are not 
applicable here, because, first, most of the additive ge-
netic variance has already been accounted for, and 
second, the cows are crossbred rather than from a uni-
form population. Therefore, we constructed the RA 
relationship matrix as the normalized genomic additive 
relationship matrix (Vitezica et al., 2016): 

G
MM
MM

=
′
′tr( ) /

,
n

 where the M matrix contains the 

marker genotypes of the crossbred cows (irrespective of 
BOA) coded as −1, 0, and 1 for genotypes aa, Aa, and 
AA, respectively. In that way, we make no assumptions 
on the allele frequency of base population animals. The 
residual additive effects model (RAM) is

	 y 1 Zf Zf Za Ze e1
* ,= + + + + +µ η ηH H J J

pe 	 [3]

where a 0 G∼ N( , ),σa
2  and σa

2 is the RA variance. Note 
that σa

2 cannot be interpreted as traditional additive 
genetic variance.

Further, we investigated a model that combined the 
LBP effects and the RA effects (RA+LBPM). Thus, 
the model included the Za term from Equation 3 in 
addition to all the terms in Equation 2. We only tested 
RA+LBPM for segment length of 100 for LBP, denoted 
RA+LBPM(100).

Models for ETGV

We calculated ETGV as the estimated breeding 
value plus effects of heterozygosity, based on 2 main 
models with heterozygosity from genomic information. 
First, we tested models based on BOA (i.e., with GBH, 
and with and without accounting for LBH). Second, we 
modeled heterozygosity based on the genotype directly, 
either by considering genome-wide genotype heterozy-
gosity, or by additionally accounting for local genotype 
heterozygosity using a dominance relationship matrix.

The global BOA heterozygosity model (BOA-HM) 
included both GBH from BOA information and the 
terms in BaseM in Equation 1:

	
y 1 Zf Zf Zh Zh

Zh Ze e
2
* , , , ,

, , ,

= + + + +

+ + +

µ η η τ τ

τ

H H J J H J H J H R H R

J R J R
pe

	[4]

where hb,b' is a vector with ti
b b, '  for each animal i, and 

τ b b, ' is the fixed effect of proportions of loci with 1 allele 
assigned to breeds b and 1 allele assigned to breed b'.

For comparison, we tested the pedigree heterozygos-
ity model (Ped-HM), where we replaced hb b, ' in Equa-
tion 4 with a pedigree-based estimate of breed hetero-
zygosity, h ped

b b, '. We calculated the elements of h ped
b b, ' as 

h f f f fped i
b b

ped s
b

ped d
b

ped s
b

ped d
b

,

, '

, ,

'

,

'

,
� � � � , where f ped s

b
,  and 

f ped d
b

,  are pedigree-based breed proportions of sire and 
dam of animal i, respectively.

The local breed heterozygosity model (LB-HM) ex-
tends BOA-HM by including random LBH effects. The 
LB-HM has the following form, regardless of whether 
LBH is modeled by single markers [LB-HM(1)] or 
marker segments [LB-HM(100)]:

	

y 1 Zf Zf Zh Zh

Zh ZT
2
* , , , ,

, , * , ,

= + + + +

+ +

µ η η τ τ

τ

H H J J H J H J H R H R

J R J R H J Hδ JJ H R H R J R J R

pe

+ +
+ +

ZT ZT
Ze e

* , , * , ,

,
δ δ 	[5]

Eiríksson et al.: LOCAL BREED PROPORTIONS FOR CROSSBRED PREDICTIONS
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where T T h 1* , ' , ' , ' .b b b b b b= − ′  The rows of the Tb b, ' matrix 
contains the LBH vectors, t ti

b b
i

b b, '
( ),
, '
100( ) for each animal, 

and therefore T* , 'b b  contains the local deviations from 
the GBH of each cow. Further, δb b b b

, '
, , ',∼ N 0 Iσδ
2( ) are 

the effects of LBH between breeds b and b', where σδ, , 'b b
2  

is the marker (segment) LBH variance. The LB-HM 
has an equivalent model with LBH similarity matrices 
instead of the T* , ' , 'b b b bδ  terms. In that case, the LBH 
effect of breed pair b and b' for the crossbred cows is 
u Tb b

b b b b
, '

* , ' , '= δ  and the LBP similarity matrices were 

constructed as K
T Tb b
b b b b

u

, '
* , ' * , '

,=
′

λ
 where λu is a normal-

izing constant defined as λu
b b b b

n
=
tr( )

.
* , ' * , 'T T ′

 The related 

LBH variance is σ σ λδu b b b b u, , ' , , ' .
2 2=

In addition to considering breed heterozygosity based 
on the estimated BOA, we tested models that included 
the genotype heterozygosity instead of breed heterozy-
gosity. Thus, the model had the marker genotype het-
erozygosity, irrespective of BOA (i.e., assuming hetero-
zygosity of a locus was the same for all pairs of breeds). 
First, we considered a genotype heterozygosity model 
(GT-HM). Instead of including GBH effect hb b b b, ' , 'τ  as 
in Equation 4, the GT-HM had an effect of the propor-
tion of loci that are heterozygous across the genome:

	 y 1 Zf Zf Zk Ze e2
* ,= + + + + +µ η η κH H J J

pe 	 [6]

where vector k contains the proportion of marker loci 
that are heterozygous for each animal and κ is the 
fixed effect of genotype heterozygosity. Genotype het-
erozygosity can also be considered using the dominance 
relationship matrix, which accounts for heterozygosity 
at individual markers. The dominance heterozygosity 
model (D-HM) extends GT-HM:

	 y 1 Zf Zf Zk Zd Ze e2
* ,= + + + + + +µ η η κH H J J

pe 	 [7]

where the d vector has the random dominance devia-
tion effects for each animal. It was assumed that 

d 0 D∼ N( , ),σd
2  where D

WW
WW

=
′
′tr( ) / n

 is the genomic 

dominance relationship matrix following Vitezica et al. 
(2016). The W matrix has the genotypes coded as 1 for 
heterozygote and 0 for either homozygote, and σd

2 is the 
dominance variance. Similar to the estimated RA vari-
ance in RAM, the σd

2 estimated here cannot be inter-
preted as a population dominance variance (Vitezica et 
al., 2016).

Model Fit and Variance Components

We tested the models on the data presented above. 
First, we estimated variance components for the models 
using all data and compared the goodness-of-fit of the 
models.

For the LBPM models, we used the marker-based 
SNP-BLUP type models (Equation [2]) for segment 
lengths 100 markers, but the equivalent similarity ma-
trix model for LBPM(1). Similarly, we used the SNP-
BLUP version in Equation [5] for LB-HM(100), and the 
equivalent similarity matrix models for LB-HM(1).

We built and inverted the relationship and similar-
ity matrices using Julia (Bezanson et al., 2017). We 
added a small value, 0.0001, to the diagonal of the LBP 
and LBH similarity matrices to ensure that they were 
invertible. We estimated REML variance components 
for all models based on all data using the average-
information REML algorithm in the DMU package 
(Madsen and Jensen, 2013). However, for a few models, 
the algorithm did not converge. In those instances, we 
used the EM-REML algorithm instead, also using the 
DMU package.

We compared the goodness-of-fit of the more compli-
cated models to the models having fixed global effects 
(i.e., BaseM, BOA-HM or GT-HM) with the likelihood 
ratio test. Significance in likelihood ratio test was 
determined by comparing difference in −2log(L), be-
tween models with a mixture (50/50) of 2 chi-squared 
distributions with Nm-Nbase and Nm-Nbase −1 degrees of 
freedom. Here, L is the REML likelihood, Nm is the 
number of parameters in the more advanced model and 
Nbase is the number of parameters in the nested model. 
Additionally, we computed Bayesian information crite-
rion [BIC; BIC = −2log(L)+Nm × log(n-Nfixed)], where 
n is the number of animals and Nfixed is the number of 
fixed effects (including intercept), and Akaike informa-
tion criterion [AIC; AIC = −2log(L)+2Nm] for all the 
models (Meyer, 2001). Consequently, lower AIC or BIC 
indicates models with higher likelihood, with a penalty 
for the number of parameters. Therefore, the models 
with the lowest AIC or BIC are preferred.

Cross-Validation

We assessed the predictive ability of the models using 
random 5-fold cross-validation using similar settings as 
in Aliloo et al. (2016). We constructed 5 nonoverlap-
ping validation sets out of the 5,214 crossbred cows of 
approximately equal size. The split was done randomly 
with 2 restrictions: first, paternal half-sib groups were 
kept in the same set, and second, cows that had daugh-
ters among the crossbred cows were not included in the 
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validation set to avoid the unrealistic scenario of pre-
dicting dams based on information from their daugh-
ters. For each of the validation sets, we set the pheno-
types in y y1 2

* *( ) as missing for the validation animals 
and estimated the effects in the models based on the 
remaining data. The total GEBV for animal i was sub-
sequently constructed as GEBV a yi pGEBV i i= +ˆ ˆ ,, ,

*
1  where 

ˆ ,
*y i1  is the sum of all estimated effects, except the perma-

nent environment, in each model, including the inter-
cept.

Predictive ability of the models for predicting GEBV, 
denoted rGEBV y, , was estimated as weighted correlation 
between total GEBV and corrected phenotypes ad-
justed for their respective fixed effects. If a cow had 
yield records from multiple lactations (i.e., from second 
and third in addition to the first lactation), we used an 
average of the 2 or 3 lactation yields. The weighted 
correlation used the reliability based on the number of 
records and assuming the heritability of 0.30 and the 
repeatability of 0.45 as weights (the weights ranged 
from 0.3 to 0.47). Using reliability as weights follows 
the Interbull standard validation test for genomic pre-
dictions (Mäntysaari et al., 2010). We also estimated 
the dispersion bias of the prediction with the b1 coeffi-
cient from the weighted linear regression of y1 on 
GEBV.

We evaluated the predicted total genetic values from 
the ETGV models in a similar manner as for the GEBV 
models. We calculated the ETGV for animal i as 
ETGV a yi pGEBV i i= +ˆ ˆ ,, ,

*
2  where ˆ ,

*y i2  is the sum of all esti-
mated effects, except permanent environment, from the 
respective model for cow i, including the intercept. The 
ETGV were compared to the corrected phenotypes 
that were not corrected for heterozygosity, y2 = y – 
X2β2. The predictive ability correlation rETGV y,� � and b1 
was assessed in the same manner as for GEBV.

To get an estimate of the sampling variance of the 
correlation estimates and to assess whether they were 
different, we used 10,000 bootstrap samples of the vali-
dation animal GEBV and corrected phenotypes for 
each trait. From each sample, we calculated rGEBV y,  and 
b1 from the models. We tested statistical significance at 
P < 0.05 for each pair of models from the distribution 
of the difference of rGEBV y,  and b1 between the alterna-
tive models [i.e., whether 0 (no difference) was within 
the 95% CI of the differences in rGEBV y,  and b1]. We 
performed the bootstrap procedure in the same way to 
test for differences in the models for ETGV. Note that 
this testing of difference between 2 models takes into 
account that the estimated rGEBV y,  and b1 are strongly 
correlated between the alternative models.

RESULTS

Model Fit and Variance Components

Table 1 shows the estimated variance components, 
−2log(L), BIC, and AIC for models for the BaseM, 
LBPM(1), LBPM(100), RAM, and RA+LBPM(100) 
models for GEBV. The LBPM(1), LBPM(100), RAM, 
and RA+LBPM(100) models fitted the data sig-
nificantly (P < 0.01) better than the BaseM for all 3 
traits based on likelihood ratio test. For all 3 traits, 
BIC was lowest for RAM whereas AIC was lowest for 
RA+LBPM(100).

The total of estimated LBP variance summed over 
the 3 breeds for MY from the LBPM(1) was 30,600 
kg2, which equals 2.9% of the estimated genetic vari-
ance from the pedigree-based animal model. The LBP 
variance for MY accounted for 0.9% of the phenotypic 
variance. The estimated LBP variances for all traits 
were slightly lower when we considered the LBP for 
chromosome segments rather than individual markers. 
For MY, the estimated LBP variances were 29,600 kg2 
for LBPM(100). The total estimated LBP variances 
from LBPM(1) were 57.9 and 31.2 kg2 for FY and PY, 
respectively, summed over the 3 breeds. The total esti-
mated LBP variances were 1.2 and 1.0% of the pheno-
typic variance for FY and PY, respectively.

Table 2 has the estimated variance components, 
−2log(L), BIC and AIC for Ped-HM, BOA-HM, LB-
HM(1), LB-HM(100), GT-HM, and D-HM models for 
ETGV. For PY and MY, inclusion of LBH effects did 
not improve goodness-of-fit. Further, BIC and AIC were 
lowest for BOA-HM and the estimated LBH variances 
were not significantly different from zero for any of the 
models for MY and PY. For FY, however, the LB-HM 
models fitted the data significantly (P < 0.01) better 
than the BOA-HM based on likelihood ratio test. The 
AIC was also lower for the full LB-HM models, irre-
spective of segment length, than for BOA-HM for FY. 
Because of the different fixed effects in the models, the 
GT-HM and D-HM models could not be compared with 
the Ped-HM, BOA-HM, and LB-HM models based on 
the REML likelihoods. For all 3 traits, the D-HM fitted 
the data significantly (P < 0.01) better than the GT-
HM based on likelihood ratio test and had lower BIC 
and AIC.

Cross-Validation

The cross-validation results for calculating GEBV 
are in Table 3. Differences between the models were 
generally small, with the largest difference between the 
highest and the lowest rGEBV y,  being 0.012 for PY. The 
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highest rGEBV y,  was from the RA+LBPM(100) for all 3 
traits, 0.581, 0.396, and 0.432 for MY, FY, and PY, 
respectively. The standard deviations of the rGEBV y,  
across the 10,000 bootstrap samples were 0.010, 0.012, 
and 0.012, for MY, FY, and PY, respectively, with only 
very minor differences between models. For all 3 traits, 
the LBPM models gave significantly (P < 0.05) higher 
rGEBV y,  than BaseM. The RAM and the LBPM models 
had similar rGEBV y,  for all 3 traits, significantly (P < 
0.05) higher rGEBV y,  than from BaseM with the excep-
tion of RAM for FY where the difference was not sig-
nificant.

In general, the b1 coefficients for GEBV were close to 
1 for all models for MY and PY, indicating low disper-
sion bias. The values ranged from 0.983 to 1.011 for 
MY, and 0.944 to 0.982 for PY. The predictions were 
somewhat inflated for FY, with b1 ranging from 0.881 to 
0.907 for FY across models. For all 3 traits, the lowest 
b1 was from RAM and the highest from LBPM(100).

The cross-validation results for ETGV are in Table 4. 
The rETGV y,  and b1 values across the models were almost 
identical for all traits. The range in rETGV y,  was from 
0.568 to 0.573 for MY, 0.425 to 0.429 for FY, and 0.399 
to 0.407 for PY. Standard deviations of rETGV y,  across 

the 10,000 bootstrap samples were 0.010, 0.012, and 
0.012, for MY, FY, and PY, respectively, for all tested 
models. Among the models that only included fixed 
regressions on genome-wide heterozygosity and no ran-
dom effects (i.e., Ped-HM, BOA-HM, and GT-HM), 
the BOA-HM had the highest rETGV y,  for all the traits. 
However, the differences in rETGV y,  and b1 between these 
models were not statistically significant. Similar to the 
model fit results, the cross-validation results for FY 
from the LB-HM models differed from those for MY 
and PY. For MY and PY, the rETGV y,  from BOA-HM 
and both LB-HM models were almost identical. The 
highest rETGV y,  for MY and PY was achieved by D-HM, 
significantly (P < 0.05) higher than from GT-HM. 
However, the differences were not significant when 
compared with the BOA-HM and the LB-HM models. 
For FY, the LB-HM models had the highest rETGV y,  for 
both segment lengths, significantly higher than BOA-
HM. Further, the D-HM had similar rETGV y,  as the LB-
HM models, and significantly higher than GT-HM. 
Similar to the effects on rETGV y, , the inclusion of LBH 
effects did not affect b1 for MY and PY. The b1 for FY 
were lower than for the other traits, but without con-
siderable differences between the studied models.
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Table 1. Estimated variance components, the log of the maximum likelihood [−2log(L)], Bayesian information 
criterion (BIC), and Akaike information criterion (AIC) in models for predicting breeding value1

Model2 σv H,
2 σv J,

2 σv R,
2 σa

2 σpe
2 σe

2 −2log(L) BIC AIC

Milk yield3                  
  BaseM         9,014 16,550 0 0 0
  LBPM(1) 207 0 99   8,720 16,552 −19* 7 −13
  LBPM(100) 198 1 98   8,722 16,552 −19* 7 −13
  RAM       3,664 7,258 16,515 −56* −47 −54
  RA+LBPM(100) 154 0 85 3,304 7,186 16,518 −67* −33 −59
Fat yield4                  
  BaseM         1,555 2,943 0 0 0
  LBPM(1) 51 7 0   1,503 2,943 −16* 10 −10
  LBPM(100) 48 7 0   1,506 2,943 −15* 10 −9
  RAM       558 1,292 2,937 −40* −31 −38
  RA+LBPM(100) 45 0 5 516 1,268 2,937 −51* −17 −43
Protein yield4                  
  BaseM         1,039 1,761 0 0 0
  LBPM(1) 25 0 7   1,009 1,761 −18* 8 −12
  LBPM(100) 23 0 7   1,010 1,761 −18* 8 −12
  RAM       462 821 1,756 −62* −54 −60
  RA+LBPM(100) 19 0 6 430 811 1,756 −74* −39 −66
1σv H,
2  = Local breed proportion variance for Holstein; σv J,

2  = local breed proportion variance for Jersey; σv R,
2  = 

local breed proportion variance for Red dairy cattle; σa
2 = residual additive genetic variance; σpe

2  = permanent 
environment variance; σe

2 = residual variance. The value for BaseM was subtracted from all −2log(L), BIC, 
and AIC.
2BaseM = base model, fitting global breed proportions; LBPM(m) = local breed proportion model with seg-
ment length of m markers; RAM = residual additive effect model; RA+LBPM(100) = residual additive effect 
model including local breed proportion effects with segment length of 100 markers.
3Variances for milk yield are given in (10 kg)2.
4Variances for fat yield and protein yield are given in kg2.
*Models have significantly (P < 0.01) better fit than the BaseM model based on likelihood ratio test.
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DISCUSSION

We have presented an investigation about whether 
the assigned BOA could provide information on breed 
proportions and breed heterozygosity that are useful 
for genomic prediction, in addition to BOA allowing for 
breed-specific marker effects. We found that inclusion 

of either LBP or RA did improve model fit for genomic 
models for production traits of Danish crossbred dairy 
cows, and resulted in a slight improvement of predictive 
ability, of up to 1 percentage point. Local effects of 
heterozygosity did not improve fit or predictive ability 
for ETGV for MY and PY, but for FY a statistically 
significant LBH effect of J × R was found.
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Table 2. Estimated variance components, the log of the maximum likelihood [−2log(L)], Bayesian information 
criterion (BIC), and Akaike information criterion (AIC) in models for predicting total genetic value1

Model2 σu H R, ,
2 σu H J, ,

2 σu J R, ,
2 σd

2 σpe
2 σe

2 −2log(L) BIC AIC

Milk yield3                  
  Ped-HM         8,978 16,547 10 10 10
  BOA-HM         8,947 16,546 0 0 0
  LB-HM(1) 8 0 0   8,940 16,546 0 26 6
  LB-HM(100) 9 4 0   8,939 16,546 0 26 6
  GT-HM         8,326 17,498 3005 3005 3005

  D-HM       2,776 5,852 17,478 2655** 2735 2675

Fat yield4                  
  Ped-HM         1,543 2,943 11 11 11
  BOA-HM         1,537 2,943 0 0 0
  LB-HM(1) 6 1 32   1,496 2,944 −11* 15 −5
  LB-HM(100) 6 1 31   1,497 2,944 −11* 15 −5
  GT-HM         1,394 3,182 4225 4225 4225

  D-HM       673 1,011 3,178 3985** 4065 4005

Protein yield4                  
  Ped-HM         1,002 1,786 48 48 48
  BOA-HM         1,028 1,760 0 0 0
  LB-HM(1) 0 0 1   1,027 1,760 0 26 6
  LB-HM(100) 0 0 1   1,028 1,760 0 26 6
  GT-HM         1,002 1,786 555 555 555

  D-HM       548 689 1,783 155** 235 175

1σv H R, ,
2  = Local breed heterozygosity variance for Holstein/Red dairy cattle cross; σv H J, ,

2  = local breed hetero-
zygosity variance for Holstein/Jersey cross; σv J R, ,

2  = local breed heterozygosity variance for Jersey/Red dairy 
cattle cross; σd

2 = dominance variance; σpe
2  = permanent environment variance; σe

2 = residual variance. The 
value for BOA-HM was subtracted from all −2log(L), BIC, and AIC.
2Ped-HM = pedigree global heterozygosity model. BOA-HM = breed of origin global heterozygosity model. 
LB-HM(m) = local breed heterozygosity model with segment length of m markers. GT-HM = global genotype 
heterozygosity model. D-HM = dominance model.
3Variances are given in (10 kg)2.
4Variances are given in kg2.
5Not comparable to Ped-HM, BOA-HM, and LB-HM models because the fixed effects are different.
*Models have significantly (P < 0.01) better fit than the BOA-HM model based on likelihood ratio test.
**Models have significantly (P < 0.01) better fit than the GT-HM model based on likelihood ratio test.

Table 3. Correlations between genomic estimated breeding values and corrected phenotypes (rGEBV y, ) and 
dispersion bias (b1) of prediction for milk yield, fat yield, and protein yield

Model1

Milk yield

 

Fat yield

 

Protein yield

rGEBV y, b1 rGEBV y, b1 rGEBV y, b1

BaseM 0.574c 1.000b   0.387c 0.885b   0.420c 0.961b

LBPM(1) 0.577b 1.009a   0.392ab 0.906a   0.425ab 0.981a

LBPM(100) 0.578ab 1.011a   0.392ab 0.906a   0.426ab 0.982a

RAM 0.578b 0.983c   0.391bc 0.881b   0.428b 0.944c

RA+LBPM(100) 0.581a 0.993b   0.396a 0.901ab   0.432a 0.961b

a–cDifferences in correlations and b1 between models with a common superscript are not statistically significant 
(P < 0.05) based on the confidence interval of the differences between models in 10,000 bootstrap samples.
1BaseM = base model, fitting global breed proportions; LBPM(m) = local breed proportion model with seg-
ment length of m markers; RAM = residual additive effect model; RA+LBPM(100) = residual additive effect 
model including local breed proportion effects with segment length of 100 markers.
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Breed Proportions

In BOA models for the calculation of GEBV for the 
crossbred animals, Eiríksson et al. (2022) and Guille-
nea et al. (2022) accounted for breed levels based on 
estimates of breed proportions from BOA assignment, 
similarly as GBP. Other studies have used pedigree-
based estimates of breed proportions (Makgahlela et 
al., 2013), breed base representation (VanRaden et 
al., 2020), or the output from the Admixture software 
(Khansefid et al., 2020) to account for breed propor-
tions in crossbred animals for genomic prediction. 
Genotype-based approaches should be able to account 
for deviations in proportion of genome from the expec-
tation based on breed composition of parents. This is 
evident for 3-way terminal crosses, where the crossbred 
parent, typically the dam, has a breed proportion of 
0.50 for both contributing breeds, but the genomic 
breed proportion of the offspring can vary consider-
ably. Figure 3 shows how this distribution looks for the 
3-way crosses in our data. Among the 695 cows with H 
grandsire or granddam, 18% had GBP of H outside the 
0.20 to 0.30 range. Based on pedigree information they 
would all get the breed proportion 0.25.

We are not aware of any published studies using 
BOA to investigate the effects of LBP as done in this 
study. Differences in the QTL allele frequencies be-
tween breeds can lead to differences in genetic levels 
of breeds. Modeling the breed levels globally, as in 
BaseM, only accounts for the effects of the QTL allele 
frequency difference averaged over the genome (i.e., it 
assumes that these effects are evenly distributed across 
the genome). When LBP is included, local differences 
in QTL allele frequencies are accommodated for. The 
estimated marker effects from the pure breeds, which 
we used for pGEBV, can only predict the effects of 
QTL that are both segregating within breed and in 

LD with markers that are also segregating within the 
breed. Consequently, QTL that are fixed in one breed, 
but segregating or fixed with another allele in the other 
breeds, are not contributing to pGEBV. However, the 
LBP effects capture the effect of having the chromo-
some segment with the QTL from the breed with the 
fixed QTL.

The results in this study (Table 1) indicate a signifi-
cant LBP variance in crossbred cows from H, J, and R 
breeds for production traits, particularly for the H 
proportion. However, for comparison of the estimated 
variances, the contribution of each breed to the cross-
bred group has to be considered. Of the 3 breeds con-
sidered, the contribution of H to the crossbred animals 
was the largest (Figure 2). The presented LBP vari-
ances, σv b,

2 , depend on λv, a normalizing constant in-
cluding the trace of P*bP*b', and hence on the diagonal 
of the matrix. An animal without the breed b contribu-
tion has 0 as diagonal element in the Qb matrix. The 
same is true if both of its parents are purebred, such 
that the LBP is constant (0.5) throughout the genome. 
More than half of the animals in this study had no J 
contribution, which could partly explain the low LBP 
variance estimated for J compared to H and R. How-
ever, J is less related to the H and R breeds than the 
relationship between the H and R breeds (Figure 1 and 
Gautason et al., 2020). Therefore, larger LBP effects 
could be expected for J, if the breed contributions were 
the same for all breeds, which was not the case in this 
study (Figure 2).

Christensen et al. (2015) constructed the segrega-
tion partial relationship matrix between the maternal 
breeds of 3-way crossbred animals based on BOA in a 
similar manner as we constructed the LBP effects in 
our study. Segregation between breeds such as LBP is 
related to difference in allele frequencies of QTL (Lo 
et al., 1993). The segregation term is, however, defined 
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Table 4. Correlations between estimated total genetic value and corrected phenotypes (rETGV y, ) and dispersion 
bias (b1) of prediction for milk yield, fat yield, and protein yield

Model1

Milk yield

 

Fat yield

 

Protein yield

rETGV y, b1 rETGV y, b1 rETGV y, b1

Ped-HM 0.568ab 1.000a   0.425cd 0.907a   0.400b 0.960a

BOA-HM 0.569ab 0.999ab   0.426bcd 0.907a   0.402ab 0.961a

LB-HM(1) 0.569ab 0.999ab   0.429a 0.913a   0.402ab 0.962a

LB-HM(100) 0.569ab 0.999ab   0.429ab 0.913a   0.402ab 0.962a

GT-HM 0.568b 1.000a   0.423d 0.906a   0.399b 0.958a

D-HM 0.573a 0.992b   0.429abc 0.905a   0.407a 0.953a

a–dDifferences in correlations and b1 between models with a common superscript are not statistically significant 
(P < 0.05) based on the confidence interval of the differences between models in 10,000 bootstrap samples.
1Ped-HM = Pedigree heterozygosity model; BOA-HM = global breed heterozygosity model; LB-HM(m) = lo-
cal breed heterozygosity model with segment length of m markers; GT-HM = global genotype heterozygosity 
model; D-HM = dominance model.
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between pairs of breeds (Lo et al., 1993; García-Cortés 
and Toro, 2006), whereas LBP is defined only for a 
given breed. The relationship between LBP and breed 
segregation needs further investigation.

The estimated LBP variances decreased slightly with 
increasing chromosome segment length for the LBP 
from 1 to 100 markers (Table 1). However, the segment 
length did not affect rGEBV y, . The longer the segment 
length, the more likely there are recombination points 
within segments that show difference from one breed 
origin to another. Consequently, the values in the p( ),100 i

b  
vector becomes closer to GBP and, therefore, dilute the 
variation in LBP. Additionally, QTL with opposite ef-
fects are more likely to be within the same segments 
when the segments are long, also diluting possible LBP 
effects. Majority of the crossbred animals were from 
simple crosses such as F1, 3-way crosses, and first gen-
erations of rotational crossbreeding. Therefore, the ge-
nomes of the animals were expected to be constructed 
from relatively long segments originating from the pure 
breeds [Further information on the genotyped cows is 
in Eiríksson et al. (2022)]. After applying crossbreeding 
for many generations, the chromosome segments with 
the same BOA are expected to be shorter. The differ-
ences between model fit and predictive ability between 
LBPM(1) and LBPM(100) might thus be larger for 
more complicated crossbreeding scenarios. We made 
additional tests using LBP models with segment length 
of 20 and 500 markers. For segment length of 20 mark-
ers, the results were almost identical to those from 
LBPM(1). For segment length of 500 markers, the esti-
mated LBP variances were somewhat lower than those 
from LBPM(100), but the predictive ability was simi-
lar.

In this study, we calculated pGEBV from estimated 
marker effects from separate purebred evaluations that 
used data from different purebred animals. Other au-
thors (Karaman et al., 2021; Guillenea et al., 2022) 
have estimated within-breed marker effects in BOA 
models from combined data set of crossbred and pure-
bred animals. In theory, LBP would also be relevant for 
such models because the marker effects depend on the 
within-breed-allele frequency.

Residual Additive Effects

The RAM considers the additive genetic effects twice. 
First, the within-breed genetic effect was predicted 
(i.e., pGEBV) based on solutions from the separate 
purebred evaluations. Second, the RA effect aims at 
capturing additive genetic effects that the within-breed 
prediction failed to capture. Among the reasons for the 
presence of RA variance could be, first, the different 

genetic background of purebred and crossbred animals, 
which results in different allele effects in the purebred 
and the crossbred animals (Christensen et al., 2014). 
Second, the estimated marker effects from the purebred 
populations are estimates, and therefore not completely 
accurate despite large reference groups. Third, the phe-
notypes of crossbred animals themselves are an infor-
mation source for their genetic effects, which could 
improve model fit. Fourth, the RA variance could 
partly come from the allele frequency differences of the 
breeds, which should also be accounted by the LBP 
variance. The estimated σa

2 from RA+LPBM(100) was 
indeed lower than its estimate from RAM for all 3 traits 
(Table 1) but the reduction was only a small proportion 
of the total estimated σa

2. The small increase in rGEBV y,
from RAM compared with BaseM indicates that the 
RA effects were not very important for prediction in 
our data, where the number of crossbred animals was 
small, compared to the large reference data of purebred 
animals contributing to pGEBV.

Breeding Value Estimation

The proposed models here are add-ons to the GEBV 
calculation based on BOA and solutions from purebred 
evaluations (Eiríksson et al., 2021, 2022). The simplest 
model in our comparison for breeding value estima-
tion, BaseM, accounted for the breed levels based on 
crossbred information and GBP rather than using 
phenotypes of purebred as in (Eiríksson et al., 2022), 
and required, therefore, no assumptions on the same 
environment for the involved purebred animals. For 
this data, only slight increase in predictive ability was 
obtained by adding either the LBP effects or the RA 
effects to the model. In practice, the simpler BaseM 
may therefore be the preferred model.

As presented above, the relevance of LBP depends on 
the breed composition of the crossbred animals includ-
ed, and particularly the F1 crosses do not contribute to 
the LBP variation. The difference in allele frequencies 
between the breeds in question also affects the relevance 
of LBP with large differences being likely to result in 
larger LBP effects. Therefore, the inclusion of LBP ef-
fects may have larger effect on prediction accuracy than 
observed in this study in the following situations: (1) 
groups of crossbred animals that include no or few F1 
crosses, and (2) crosses of breeds with large difference 
in allele frequencies of QTL. Further, the accuracy of 
genomic predictions depends on the number of pheno-
typic records included in the training set for estimation 
of marker effects (Meuwissen et al., 2001). In our study, 
phenotypic records on around 4,100 cows were included 
in each of the training sets for estimating LBP effects 
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for 3 breeds in the cross-validation. Training on larger 
data may result in more accurate estimates of the LBP 
effects, which should result in higher predictive ability.

Heterozygosity

When BOA assignment of the marker alleles is avail-
able, calculating GBH as an estimate of breed hetero-
zygosity is simple. In principle, GBH should be able to 
account for realized breed heterozygosity, in contrast 
with estimates based on pedigree, which require the 
assumption that offspring receive exactly half of the 
breed components in their parents. The contribution 
of grandparent’s breed in the genome of crossbreds can 
however vary considerably as shown in Figure 3.

The kκ term in Equations [6] and [7] was defined 
as the opposite of a homozygosity term in Xiang et 
al. (2016) and Doekes et al. (2020) (i.e., regression on 
genome-wide heterozygosity), except that in our study 
the κ parameter was estimated across breeds. Com-
parison of prediction ability of the BOA-HM, Ped-HM, 
and GT-HM models indicated that the BOA-derived 
heterozygosity indicator GBH was a similar or a bet-
ter indicator for heterozygosity than the pedigree or 
genotype genome-wide heterozygosity indicators for 
ETGV calculation (Table 4). Breed heterozygosity 
indicates the proportion of the genome that has al-
leles from alternating breeds, including alleles of QTL. 
The difference in allele frequency between the breeds 
increases the probability of the 2 haplotypes at chromo-
some segments to be different compared to when the 
2 haplotypes come from the same breed. That results 
in increased QTL heterozygosity in breed-heterozygous 
chromosome segments. Genotype heterozygosity indi-
cates that the markers, which supposedly are linked to 
QTL, are heterozygous, regardless of breeds. However, 
for crossbred animals, linkage can be inconsistent based 
on the breed origin (Ibánẽz-Escriche et al., 2009), and, 
thus, the marker heterozygosity might not be a good 
indicator for heterozygosity of QTL across breeds. 
Therefore, in the case of crossbred animals of breeds 
with low degree of shared QTL-marker LD, GBH may 
be a better heterozygosity indicator than genotype het-
erozygosity.

The results on LBH effect on FY are out of line with 
the other results of this study (Tables 2 and 4). First, 
we detected no variance of J × R LBH on the other 
2 traits and no improvement of including LBH effect. 
Second, we detected no, or very low, variance of the 
other breed pair LBH effects on FY. Milk fat percent-
age is considerably higher for J cows than the other 
breeds (Årstatistik Avl, 2020). It would therefore not 
be surprising to detect genetic effects related to fat pro-
duction that were unique for J or J crossbreeding. How-

ever, if the observed J × R LBH variance was related 
to J specific alleles, similar result would be expected for 
the H × J LBH effect. More data were available on H × 
J crossing than R × J (Figure 4), and yet we observed 
no variance explained with H × J effects (Table 2). 
Therefore, given the limited data we had for estimating 
the variance of J × R LBH effect (Figure 4), and the 
inconsistency with other results, further investigation 
is needed before any conclusions are made on the LBH 
effect on FY.

In purebred dairy cattle, dominance variance has 
been estimated for yield traits (Sun et al., 2014; Aliloo 
et al., 2016). However, results on increased accuracy 
of prediction when dominance effects are included, 
compared with models only including additive effects, 
are inconsistent (Sun et al., 2014; Aliloo et al., 2016). 
Further, Doekes et al. (2020) reported low dominance 
variance when regression on genome-wide inbreeding 
was included in the model for Holstein cattle, and only 
limited variation in inbreeding depression across the 
genome. The limited benefit of the dominance effects, 
when included in addition to the global heterozygos-
ity indicators in this study, are consistent with these 
results. Additionally, low level of LD in the crossbred 
group and relatively few data may hamper our ability 
to estimate dominance effects.

For selection of crossbred heifers for milk production, 
providing ETGV can facilitate a good selection basis, 
in addition to GEBV. As an example, for crossbreeding 
systems where crossbred dairy cows are inseminated 
with beef semen (Kargo et al., 2014; Clasen et al., 
2021), all selection among the crossbred cows is on their 
potential for production, rather than their potential to 
produce good offspring for dairy production. Therefore, 
accurate ETGV is more relevant than GEBV in that 
case. For predicting heterosis, GBH could be an in-
teresting alternative to pedigree-based heterozygosity 
estimates. Further, GBH is an option for accounting 
for heterosis in phenotypes of genotyped crossbred ani-
mals for inclusion into genetic evaluation. Our results 
suggest that accounting for local heterozygosity is not 
important for production traits in crossbred dairy cows.

CONCLUSIONS

Assigned BOA can give information on breed pro-
portions, both globally in the genome and locally in 
genome regions, which are useful for genomic predic-
tion of crossbred dairy cows. We found significant 
variance for LBP effects on production traits in Dan-
ish crossbred dairy cows, of magnitude around 1% of 
phenotypic variance. The importance of LBP and the 
size of this variance depends on the breed composition 
of the crossbred animals. In our data, including LBP 
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or RA effects improved GEBV prediction for crossbred 
cows slightly, when the effects were added to prediction 
from solutions from separate purebred genomic evalua-
tion. The increase in predictive ability was around a 0.5 
percentage point. Assigned BOA can further give in-
formation on breed heterozygosity, which can be useful 
for either accounting for, or predicting, heterosis. From 
our results, we cannot see clear benefit from modeling 
heterozygosity locally in the genome rather than only 
globally across all loci.
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