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Abstract 

Kai Mäkisara1, Matti Katila2, and Jouni Peräsaari3 

1Natural Resource Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki  

 kai.makisara@luke.fi 
2Natural Resource Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki  

 matti.katila@luke.fi 
3Natural Resource Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki 

 jouni.perasaari@luke.fi 

This report presents the methods and results of the Finnish multi-source forest inventory cor-

responding to years 2017 and 2019. In addition to field data, satellite images, digital map data 

and other georeferenced data were used. The main purpose of the article is to make multi-

source forest inventory results available for the users and to help the users to understand the 

principles of the methods and advantages and limitations of the products. The field data orig-

inate from the 11th, 12th and 13th Finnish National Forest Inventory from years 2012 to 2019. 

The field data have been computationally updated to the date 31 July 2017 or 31 July 2019. 

The satellite images where from years 2017 and 2018 (two frames) for the 2017 product and 

years 2018 and 2019 for the 2019 product. The basic features of the improved k-NN, ik-NN, 

estimation method are described. A new image window-based calibration step has been added 

to processing of some themes. 

The results are presented by region (maakunta) and within the regions by municipality, the 

boundaries as on 1.1.2018 or 1.1.2020. The estimates are given, for example, for land areas, 

areas of tree species dominance, age, and development classes of stands and often separately 

for forests available for wood supply. The mean volume and total volume estimates are given 

in many different ways: by tree species and by timber assortments for forest land, and com-

bined forest land and poorly productive forest land and also for forests available for wood 

supply, as well as by age and development classes. The biomass estimates are given, in addition 

to the total biomass estimates, by tree species groups in young thinning stands in which the 

first commercial thinning was proposed for the first 5-year period, separately for stem and bark 

and branches and foliage. The biomass estimates of mature forests are presented separately 

for branches, foliage and stem residuals, and stumps and large roots by tree species groups. 

These biomass estimates are given separately for land available for wood supply. 

In addition to the tabular results, numerical forest resource maps have been computed for 44 

themes. The themes include the same variables than in the tables, but the estimation unit is a 

pixel. Estimates for arbitrary larger units can be computed from the raster maps. Some of the 

differences between the tabulated results and similar results computed from the maps are dis-

cussed in the report. 

 

Keywords: multi-source forest inventory, national forest inventory, remote sensing, satellite 

images, genetic algorithm, k-nearest neighbours, small-area estimation, stratification, statisti-

cal calibration  
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List of abbreviations 

k-NN k-Nearest Neighbour method 

ik-NN Improved k-NN method 

NFI National forest inventory 

MS-NFI Multi-source national forest inventory 

MS-NFI-2017 Multi-source national forest inventory for 2017 

MS-NFI-OA-2017 Open access MS-NFI-2017 

MS-NFI-2019 Multi-source national forest inventory for 2019 

MS-NFI-OA-2019 Open access MS-NFI-2019 

Sentinel-2A/B European remote sensing satellites in the Copernicus program 

Sentinel-2 MSI MultiSpectral Instrument, the optical imager on board the Sentinel-2 

satellites Landsat Land satellite (NASA/USGS) 

Landsat OLI Operational Land Imager, a high-resolution multispectral imaging sys-

tem on board the Landsat-8 satellite. 

NLS National Land Survey of Finland 

DEM Digital elevation model 

RMSE Root mean square error 

SE Standard error 

FRYL Forestry land, in MS-NFI covers forest land, poorly productive forest 

land, and unproductive forest land 

FPPF Forest and poorly productive forest land 
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1. Introduction 

The Multi-Source National Forest Inventories (MS-NFI) in Finland use numerical raster data to 

extend the results of the field-data based inventories (NFI) to smaller units of area. The accuracy 

of the results decreases when the size of the unit decrease, but the results have still been found 

useful in research and in many practical applications. The methods used in MS-NFI enable 

computation of both raster maps and statistics for areas like the municipalities in the same 

process. The statistics are not computed directly from the rasters: the method uses intermedi-

ate results from computation of rasters to avoid problems encountered if the statistics are 

computed from the final raster results. 

The main source of small area data in the MS-NFI is medium-resolution satellite images, e.g., 

data from the Sentinel-2A/B satellites of European Space Agency (ESA) and the Landsat 8 sat-

ellite of United States Geological Survey (USGS). This kind of data is nowadays freely available 

and it is possible to obtain a (nearly) full cloud-free coverage over Finland each year. This means 

that the results represent the state of the forest within a small time interval. This differentiates 

MS-NFI from several other remote sensing based estimates, where collecting the data takes a 

longer time (e.g., estimates based on airborne LIDAR data). 

This report describes both the methods used and the results from the two most recent MS-NFI 

data sets, namely the result sets targeted for years 2017 and 2019. The results include both 

pixel-wise estimates and statistics for the municipalities. The inventories are called MS-NFI-

2017 and MS-NFI2019 throughout this article. This report is meant to be self-sufficient for 

understanding these versions of the results, but this means that there is a lot of overlap with 

publications describing the previous versions (e.g., Tomppo et al. 2013, 2014, Mäkisara et al. 

2016, Mäkisara et al. 2019). A more thorough description of the background is in the book by 

Tomppo et al. (2008b) describing the results based on the ninth National Forest Inventory (NFI, 

1996–2003). 

The first NFI was carried out in Finland from 1921 to 1924. The 11th inventory began in 2009 

and the field measurements were completed in 2013. The 12th inventory started in 2014 and 

the measurements were completed in 2018. The 13th inventory was started in 2019. Field data 

from the three latest inventories has been used in the work reported here. The latest field data 

for Northern Lapland is from the 11th inventory and it is used for the northernmost municipal-

ities. 

Based on the information from sample plots, estimates can be made for the entire country, or 

regions within a country, with a minimum size of about 300 000–500 000 hectares, depending 

on the forest parameter. The densities of plots are high enough to ensure that the resulting 

sampling errors are low for core variables, such as areas of land classes and the volume of 

growing stock. The estimates of forest parameters are currently presented by regions 

(maakunta). Finland is divided into 19 regions (see Fig. 1.1). The forestry land areas of the re-

gions vary from 117 000 hectares (Åland) to 9 million hectares (Lapland) (Korhonen et al. 2017). 

The development of the Finnish multi-source national forest inventory (MS-NFI) began in the 

Forest Research Institute of Finland (Metla) in 1989, and the first operative results were calcu-

lated in 1990 (Tomppo 1990, 1991, 1996, 2006b). The MS-NFI was introduced during the 8th 

rotation of NFI (1986– 1994) in the Pohjois-Savo region of the Public Service Unit of the Finnish 

Forest Centre (see Fig. 1.2). The first results for the entire country were published in 1998 

(Tomppo et al. 1998). The second country level results were published in 2008 (Tomppo et al. 

2008b), the third results corresponding year 2005 and covering South and Central Finland 
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(Tomppo et al. 2009a), and the fourth results corresponding to year 2007 and covering the 

entire country except Åland and the Northernmost Lapland (Tomppo et al. 2012). After this, 

results have been produced to correspond to a certain year, 2009 (Tomppo et al. 2013) (North-

ernmost Lapland excluded), 2011 (Tomppo et al. 2014), 2013 (Mäkisara et al. 2016), 2015 

(Mäkisara et al. 2019), and now for 2017 and 2019. In total, ten sets of country level results 

have been computed. 

The progress of the Finnish NFI was changed somewhat for NFI10 (2004–2008). From the fifth 

to the ninth inventory, the measurements proceeded by region each year. In NFI10, the sched-

uling was changed so that one fifth of the plots were measured each year (excluding Åland and 

Northern Lapland, where measurements were completed within one or two years). At the same 

time, the inventory rotation was shortened to 5 years, or nearly half of its previous rotation 

duration. This change made it possible to compute the basic forest resource estimates annually 

for the entire country, both from field data and in MS-NFI. In the NFI plans, MS-NFI results 

were decided to be calculated every second year. The new approach to progress set some 

additional challenges for the MS-NFI, e.g., field measurements from several years can and must 

be employed. 

For MS-NFI, methods were sought that would provide area and volume estimates, possibly 

broken down into subclasses, such as tree species, timber assortments, and stand-age classes. 

Since NFI10, the estimates of potential wood energy biomass from forests have been produced. 

In the optimal case, the MS-NFI method should be able to provide estimates for small areas as 

accurate as the field-based method provides estimates at national and regional levels. Since 

the first implementation of this method, it has been modified continuously and new features 

have been added (Katila et al. 2000, Katila & Tomppo 2001, 2002, Tomppo et al. 2009a). The 

core of the current Finnish MS-NFI method is presented in (Tomppo & Halme 2004) as well as 

in (Tomppo et al. 2008b). A multi-temporal data fusion combining MS-NFI estimators at mu-

nicipality from three time points was tested as a means to improve single time point MS-NFI 

estimates resulting small but, however, consistent improvement (Katila and Heikkinen 2020). 

Post-stratification (PS) based results of NFI field data employing exogenous MS-NFI maps 

based on the previous NFI have been tested for regions (Haakana et al. 2019) and municipalities 

(Haakana et al. 2019). Post-stratification allows for the design-based variance estimation. For 

the smallest municipalities the estimates may not be reliable (Haakana et al. 2020). Post-strat-

ified results by regions and municipalities are available at the Luke website (in Finnish only) 

https://vmilapa.luke.fi/. 

Somewhat similar methods to the Finnish MS-NFI, which combine field data and satellite im-

ages, have been developed and employed or tested in a several other countries like Sweden 

(Nilsson 1997, Reese et al. 2002, 2003, Hagner & Olsson 2004, Wallerman et al. 2021), USA 

(Franco-Lopez et al. 2001, McRoberts et al. 2002a,b, McRoberts 2006), Norway (Gjertsen 2005), 

Austria (Koukal et al. 2005), New Zealand (Tomppo et al. 1999), China (Tomppo et al. 2001), 

Germany (Diemer et al. 2000) and Italy (Maselli et al. 2005). Tomppo et al. (2008b) and Chirici 

et al. (2016) give a lists of references. The Swedish k-NN product is used for a multitude of 

purposes, as well as a basis for post-stratification to produce the official Swedish forest statis-

tics, see also (Tomppo et al. 2008b). McRoberts et al. (2002a), McRoberts et al. (2002b) and 

Haakana et al. (2019) also applied k-NN products to post-stratified estimation. Other examples 

of the development work in USA are the studies by McRoberts (2006) and McRoberts et al. 

(2007), who presented a model-based approach to derive k-NN error estimators for a group 

of pixels at an arbitrary size, Finlay et al. (2006) and Finlay and McRoberts (2008), who presented 

two methods of increasing the efficiency of the k-NN search. A review of using remote sensing 

data in NFIs is presented by McRoberts et al. (2010a), McRoberts et al. (2010b) and Kangas et 

https://vmilapa.luke.fi/
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al. (2018). An error estimation method based on bootstrapping is presented by McRoberts et 

al. (2011) and a BRR resampling method by Magnussen et al. (2010). 

To better use the field data from several years, the method for making MS-NFI-2011 was im-

proved and the same basic method has been used since then. Instead of just removing from 

the ground data the field plots that have changed between imaging and field work, the ground 

data have been updated to a set date (31 July 2017 or 31 July 2019 for these inventories). The 

forest variables at plots that have been cut (or otherwise radically changed) have been updated 

to the new state. All of the field data have been computationally updated so that the total 

volume matches the total volume estimated from the field plots for each processing window 

for year 2017 or 2019. The method is described in more detail in Section 3.2.3. 

Note that this change affects the difference between MS-NFI-2011 or later and MS-NFI-2009 

or earlier. With the old method, the mean field data correspond roughly to the midpoint of the 

field data interval. With the new method, the field data correspond roughly to the end of the 

field data interval. This means that, for example, the difference between MS-NFI-2009 and MS-

NFI-2011 corresponds to a longer time span than two years. 

The level of several variables has been calibrated from MS-NFI-2015 Mäkisara et al. (2019), 

where calibration was performed separately for each processing window. For the 2017 inven-

tory, the method has been improved by computing the calibration parameters for all windows 

together (see Section 3.4.6). This change has made the accuracy more consistent within the 

regions. 

The main users of the MS-NFI results, municipality level estimates and forest resource maps 

are the forestry authorities at the Finnish Forest Centre, forest industries and forest environ-

ment researchers. More details of the uses are given in Tomppo et al. (2008a, 2008b, 2012, 

2013). The number of users has increased after the map form estimates from MS-NFI-2009 

were made publicly available in November 2012. The maps from MS-NFI-2017 have been 

added to the publicly available data sets in July 2019 and the MS-NFI-2019 images in April 

2021. The publicly available data sets are also part of the EU INSPIRE data from Finland. 

The spatial MS-NFI data sets are available free of charge. They can be viewed at 

https://www.paikkatietoikkuna.fi/web/en, Paikkatietoikkuna (2018) and downloaded from 

https://kartta.luke.fi/index-en.html (Luke 2018). The data is also available as an Atom Feed (IN-

SPIRE download service, https://kartta.luke.fi/inspireatom/mvmi.xml. These open access data 

sets include earlier data at pixels where the most current data is not available (see Section 4.6 

for details. These data sets are called here open access MS-NFI-2017 and MS-NFI-2019, abbre-

viated as MS-NFI-OA-2017 and MS-NFI-OA-2019. The municipality level results are available 

in electronic form as an appendix of this report. In the appendix the municipalities are grouped 

by region. 

The results computed using field data, the municipality statistics and results computed from 

the thematic maps may seem contradictory. Often the reason is that the results don’t actually 

answer the same question: they are not describing exactly the same area. This report includes 

some examples of results computed from MS-NFI-2019 and explanations of the differences. 

Computing the change in forest variables during time is often based on differences between 

MSNFI results at two timepoints. The differences result from real differences of the variables 

and different kinds of error in the two MS-NFI results at the locations in question. This report 

includes a comparison between the statistics computed from MS-NFI-2019 and MS-NFI-2017 

at the level of regions. 

https://www.paikkatietoikkuna.fi/web/en
https://kartta.luke.fi/index-en.html
https://kartta.luke.fi/inspireatom/mvmi.xml
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Figure 1. The regions (maakunta) of Finland. Digital map data: contains data from the National 

Land Survey of Finland general map 1:4.5 M 06/2015 and municipal division 1:4.5 M 01/2018. 

 

Figure 2. The Public Service Units of the Finnish Forest Centre and the Åland region 1.1.2013. 

Digital map data: ©National Land Survey of Finland, licence No. MML/VIR/MYY/328/08. 
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2. Materials 

2.1. Field data 

For MS-NFI-2017, field sample plots from NFI11 from year 2013 and from NFI12 from 2014 to 

2017 were used together with field plots from Northern Lapland from years 2012 and 2013 

(NFI11). The total number of plots was 77 559 plots. Of these, 65 909 plots were on land, 54 

525 on forestry land (including forestry roads) and 54 023 plots on the combined forest land, 

poorly productive forest land and unproductive land. 

For MS-NFI-2019, sample plot data from NFI12 plots from 2015 to 2018 and NFI13 plots from 

2019, together with the plots in Northern Lapland from NFI11 were used. The total number of 

plots was 74 472 plots. Of these, 64 061 plots were on land, 53 139 on forestry land (including 

forestry roads) and 52 650 plots on the combined forest land, poorly productive forest land 

and unproductive land. 

The Finnish national forest inventory is a sampling-based inventory. The sample plots are ar-

ranged into clusters. The field measurements and assessments of the NFI are carried out on 

the field sample plots and, on those forest stands that include at least a part of a field plot. The 

field sample plot is also a unit in the field data-based estimation (Tomppo 2006a, Tomppo et 

al. 2011a, Korhonen et al. 2017). 

The field sample plot of NFI has been an angle count plot (Bitterlich) plot since NFI5 and was 

also in NFI11. In the angle count plots, the distance where a tree is included depends on the 

diameter of the tree. A maximum distance from the centre point of the plot to the trees to be 

included into the plot was introduced during NFI8 in North Finland in 1991. The maximum 

distance detracts very little from the reliability of the estimates but decreases the amount of 

field work and also reduces possible errors caused by unobserved trees (Korhonen et al. 2017). 

 

Figure 3. A sample plot of NFI 12 and NFI13 

  



Natural resources and bioeconomy studies 90/2022 

11 

 

For NFI12, the field plot type was changed. A fixed radius plot (Fig. 3) is used, where all trees 

with diameter ≥ 95 mm are measured up to distance 𝑟1 of 9 meters. In addition to this, trees 

with diameter ≥ 45 mm are measured up to distance 𝑟2 of 5.64 meters. Small trees with diam-

eter < 45 mm are measured using a relascope plot with relascope factor 1.5. The maximum 

radius 𝑟𝑟𝑚𝑎𝑥 of the relascope plot is 1.84 meters. For NFI13, the maximum distance 𝑟2 for trees 

with diameter between 45–95 mm was changed to 4.00 meters. 

The basic principles of NFI11, NFI12 and NFI13 designs are similar to those of NFI10 and NFI9 

(Tomppo 2009a). The country is divided into six sampling regions, shown in Figure 4 together 

with the sample plots used in MS-NFI-2019. Åland was further subdivided into 2 regions in 

NFI11 because an Airborne Laser Scanning (ALS) inventory using NFI sample plots was also 

performed in the central part (Åland 1, Table 1) using the same field data. This required higher 

sampling density in that area than is needed for just NFI. 

 

Figure 4. NFI layout of clusters and the six geographic regions with different sampling inten-

sities, NFI11 2012–2013, NFI12 2015–2018, NFI13 2019 used in MS-NFI-2019. Contains map 

data from the National Land Survey of Finland Municipal Division dataset 03/2021 and General 

Map 3/2018. 

Except in Northern Lapland in both MS-NFI-2017 and MS-NFI-2019 (NFI11) and Åland in MS-

NFI2019 (NFI12), the sampling structure can be explained using repeating blocks of clusters in 

a systematic grid. Each block consists of permanent clusters (that can’t be moved between 

inventories) and temporary clusters (that are moved between inventories). Each cluster consists 

of a number of sample plots. The number of plots in a cluster and the cluster structure should 

enable measurement of one cluster in a single workday. As an example, the block structure 
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used in Central Finland in NFI11 is shown in Fig. 5. The block parameters for the different re-

gions in NFI11 and NFI12 are shown in Table 1 for MSNFI-2017 and in Table 2 for MS-NFI-

2019. These parameters include the nominal representativeness (hectares/plot) that describes 

the density of the plots in each sampling region. 

Stratified sampling was used in Northern Lapland. Based on previous MS-NFI results, the region 

was divided into six strata. All clusters consisted of nine plots. The number clusters and the 

locations of the clusters were optimised base on MS-NFI estimates and other data (Korhonen 

et al. 2017). The representativenesses of plots in each stratum varied from 1048 to 7208 hec-

tares per plot. 

The inventory in Åland has been carried out during one year in both NFI11 and NFI12. In NFI11 

(used in MS-NFI-2017), the field work was done in year 2013 and in NFI12 (used in MS-NFI-

2019) in year 2018. 

In NFI12, the sampling design for temporary plots in Åland was based on the Local Pivotal 

Method (LPM) Räty et al. (2019). The measurements were done in year 2018. In LPM, the num-

ber of clusters and the locations of the clusters are optimized using auxiliary data (in this case, 

raster data from MSNFI-2007, (Tomppo et al. 2012)) to increase the efficiency of the design. 

The cluster size was five plots and the resulting density for the plots was slightly higher than 

the density in Southern Finland. 

Table 1. Sampling parameters for the repeating blocks in the different regions in MS-NFI-

2017. 

NFI region 
distance 

(km) 
perm clust temp clust 

hectares 
/ plot 

   clust plots clust plots  

11 Åland 1 12 1 10 15 9 99 

11 Åland 2 12 1 10 9 9 158 

11 South 12 1 10 4 9 313 

11 Central 14 1 14 4 11 338 

11 Kainuu-PP 14 1 11 4 9 417 

11 South Lapland 20 1 11 3 12 851 

12 Southern 12 1 10 4 8 343 

12 Central 14 1 14 4 9 392 

12 Kainuu-PP 14 1 11 4 8 456 

12 South Lapland 20 1 11 4 10 784 
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Table 2. Sampling parameters for the repeating blocks in the different regions in MS-NFI-

2019. 

NFI region 
distance 

(km) 
perm clust temp clust 

hectares 
/ plot 

   clust plots clust plots  

12 Åland LPM  10  5 261 

12 Southern 12 1 10 4 8 343 

12 Central 14 1 14 4 9 392 

12 Kainuu-PP 14 1 11 4 8 456 

12 South Lapland 20 1 11 4 10 784 

13 Southern 12 2/1 8/10 2 8 343 

13 Central 14 2/1 9 2 9 436 

13 Kainuu-PP 14 2/1 8/11 2 8 456 

13 South Lapland 20 2/1 10/11 2 10 784 

 

The tree level stem volumes on the field sample plots are converted to volumes per hectare in 

the MS-NFI using the expansion factor. After this, the different plot structure in NFI11, NFI12 

and NFI13 is not visible in the computation. Volumes per hectare are estimated for each sample 

plot by tree species and by timber assortment classes based on the tally tree volumes. The 

estimation of volumes and volumes of timber assortments for tally trees from field measure-

ments is described in Tomppo et al. (2011a). Otherwise, the field variables used are similar to 

those in the NFI calculations that use field data only. Biomass estimates were calculated for 

each field plot by tree species groups and by tree compartments. The biomass estimates can 

be used for assessing carbon balance of forests in small areas, and for energy wood estimation. 

 

Figure 5. Sampling design for Central Finland in NFI12. The clusters denoted by ’K’ are tem-

porary clusters. The other clusters are permanent clusters created in different inventories (P in 

NFI9, U in NFI12 and X in NFI13). 
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2.2. The satellite images 

High-resolution (about 10–30 metres pixel size) multispectral satellite images were used in the 

operative application. Large coverage and good availability with reasonable price, or free of 

charge, were additional selection criteria. Based on these requirements, the Landsat 8 OLI sen-

sor was long the most suitable one for this application. The EU/ESA Sentinel-2A satellite was 

launched in 2015 and Sentinel-2B was launched in 2017. Data from both of these new satellites 

were available for both inventories, in addition to Landsat 8 data. 

A suitable imaging season for forest inventory purposes in Finland is from mid-May until the 

end of August, with the optimal time being from early June until the end of July. Even with 

three satellites, because of clouds, it was not possible to obtain complete cloud-free coverage 

for whole Finland during one year. Some data from the previous year had to be used to fill 

gaps. 

The Sentinel-2 data is provided in 100 km by 100 km tiles in the UTM coordinate system with-

out cost (Sentinel-2 2021). The image data for MS-NFI is assembled from the tiles covering 

relatively cloud-free areas within single overflights. Most of the tiles over Finland are in UTM 

zone 35, but some are in zones 34 or 36. 

The Landsat 8 data is provided from USGS (U.S. Geological Survey) without cost (Landsat 2021). 

The overflights are divided into frames (the WRS-2 system) and orthorectified by USGS to UTM 

zones 34, 35, and 36, as appropriate. 

Where possible, adjacent satellite image frames or tiles from same path and date were com-

bined to increase the number of field plots within image and to simplify processing. 

Both Sentinel-2 and Landsat 8 data were provided in system corrected format or atmospheri-

cally corrected format. The atmospherically corrected versions were tested but contained arte-

facts. Because of this, the system corrected images were used in both inventories. 

For MS-NFI-2017, the target year of image acquisition was 2017. The satellite images used 

include data from 13 Sentinel-2A/B overflights (86 tiles) and seven Landsat 8 overflights (20 

frames) (Table 3, Fig. 6). Two of the Sentinel-2A overflights were from year 2018, the other 11 

overflights of Sentinel-2A and Sentinel-2B were from year 2017. All of the seven Landsat 8 OLI 

overflights (20 frames) were from year 2017. One of the overflights was split into two parts for 

processing. 
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Table 3. List of satellite images used in the MS-NFI-2017: image index number in Fig. 6, left), 

satellite sensor, path/row, acquisition dates of images and number of image tiles/frames in 

one image. 

Image No. 
(Fig. 6) 

Sensor Path/Row Date 
No. of image 
tiles/frames 

1 Sentinel-2A MSI 022 03062017 8 

2 Sentinel-2A MSI 036 04062017 4 

3 Sentinel-2A MSI 079 07062017 8 

4 Sentinel-2A MSI 022 13062017 3 

5 Sentinel-2A MSI 079 02072018 8 

6 Sentinel-2B MSI 036 09072017 10 

7 Sentinel-2A MSI 122 15072018 6 

8 Sentinel-2B MSI 122 25072017 14 

9 Sentinel-2B MSI 122 14082017 3 

10 Sentinel-2B MSI 136 15082017 4 

11 Sentinel-2B MSI 022 17082017 6 

12 Sentinel-2B MSI 065 30082017 4 

13 Sentinel-2A MSI 079 05092017 8 

14 Landsat 8 OLI 186/16to18 16052017 3 

15 Landsat 8 OLI 188/14to17 15062017 4 

16 Landsat 8 OLI 188/14to17 01072017 4 

17 Landsat 8 OLI 190/11to12 16082017 2 

18 Landsat 8 OLI 190/17to18 28052017 2 

19 Landsat 8 OLI 192/11to13 28052017 3 

20 Landsat 8 OLI 195/11to12 04092017 2 
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Table 4. List of satellite images used in the MS-NFI-2019: image index number in Fig. 6, 

right), satellite sensor, path/row, acquisition dates of images and number of image 

tiles/frames in one image. 

Image No. 
(Fig. 6) 

Sensor Path/Row Date 
No. of image 
tiles/frames 

1 Sentinel-2A MSI 036 14062019 10 

2 Sentinel-2A MSI 122 30062019 11 

3 Sentinel-2A MSI 122 10072019 2 

4 Sentinel-2A MSI 122 20072019 12 

5 Sentinel-2A MSI 079 06082019 8 

6 Sentinel-2B MSI 136 06062019 5 

7 Sentinel-2B MSI 122 15062019 6 

8 Sentinel-2B MSI 136 16062019 7 

9 Sentinel-2B MSI 022 08072019 15 

10 Sentinel-2B MSI 122 25072019 17 

11 Sentinel-2B MSI 008 27072019 4 

12 Sentinel-2B MSI 036 28082019 5 

13 Landsat 8 OLI 185/16to17 16062019 2 

14 Landsat 8 OLI 187/14to15 02092019 2 

15 Landsat 8 OLI 187/16to17 30062019 2 

16 Landsat 8 OLI 189/17to18 28062019 2 

17 Landsat 8 OLI 191/15to16 28072019 2 

18 Sentinel-2B MSI 122 10072018 3 

 

For MS-NFI-2019, the target year of image acquisition was 2019. MS-NFI-2019 used data from 

18 satellite overflights (see Table 4 and Figure 6), 13 overflights of Sentinel 2A/B and five over-

flights of Landsat 8. All images except one were from year 2019. One image from 2018 was 

used to fill a small area in Central Finland. Three overflights were split into two parts for pro-

cessing. 

All of the satellite images needed to be in the ETRS-TM35FIN coordinate system for further 

processing. The Landsat 8 OLI images were delivered in the UTM projection but the rectification 

accuracy was not good enough for our purposes. Some of the images were delivered in UTM 

projection zones 34 and 36. Because of these facts, the OLI images were re-rectified to the 

ETRS-TM35FIN projection. The location accuracy of the Sentinel-2A data was good enough, 

and only reprojection to the ETRS-TM35FIN coordinate system with pixel size of 16 by 16 me-

ters was done. See Subsection 3.1 for details. 
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Figure 6. The satellite image mosaics used to cover Finland in MS-NFI-2017 (left) and MS-NFI-

2019 (right) and the boundaries of regions. Digital map data: contains data from the National 

Land Survey of Finland General Map 1:4.5 M 06/2015 and Municipal Division 1:4.5 M 01/2018. 

2.3. Digital map data 

2.3.1. The use of the map data 

Digital map data are used to reduce the errors in the estimates. The errors in both the area and 

total volume estimates can be reduced significantly by the multi-source method if the differ-

entiation of forestry land from non-forestry land can be supported by digital map information 

in addition to satellite images (Tomppo 1996). The map information is used to separate forestry 

land from other land classes, such as arable land, built-up areas, roads, urban areas and single 

houses. The effect of possible map errors on small-area estimates is reduced by using one of 

two alternative statistical methods (Katila et al. 2000, Katila & Tomppo 2002, Tomppo et al. 

2008b). The first one is a calibration method using a confusion matrix derived from the land 

class distributions on the basis of field plot data and map data, and the second one employs 

stratification of the field plots on the basis of map data (see Subsection 3.4.4). In addition, the 

map data are used to stratify the forestry land area and the corresponding field plots into a 

mineral soil stratum, a peatland soil stratum and open bog and fen stratum. Digital map data 
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is also used to delineate the computation units in the MS-NFI. Areas of protected forests were 

used to calculate estimates for forestry land available for wood supply by municipalities. 

Table 5. Sources and quality of the numerical map data. 

Map theme(s) 
Deliv-

ered by 
Scale 

Date in da-
tabase MS-

NFI-2017 

Date in da-
tabase MS-

NFI-2019 
Area covered Data source 

Topographic data-
base; land use 
classes, peat-
lands, municipality 
borders 

NLS 1:10 000 4/2018 1/2020 whole country 
Topographic 
database 

Protected forests SYKE  29.5.2018 28.9.2020 whole country 
Nature  
conservation 

Nature conserva-
tion programmes 

SYKE  1978–1996 1978–1996 whole country 
Nature  
conservation 
databases 

Regional land use 
plans (Maakun-
takaava), pro-
tected areas ’S’ 

SYKE 1:250 000 29.5.2018 29.5.2018 
most of the 
country 

Regional land 
use GIS data-
base 

NATURA 2000 ar-
eas ‘SPA’, ‘SPC’ 

SYKE  - 11.12.2018 Whole country 
NATURA  
2000 data-
base 

 

The mineral soils and different types of organic soils (peatland soils) can have significantly 

different spectral signatures even when the growing stock is the same (e.g., Katila & Tomppo 

2001). In addition, some peatland cannot be separated from mineral soils by means of remote 

sensing. Therefore, stratification based on digital peatland information is used to decrease the 

prediction and estimation errors (Tomppo 1996, Katila & Tomppo 2001). The site class defini-

tion is vegetation-based in the NFI: the forest stand is considered to be peatland (spruce mires, 

pine mires, open bogs and fens) if the organic layer covering the mineral soil is peat or if 75 % 

of the under-storey vegetation is peatland vegetation (Lehto & Leikola 1987). A geological 

definition of peatland is used for the topographic mapping: peatland is covered mainly by peat 

vegetation and the thickness of peat layer is over 30 cm. Thus, the peatland mask cannot be 

used in a categorical way, but it is used to stratify the forestry land, satellite images and corre-

sponding field plots for subsequent analysis in the estimation phase. Stratification is used to 

avoid the biases caused by the peatland map that deviates from the peatland used in the NFI, 

the deviations caused by the different definitions and locational errors in the maps. 

Almost all map data were obtained in vector format from the Topographic database of National 

Land Survey of Finland (NLS) (Table 5) (Maanmittauslaitos 2018). A raster map with 16 m by 16 

m pixel size was computed from selected topographic database elements. For the purposes of 

the calibration method (Subsection 3.4.4), the overlaying of the map elements was done in 

such a way that it would be possible to form map strata as homogeneous as possible with 

respect to the NFI field plot-based land class distribution (Katila et al. 2000). The main objective 

was to use the derived digital land use map (Fig. 9b) to obtain as precise estimate as possible 

for the combined forest land, poorly productive forest land and unproductive forest land (de-

noted by forestry land) when compared to the NFI field data-based estimate. 
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2.3.2. The map data 

The elements from the topographic database The first version of the topographic database 

in year 2018 was used for MS-NFI-2017 and the first version in year 2020 was used for MS-

NFI-2019. The positional accuracy of the topographic database is comparable to maps on scale 

1:5 000–1:10 000 (Maanmittauslaitos 2018). The topographic database consists of map sheets 

which are updated in 5–10 years periods. However, all roads and almost all the buildings are 

updated annually, as well as administrative boundaries. Due to this staggered processing, the 

date of the topographic map elements varies. 

All the map elements were rasterised to 16 m by 16 m pixel size. The rasterisation was done 

separately for each element and suitable widths for line elements (roads, power lines, etc.) and 

buffer zones for buildings were defined. These widths and buffer zones were determined iter-

atively by comparing the proportions of the land classes based on the rasterised topographic 

database and the NFI10 field plot data (Tomppo et al. 2012). The main principle in the raster-

isation and generalisation was to keep the total area covered by each map theme as same as 

that based on the NFI data. The visual appearance of the non-forestry land classes in the MS-

NFI output map was considered to be of secondary importance. The selected elements of topo-

graphic database, possible width in processing and their priority in overlaying of the elements 

are described in Table 6. The agreement of the resulting map for MS-NFI-2015 against the NFI 

field observations has been evaluated in Mäkisara et al. (2019). 

The topographic database includes subclasses of open bogs, woody peatland (peat depth >= 

30 cm) and paludified lands (peat depth < 30 cm). It was therefore possible to stratify the 

peatland in the ik-NN estimation into open bogs and woody peatland (Subsection 3.4.1). Pal-

udified peatland correspond most often to mineral soils in NFI field plots and were thus kept 

as mineral soils in MS-NFI-2017 and MS-NFI-2019. 

Arable land is the third largest land class after forestry land and inland waters with an area of 

2.7 million hectares (Finnish Statistical Yearbook of Forestry 2014). The area of the forestry land 

was 26.2 million hectares and the area of the inland watercourses 3.5 million hectares. Most of 

the land use changes occur between arable land and other land classes. 

Urban areas and other built-up areas (e.g., mineral resources extraction areas, peat production 

areas, landfill areas, cemeteries, airfields, parks, sports and recreation areas) were delineated 

using elements of the topographic database. 

Digital boundaries of the computation units The basic computation unit in the multi-source 

inventory is the municipality, the number being 311 at the beginning of 2018 (MS-NFI-2017). 

Two municipalities merged at the beginning of 2020, reducing the number municipalities to 

310 in MS-NFI-2019. Their land areas range from around 1000 hectares to some hundreds of 

thousands of hectares (up to 1.5 million hectares in Inari). Digital municipality boundaries are 

used to delineate the computation units (Tomppo 1996). The boundary information originates 

from NLS topographic database and was obtained in vector format. The map data and land 

areas of the municipalities dating 1.1.2018 (MS-NFI-2017) and 1.1.2020 (MS-NFI-2019) were 

employed to calculate the small area estimates (cf. calibration to official land areas, Subsection 

3.4.4). 

Digital boundaries of protected forests Some estimates for municipalities were calculated 

for forestry land available for wood supply (Subsection 4.5, Appendix Tables). Areas of pro-

tected forests and nature conservation programmes obtained from the Finnish Environment 

Institute were used for this purpose (Suomen ympäristökeskus 2018). The protected forests 
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data were obtained in vector format dating 29.5.2018, while the nature conservation pro-

grammes delineations originate from the date of founding the programmes (1978–1996). All 

the map data were rasterised to 16 m by 16 m pixel size. The protected areas included strict 

nature reserves, national parks, wilderness areas, special protected areas, protected old-growth 

forest areas, protected herb-rich forest areas, mire conservation areas, nature reserves on pri-

vate land (protected permanently or temporarily), protected areas established by the Finnish 

Forest and Park Service and natural habitat types preserved on the basis of Nature Conserva-

tion Act. The nature conservation programmes employed are: ”Aarnialue”, areas protected 

based on decision by the authority responsible of management; mires; herb-rich forests; natu-

ral parks and nature reserves developing; avian water areas (’Mikkelinsaaret’). The nature con-

servation programmes digital database has not been updated since its creation. Therefore it 

contains a) areas where there is not yet final decision of protection made, b) areas with decision 

of status made. However, among the latter ones there is a minor proportion of areas which 

have been rejected and thus are erroneously classified as protected forests in our mask. 

Thirdly, the protected areas (code ’S’) from the regional land use plans were used to complete 

the protected forests mask. The data sources for the regional land use plans is called ’Maakun-

takaava’ as of 29.5.2018. 

In the MS-NFI-2019 NATURA 2000 Special Protection Areas (SPA) and Special areas of conser-

vation (SAC) were included in the protected areas, dating 11.12.2018. However, the areas that 

were protected by waterbodies, rapids, land use or building acts were excluded. 

It has been noticed that the area of forestry land not available for wood production is an un-

derestimate when compared to the field inventory-based estimates from the NFI11. This is due 

to the multiple-rule based definition of the Metsähallitus non-production areas. Some of these 

areas were not available in digital formats, e.g., poorly productive forest land and wasteland 

land areas protected by the decision of the Metsähallitus. 

Table 6. The elements of the topographic database selected to the land class map and ap-

plied line buffer zone widths in the rasterising. The elements are in the priority order in the 

table (uppermost first). Forestry land is the area not covered by elements extracted from the 

topographic database. 

MS-NFI code MS-NFI Map 
code 

Description Topog. database 
code(s) 

Notes 

14 30252 Roads See roads below Overl. over water 

90 30253 Sea water 36211  

91 30253 Fresh water 36200, 36313  

92 30253 Decomposing reliction 
area 

38300  

13 30251 Built-up area 40200  

16 30252 Railroad 14111, 14112, 
14121, 14131 

Buffer 17 m 

14 30252 Roads, class Ia–IIIb 12111, 12112 Buffer 16 m 

   12121 Buffer 12 m 

   12122 Buffer 9 m 

   12131, 12132 Buffer 8 m 

22 30254 Agricultural field 32611  

19 30250 Quarry, gravel pit 32500, 32111, 
32112 

 

20 30248 Peat production area 32113  

21 30254 Meadow 32800  
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12 30252 Airport 32410–32418  

2 30252 Motor traffic area 32421  

3 30250 Graveyard 32200  

4 30250 Landfill 32300  

5 30250 Garden 32612  

6 30250 Park 32900  

7 30250 Earth fill 33000  

8 30250 Sports/recreational area 33100  

11 30250 Built construction 45700 Buffer 5 m 

9 30250 Basin 44300 Buffer 5 m 

10 30250 Storage area 38900  

15 30252 Other road 12141, 12314 Buffer 5 m 

17 30250 Power line 22311 Buffer 14 m 

   22312 Buffer 5 m 

18 30250 Gas pipe 26111 Buffer 20 m 

103 prediction Bare sand 34300  

104 prediction Exposed bedrock 34100, 34700  

1 30251 Building 42211 Buffer 25 m 

   42210, 42212 Buffer 30 m 

   42220–42222 Buffer 20 m 

   42230–42232 Buffer 10 m 

   42240–42242 Buffer 30 m 

   42250–42252, 
42270 

Buffer 30 m 

   42260–42262 Buffer 5 m 

106 prediction Paludified area, <= 0.25 
ha 

35300  

107 prediction Paludified area <= 0.5 ha 35300  

105 prediction Paludified area 35300  

109 prediction Forested marsh <= 0.25 
ha 

35412, 35422  

110 prediction Forested marsh <= 0.5 ha 35412, 35422  

108 prediction Forested marsh 35412, 35422  

111 prediction Open bog 35411, 35421  

112 prediction Open reliction area 39130  

101 prediction Forestry land <= 0.25 ha   

102 prediction Forestry land <= 0.5 ha   

100 prediction Forestry land   

2.4. Digital elevation model 

A digital elevation model is used in two ways: for stratification on the basis of elevation data 

and for correcting the spectral values by reference to the angle between solar illumination 

angle and the terrain normal (Subsection3.4.1, Tomppo 1992, Tomppo et al. 2008b, 2012, 

2013). Stratification in this context means using the maximum vertical distance from a pixel to 

its nearest neighbours. The selection of parameters for stratification and spectral correction 

has been studied by Katila and Tomppo (2001). The digital elevation model (DEM) employed 

was a raster file with a horizontal spatial resolution of 10 metres by 10 metres and with a vertical 

resolution of 0.1 metres (Maanmittauslaitos 2017). The values used in the 16 by 16 metre grid 
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were obtained by applying a Gaussian filter to the data after resampling. This was done to 

prevent artefacts in the slope computed from the DEM. The full width of the Gaussian at half 

maximum (FWHM) was 27 meters. 

2.5. Large area forest resource data 

The improved ik-NN method was introduced during NFI9. It employs a coarse scale variation 

of the key forest variables to guide the selection of field plots from which the data are trans-

ferred to the pixel to be analysed. The variation is presented in the form of coarse-scale digital 

forest variable maps (Fig. 7), derived either from the current inventory data or from the data of 

the preceding inventory. For MS-NFI2017 and MS-NFI-2019, the NFI field plots from 2006–

2010 were used. The large area changes in forests are slow and the tree species proportions of 

the volume of growing stock do not change essentially in a few years. The coarse scale maps 

made with the field data from the years 2006–2010 are thus relevant also for the MS-NFI prod-

ucts for the years 2017 and 2019. 

There were 72 234 field plots on land across the entire country in the 2006–2010 data, of 

which 59 785 were on forestry land, 54 828 on combined forest land and poorly productive 

forest land, and 50 492 were on forest land alone. All the plots on forest land and poorly pro-

ductive forest land were used for the final large-area maps. The principles construction of the 

maps is described in (Tomppo et al. 2008b). Moving average interpolation was used. The 

cluster level averages of the volumes by tree species groups (pine, spruce, birch species and 

other broad-leaved tree species) were first calculated. The averages of these cluster level av-

erages were calculated within a circle of a radius of 30 km and the original cluster levels aver-

ages were replaced by these moving averages. The values of these moving averages were 

predicted for each grid cell of 1 km x 1 km in Finland using 1-NN method. The distance was 

in the geographical space. Further smoothing was employed using moving averages twice 

with windows sizes of 11 km x 11 km and 25 km x 25 km.  
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Figure 7. Large scale variation of mean volumes (m3/ha) of pine (a), spruce (b), birch (c), and 

other tree species (d) on Forest and Poorly Productive Forest Land (FPPF) in NFI10 and NFI11 

(2006–2010) with boundaries of the Public Service Units of the Finnish Forest Centre and the 

Åland region. Digital map data: ©National Land Survey of Finland, licence MML/VIR/-

MYY/328/08. 
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3. Methods 

3.1. Image rectification and radiometric correction of the 

spectral values 

The Landsat images were obtained from the USGS archive (Landsat 2021) and they were recti-

fied to the UTM coordinate systems using the WGS84 datum. The UTM zone for each frame 

depended on the location. The images arrived in zone 34, 35, or 36 and the pixel size was 30 

meters (15 meters for the panchromatic channel). The MS-NFI processing requires images in 

the ETRS-TM35FIN coordinate system with pixel size of 16 meters. The rectification accuracy 

within Finland was not good enough to enable simple reprojection. Because of this, rectifica-

tion based on control points was used for the Landsat images. The rectification accuracy for 

the Sentinel images was good enough and no control points were used with that material. The 

original pixels (10 m and 20 m) were resampled to the grid used in MS-NFI using cubic convo-

lution resampling. 

The rectification was based on control points, determined interactively by comparing the digital 

map (outlines of lakes, islands, roads, buildings, etc.) and the satellite image using an image 

display. The operator moved the map over the satellite image until they match locally. A control 

point was established based on the horizontal and vertical shifts of the map to connect the 

image coordinates and the map coordinates at the point. A regression model was fitted to the 

control points for rectification. First or second order polynomial regression models were usually 

employed for this purpose. A typical number of control points has been around 50. The cubic 

convolution method was applied to re-sampling of the images to pixel size of 16 m by 16 m. 

No atmospheric correction was performed. 

Areas corresponding to the cloud-free parts of satellite images are used in operative applica-

tions. A cloud mask is manually made for each satellite image. Automatic methods for this task 

have been tested, but no satisfactory method has been found so far. Note that cloud masking 

can be made very coarsely in those parts of the images in the image mosaic that are not needed 

for the final product (i.e., covered by another, better image). 

The slope and aspect of the terrain locally change the illumination conditions of the surface 

and affect the reflectance from the ground and vegetation, as well as the radiance received by 

an imaging instrument. A digital elevation model was employed to remove the variation of the 

spectral values caused by the changes in the slope and aspect of the terrain. The details of the 

method are given in (Tomppo 1992, Tomppo et al. 2008b). The parameter selection has been 

studied in Katila and Tomppo (2001). 

3.2. Preparation and updating of the field data 

3.2.1. Canopy cover 

The canopy cover was measured at field plots in NFI10, but the measurement was not contin-

ued in NFI11. In order to provide multi-source estimates for canopy cover, it was estimated for 

NFI11, NFI12 and NFI13 field plots using NFI10 data. The models presented by Korhonen et al. 

(2007) were tested using NFI10 field plots. The result was that the models could not reproduce 

the measured values when the canopy cover was very low or very high. Because of this, a new 
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method for estimating the canopy cover was designed for MS-NFI-2009 and has been used 

since then. 

The design goal was to make a method that can reproduce the values measured in NFI10 as 

well as possible. Because the NFI10 field data were extensive, the k-NN method was used. The 

input variables and weights were manually determined. This was done separately for forest 

land, poorly productive land, and unproductive land because the set of available field meas-

urements was different. For forest land and poorly productive land, the estimation was done 

separately according to the dominant species (pine, spruce, others). 

The canopy cover for deciduous trees was computed from the canopy cover according to the 

proportion of deciduous trees in the field plot (computed from stem counts in seedling stands 

and basal area in mature stands). 

3.2.2. Overview of updating 

The updating method has not changed from MS-NFI-2013. For completeness, the method is 

explained also in this report. 

The satellite images are from a different date than the field work. This means that there may 

be large differences between the state of the plot at time of field work and at the time of 

imaging. An example is clear-cut between the dates. In these cases the image data and field 

data should not be used as such because of the incompatibility of the field data and image 

data. This incompatibility would increase the estimation and prediction errors. 

In the first applications, we solved this problem by omitting these plots from the field data. 

This, however, changes the distribution of the field data and this tends to reflect in the predic-

tion results. A typical case is clear-cut after the measurement date of the field data and before 

the imaging date. In this case, a high-volume plot is removed from the field data lowering the 

average volume of the prediction results. 

Another problem is that the field data have been collected during five years wherefore the 

average date of the field data is about two years before the end of the field data collection. 

This means that the prediction results reflect in this case, on average, the time two years before 

the images. Within each image in the image mosaic, the spatial distributions of the forest var-

iables depend primarily on the image data and, because of this, correspond primarily to the 

imaging date. 

To solve the problems mentioned above, we decided to use a conservative partial updating 

controlled by the NFI field data and satellite images. The algorithm was designed to match the 

total volume after updating to the estimate computed from the field data only (Subsection 

3.2.3). The data of individual field plots were modified according to the satellite image data 

and, in some cases, aerial photographs. If the plot was not cut between the field work and 

imaging, the growth models were applied to the growing stock variables. If the plot was iden-

tified as cut after the field work, the forest variables were modified according to the cut type 

identified from the image data and the growth models were applied to this modified data. It 

was not possible to detect thinnings from image data and these cases are included into the 

growth models. The growth models were controlled so that the total volume after updating 

matched the target. 
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The satellite images are from different dates and even different years. This means that the 

correction for the cuttings is different for different processing windows. Because of this, the 

updating was performed separately for each processing window. 

3.2.3. Updating of the field plot data 

The updating target The simplest updating target would be the mean of the total volume of 

the whole field data set. However, looking at the data from different years within the processing 

windows shows that, in many cases, this average does not represent well the total volume at 

the target time of updating. One reason for this may be an increasing or decreasing trend 

visible in the volumes seen in the field observations within the processing window. The yearly 

averages within windows fluctuate so that using a single year average would not be a good 

solution. Because of this, we decided to fit a regression line to the averages of the five years of 

field data. 

The predictions computed with regression were visually compared to the averages computed 

from the field data for each year. The predictions looked reasonable in all cases in this work. 

However, the method may need to be refined later if cases will be found where the prediction 

does not look reasonable. 

Large changes The large changes at the field plots between the image data and the field data 

are mostly due to regeneration cuts, but include also, e.g., severe wind falls. These changes 

can’t be detected with models, but can, in most cases, be identified by examining visually the 

field plot data and available image data. The field plot data can also be reasonably modified 

to reflect the state at the image date if the field work has been done before the image date. If 

the change has occurred after image date but before the field work date, the field data can’t 

be modified. In these cases, the plots were removed from the training material. 

The changes where updating the data is possible were handled in the following way. First, the 

field plots were listed where these kinds of changes potentially occur. These plots included 

advanced thinning stands and mature stands, together with young thinning stands where total 

volume was at least 100 m3/ha. The image data at these candidate plots was matched against 

image data from plots that were cut recently according to field data and the candidate plots 

were ordered according to decreasing similarity. The candidate plots were then visually 

checked using the satellite data and, if available, recent aerial photographs. The plots where 

image data did not visually match what was expected from the field plot data were selected 

for modification. The selected plots were classified to plots where some trees were left (natural 

regeneration cut), and plots with no trees (clear cut). 

The field plot data were changed according to the status of the field plot in the visual inspec-

tion. All of the substands were combined in to one stand. This was because it was not possible 

in practice to reliably identify different changes for the different substands. The updated forest 

variables reflected partly the previous state of the centre point stand. The dominant tree spe-

cies was retained and no other species was assumed to survive. In case of clear cut, the volumes, 

basal area, mean height, mean diameter, mean age, and tree cover were zeroed. In case of 

natural regeneration cut, the changes were more complicated. The mean height, mean diam-

eter and mean age were left intact. The total volume was set to the mean of storeys of this type 

in the field data in this geographic region (30 m3/ha in Southern Finland and 20 m3/ha else-

where). The other volumes, basal area, canopy cover and biomasses were changed according 

to the change in total volume. The main changes to field data were: 
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• development class: temporarily unstocked regeneration stand for plots with no trees, 

seedling tree or shelter tree stand for plots with some trees, randomised according to 

the ratio between seed tree and shelter tree cuts in NFI data from 2007–2012 

• cut type: regeneration cut for artificial regeneration for plots without trees, 

regeneration cut for natural regeneration for plots with some trees 

• field work date: midpoint between original field work date and image date, according 

to the growing season definition (see Subsection Growth models) to young seedling 

stand 

• mean age, mean height, mean diameter: set to zero if no trees, otherwise unchanged 

total dominant tree species: not changed, except when temporarily unstocked stand 

was changed volume: zero for plots without trees, 30 m3/ha (Southern Finland) or 20 

m3/ha (otherwise) for plots with some trees 

• second storey volume; zero other volumes, basal area, canopy cover: zero for plots 

without trees, otherwise put all to dominant species (canopy cover for broad-leaved 

trees set only if dominant species is broad-leaved) 

• biomasses: dominant species modified according to volume change, others set to zero 

Growth models Some key plot level (sub-plot level) and stand level variables were updated 

using growth models, in addition to cutting and natural mortality assessments (see Subsection 

3.2.1). The models were applied to each plot part and sub-plot stand separately when a plot 

intersected several stands (Subsection 3.3). The data were updated to the date 31 July of the 

target year, independently of the date of the image acquisition. Either existing growth models 

or own models, derived for this purpose, were used to estimate the increment from the date 

of the field measurements to 31 July 2017 (MS-NFI-2017) or 31 July 2019 (MS-NFI-2019). The 

variables updated with the increments were the plot level mean volumes (m3/ha) by tree spe-

cies groups and timber assortments, plot level biomasses by the tree species groups and tree 

compartments, canopy cover of all trees and separately for broad-leaved trees, as well as stand 

level variables, mean diameter, mean height and mean age and basal area of trees, as defined 

in the NFI. The increments of the stand level variables were estimated separately for the dom-

inant tree storey and a possible second storey. The basal area is recorded in NFI also for all tree 

storeys. The development class of stand was checked and updated based on the changes in 

the growing stock. 

The phases in the increment estimations and models were as follows. The length of the incre-

ment period in days was calculated first for each field plot and was defined as the number of 

the days in the growing season between the date of 31 July of the target year and the date of 

the field measurement. It was assumed that the growing season starts on 1 May and ends on 

10 August. The number of the days in the full season is thus 102. The number of the days in 

the increment period was changed to the number of growing seasons (𝑛𝑦𝑒𝑎𝑟) by dividing it by 

102. 

The plot level volume increments were estimated using the stand level models by Nyyssönen 

and Mielikäinen (1987) for pine and spruce dominated tree layers. The models of pine domi-

nated forests were used also for the broad-leaved dominated tree layers. The models were 

thus employed by tree storeys. The volumes by tree storeys at plot level were not available in 

the data. They were estimated as the shares of the total plot level mean volume, the shares 

proportional to the quantity 𝑖𝐺𝑖𝐻 were 𝑖𝐺 is the basal area and 𝑖𝐻 the mean height of tree storey 

𝑖. The increased volumes by tree storeys were combined to the plot level volumes. 

The model had been estimated for the natural logarithm of the percentage of the volume 

increment (𝑙𝑜𝑔(𝑝𝑣)). The model for a pine dominated stand is 
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𝑙𝑜𝑔(𝑝𝑣) = 𝑎 + 𝑏1𝑙𝑜𝑔(𝑇)2 + 𝑏2𝑉1/𝑉0.3
+ 𝑏3𝑙𝑜𝑔(𝐷)8/10000 + 𝑏4𝐼{𝑠𝑓≤4}(𝑠𝑓) (1) 

where 𝑇 and 𝐷 are the age and mean diameter of the tree storey in question in a stand, 𝑉 the 

volume of the tree storey on a plot and 𝐼{𝑠𝑓≤4}(𝑠𝑓) the indicator function of the site fertility class 

(𝑠𝑓). The values of the parameters are: 𝑎=0.7702, 𝑏1=-0.09667, 𝑏2=1.2503, 𝑏3=-0.1796 and 

𝑏4=0.1817. If 𝐷 was zero or missing, the parameters of the model had been estimated without 

𝐷, and are: 𝑎=0.7632, 𝑏1=-0.1181, 𝑏2=1.3516 and 𝑏4=0.09116. 

The model for the percentage of the volume increment of a spruce dominated stand is 

(Nyyssönen and Mielikäinen 1987) 

𝑙𝑜𝑔(𝑝𝑣) = 𝑎 + 𝑏1𝑙𝑜𝑔(𝑇) + 𝑏2𝑙𝑜𝑔(𝑉) + 𝑏3(𝑙𝑜𝑔(𝑇)𝑙𝑜𝑔(𝑉))
2

+ 𝑏4𝑙𝑜𝑔(𝑇)𝑉2/100000

+ 𝑏5(𝑙𝑜𝑔(𝐷))
5

+ 𝑏6𝐼{𝑠𝑓≤2}(𝑠𝑓) 

 

 

(2) 

The values of the parameters are: 𝑎=8.839, 𝑏1=-1.2749, 𝑏2=-0.5948, 𝑏3=0.00309, 𝑏4=-0.1193, 

𝑏5=-0.0006095 and 𝑏6=0.1009. If 𝐷 was zero or missing, the parameters of the model had been 

estimated without 𝐷, and are: 𝑎=9.7669, 𝑏1=1.5813, 𝑏2=-0.5730, 𝑏3= 0.003315 and 𝑏4=-0.1177, 

𝑏6=0 (site fertility indicator was missing from the model). 

The increased volume of the tree storey in the end of the updating period, including the esti-

mated increment over the updating period, was 𝑉2 = 𝑉1(1 + 𝑝𝑣/100)𝑛𝑦𝑒𝑎𝑟 where 𝑉1 and 𝑉2 are 

the volume of the tree storey in the beginning and in the end of the period, 𝑝𝑣 the increment 

percentage form the model and 𝑛𝑦𝑒𝑎𝑟 as above, the number of growing seasons in years. The 

increased volume 𝑉𝑢 for a plot was the sum of the increased volumes of the dominant tree 

storey, the increased volume of a possible second storey and the original volume of a possible 

third tree storey. The third tree storey is quite uncommon and the significance of its possible 

volume to the total volume negligible. The ratio 𝑉𝑢/𝑉𝑜 was used as a factor to calculate the 

volumes by tree species groups and by timber assortments. Here 𝑉𝑜 is the original plot level 

volume. 

The same ratio 𝑉𝑢/𝑉𝑜 was used also to increase the variables canopy cover of trees and canopy 

cover of broad-leaved trees as well as biomasses by the tree species groups and tree compart-

ments. 

For the increment estimates of the other key variables, except the age of a tree storey of a 

stand, new models were derived using the permanent field plot data of NFI10 and NFI11. The 

age was updated simply increasing the assessed age by the number of the growing seasons. 

The mean diameter 𝐷, mean height 𝐻 and basal area 𝐺 of a stand were updated also by tree 

storeys. The model for the logarithm of the relative diameter increment 𝑙𝑜𝑔(𝑖𝐷/𝐷) was 

𝑙𝑜𝑔(𝑖𝐷/𝐷) = 𝑎 + 𝑏1𝐷 + 𝑏2𝑙𝑜𝑔(𝑇) + 𝑏3𝑙𝑜𝑔(𝑇)2 + 𝑏4𝐺 + 𝑏5𝑑𝑑 + 𝑏6𝐼{𝑆𝑃=2}(𝑆𝑃) + 𝑏7𝐼{𝑆𝑃=3}(𝑆𝑃)(3) 

where 𝑖𝐷 is the annual mean diameter increment of the tree storey in question calculated from 

the successive measurements of field plot stands of NFI data, 𝐺 is the basal area of the trees of 

the tree storey in question, 𝑑𝑑 the effective temperature sum, 𝐼{𝑆𝑃=𝑖}(𝑖), the indicator function of 

tree species groups 𝑖, and the other variables as in Eqs. 1 and 2. The tree species groups were, 

pine and other coniferous than spruce (1), spruce (2) and broad-leaved species The values of 

the parameters were 𝑎=-0.8152130, 𝑏1=-0.0655599, 𝑏2=-1.0520602, 𝑏3=0.1317468, 𝑏4=-

0.0042745, 𝑏5=0.0003396, 𝑏6=0.0091463 and 𝑏7=0.0073079. 

The model for the logarithm of the relative height increment 𝑙𝑜𝑔(𝑖𝐻/𝐻) was 

𝑙𝑜𝑔(𝑖𝐻/𝐻) = 𝑎 + 𝑏1𝐻 + 𝑏2𝑙𝑜𝑔(𝑇) + 𝑏3𝑙𝑜𝑔(𝑇)2 + 𝑏4𝑑𝑑 (4) 
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where 𝑖𝐻 is the annual mean height increment of the tree storey in question calculated from 

the successive measurements of field plot stands of NFI data and the other variables as in Eqs. 

1, 2 and 3. The values of the parameters were 𝑎=-0.6601906, 𝑏1=-0.0101824, 𝑏2=-1.0175697, 

𝑏3=0.0890791 and 𝑏4=0.0007121. 

The model for the logarithm of the relative increment of the basal area of the trees of the 

storey in question 𝑙𝑜𝑔(𝑖𝐺/𝐺) was 

𝑙𝑜𝑔(𝑖𝐺/𝐺) = 𝑎 + 𝑏1𝐺 + 𝑏2𝑙𝑜𝑔(𝑇) + 𝑏3𝑙𝑜𝑔(𝑇)2 + 𝑏4𝑑𝑑 + 𝑏5𝐼{𝑆𝑃=1}(𝑆𝑃) + 𝑏 𝐼{𝑆𝑃=2}(𝑆𝑃)

+ 𝑏7𝐼{𝑆𝑃=3}(𝑆𝑃) 

  (5) 

where 𝑖𝐺 is the annual basal area increment calculated from the successive measurements of 

field plot stands of NFI data and the other variables as in Eqs. 1, 2, 3 and 4. The values of the 

parameters were 𝑎=1.4523612 𝑏1=-0.0753081 𝑏2=-1.8919602 𝑏3=0.2124715 𝑏4=0.0009454 

𝑏5=-0.0186978 𝑏6=0.0041331 𝑏7=-0.0129012 The model was applied to the basal areas of the 

stands by the tree storeys. 

Only the dominant tree storey and a possible second tree storey were updated using the in-

crement models of the diameter, height and basal area. A possible third storey was not up-

dated. 

The values of variables, 𝐷, 𝐻 and 𝐺 by tree storeys on 31 July 2017 or 2019 were calculated in 

a same way as the volumes, that is, 𝑀2 = 𝑀1(1+𝑝𝑟)𝑛𝑦𝑒𝑎𝑟 where 𝑀1 and 𝑀2 are the value of the 

variable 𝑀 in the beginning and in the end of the period, 𝑝𝑟 the relative increment from the 

models and 𝑛𝑦𝑒𝑎𝑟 as above, the number of growing seasons in years. 𝐷 and 𝐻 are given in NFI 

data only by tree storeys, but 𝐺 also for all storeys together. The total basal area of the stands 

was the sum of the basal areas of the tree storeys. 

The mean age was adjusted according to the years between the field data date and 2017 or 

2019. 

Calibration to the updating target The growth model results were calibrated to the updat-

ing target by multiplying the growing time with a multiplier. This multiplier was determined 

iteratively by computing the total volume (m3) after the increment prediction and comparing 

the result to the updating target determined for the corresponding image. 

 

Updating of development class The following possible changes in the development class 

were considered from the date of the field measurement to the updating date (July 31, 2017 

or 2019): 

 

1. from temporarily unstocked regeneration stand to young seedling stand 

2. from shelter tree or seed tree stand to open area or young seedling stand 

3. from young seedling stand to advanced seedling stand 

4. from advanced seedling stand to young thinning stand 

5. from young thinning stand to advanced thinning stand 

6. from advanced thinning stand to mature stand. 

For updating purposes, mainly to judge the development class of young seedling stand versus 

open area, we calculated the following four-dimensional distribution 𝐹 i) cutting time ii) devel-

opment class iii) the effective temperature sum (three classes, –1049, 1050–1179, 1180–) iv) site 

fertility. Only one effective temperature sum class was used for site fertility class one due to 

the lack of the data. 
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The means and standard deviations of the mean diameter of tree storeys of stands by devel-

opment classes were calculated for making decisions concerning possible transitions. 

The transition frequencies from regeneration cutting, both artificial and natural, to the devel-

opment class young seedling stand were estimated from the NFI data as a function of cutting 

time, effective temperature sum and site fertility class. The transitions were simulated based on 

the distribution 𝐹. 

The possible new development classes, in case of an open and temporarily unstocked regen-

eration stand for artificial regeneration, were temporarily unstocked regeneration stand and 

young seedling stand. This rule was used due to the short updating period. The longest updat-

ing period was four years. 

The distribution of the dominant tree species by site fertility classes in young seedling stands 

were estimated from the NFI data from the years 2004–2012. The dominant tree species was 

selected from this distribution in case of transition from a temporarily unstocked regeneration 

stand to young seedling stand. 

For natural regeneration (open area), the possible new development classes were, the one on 

the date of field measurement (shelter or seedling tree stand), open area and young seedling 

stand. The dominant tree species for a possible young seedling stand was the one of the shelter 

tree / seedling tree stand. 

Dominant tree species, mean diameter, mean height and age remained / were changed to 

those corresponding a temporarily unstocked regeneration stand (0) if the result was a tem-

porarily unstocked regeneration stand. 

To update case 3), a possible transition from young seedling stand to advanced seedling stand, 

the updated mean height was first checked using the original height and the height increment 

(Eq. 4). A simple model was derived to estimate the mean diameter as a function of the height. 

Similarly, a simple model was estimated for the volume (m3/ha) as a function of the mean 

height. 

The dominant tree species remained as the same as in the date of the field measurements. The 

biomass estimates were updated respectively. 

A possible change from the development class advanced seedling stand to young thinning 

stand was done as follows: the development class was ’up-graded’ if the updated mean diam-

eter of a stand exceeded the average mean diameter of the young thinning stands by two 

standard deviations of the mean diameters of those stands. A possible change from the devel-

opment class young thinning to an advanced thinning stand was done similarly, as well as a 

possible change from an advanced thinning stand to a mature stand except in the latter case, 

the standard deviation of the development class mature stand was used, based on practical 

tests. 
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Figure 8. Data flow and computational scheme for multisource NFI. 

3.3. Preparation of the input data sets 

In the image analysis (Fig. 8), the input data sets were 1) ground truth data, i.e., one record for 

each plot part and stand corresponding to a centre point of a plot, called here centre point 

stand and also for stands intersecting other parts of a plot, called here sub-plot stand: 1a) field 

data and 1b) satellite image data, 1c) digital map data, 1d) and other numeric feature data in 

text format, 2) a pre-processed satellite image, 3) a digital map of land use classes and mire 

and open bog mask, 4) a digital elevation model and thereof derived image of the angle be-

tween terrain normal and sun illumination, 5) cloud and cloud shadow delineation mask, 6) 

large-area forest resource data and 7) a map of computation units to calculate small-area es-

timates (Fig. 9). 
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a  

b  

c  

Figure 9. Examples of the Sentinel-2A MSI satellite image, multichannel colour composition of 

channels 2, 3, and 4 (a); the elements of the topographic map database (b); and MS-NFI-2019 

map of total volume (m3/ha) with other land use map data (c). Digital map data: contains data 

from the National Land Survey of Finland topographic database 1/2020. 

The land class map was employed to distinguish the combined forest land, poorly productive 

forest land and unproductive forest land (MS-NFI forestry land) from the other land classes. In 

this analysis, the area that was not peat production area, built-up land, arable land, roads or 
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waters in the numerical map was considered forestry land. The numerical map data were not 

always up-to-date and could contain significant errors. The effect of the map errors on the 

estimates were corrected the using calibration method (Section 3.3.2). 

The field data used as training data was sampled, if possible, from a larger area in the image 

window than is used in the final result mosaic. This area was used in optimizing the feature 

weight sets. Field data within the finally included areas was used for selecting the best set of 

feature weights and for selecting the other estimation parameters. 

3.4. The estimation methods 

3.4.1. The improved k-NN method (ik-NN) 

The non-parametric k-NN estimation has been employed in the MS-NFI calculation since op-

erational inception in 1990. The method has been improved continuously. The details of the 

current method employed for this article are given in (Tomppo & Halme 2004, Tomppo et al. 

2008b, 2012, 2013). The basic principles are listed here. 

With the k-NN method, the plot weights (Eq. 9) (not equal for each plot) are computed for 

each plot by computation units (Tomppo 1996). The computation unit is the unit for which 

results are computed. It can be a municipality when computing municipality results or a pixel 

when computing raster maps. The weights are computed for each field sample plot 𝑖 ∈ 𝐹, where 

𝐹 is the set of field plot parts, centre point plot part or sub-plot part, where the centre point of 

the plot belongs to forestry land. These plot weights are sums of the weights that are computed 

for the field plots over all satellite image pixels on the forestry land mask of the computation 

unit. The plot weights corresponding to a single pixel (Eq. 7), in turn, are computed by a non-

parametric k-NN estimation method (Tomppo 1991, 1996, Tomppo et al. 2008b, 2012, 2013). 

The method utilises the distance metric 𝑑, defined in the current version in the feature space 

of the satellite image data and coarse scale forest variables. The 𝑘 nearest field plot pixels 𝑝𝑖, 

in terms of 𝑑, i.e., pixels that cover the centre of a field plot 𝑖 ∈ 𝐹, are sought for each pixel 𝑝 

under the forestry land mask of the cloud free satellite image area. Note that the plot parts 

belonging to non-FRYL land categories are removed from the data set. The sum of the weights 

of the rest of the plot parts is scaled to one for each pixel. A maximum geographical distance 

is employed, if necessary, in order to avoid selecting the nearest plots (spectrally similar plots) 

from a region in which the response of image variables to field variables is not equal to that of 

the pixel under consideration. This is due to, e.g., changing atmospheric conditions or a large 

image frame. The feasible set of nearest neighbours for pixel 𝑝 is thus 

{𝑝𝑖|𝑑𝑝,𝑝𝑖

(𝑥,𝑦)
≤ 𝑑max

(𝑥,𝑦)
, 𝑑𝑝,𝑝𝑖

𝑧 ≤ 𝑑𝑚𝑎𝑥
𝑧 , 𝑅(𝑝𝑖) = 𝑅(𝑝)} (6) 

here 𝑑𝑝,𝑝𝑖

(𝑥,𝑦)
 is the geographical horizontal distance from pixel 𝑝 to pixel 𝑝𝑖, 𝑑𝑧 is the distance in 

the vertical direction, 𝑑𝑚𝑎𝑥
(𝑥,𝑦)

 and 𝑑𝑚𝑎𝑥
𝑧  are their maximum allowed values, and 𝑅(𝑝) is the indi-

cator function of land class on the basis of map data (Tomppo 1990, 1991, 1996, 2006b, Katila 

et al. 2000, Katila and Tomppo 2001, Tomppo et al. 2008b, 2012, 2013). 

Denote the 𝑘 nearest feasible field plots by 𝑖1(𝑝),…,𝑖𝑘(𝑝). The weight 𝑤𝑖,𝑝 of field plot 𝑖 to pixel 𝑝 

is defined as 
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𝑤𝑖,𝑝 =
1

𝑑𝑝𝑖,𝑝
𝑡 / ∑

1

𝑑𝑝𝑗,𝑝
𝑡

𝑗∈𝑖1(𝑝),…,𝑖𝑘(𝑝)

, if and only if𝑖 ∈ 𝑖1(𝑝), … , 𝑖𝑘(𝑝)
 

=  0                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

(7) 

The distance weighting power 𝑡 is a real number, usually 𝑡 ∈ [0,2]. In case the distance is zero 

for one or more plots, all weight is given to those plots. The distance metric 𝑑 employed was 

𝑑𝑝𝑗,𝑝
2 = ∑ 𝜔𝑙,𝑓

2 (𝑓𝑙,𝑝𝑗
− 𝑓𝑙,𝑝)

2
𝑛𝑓

𝑙=1

+ ∑ 𝜔𝑙,𝑔
2 (𝑔𝑙,𝑝𝑗

− 𝑔𝑙,𝑝)
2

𝑛𝑔

𝑙=1

 

(8) 

where 𝑓𝑙,𝑝 is the 𝑙th feature computed from the spectral bands of the pixel data. The features 

are normalised using the digital elevation model, when applicable. 𝑓𝑙,𝑝𝑗
= 𝑓𝑙,𝑝𝑗

0 / cos𝑟(α), with 𝛼 

the angle between sun illumination and terrain normal, 𝑟 the user given power for the cosine 

correction, 𝑔𝑙,𝑝 the large area prediction of the lth applied forest variable, 𝑛𝑓 the number of 

image variables (or features), 𝑛𝑔 the number of coarse scale forest variables and 𝜔𝑙,𝑓 and 𝜔𝑙,𝑔 

the weights for image features and coarse scale forest variables respectively. 

The values of the weights 𝜔𝑙,𝑓 and 𝜔𝑙,𝑔 are computed by means of a genetic algorithm (Tomppo 

and Halme 2004, Tomppo et al. 2008b, 2012, 2013). 

A pixel size of 1 km by 1 km is used in the coarse scale forest variable predictions 𝑔𝑙,𝑝. The first 

phase of the improved version of k-NN, ik-NN, is to run the optimisation algorithm by strata, 

e.g., mineral soil stratum and mire and bog stratum. The estimation after that is similar to the 

basic k-NN estimation. 

For computing forest parameter estimates for computation units, sums of field plot weights to 

pixels, 𝑤𝑖,𝑝 are calculated by computation units, for example, by municipalities, and by map 

stratum ℎ over the pixels belonging to the unit 𝑢. An example of a stratum could be mineral 

soil forestry land. The weight of the sub-plot 𝑖𝑙 of plot 𝑖 in forest stratum 𝑙 and in map stratum 

ℎ to computation unit 𝑢 is denoted 

𝑐𝑖𝑙,ℎ,𝑢 = 𝑎𝑞𝑖𝑙
∑ 𝑤𝑖,𝑝

𝑝∈𝑢ℎ

(9) 

where 𝑢ℎ is the set of the pixels in the map stratum ℎ, 𝑎 is the pixel size and 𝑞𝑖𝑙 is the share of 

the field plot 𝑖 belonging to the forest stratum 𝑙 and map stratum ℎ on forestry land. 

Reduced weight sums 𝑐𝑖𝑙,ℎ,𝑢
𝑟  are obtained from the formula 3.9, if clouds or their shadows cover 

a part of the area of the computation unit 𝑢. The real weight sum for plot 𝑖 is obtained expand-

ing the weight (3.9) by the ratio forestry land divided by the forestry land not covered by the 

clouds in each computation unit. 

The weights (3.9) are computed within forestry land separately for mineral soil stratum and 

peatland strata. The weights are also computed for other land classes, arable land, built-up 

land, roads and waters using the plots falling in the corresponding stratum if the stratification-

based map correction method is employed Katila and Tomppo (2002), and plots falling into 

forestry land map stratum if the calibration method is used (Katila et al. 2000). 

After the final field plot weights to computation units (𝑐𝑖𝑙,ℎ,𝑢) have been calculated, the ratio 

estimation is employed to obtain the small-area estimates (e.g., Cochran (1977)). In this way, 
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the estimation is similar to that using field plot data only (Tomppo 2006a, Tomppo et al. 2008b, 

2012, 2013) 

𝑦̂ 𝑢,𝑙 =
∑  ℎ ∑  𝑖∈𝐼𝑙,ℎ

𝑐𝑖𝑙,ℎ,𝑢𝑦𝑖𝑙

∑  ℎ ∑  𝑖∈𝐼𝑙,ℎ
𝑐𝑖𝑙,ℎ,𝑢

, 
(10) 

where 𝑦𝑖𝑙 is the volume per hectare for plot 𝑖 for the part(s) belonging to field plot sub-class 𝑙, 

and 𝐼𝑙,ℎ if the set of field plots belonging to field sub-class 𝑙 and map stratum ℎ. 

Predictions of some forest variables are written in the form of a digital map during the proce-

dure. The land classes outside forestry land are transferred to map form predictions directly 

from the digital map file. Within forestry land mask, the variables are predicted by the weighted 

averages of the k-nearest neighbours (Tomppo 1991, 1996). 

A pixel-level prediction of variable 𝑌 for pixel 𝑝 is defined as 

𝑦
~

𝑝 =
∑  𝑖∈𝐼ℎ

𝑤𝑖,𝑝 ∑  𝑗∈𝐹𝑖
𝑎𝑖𝑗

𝑦𝑖𝑗

∑  𝑖∈𝐼ℎ
𝑤𝑖,𝑝 ∑  𝑗∈𝐹𝑖

𝑎𝑖𝑗

, 
(11) 

The mode or median value can be used instead of the weighted average for categorical varia-

bles. Mode has turned out to work better than median in the practical tests (Tomppo et al. 

2009b). 

Table 7. The ik-NN estimation parameters employed in MS-NFI-2017 and MS-NFI-2019. 

Parameter Choice 

Variables applied in the 

distance metric 

Illumination corrected spectral values for satellite image 

bands and large area forest variable estimates 

Distance metric Weighted Euclidean distance 

Value of k 3–5 

Weights attached to the 

nearest neighbours 
Weights proportional to the inverse distance (t=1) 

Restrictions for search of 

nearest neighbours 

Large area forest maps as features are used to direct the NN 

selection. In addition, the geographic distance between the 

pixel being processed and the acceptable reference plots was 

limited. 

 

One special detail of the Finnish NFI is that some stand level variables are not recorded in the 

field for the plot parts not including a centre point of a plot in case there are no tally trees 

belonging those plot parts. The reason is that the area estimates are based on the numbers of 

the centre points while volumes are summed up from all tally trees in the stratum in question. 

The variables not recorded for the sub-plots without a centre point and without any tally tree 

are for example land class based on the FAO classification, main site class, site fertility class, 

stand age, mean diameter of stand, mean height of stand, stand basal area, canopy cover of 

trees and canopy cover of broad-leaved trees. 

This fact is taken into account in the municipality level estimates in such a way that the missing 

value is imputed from the distribution of the variable in question when the distribution is 
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calculated from a similar forest stratum. In pixel level predictions, those plot parts don’t have 

values for these variables, that is, they are not included in set 𝐹𝑖 of Eq. 11. 

The predicted variables in a map form are usually land class, main site class, site fertility class, 

stand age, mean diameter of stand, mean height of stand, stand basal area, canopy cover of 

trees, canopy cover of broad-leaved trees and volumes by tree species (pine, spruce, birch, 

other broad-leaved trees) and by timber assortment classes as well as biomass by tree species 

groups and tree compartments. The total number of the maps in MS-NFI-2017, MS-NFI-OA-

2017, MS-NFI-2019 and MS-NFI-OA-2019 was therefore 44 (Table 21). 

3.4.2. Taking into account the plot representative areas in ik-NN 

For best results with a NN classifier, the number of prototypes for each class should match the 

a priori probabilities of the classes Davies (1988). Similar argumentation can be applied also to 

k-NN estimation. 

If the auxiliary variables don’t provide any information about the target variable, the distribu-

tion of the k-NN estimates matches the distribution of the learning data. If the information is 

perfect, then the distribution of estimates matches the distribution of that variable in the pop-

ulation where estimates are produced. In practice, the situation is somewhere between these 

extremes. 

The distributions matter if, e.g., one is computing an average of a variable over an area. The 

estimates are computed for each pixel in the area. If the distribution of the estimates matches 

the distribution of the variable in the area of interest, the resulting average will be unbiased. If 

the distributions don’t match, the average may be biased. This problem is present, e.g., if learn-

ing data originates from stratified sampling. In northern Lapland (see Section 2.1), the inclusion 

probabilities of the sample units (plots) of the NFI vary significantly between the strata within 

the inventory region. In NFI11, in Åland two clearly different sampling densities were used in 

different areas. Otherwise, the differences between sampling densities in adjacent inventory 

regions are small. 

The sampling density can be modelled using the representative area of each plot (Tomppo et 

al. 2011a, Eq. 3). This is computed by dividing the sampled area 𝐴𝑐 of sampling region 𝑐 by the 

number of sample plots 𝑛𝑐. Let’s assume that the variable in sample plot 𝑖 is 𝑦𝑖 and the repre-

sentative area of the sample plot is 𝑎𝑐𝑖. The estimate of the average of the variable 𝑦̄ over an 

area 𝐴 ∪ 𝑎𝑖 can be computed from the samples within the area with: 

𝑦 =
∑  𝑖∈𝐴 𝑎𝑐𝑖

𝑦𝑖

∑  𝑖∈𝐴 𝑎𝑐𝑖

 
(12) 

Inspired by the previous equation, computation of the weights (Eq. 7) is modified to take into 

account the representative are 𝑎𝑐𝑖: 

𝑤𝑖,𝑝 =
𝑎𝑐𝑖

𝑑𝑝𝑖,𝑝
𝑡 / ∑

𝑎𝑐𝑖

𝑑𝑝𝑗,𝑝
𝑡

𝑗∈𝑖1(𝑝),…,𝑖𝑘(𝑝)

, if and only if 𝑖 ∈ 𝑖1(𝑝), … , 𝑖𝑘(𝑝)
 

=  0                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

(13) 

This approach does not completely solve the problem because it only modifies the computed 

results on the condition that the neighbours have been selected without taking into account 
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the representative areas of the sample plots. An example of the effect of this modification was 

reported in the previous MS-NFI report Mäkisara et al. (2019) where the effect was found small. 

3.4.3. Selecting estimation parameters and their values for k-NN 

The basic principle of k-NN estimation is straightforward. However, practice has shown that 

the predictions and estimation errors depend to a large extent on the core estimation param-

eters of the k-NN algorithm. These are: 

1. the variables employed in the distance metric, spectral bands or their transformations, 

possible correction for variation in illumination angle of the pixel based on elevation 

variation (slope, aspect) (Tomppo 1996) 

2. the distance metric (Tomppo & Halme 2004) 

3. the value of k (Katila & Tomppo 2001) 

4. the weights to be attached to the nearest neighbours, e.g., even weights or functions 

of the used distance and powers (negative), 

5. the variables employed in restricting the area from which the nearest neighbours are 

sought for a pixel, e.g., a geographical reference area (Katila & Tomppo 2001). In MS-

NFI-2017, the country was divided into 21 processing windows. In MS-NFI-2019, also 

21 windows were used. A geographical distance limit was used in the largest image 

windows to prevent use of plots from different atmospheric imaging conditions 

6. the use of additional information, e.g., large area variation of forest variables in the 

distance metric (Tomppo & Halme 2004), 

7. the use of ancillary data in the estimation, e.g., for stratification. 

 

The parameters and their values in MS-NFI-2017 and MS-NFI-2019 are given in Table 7. The 

parameters are selected separately for each image (consisting of one or more image frames, 

see Table 3). The criteria are the mean square error and bias of pixel level predictions using 

leave-one-out cross validation, and particularly, the difference between areal estimates based 

on i) multi-source inventory and ii) on the field data-based estimates and their sampling errors 

(Tomppo et al. 2008b, 2012, 2013). The differences of the areal estimates are assessed in terms 

of sampling error based on the field data plots (e.g., Katila & Tomppo 2002, Tomppo & Halme 

2004). The values of the parameters usually vary by image depending on, e.g., imaging condi-

tions, number of available field plots and variability of forests. The selections are not independ-

ent. A change in one parameter affects the optimal value of the other parameter. A crucial 

factor concerning the accuracy of the estimates seems to be the performance of the genetic 

algorithm. It was slightly revised for MS-NFI-2009 as an aim to control the weights of the fea-

ture variables coming out from the algorithm. 
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Figure 10. The large regions used for calculating the error probabilities between land classes 

and map strata for MS-NFI-2017 and MS-NFI-2019, and the boundaries of the Forest Centre 

regions. Digital map data: National Land Survey of Finland, licence MML/VIR/MYY/328/08. 

3.4.4. Area and volume estimates for small areas – correction for map errors 

In the multi-source estimation, numerical map data (see Sect. 2.3.2) are employed to decrease 

estimation errors. If the numerical map data would be error free, the computation unit weights 

(Eq. 9) could be calculated using pixels belonging to forestry land (according to the map data) 

only. However, map data can be out-of-date, include location errors and does not correspond 

exactly to the definitions of NFI land classes. Errors can also arise during the post-processing 

of map data. Two methods have been developed to reduce the effect of map errors on small-

area multi-source forest resource estimates: a statistical calibration method (Katila et al. 2000, 

Katila 2006a) and a stratified k-NN method (Katila & Tomppo 2002). 

The calibration method is based on the confusion matrix between land use classes of the field 

sample plots and corresponding map information. The bias in the land class or other total cover 

estimates, obtained, e.g., from remote sensing or map data, can be corrected by means of the 

error probabilities expressed as a confusion matrix (Czaplewski & Catts 1992, Walsh & Burk 

1993), assuming that the employed field sample are based on a statistical sampling design 

(Card 1982). 

The employed map strata are defined in such a way that each stratum is reasonably homoge-

neous with respect to the ‘map errors’ and the NFI land class distribution. This enables the use 

of the synthetic small-area estimation method when correcting map errors (Rao 2003). The 

method utilises the error and land class proportions that have been estimated from a larger 

region. The large regions of municipalities were formed in such a way that the map errors 

would be as homogeneous as possible within the regions and within each stratum (Tomppo et 

al. 2013). Seventeen regions were used for map correction (Fig. 10). In the MS-NFI-2017, NFI 



Natural resources and bioeconomy studies 90/2022 

39 

 

field plots from years 2013–2017 were used to compute the confusion matrix. The field plots 

from years 2015–2019 were used for MS-NFI-2019. 

The method given in (Katila et al. 2000) was used to calculate the calibrated field plot weights. 

The calibration typically increases the mean volume estimates and decreases the FRYL area 

estimates for small areas, if FRYL is overrepresented on maps. Calibration was carried out by 

groups of municipalities. Despite the rather simple idea of the calibration, it is quite laborious 

when implemented in the MS-NFI. 

The MS-NFI employs a topographic database for municipality boundaries, while the field 

inventory employs land and water areas from official statistics of the Finnish Land Survey 

(Suomen pinta-ala kunnittain 2020). The area information from the latter data source is more 

accurate and there are slight differences between the total and land areas of municipalities 

from these two data sources. Hence, after the correction of map errors, the MS-NFI municipality 

land areas are calibrated to the official land areas. The calibration coefficient is straightforward 

𝐴𝑈,𝐿𝑎𝑛𝑑𝑁𝐿𝑆 /𝐴𝑈,𝐿𝑎𝑛𝑑 and this ratio is assumed to also hold for forestry land and the (calibrated or 

stratified) weights 𝑐𝑖,𝑈 are multiplied by this coefficient. For the calibrated MS-NFI, the 

calibrated land area 𝐴𝑈,𝐿𝑎𝑛𝑑 must be first estimated (see Tomppo et al. 2008b, 2012, 2013). The 

calibration to the official land areas is valid only for (random) deviations between the two data 

sets and not for the case where real and significant boundary changes between municipalities 

have taken place in either of the two data sources. 

3.4.5. Assessing the errors 

Deriving an error estimator for an arbitrary group of pixels has proven to be a challenging task. 

The problem can be divided into the derivation of i) an error estimator for a pixel level predic-

tion and ii) an error estimator for a parameter for an area of interest. Difficulties arise because: 

1. errors depend on the actual value of the variable to be predicted and so pixel-level 

errors are spatially dependent, 

2. the variables measured or observed on the field plots are also spatially dependent, 

3. the spectral values of adjacent pixels of a satellite image are dependent due to the 

atmospheric properties (scattering) and imaging technique. 

Furthermore, several error sources make the error estimation complex. Examples of such error 

sources are given in (Tomppo et al. 2008b, 2012, 2013). 

During the data processing phase in the Finnish MS-NFI, the pixel-level root mean square error 

(RMSE) and the pixel level average bias are calculated with leave-one-out cross-validation us-

ing the available field plots. This is also a part of the employed genetic algorithm and the 

selection of the estimation parameters of k-NN and ik-NN. For a sufficiently large area consist-

ing of a group of pixels, e.g., for areas of 200 000–300 000 ha, the MS-NFI estimates are com-

pared to the estimates and error estimates based solely on field data. Some empirical error 

estimates are also available for reliability assessments (Katila 2006b, Tomppo et al. 2008a,b, 

2012, 2013, 2014). Recently the accuracy of the MS-NFI municipality level estimates has been 

studied by comparing them against field data-based municipality estimates (Katila and Heik-

kinen 2020) and post-stratified NFI based municipality-based estimates (Haakana et al. 2020). 

For some recent developments in error estimation of k-NN based inventories, see also (Kim & 

Tomppo 2006, McRoberts & Tomppo 2007, McRoberts et al. 2011, McRoberts et al. 2007, Mag-

nussen et al. 2009, Magnussen 2013, Magnussen & Tomppo 2016, Magnussen et al. 2016, Dash 

et al. 2015). 
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3.4.6. Calibration of the results within a processing window 

The error assessment usually shows that, in spite of all tuning, the average values computed 

from MS-NFI do not quite match the values computed from field data. For instance, it is com-

mon that there are differences in volumes of tree species classes even if the total volumes are 

quite close. There are many possible reasons for the differences processing, e.g., the image 

characteristics, the image area in the mosaic, and the set of sample plots used in the specific 

processing window. 

Because of this, an additional calibration step is added to the method. The purpose is to make 

the averages computed from several pixels to be closer to the estimates of mean values based 

on field data only for each processing window than they would be without this extra calibration 

step. The effect of this small change in averages on the RMS errors is negligible. The method 

was not applied in one image window in MS-NFI-2017 where the cloud-free area was too small 

for reliable correction. 

Since MS-NFI-2017, the extra calibration is applied to the volumes, basal area, mean height, 

mean diameter, age, and the biomasses. The calibration may be applied also to other variables 

in future. 

The correction is basically applied as follows. The average value of variable 𝑣i in MS-NFI before 

calibration but including map error correction is denoted by 𝑣̅𝑖𝑚 and the corresponding aver-

age from region 𝑐 field data by 𝑣̅𝑖𝑓. The calibrated MS-NFI result is the uncalibrated result 

multiplied by 𝑏̅𝑖𝑓
𝑐 =  𝑣̅𝑖𝑓/𝑣̅𝑖𝑚. 

A slightly more complicated method is applied to the volumes because the volumes for tree 

species classes must add up to the total volume for each pixel. Two methods have been used 

to solve the problem. The recommended method consists of the following steps: 

1. Apply the multipliers individually to the tree species classes and compute the total 

volume for each pixel in the processing window as sum of the volumes in the tree 

species classes. 

2. Compute the average total volume from the pixel-wise total volumes. 

3. Adjust the multipliers for the tree species classes so that the total volume ratio 

matches the target. 

4. Compute the new field data using the multipliers for the species classes. Compute the 

total volume for each plot as the sum of the volumes for the species classes. 

In the method above, the effective correction factors for total volume vary from one plot to 

another. In one of the processing windows this effect was problematic. In this case, the adjust-

ment for the multipliers for species classes was computed separately for each plot so that the 

corrected volumes for tree species classes add up to the total volume. In this method, the 

effective corrections factors for the species classes tend to be smaller than the original correc-

tions factors. 

In MS-NFI-2015, the correction factors were determined separately for each processing win-

dow based on aggregates of the municipality groups (45 in total) as presented in (Section 3.4.5, 

Mäkisara et al. 2019). The groups were combined within a window if the overlap did not contain 

enough field plots (the target was about 1000 plots). 

For MS-NFI-2017 and MS-NFI-2019 the method was modified slightly. The correction factors 

were determined for each municipality group using aggregated results for the whole country. 

The factors for each processing window were then computed as weighted averages of the 
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factors for the municipality groups intersecting the processing windows. The weights were the 

numbers of field plots in each overlapping area. 

The new method enabled use of the community groups as they were planned. The aggregation 

used in MS-NFI-2015 resulted in some cases in areas for which the calibrated estimates devi-

ated overly from the expected. 
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4. Results 

4.1. Pixel-wise error estimates for the different themes 

The MS-NFI method does not produce error estimates for the results. The magnitude of errors 

can be approximated using different indirect methods. One of these is to compare the esti-

mates against the learning data. The k-NN implementation used currently in MS-NFI omits the 

field plot from searching the neighbours at the corresponding pixel. This means that direct 

comparison of the values at the locations of training data results in leave-one-out validation. 

Table 8 shows RMSE estimates for the errors at the field plot pixels for the continuous forest 

variables. The results have been computed separately for South Finland and North Finland and 

for mineral soils and peatlands (stratum based on the field data). Only the field plots completely 

on a single stand are included. 

Table 9 shows the coefficients of determination (𝑅2 = 1 −
∑  𝑖 (𝑦

~
𝑖−𝑦𝑖)

2

∑  𝑖 (𝑦𝑖−𝑦̅)2 ) for the same variables. 

The plots covering more than one stand have been excluded from this evaluation. The purpose 

of the tables is to show the order of magnitude of the errors that can be expected for individual 

pixels. 

If the coefficient of determination is negative, a better prediction would be to put the mean of 

the variable to every pixel. The coefficients of determination for some variables are negative. 

These are typically variables for species and timber assortments that are very rare. 

The user is usually not interested in values at single pixels. More interesting is mean within a 

small area, e.g., forest stand. The errors become smaller when neighbouring pixels are aver-

aged. An example can be seen in Table 10, where averages in 3 by 3 pixel neighbourhoods are 

used. The plots with minimum distance less than 21 m from stand boundary were left out. 
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Table 8. The RMSE errors and means for the different continuous themes. Plots on single 

stands. Bm = biomass, unit 10 kg/ha. 

 SF/min  SF/pea
t 

 NF/min  NF/pea
t 

 

 RMSE mean RMSE mean RMSE mean RMSE mean 

Mean vol. m3/ha 87.3 145.9 67.0 112.7 50.2 84.4 39.0 53.1 

Pine vol. m3/ha 67.0 65.2 50.5 58.9 44.1 54.0 30.3 31.8 

...saw log 44.0 25.4 30.6 18.2 23.7 13.5 12.0 4.1 

   pulp wood 39.3 37.3 32.4 37.9 31.5 37.7 24.1 25.0 

Spruce vol m3/ha 63.8 52.7 42.8 30.0 27.9 18.0 19.4 9.4 

   saw log 47.1 25.2 29.5 12.0 16.4 5.8 10.0 2.0 

   pulp wood 29.7 24.4 21.7 15.5 16.5 10.9 12.6 6.3 

Birch vol m3/ha 34.9 22.0 32.0 21.7 17.6 11.0 19.2 11.4 

   saw log 11.2 2.7 7.3 1.5 2.0 0.2 1.7 0.1 

   pulp wood 27.0 16.1 26.4 16.2 14.8 7.9 16.6 8.3 

Other dec m3/ha 25.4 6.1 15.8 2.0 8.9 1.4 6.2 0.5 

   saw log 7.6 0.7 5.1 0.3 1.0 0.0 0.6 0.0 

   pulp wood 18.2 3.9 10.5 1.3 7.0 0.9 5.1 0.3 

Age years 26.3 47.7 29.6 58.9 46.7 76.3 36.4 59.7 

Basal area m2/ha 6.9 17.8 6.5 15.6 5.1 13.1 4.7 9.0 

Mean height dm 51.5 142.9 42.5 122.2 37.8 109.5 30.8 76.1 

Mean diam. cm 6.7 16.5 5.4 14.4 6.1 15.0 4.3 9.7 

Crown cover % 16.7 61.6 16.6 54.3 15.6 45.8 14.6 35.2 

   decid. % 15.4 13.5 14.1 11.4 10.2 7.3 11.0 7.1 

Bm pine stem 2 624.0 2 532.2 1 982.3 2 292.2 1 710.9 2 074.0 1 178.9 1224.7 

   branches living 355.0 379.4 279.9 376.4 314.6 430.0 215.0 248.9 

   branches dead 90.5 99.0 73.8 98.2 69.8 95.5 51.3 60.6 

   foliage 117.5 136.8 98.3 143.8 107.6 153.6 80.5 101.3 

   stump 186.1 196.2 150.3 190.9 140.6 185.6 100.2 112.5 

   roots >=1cm 609.2 597.1 470.4 555.4 443.9 547.0 295.0 309.9 

   stem residual 152.6 92.8 145.5 106.5 175.7 104.7 135.1 99.3 

Bm spruce stem 2 341.8 1 953.4 1 596.2 1 123.2 1 074.4 700.3 744.4 365.7 

   branches living 510.8 475.0 366.5 289.9 318.5 221.2 210.8 115.7 

   branches dead 95.4 88.4 68.2 54.0 46.1 32.8 34.0 18.6 

   foliage 324.4 328.0 239.8 208.8 194.5 148.3 142.1 86.0 

   stump 200.5 173.9 141.5 103.8 114.7 75.0 75.2 38.4 

   roots >=1cm 722.1 670.6 528.5 413.5 423.9 295.4 291.9 159.7 

   stem residual 164.0 112.3 157.6 89.3 102.6 53.0 98.7 44.5 

Bm decid. stem 2 127.0 1 355.6 1 755.1 1 146.7 973.7 593.5 994.0 564.3 

   branches living 350.3 223.4 271.6 184.5 189.0 129.1 180.6 111.3 

   branches dead 19.3 13.4 16.2 11.5 11.1 7.3 10.9 6.6 

   foliage 75.4 61.9 70.3 56.2 54.9 40.3 54.2 36.6 

   stump 189.8 120.5 152.4 102.5 115.6 66.3 111.0 60.1 

   roots >=1cm 584.6 410.6 505.4 360.6 340.2 196.4 341.9 191.1 

   stem residual 386.0 199.2 339.2 188.1 285.2 148.2 273.5 135.8 
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Table 9. The coefficient of determination (𝑅2) between the true value and the predictions. 

Plots with one stand. Bm = biomass, unit 10 kg/ha. 

 SF/min SF/peat NF/min NF/peat 

Mean volume 0.46 0.53 0.51 0.62 

Pine vol. m3/ha 0.34 0.39 0.40 0.49 

   saw log 0.16 0.15 0.16 0.05 

   pulp wood 0.32 0.40 0.38 0.49 

Spruce vol m3/ha 0.52 0.56 0.48 0.47 

   saw log 0.44 0.42 0.34 0.08 

   pulp wood 0.38 0.50 0.40 0.47 

Birch vol m3/ha 0.20 0.30 0.24 0.36 

   saw log -0.07 -0.09 -0.09 -0.18 

   pulp wood 0.20 0.29 0.21 0.31 

Other dec m3/ha -0.02 -0.00 -0.11 -0.31 

   saw log -0.13 -0.19 -0.17 -0.16 

   pulp wood -0.05 0.06 -0.13 -0.29 

Age years 0.40 0.40 0.46 0.43 

Basal area m2/ha 0.58 0.61 0.63 0.72 

Mean height dm 0.57 0.66 0.58 0.73 

Mean diameter cm 0.53 0.62 0.51 0.66 

Crown cover % 0.53 0.63 0.60 0.73 

   decid. % 0.47 0.47 0.36 0.45 

Bm pine stem 0.33 0.39 0.39 0.49 

   branches living 0.36 0.45 0.40 0.48 

   branches dead 0.38 0.45 0.42 0.51 

   foliage 0.40 0.50 0.42 0.52 

   stump 0.37 0.43 0.41 0.50 

   roots >=1cm 0.33 0.39 0.38 0.47 

   stem residual 0.07 0.13 -0.01 0.16 

Bm spruce stem 0.52 0.56 0.49 0.47 

   branches living 0.50 0.56 0.44 0.48 

   branches dead 0.51 0.57 0.49 0.50 

   foliage 0.49 0.58 0.47 0.51 

   stump 0.50 0.55 0.44 0.46 

   roots >=1cm 0.50 0.55 0.45 0.48 

   stem residual 0.07 0.18 0.11 0.19 

Bm decid. stem 0.24 0.33 0.24 0.34 

   branches living 0.21 0.31 0.21 0.34 

   branches dead 0.25 0.34 0.23 0.35 

   foliage 0.36 0.38 0.28 0.39 

   stump 0.18 0.26 0.12 0.25 

   roots >=1cm 0.25 0.31 0.18 0.29 

   stem residual 0.11 0.12 0.05 0.13 
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The categorical variables must be evaluated using confusion matrices (i.e., matrices tabulating 

the expected and realized outcome from classification). The Producer’s Accuracy (UA) shows 

how often the training field plot is classified correctly, whereas the User’s Accuracy shows how 

often the classes are present at the pixel. The column CProp shows the proportions of the 

classes in the training data and the column PProp shows the proportions in the prediction. The 

overall accuracy in the intersection of the UA column and PA line shows how often the training 

plots are classified correctly. 

Table 10. Examples of the coefficient of determination (𝑅2) between the true value and the 

predictions for data averaged in 3 by 3 neighbourhoods. Plots with distance less than 21 me-

ters to stand boundary left out. Bm = biomass, unit 10 kg/ha. 

 SF/min SF/peat NF/min NF/peat 

Mean volume 0.65 0.72 0.71 0.77 

Pine vol. m3/ha 0.54 0.60 0.61 0.70 

   saw log 0.41 0.43 0.46 0.40 

   pulp wood 0.53 0.60 0.60 0.70 

 
Other dec m3/ha 0.23 0.26 0.24 0.12 

   saw log 0.15 0.17 0.15 0.22 

   pulp wood 0.23 0.31 0.23 0.10 

Age years 0.62 0.66 0.68 0.70 

Basal area m2/ha 0.74 0.79 0.80 0.85 

Mean height dm 0.74 0.82 0.77 0.87 

Mean diameter cm 0.71 0.79 0.72 0.84 

Crown cover % 0.69 0.79 0.76 0.86 

   decid. % 0.66 0.68 0.60 0.64 

Bm pine stem 0.54 0.60 0.61 0.70 

   branches living 0.57 0.65 0.61 0.71 

   branches dead 

... 

0.57 0.64 0.62 0.72 

 

Table 11 shows the results for the land class theme. The forest land is slightly more common 

in the prediction than in the training data and it is by far the most common class overall. The 

poorly productive forest land is fairly often misclassified. 
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Table 11. The confusion matrix, the user (UA), producer (PA) and overall accuracies for the 

land class theme. The column CProp shows the proportions of the classes in the training data 

and the column PProp shows the proportions in the prediction 

pixel/plot 1 2 3 UA CProp PProp 

1 33 063 1 047 199 96.4 85.9 87.7 

2 475 1 397 431 60.7 6.8 5.9 

3 43 234 2 212 88.9 7.3 6.4 

PA 98.5 52.2 77.8 93.8 100.0 100.0 

 

Table 12 shows the results for the FRA land class theme. Class 2 (other wooded land) proportion 

in the result is not bad, but it is often misclassified. 

Table 12. The confusion matrix, the user (UA), producer (PA) and overall accuracies for the 

FRA land class theme. The column CProp shows the proportions of the classes in the training 

data and the column PProp shows the proportions in the prediction 

pixel/plot 1 2 3 UA CProp PProp 

1 35 375 432 457 97.5 91.2 92.7 

2 153 144 137 33.2 1.9 1.1 

3 146 158 2 099 87.3 6.9 6.1 

PA 99.2 19.6 77.9 96.2 100.0 100.0 

 

Table 13 shows the results for the principal site class. Class 2 (spruce mires) tends to be mis-

classified as class 1 (mineral soil) or 3 (pine mires). 

Table 14 shows the results for the site fertility class. There classification results are not good. 

The classes are defined so that the neighbouring (by number) classes are more similar than 

classes with Table indices further away. The expected differences in the satellite data between 

neighbouring classes are small. If error to neighbouring class is accepted, the overall accuracy 

rises from 55.0 % to 92.6 % (Table 15). The classification accuracy is worst for classes 7 (rocky 

and sandy soils) and 8 (summit and fell forests) in this case. 

Table 13. The confusion matrix, the user (UA), producer (PA) and overall accuracies for the 

main site class theme. The column CProp shows the proportions of the classes in the training 

data and the column PProp shows the proportions in the prediction 

pixel/plot 1 2 3 4 UA CProp PProp 

1 25 291 1 891 1 254 63 88.7 67.6 72.9 

2 468 726 349 5 46.9 8.6 4.0 

3 670 726 5 882 219 78.5 19.3 19.2 

4 8 3 46 1 500 96.3 4.6 4.0 

PA 95.7 21.7 78.1 83.9 85.4 100.0 100.0 
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Table 14. The confusion matrix, the user (UA), producer (PA) and overall accuracies for the 

site fertility theme. The column CProp shows the proportions of the classes in the training 

data and the column PProp shows the proportions in the prediction 

pixel/ 

plot 
1 2 3 4 5 6 7 8 9 10 UA CProp PProp 

1 76 130 69 8 4 0 1 0 0 0 26.4 1.9 0.7 

2 324 2 030 1 629 199 28 3 14 0 1 0 48.0 14.1 10.8 

3 265 2 857 11 643 3 604 420 29 112 71 8 0 61.2 43.7 48.6 

4 36 387 3 202 5 213 1 389 83 116 73 17 7 49.5 26.2 26.9 

5 24 66 415 1 060 1 717 236 29 10 5 1 48.2 9.6 9.1 

6 0 8 29 67 139 208 1 0 1 0 45.9 1.4 1.2 

7 2 12 49 49 30 1 292 9 4 1 65.0 1.5 1.1 

8 0 0 22 20 4 0 5 36 3 0 40.0 0.6 0.2 

9 0 4 18 28 9 4 8 10 184 49 58.6 0.7 0.8 

10 0 0 3 8 2 0 5 13 41 112 60.9 0.4 0.5 

PA 10.5 36.9 68.2 50.8 45.9 36.9 50.1 16.2 69.7 65.9 55.0 100.0 100.0 

 

Table 15. The confusion matrix, the user (UA), producer (PA) and overall accuracies for the 

site fertility theme if error to neighbouring class is accepted. The column CProp shows the 

proportions of the classes in the training data and the column PProp shows the proportions 

in the prediction 

pixel/

plot 
1 2 3 4 5 6 7 8 9 10 UA CProp PProp 

1 400 0 69 8 4 0 1 0 0 0 83.0 1.9 1.2 

2 0 5 017 0 199 28 3 14 0 1 0 95.3 14.1 13.5 

3 265 0 16 474 0 420 29 112 71 8 0 94.8 43.7 44.4 

4 36 387 0 9 877 0 83 116 73 17 7 93.2 26.2 27.1 

5 24 66 415 0 3 245 0 29 10 5 1 85.5 9.6 9.7 

6 0 8 29 67 0 445 0 0 1 0 80.9 1.4 1.4 

7 2 12 49 49 30 0 298 0 4 1 67.0 1.5 1.1 

8 0 0 22 20 4 0 0 55 0 0 54.5 0.6 0.3 

9 0 4 18 28 9 4 8 0 228 0 76.3 0.7 0.8 

10 0 0 3 8 2 0 5 13 0 161 83.9 0.4 0.5 

PA 55.0 91.3 96.5 96.3 86.7 78.9 51.1 24.8 86.4 94.7 92.6 100.0 100.0 
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4.2. Difference between estimates from plot weights and from 

pixels 

The calibration of the results aims to bring the means of the estimates computed by accumu-

lation of the plot weights close to the means of estimates from field data for large areas. The 

estimates accumulated from the plot weights include correction of the map errors. This means 

that these results are not necessarily equal to the averages for the same areas computed from 

the raster themes. The estimates of means from accumulated plot weights tend to be higher 

than the averages from the raster data. 

The results with map correction are typically computed for the land use classes 1 and 2, whereas 

the averages from the raster themes can only be accumulated for land use classes 1, 2 and 3. 

This means that these results can’t be compared directly. This is especially true for area where 

the area and proportion of waste land is difficult to estimate (mainly Åland and Lapland). Com-

putation of the municipality groups assesses this statistically, but it is not possible to do this 

reliably in the rasters. The land use class theme shows the raw result from prediction, but the 

map correction can’t be applied to the rasters. 

Table 16. Some results for the mean stem volume in MS-NFI-2019 for the region Uusimaa 

computed with different methods. 

Row Method Land use class 

  1 2 3 1–2 1–3 

1 field data 164.5 57.4 0.0 159.3 155.0 

2 learning data for pixels 160.9 69.4 8.8 156.3 153.0 

3 thematic map, forest pixels *) 152.4 49.0 7.4 149.3 148.0 

4 thematic map, borders removed *) 163.6 31.1 1.2 163.2 162.8 

5 thematic map, learning locations 161.7 84.8 41.3 157.8 153.7 

6 plot weights    153.0  

7 plot weights, map correction    161.7  

*) land use class from the thematic map 

Table 16 shows a set of results computed with different methods and region definitions using 

MS-NFI-2019 for the region Uusimaa. Only the mean stem volume is shown in this example. 

The reasons for the different results are discussed in Section 5.2. 

The first and second row show results computed from the field data. The first row shows the 

field data result as it is computed in NFI for the field plots not in cloud pixels (i.e., using the 

land use class in the observations). The computation uses only the sub-plots in stands belong-

ing to the particular land use classes for which the estimate is calculated. The second row shows 

the stem volume computed for all non-cloudy pixels where the centre of the plot is in the 

particular land use classes for which the estimate is calculated. All the sub-plots at the pixels 

are included (including the sub-plots in non-forest stands) in this case. 

The third and fourth row show results averaged using the land use class theme to classify the 

pixels to land use classes. On the fourth row, the border pixels of connected forest areas (pixels 

with neighbours outside forest) are removed. For example, this removes pixels that because of 

water level differences and rectification inaccuracies are not really forest. 
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The fifth row shows the result averaged from the pixels corresponding to the training field plot 

locations (the land use class is from the centre point stands of the field data). 

The last two rows show results computed using the accumulated plot weights instead of pixels 

(see Section 3.4.6). Results without map correction and with map correction are shown. Only 

results for combined forest and poorly productive land have been computed. 

4.3. Differences between MS-NFI-2017 and MS-NFI-2019 

results 

The users use the MS-NFI results from different years to assess changes in forests. The simplest 

method is to subtract the themes from one result from themes from another result. The relia-

bility of the results and the changes in the methods should be taken into account when inter-

preting the results. 

It is believed that the stability of the results has increased when the methods (especially cali-

bration) have been developed during years. A comparison between the total volume estimates 

for regions between MS-NFI-2017 and MS-NFI-2019 is presented in Table 17. No attempt has 

been made to correct the field data mean volumes to the ends of the field data interval. This 

means that the two-year differences are not for the same years (for instance, the MS-NFI-2019 

target year is 2019, whereas the midpoint of field data is in 2017) but show the size of the 

changes within two years. The rightmost column contains the standard error estimates for the 

later field data based mean values. 

The differences are mostly small compared to the standard errors from field data. In Päijät-

Häme, the difference computed from field data looks large, but the standard error is also large 

compared to other standard errors. The same applies to Etelä-Karjala. 
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Table 17. The second and third column contain the means of the predictions for mean stem 

volume computed from the plot weights (map correction included). The fourth column is 

their difference. The fifth column is the difference of means computed from the field data 

(years 2013-2017 and 2015-2019). The sixth column is the difference of these means. The last 

column is the standard error of the mean for the 2019 estimates computed from the field 

data. 

Nbr Region Mean vol. Mean vol. Difference Field data Field data 

  2019 2017 2019–2017 2019–2017 std error 2019 

1 Uusimaa 161.7 159.2 2.5 0.8 3.7 

2 Varsinais-Suomi 146.9 148.2 -1.3 -2.3 2.7 

4 Satakunta 142.8 140.0 2.8 3.8 3.1 

5 Kanta-Häme 166.7 167.1 -0.4 0.4 4.6 

6 Pirkanmaa 155.8 158.1 -2.2 -0.5 2.6 

7 Päijät-Häme 163.8 166.5 -2.7 6.4 4.5 

8 Kymenlaakso 148.7 150.1 -1.4 -3.8 3.9 

9 Etelä-Karjala 148.0 148.3 -0.4 3.9 4.0 

10 Etelä-Savo 154.8 152.0 2.8 1.3 2.2 

11 Pohjois-Savo 139.6 143.0 -3.4 1.7 2.2 

12 Pohjois-Karjala 129.9 132.3 -2.4 1.0 1.9 

13 Keski-Suomi 140.4 142.8 -2.4 0.5 2.2 

14 Etelä-Pohjanmaa 113.9 116.4 -2.5 0.5 2.1 

15 Pohjanmaa 137.1 133.5 3.6 2.8 3.4 

16 Keski-Pohjanmaa 107.0 108.9 -2.0 1.8 3.7 

17 Pohjois-Pohjanmaa 91.6 93.3 -1.7 1.3 1.2 

18 Kainuu 96.3 97.5 -1.2 -1.1 1.5 

19 Lappi 63.2 64.2 -0.9 0.9 0.5 

21 Ahvenanmaa 129.9 121.9 8.0 11.6 4.9 

4.4. Empirical error estimates of the municipality estimates 

Assessment of MS-NFI municipality estimates was based on their absolute difference from or-

dinary field plot based NFI estimates (Katila and Heikkinen 2020). The differences were divided 

by the standard error (SE), of the NFI estimator. The diagnostic characteristic, denoted here by 

×𝑆𝐸, is  |𝑦
~

𝑢 − 𝑦
¨

𝑢|/ s, where 𝑠 is used for SE. Standard half-normal distribution (Leone et al. 

1961) was used as a reference, since ×𝑆𝐸-values should follow it, if the MS-NFI estimators were 

unbiased and if their MSE was small in comparison to the SE of the corresponding field data 

estimators. ×𝑆𝐸-values greater than 2 were considered statistically significant (Tomppo et al. 

2008b). 
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Table 18. The median and upper quantiles of the absolute value the difference between the 

MS-NFI2017 total volume estimate and the updated field inventory estimate (2013–2017 field 

plots) scaled to the NFI SE (×𝑆𝐸) employing the MS-NFI-2017 for the volume and the volume 

by tree species group (pine, spruce, birch and other broadleaved tree species) for the munici-

palities (𝑛 = 306–309 depending on the variable). The standard half-normal distribution 

quantiles are displayed. 

Quantile Volume Pine Spruce Birch 
Other 

broadl. 
spp. 

Half norm. 
distrib. 

Median 0.66 0.67 0.71 0.67 0.71 0.67 

Q90 1.65 1.82 1.94 1.90 2.94 1.64 

Q95 2.05 2.28 2.49 2.35 4.82 1.96 

Q97.5 2.31 3.72 3.30 2.75 6.02 2.24 

Q99 3.44 4.91 5.27 3.44 10.62 2.58 

 

The field data 2013–2017 based estimates and their SEs by municipalities were updated to the 

year 2017 and used for comparison. Linear regression models were fitted between the esti-

mates of mean volume based on single-year NFI field samples and the corresponding inventory 

year (2004–2016) by sampling region. Coefficients from the models were used to update the 

volume estimates. The upper quantiles of the total volume of growing stock roughly follow the 

half-normal distribution for most quantiles (computed with the qfoldnorm function in the 

VGAM R-package; Yee 2018), the expected distribution for precise and accurate small-area 

estimators. Hence these estimates from MS-NFI-2017 could be considered unbiased. The up-

per quantiles for the total volumes of pine, spruce and birch were slightly higher (Q95) than 

the half-normal ones and there is bias, to some extent, in these estimates. The total volume 

estimates of the other broadleaved tree species displayed a clear amount of biased observa-

tions. For a subset of municipalities where the total growing stock was over one mill. m³ 

(𝑛=283) the Q95s of ×𝑆𝐸s were 1.96, 2.02, 2.11, 2.29, 3.73 for the total volume and the total 

volumes of pine, spruce birch and other broadleaved tree species, respectively. This validation 

of the MS-NFI municipality estimates can be considered conservative because there are no 

confidence limits for the MS-NFI estimates. Otherwise a statistics for comparing two means 

could be applied. Some NFI field data-based estimates may be unreliable. This was concluded 

after comparing the municipal level mean volume estimates (after updating them applying a 

trend estimated for the sampling region) of two subsequent NFIs. Few municipalities showed 

significantly different mean volume estimates. 

4.5. Forest resources by municipalities 

One of the primary results of MS-NFI are the forest resource estimates for municipalities. With 

the MS-NFI method, it is possible, at least in theory, to estimate for municipalities all the pa-

rameters that are usually estimated for the regions using field data only. The estimates are 

presented in Appendix Tables 1–9 for both MS-NFI-2017 and MS-NFI-2019 for the parameters 

whose estimates are considered to be sufficiently precise. These tables include the same pa-

rameters as the ones published for MS-NFI-2009 (Tomppo et al. 2013), MS-NFI-2011 (Tomppo 

et al. 2014), MS-NFI-2013 (Mäkisara et al. 2016) and MS-NFI-2015 (Mäkisara et al. 2019).  
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The estimates can be divided into area and volume estimates. Some tables present only area 

estimates, some only volume estimates and some volume estimates for sub-categories of for-

est land or poorly productive forest land, together with area estimates of the sub-categories. 

The estimates of the areas of forest land, poorly productive forest land and unproductive forest 

land (three forestry land categories) are given in Appendix Table 1a for the entire forestry land 

and in Appendix Table 1b for forestry land available for wood supply. A national classification 

is used for land classes, for definitions of these classes and comparison to FAO land classes see 

Tomppo et al. (2011a). The areas and proportions of forestry land of mineral soils and peatland 

soils are given in Appendix Tables 2a separately for three forestry land categories, and the 

similar estimates for forestry land available for wood supply are given in Appendix Tables 2c. 

The Appendix Tables 2b and 2d show again the areas of forest land and poorly productive 

forest land on mineral soils and peatland soils, as in Appendix Tables 2a and 2b, and now also 

the mean volumes of the growing stock for the land categories of the tables. 

The dominant tree species by municipalities are presented in Appendix Table 3a for forest land 

and in Appendix Table 3b for poorly productive forest land. The dominant tree species is de-

fined in the NFI for the field assessment as a stand-level variable. In NFI11 and NFI12, it is the 

tree species with the highest basal area for the development classes from young thinning stand 

to mature stand and seed tree and shelterwood stands and is defined as the tree species with 

highest number of stems capable of development in young and advanced seedling stands. The 

proportion of pine dominated forests of forest land is usually high in North Finland (Lappi), 

often over 80 %, and also in the many municipalities in South, Central and North Ostrobothnia 

regions. A high proportion of pine mires increases the area and proportion of pine dominated 

forests in these regions. The proportion is high also in some areas in South Finland in coastal 

regions and Central Finland in areas where Sub-xeric heath forests are common. Among the 

areas of the Regions, the proportion of spruce dominated forests on forest land is highest in 

South Finland in Kanta-Häme, Pirkanmaa and Päijät-Häme Regions being 50 % with the highest 

municipality level estimates in MS-NFI-2017 and MS-NFI-2019. 

The stand age and the development class of a stand used in MS-NFI are defined in a same way 

as in the field inventory (Tomppo et al. 2011a). The area estimates for age classes on forest 

land by municipalities is presented in Appendix Table 4a and for development classes in Ap-

pendix Table 5a. The proportion of forest land with a stand age not more than 40 years varies 

by municipality in South Finland, from about 15 % to about 60 %, the regions level proportions 

being around 40 %, The proportional area of young forests is high in Eastern and South-Eastern 

Finland, and also in some municipalities in Central Finland. The proportional area of forest not 

more than 40 years old is lower in North Finland than in South Finland. One should note that 

the same age in South Finland and North Finland corresponds to different development class 

of stand due to slower growth in the North than in the South. 

The mean volume and total volume estimates are given in many different ways: mean volumes 

by tree species and by timber assortments for combined forest land and poorly productive 

forest land (6a) likewise with total volumes (6b). The similar estimates are given for forest land 

and poorly productive forest land available for wood supply in Appendix Tables 6c and 6d. 

Appendix Tables 7a–d present the similar estimates for forest land as Appendix Tables 6a–d 

for forest land and poorly productive forest land. Note that poorly productive forest land con-

sists either of rocky soils, fjeld forests or less fertile peatland soils, such as oligo-ombrotrophic 

or ombrotrophic peatland, e.g., Sphagnum fuscum dominated peatland. Note that the water 

balance of peatland soil also affects the wood production capacity and land class of peatland. 
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The mean volumes of the growing stock in the municipalities vary significantly by the regions 

and also within the regions. The mean volume estimates on forest land and forest and poorly 

productive forest land are given also separately for mineral soils and peatland soils in Appendix 

Table 2b, and for forest land and forest and poorly productive forest land available for wood 

supply in Appendix Table 2d. 

The mean volume estimates by age classes on forest land are given in Appendix Table 4b and 

the similar estimates for the forest land available for wood supply in Appendix Table 4d. The 

corresponding mean volume estimates by development classes on forest land are given in 

Appendix Tables 5b and 5d. 

The mean volume of the growing stock on combined forest land and poorly productive forest 

land by municipalities varies in Southernmost Finland is typically over 140 or 150 cubic metres 

per hectare (m3/ha) except in the municipalities in South coast and Åland region. In continental 

South Finland (regions 1–16, Fig. 1), the mean volume of growing stock by municipalities (Ap-

pendix Table 6a and Fig. 11) ranged from 94 m³/ha in Halsua to 186 m³/ha in Padasjoki in MS-

NFI-2017 and from 94 m³/ha in Halsua to 191 m³/ha in Pälkäne in MS-NFI-2019 and those for 

pine from 29 m³/ha in Järvenpää to 91 m³/ha in Kustavi in MS-NFI-2017 and pine from 31 

m³/ha in Siilinjärvi to 93 m³/ha in Lumparland in MS-NFI-2017 and those for spruce from 9 

m³/ha in Halsua and 102 m³/ha in Pälkäne in MS-NFI-2017 and from 4 m³/ha in Kökar and 102 

m³/ha in Pälkäne in MS-NFI-2019 and those for birch from 13 m³/ha in Kustavi to 44 m³/ha in 

Vantaa in MS-NFI-2017 and from 10 m³/ha in Kustavi to 44 m³/ha in Vantaa in MS-NFI-2019. 

In North Finland (Regions 17–19, Fig. 1), the respective ranges were from 28 m³/ha in Utsjoki 

to 132 m³/ha Alavieska in MS-NFI-2017 and from 27 m³/ha in Utsjoki to 126 m³/ha Alavieska 

in MS-NFI-2019 and those for pine from 10 m³/ha in Utsjoki to 71 m³/ha in Kalajoki in MS-NFI-

2017 and from 11 m³/ha in Utsjoki to 69 m³/ha in Kalajoki in MS-NFI-2019 and those for spruce 

from 0 m³/ha in Utsjoki to 42 m³/ha in Alavieska in MS-NFI-2017 and from 1 m³/ha in Utsjoki 

to 42 m³/ha in Nivala in MS-NFI-2019 and those for birch from 7 m³/ha in Savukoski to 28 

m³/ha in Kemi in MS-NFI-2017 and birch from 7 m³/ha in Savukoski to 24 m³/ha in Kempele in 

MS-NFI-2019. 
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Figure 11. The MS-NFI-2017 mean volume of growing stock on forest and poorly productive 

forest land by municipalities. Digital map data: ©National Land Survey of Finland, licence No. 

MML/VIR/MYY/328/08 

The mean volume of spruce saw log on combined forest land and poorly productive forest land 

and also on that available for wood supply by municipalities is naturally highest in the region 

in which spruce volume is highest, that is, in southern part of Central Finland, in regions of 

Häme-Uusimaa, and the southern regions of Central Finland and Pohjois-Savo. The volume of 

pine saw log is relatively high, near or over 30 m3/ha, in some municipalities in South-West 

(Lounais-Suomi) and South-East (KaakkoisSuomi) and Etelä-Savo, while the birch saw log, 6–8 

m3/ha in some municipalities in Uusimaa (Appendix Tables 6a and 6c). 

4.5.1. Biomass estimates and available energy wood 

The two main potential development classes of wood energy sources of forests in Finland are 

young thinning stands and mature stands. All tree compartments above stump of those trees 

to be harvested as energy wood are removed in a young thinning stand, i.e., the entire stem 

over stump, branches and foliage. Only the residual part of stem, in addition to branches are 

removed for energy in the case of the regeneration cutting of a mature stand. 

Biomass estimates have been calculated for each field plot and plot part on forest land and 

poorly productive forest land in the NFI11, NFI12 and NFI13 data for biomass and energy wood 

estimation. The biomass estimates in the field data by tree compartments (Table 13) were pre-

dicted first for sample trees on forest land and poorly productive forest land of NFI11, NFI12 

and NFI13 and then predicted for tally trees in a similar manner as the volumes. The biomass 
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of the stem (including bark) was calculated from the volume of a stem using stem wood density 

models by (Repola et al. 2007). The biomass estimates of the other tree compartments were 

calculated using the models by Repola (2008, 2009) (Table 19). Note that the stem residual 

biomass is included to the stem biomass in the table. Tree level biomass predictions were con-

verted to kilograms per hectare (kg/ha), taking into account the angle count sampling (Bitter-

lich sampling) basal area factor and the maximum radius of the plot or the expansion factor 

for the fixed radius plots. The biomass estimates by tree species groups in young thinning 

stands (development class) are presented in Appendix Table 8a with a unit of Gg (109 g). The 

biomasses of stem and bark, branches and foliage were calculated using those field plots on 

which first commercial thinning was proposed for the first 5-year period or on which pre-com-

mercial thinning was proposed and the treatment was already considered to be delayed in the 

corresponding stand. The proportion of the field plot biomass capable to be removed was 

estimated employing the field plot data and the basal area thresholds from the thinning re-

gimes for mineral soils (Hyvän metsänhoidon suositukset 2005) and peatlands (Hyvän 

metsänhoidon suositukset turvemaille 2007), varying according to region (degree days), dom-

inant tree species and site class. First the dominant height of the field plot stand was estimated 

from stand mean height. The basal area removed was the stand basal area minus basal area 

threshold value after cutting from the particular thinning regime. The basal area removal per-

centage was converted to volume removal percentage using the relations of these two remov-

als obtained from Motti stand simulator for corresponding regions, dominant tree species and 

site classes (Hynynen et al. 2002). This percentage was used to estimate the biomass compo-

nents removal for the selected field plots. Appendix Table 8c presents similar estimates to those 

in Appendix Table 8a for land available for wood supply. The biomass estimates of mature 

forests are presented separately for branches, foliage and stem residuals, and stumps and large 

roots by tree species groups in Appendix Table 8b and for land available for wood supply in 

Table 8d. In practice, only branches and stem residuals can be harvested from regeneration 

cutting areas 

Table 19. The compartments for tree biomass (Repola et al. 2007, Repola 2008, 2009). 

Biomass compartment 

Stem and bark 

Living branches 

Foliage 

Dead branches 

Stump 

Roots with diameter larger than 1 cm 

Stem residual (from NFI timber assortment class proportions and stem, and bark biomass) 

 

The biomass models employed here and in (Tomppo et al. 2012, 2013, 2014, Mäkisara et al. 

2016, 2019) were different from those used in MS-NFI-2005 (Tomppo et al. 2009a). The effect 

of the two sets of the models on the biomass estimates and differences is discussed in (Tomppo 

et al. 2012). 

The energy wood estimates represent energy wood potential rather than the energy wood 

available in practice. The practical constraints in use and harvesting of energy wood, like 
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minimum removal and other cutting operations were not taken into account. For more details 

of deriving the biomass estimates and the reliability of the estimates, see (Tomppo et al. 2008b). 

4.6. Digital thematic output maps 

Thematic forest maps in raster format were produced for the most important forest variables 

(Table 20): land class, main site class, site fertility class, stand age, mean diameter and height 

of stands, stand basal area, canopy cover of trees, canopy cover of broad-leaved trees and 

volumes by tree species and timber assortments, for four tree species or species groups (pine, 

spruce, two birch species combined, and other broad leaved tree species). Twelve volume maps 

were produced for volumes of saw timber, pulp wood and total volume by tree species groups 

and one for all species together, without breaking down to saw timber and pulp wood. Twenty-

one thematic maps show the biomass estimates for three tree species groups (pine, spruce, 

broad-leaved trees) and for seven tree compartments. Note that the biomass component stem 

residual is a part of biomass component stem and bark. The maps produced are georeferenced 

raster layers in ETRS-TM35FIN coordinate system with a spatial resolution of 16 m by 16 m 

(Table 20), and cover Finland as shown in Fig. 6. The non-forestry land use cover was obtained 

from the digital land use map data and overlaid on the satellite image data during the estima-

tion phase. The ik-NN pixel-level predictions were made for the rest of the area. An example 

of the total volume thematic map is given in Fig. 9c. The raster layers can be combined to 

produce new thematic maps, e.g., dominant tree species and mean volume classes by tree 

species dominance. More examples of digital thematic maps are given in Tomppo et al. 

(2008b). 

Two kinds of map were made for the open access product: the viewable maps and the complete 

maps. The background map data has been replaced by a no-data value in both products. The 

viewable maps are 8-bit images where the forest variables have been classified into a small 

number of classes and colours have been assigned to the classes. These maps are available in 

viewing services like the Paikkatietoikkuna of the National Land Survey of Finland 

(http://www.paikkatietoikkuna.fi/) (Paikkatietoikkuna 2018). The complete maps retain the full 

precision of the results in 16-bit raster data. These are available at http://kartta.luke.fi/index-

en.html (Luke 2018). 

For a cover as complete as possible for MS-NFI-OA-2017 from the entire country, the 2017 

product has been completed by the data estimates from the recent years. The product thus 

consists of the following sub-products: 

1. The estimates from 2017, the NFI field data from 2013–2017 and the satellite images 

from 2017– 2018, 

2. The estimates from 2015, the NFI field data from 2012–2016 and the satellite images 

from 2015– 2016, 

3. The estimates from 2013, the NFI field data from 2009–2013 and the satellite images 

from 2012– 2014 (Mäkisara et al. 2016), 

4. The estimates from 2011, the NFI field data from 2007–2011 and the satellite images 

from 2009– 2012 (Tomppo et al. 2014), 

5. The estimates for about municipality Enontekiö in North Lapland, the NFI field data 

from 2003 and the satellite images from 2000, 

6. The estimates from 2007, the NFI field data from 2005–2008 and the satellite images 

from 2005– 2008. 

http://www.paikkatietoikkuna.fi/
http://kartta.luke.fi/index-en.html
http://kartta.luke.fi/index-en.html
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The estimates used to complete the MS-NFI-OA-2019 are the following: 

 

1. The estimates from 2019, the NFI field data from 2015–2019 and the satellite images 

from 2018– 2019, 

2. The estimates from 2017, the NFI field data from 2013–2017 and the satellite images 

from 2017– 2018, 

3. The estimates from 2015, the NFI field data from 2012–2016 and the satellite images 

from 2015– 2016, 

4. The estimates from 2013, the NFI field data from 2009–2013 and the satellite images 

from 2012– 2014 (Mäkisara et al. 2016). 

Note that the sum and mean values calculated from raster layers could deviate, and also do 

deviate in most cases, from the area and volume estimates in the Appendix Tables, due to the 

corrections for map errors. The forestry land area calculated from the maps is greater, and the 

mean volume estimates smaller, than those in the Appendix Tables in most cases (cf. Subsec-

tion 3.4.4). Particularly, if the estimates are calculated for a specific stratum, e.g., the mean or 

total volume for forests older than 120 years, the small area estimates calculated using the 

weights (Eq. 9) may deviate significantly from the estimates calculated from the map layers 

(Mäkisara et al. 2019). The reason is that there is a tendency towards the mean in the map form 

estimates while original field data are used in the small area estimates. For these reasons, it is 

recommended to use the small area approach in estimation when estimating strata far from 

the mean of the variable. 

In addition to the latest estimates, the open access products include, estimates from earlier 

multisource inventories. The proportion of pixels and area included from the different esti-

mates is shown in Table 21 for MS-NFI-OA-2017 and in Table 22 for MS-NFI-OA-2019. The 

table shows that coverage of the year 2017 and 2019 inventories is very good. Note that here 

the total area is the area under the forest mask derived from the topographic database (see 

Section 2.3.2) and it differs slightly from the area of forestry land computed from the field plot 

data (in NFI11 26 193 000 ha from Korhonen et al. (2017)). 

Table 20. The estimated raster themes in MS-NFI-2017 and MS-NFI2019. 

Theme 

Biomass, spruce, living branches  (10 kg/ha) 
 
Biomass, spruce, stem residual  (10 kg/ha) 

Biomass, spruce, roots, d > 1 cm  (10 kg/ha) 

Biomass, spruce, stump  (10 kg/ha) 

Biomass, spruce, dead branches  (10 kg/ha) 

Biomass, spruce, stem and bark  (10 kg/ha) 

Biomass, spruce, foliage  (10 kg/ha) 

Biomass, broad-leaved trees, living branches  (10 kg/ha) 

Biomass, broad-leaved trees, stem residual  (10 kg/ha) 

Biomass, broad-leaved trees, roots, d > 1 cm  (10 kg/ha) 

Biomass, broad-leaved trees, stump  (10 kg/ha) 

Biomass, broad-leaved trees, dead branches  (10 kg/ha) 

Biomass, broad-leaved trees, stem and bark  (10 kg/ha) 
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Biomass, broad-leaved trees, foliage  (10 kg/ha) 

Biomass, pine, living branches  (10 kg/ha) 

Biomass, pine, stem residual  (10 kg/ha) 

Biomass, pine, roots, d > 1 cm  (10 kg/ha) 

Biomass, pine, stump  (10 kg/ha) 

Biomass, pine, dead branches  (10 kg/ha) 

Biomass, pine, stem and bark  (10 kg/ha) 

Biomass, pine, foliage  (10 kg/ha) 

Site main class  (1–4) 

Site fertility class  (1–8) 

Land class  (1–3) 

Stand age  (year) 

Stand mean diameter of  (cm) 

Stand mean height  (dm) 

Canopy cover  (%) 

Canopy cover of broad-leaved trees  (%) 

Stand basal area  (m2/ha) 

Data source index 

Volume, birch  (m3/ha) 

Volume, birch pulpwood  (m3/ha) 

Volume, birch saw timber  (m3/ha) 

Volume, spruce  (m3/ha) 

Volume, spruce pulpwood  (m3/ha) 

Volume, spruce saw timber  (m3/ha) 

Volume, other broad-leaved trees  (m3/ha) 

Volume, other broad-leaved trees pulpwood  (m3/ha) 

Volume, other broad-leaved trees saw timber  (m3/ha) 

Volume, pine  (m3/ha)  

Volume, pine pulpwood  (m3/ha) 

Volume, pine saw timber  (m3/ha) 

Volume, the growing stock  (m3/ha) 
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Table 21. The proportions of forest area from the different estimates in MS-NFI-OA-2017 

Source pixels 1000 ha % 

MS-NFI-2017 1 006 340 878 25 762.3 96.79 

MS-NFI-2015 32 352 445 828.2 3.11 

MS-NFI-2013 1 032 613 26.4 0.10 

MS-NFI-2011 10 117 0.3 0.00 

2006/2009 Enontekiö 2 439 0.1 0.00 

MS-NFI-2007 8 715 0.2 0.02 

No data 0 0.0 0.00 

Total 1 039 747 207 26 617.6 100.0 

 

Table 22. The proportions of forest area from the different estimates in MS-NFI-OA-2019 

Source pixels 1000 ha % 

MS-NFI-2019 1 035 117 170 26 499.0 99.54 

MS-NFI-2017 4 734 810 121.2 0.46 

MS-NFI-2015 72 410 1.9 0.01 

MS-NFI-2013 6 203 0.2 0.00 

No data 0 0.0 0.00 

Total 1 039 930 593 26 622.2 100.0 
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5. Discussion 

5.1. The pixel-wise error estimates 

The pixel-wise error estimates computed using the field observations provide some data on 

the accuracy of the predictions, although the users are not really interested in single pixels. The 

accuracy is assumed to increase when groups of pixels are considered. This is difficult to test 

for larger areas and only a simple test is presented here. 

The pixel-wise RMS errors are reported for reference in Table 8. These errors are averages for 

large areas and the actual error for as smaller area may be either larger or smaller. The results 

are shown in absolute units and the mean is shown for reference.  

The coefficients of determination for the different themes are shown in Table 9. The coefficients 

for some themes (where also the RMS error is large in relation to mean) are below zero. This 

means that predicting the mean for all pixels would give better results. The coefficients for 

determination have also been computed for some themes for predictions averaged over a 3 

by 3 pixel neighbourhood. In this case, the coefficients of determination, even for the prob-

lematic themes, are clearly positive. This indicates that also these predictions are useful when 

aggregates of pixels are considered. 

Different methods have to be used when analysing the categorical themes. The confusion ma-

trices have been computed for these themes. The proportions of the different classes are shown 

in the tables. In the land use class themes and the main class theme, one class dominates, but 

the proportions of the other classes in predictions are quite close to the proportions in the 

reference material. This applies also to the site fertility theme, although there the dominance 

of a single class is not so strong. The site fertility classes have some kind of an order, i.e., the 

differences between neighbouring classes are not very strict. Table 15 shows the confusion 

matrix when classification to the neighbouring class is not considered an error. This clearly 

increases the values in the diagonal in some cases. 

5.2. Differences between field data, thematic maps and 

municipality statistics 

MS-NFI computes predictions for several forest variables using remote sensing data and nu-

merical map data as the auxiliary data in predictions. The training data is from the Finnish NFI 

field plots. One might expect that the predictions should be near to the field data. However, 

there are some things that makes comparisons complicated: the compared predictions may 

not really describe the same geographical area (called aggregation area here). 

The magnitude of the differences described above have been demonstrated experimentally in 

Section 4.2 (Table 16). The results have been computed for a fairly large area so that the trends 

observed would be reliable. The Uusimaa region chosen for the demonstration includes signif-

icant areas of built-up land and agricultural land. This makes the observed differences larger 

than would be found in more forested regions. 

In the field data, the sampling unit is the field plot. A field plot may cover parts of different 

stands. The data is collected separately for each stand. In this way, the parts of the stand are 

separable in the analysis. On the other hand, the pixel is the basic spatial unit in the raster map 
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results. It can’t be split into parts in MS-NFI. This means that it includes only one “stand”. When 

the training data is associated with the auxiliary data at the corresponding pixel, the field plot 

stands must be aggregated. This is natural with the continuous-valued variables, but only one 

of the classes must be selected in case of class variables. The information in the classes of the 

other stands is lost and can’t be used when aggregating results from pixels. 

MS-NFI makes the thematic maps and the municipality statistics in the same process. Both use 

the same field data and basic k-NN processing. The results are assembled in a different way: 

the predictions are computed for each pixel separately for the thematic maps, whereas the 

results are directly accumulated for the municipality statistics. In this way, the data from all 

stands can be properly accumulated when the intermediate aggregation to pixels is bypassed 

in computing the municipality statistics. 

The definitions of the aggregation areas also cause differences in results. With field data, the 

land use class of each stand is determined. The definition for the aggregation area is based on 

the locations of the field plots included in estimation. Outside these locations, the aggregation 

area is defined statistically, e.g., based on the land use classes of sample plots within a known 

geographic area (Tomppo et al. 2011). The accuracy of the area determination depends on the 

size of the area, but no map errors are involved because the definition is based directly on field 

observations. 

When using the raster maps, the aggregation area is defined by the pixels included in the 

aggregation. The set of pixels can be determined by some pre-defined map (the topographic 

database in case of MS-NFI) or a classification (e.g., the land use layer of MS-NFI). The map 

used in defining the area may not have quite the correct definition of classes for the task at 

hand. For instance, in MS-NFI, the forestry land from the map includes everything that is not 

something else in the topographic database. The positional accuracy of the auxiliary data 

causes similar effects, but here the reason is not definitions. Similar argumentation can also be 

applied when considering sub-plots in field data and pixels. A pixel covering both forestry land 

and non-forestry land can’t be divided, whereas only the sub-plots in forest can be considered 

when computing results from field data. 

The result is that the area classified as forest includes sample plot locations not classified as 

forestry land in the field. The predictions at these pixels typically correspond to low volume 

forest and decrease the aggregated results. There are also errors in the other direction, i.e., 

pixels belonging to forest are excluded from aggregation. In the average, the excluded pixels 

don’t change the aggregated results much. 

These effects can be qualitatively visualized by considering a patch with value one on a back-

ground with value zero. The correct aggregation area is defined by the extent of the patch. The 

average computed for this area is one. If the aggregation area is extended somewhat to the 

background, the average will be below one. If some part of the patch is left out of the aggre-

gation area, the average will still be one. If the integral (total) over the aggregation area is 

considered, extending the aggregation area to the background does not change the integral. 

Leaving out some of the blob area decreases the integral. 

The first and second row in Table 16 show an example of the effect of the border pixels even 

if we consider the classification of the plots correct. Including the sub-plots in other land use 

classes changes the mean volume. For instance, including the sub-plots in not in forest land 

decreases the mean volume in forest land, whereas including forest land sub-plots to poorly 

productive forest land increases the mean volume for poorly productive forest land. The mean 
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volume for all forestry classes decreases when non-forest sub-plots with zero volume are in-

cluded. 

The third and fourth row of Table 16 shows the effect of incorrect land use classes at the bor-

ders of raster areas. Removing the border pixels increases the probability that the aggregation 

area includes only forestry land pixels. This increases the mean volume (163.2 m3/ha) fairly 

close to the value computed from field data (159.3 m3/ha). The difference may seem large, but 

the standard error for total volume from field data in Uusimaa in MS-NFI-2019 is 3.7 m3/ha 

(Table 17). 

The map correction used when computing the municipality statistics tries to correct the differ-

ences between the land use class definitions based on the map and based on field plots in the 

aggregation areas for the municipality statistics (Katila et al. 2000). The sixth and seventh rows 

in Table 16 show an example of the effect of map correction. Row six corresponds roughly to 

the result computed from raster data. Row seven shows the map corrected result for the 

Uusimaa region. It is close to the result form field data. This is expected because the calibration 

should make these results close. The increase resulting from map correction is quite large in 

case of Uusimaa. 

The effect of the calibration on the results for raster pixels is shown in rows two and five in 

Table 16. The mean volumes for forest land and forestry land are very close in these rows. This 

shows that the calibration is successful also for pixel data. The results for poorly productive 

forest land and waste land are not so close. The reason for this is that the prediction methods 

tend to concentrate the prediction towards the mean value, i.e., increase the values in these 

cases. 

Note that the raster layers are also used for tasks where aggregation errors are not present. 

For instance, if the aggregation areas are delineated from a satellite image (e.g., stands), the 

definition is precise for the task at hand. 

The pixel-wise predictions may be biased. MS-NFI includes calibration of the predictions to 

minimize the bias in the results after calibration. In calibration, the goal of calibration must be 

chosen. In MS-NFI, the choice was made to calibrate the means of variables (stem volume, etc.) 

computed for large areas using plot weights and map correction to match the same values 

computed from the field data for the same areas. The primary purpose of this choice was to 

make the municipality statistics unbiased. Note also that the calibration is done to the field 

data results that include some error, although calibration is based on large areas. 

5.3. Comparisons between MS-NFI results from different time 

points 

Detection of changes is often attempted by differencing results from two time points. The op-

eration is simple, but interpreting the result is more complicated: the expected accuracies must 

be taken into account. 

Section 4.3 shows an example from differencing the two results described in this report. The 

differences between the differences are small compared against the standard errors in the field 

data. Considering that the true differences are expected to be a few m3/ha at most with the 

two-year difference, this experiment shows that no firm conclusions should not be drawn from 

these differences between consecutive MS-NFI results. At the municipality level mean volume 

estimates from MS-NFI-2011, -2013 and -2015 Katila and Heikkinen (2020) detected 
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differences of over 13 m3/ha in every fourth municipality in a subset of municipalities where 

the total growing stock was over one million m3. These changes were considered unrealistic 

and a multi-temporal data fusion combining MS-NFI estimators from three time points was 

tested as a means to improve single time point MS-NFI estimates. It is evident that some sort 

of trend analysis is recommendable to detect changes in forest variables from MS-NFI small 

area estimates. Katila et al. (2020) applied a contextual Mann-Kendall test to detect trends in 

time-series of two decades of thematic maps (MS-NFI), up to units of size of a small munici-

pality. 

5.4. Other topics 

The main purpose of the MS-NFI method is to obtain forest resource information for areas 

smaller than would be possible using only field data. The adopted k-Nearest Neighbour esti-

mation method (k-NN) meets the requirements set to the method and the results. In addition 

to the small area estimates, the MS-NFI provides predictions of forest variables in map form. 

The post-stratified (PS) estimates by municipalities, available in addition to the MS-NFI esti-

mates, have the advantage of error estimates for variables. However, the PS estimates are con-

sidered reliable only for municipalities roughly larger than 400 km² (Haakana et al. 2020), the 

number of variables reported is smaller than in MS-NFI and the PS estimates may not be bases 

for long term forecast calculations as the MS-NFI, where there are on average 700–900 clusters 

of field plots with weights for a single municipality (Katila and Heikkinen 2020). Nevertheless, 

the PS estimates are based on MS-NFI thematic and MS-NFI uses the field data-based esti-

mates to groups of municipalities and single municipalities for validation purposes aiming at 

minimising the deviation from them (Sections 3.4.5 and 4.4). 

One of the applications of satellite image-based digital volume maps is to use them to simulate 

different sampling strategies. For instance, the sampling intensities of Finnish NFIs have been 

fitted to the spatial variation in forests throughout the whole country, being lower in the north 

than in the south (Henttonen 1991, Tomppo et al. 2011a). A spatially balanced sampling utiliz-

ing local pivotal method and MS-NFI-2007 thematic maps was tested in South-Western Finland 

(Räty et al. 2019). The MS-NFI thematic maps were used, among other GIS-data, to stratify the 

first phase clusters for the second phase sample in North Lapland in NFI9 and NFI11 for the 

double sampling with stratification (Tomppo et al. 2011a, Korhonen et al. 2017), as well as in 

NFI13. 

The field data used in MS-NFI originates from several years, whereas the target date for the 

products was set to be July 31, 2017 for MS-NFI-2017 and July 31, 2019 for MS-NFI-2019. The 

variables of the field data were projected (updated) to the target date to correct the expected 

changes between field measurements and the target date. An approach based on stand level 

models were selected after exploring different alternatives (Subsection 3.2, Tomppo et al. 

2014). Existing models were used for volume increments. Models and their parameters for the 

increments of the other updated quantities were estimated for the MS-NFI purposes. The per-

manent sample plots of the NFI from years 2004–2011 were used. Big changes on the NFI plots 

compared to the image data were interpreted. Some of them are difficult to detect. Thus, some 

open questions still remain, in addition to the precisions of the increment models. Examples, 

in addition to the detection of some big changes, such as regeneration cuttings and heavy 

storm damages, the detection of light storm damages and thinning cuttings (not tried for this 

product). 
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The pixel level prediction error is generally rather high in MS-NFI. Several error sources are 

listed in (Tomppo et al. 2008b). For this article, the estimates and pixel level predictions were 

validated when selecting the estimation parameters comparing MS-NFI estimates and error 

estimates with those based on NFI11 field data using groups of municipalities. Alternatively, 

more accurate error estimates for the NFI field data are available using post-stratification (Haa-

kana et al. 2019). 

The ik-NN method can be used to either compute forest resource maps or to directly compute 

estimates for groups of pixels. The results computed for municipalities in MS-NFI are an exam-

ple of the latter method. There are significant advantages when computing the results directly 

compared to using the raster maps as an intermediate step, as exemplified in (Mäkisara et al. 

2019). The examples show how carrying information about the distribution of the estimates to 

the final aggregation of the results helps in computing the fractions of uncommon values of 

the forest variables. The information from the distributions is retained in the maps if the value 

of k is one. Unfortunately, this reduces the usability of the maps for applications that are natural 

to them. 

A promising forest land delineation mask (‘SMK metsämaski’) has been produced by Finnish 

Forestry Centre employing NLS topographic database and cadastral index maps using the size 

of the property to define whether the unit is forestry land or not (Suomen metsäkeskus 2021). 

The ‘SMK metsämaski’ forestry land area obtained is more accurate (i.e. unbiased) than from 

using topographic map data only. However, the definitions of forest used in GIS processing do 

not correspond to the ones used in NFI field work (Jyrkilä et al. 2022). 

It was found difficult to make the delineation of the protected areas to match the NFI field 

inventory estimates. The Metsähallitus multiple step rules for delineation of the non-produc-

tion land areas were available only at the NFI plot level. 

The most serious potential risk in the application of MS-NFI method is the availability of rele-

vant satellite images. An individual satellite image scene should be large enough to cover high 

enough number of field plots, preferably several thousands, to get satisfactory ground truth 

data. On the other hand, the pixel size should not be larger than about 30 metres. In addition 

to the problems caused by clouds, the number of the natural resource satellites with suitable 

specifications for forest applications has not been large. ESA’s Sentinel-2A, launched in 23 June 

2015 and Sentinel-2B, launched 7 March 2017, have improved coverage. Landsat 9 was 

launched in September 2021, and it will further improve data availability for the next MS-NFI. 

This article is one in the series in which the MS-NFI estimates are calculated every second year. 

The future method development work will focus, in addition to the decrease of all kinds of 

estimation errors, to improve the consistency between the subsequent products. Now that 

there are four openly available products, users are increasingly interested in the trends ob-

served by comparing the products. Up to now, the MS-NFI products have been independent 

but possibilities to use previous estimates to increase the reliability of current estimates will be 

investigated. 
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Appendix 

The following tables (MS-NFI-2017 and MS-NFI-2019) can be retrieved from the URL 

http://urn.fi/URN:ISBN:978-952-380-538-5  

Table 1a. Area and proportion of land classes on forestry land by regions (maakunta) 

Table 1b. Area and proportion of land classes on forest land available for wood supply by 

regions 

Table 2a. Area and proportion of mineral soils and peatlands by land classes and regions 

Table 2b. Area and mean volume of growing stock on mineral soils and peatlands on forest 

land and forest and poorly productive forest land by regions 

Table 2c. Area and proportion of forest available for wood supply on mineral soil and peat-

land by land classes and regions 

Table 2d. Area and mean volume of forest available for wood supply on mineral soil and peat-

land on forest land and forest and poorly productive forest land by regions 

Table 3a. Dominant tree species on forest land by regions 

Table 3b. Dominant tree species on poorly productive forest land by regions 

Table 4a. Age class distribution on forest land by regions 

Table 4b. The mean volume of growing stock in age classes on forest land by regions 

Table 4c. Age class distribution on forest land available for wood supply by regions 

Table 4d. The mean volume of growing stock in age classes on forest land available for wood 

supply by regions 

Table 5a. Development class distribution on forest land by regions 

Table 5b. The mean volume of growing stock in development classes on forest land by re-

gions 

Table 5c. Development class distribution on forest land available for wood supply by regions 

Table 5d. The mean volume of growing stock in development classes on forest land available 

for wood supply by regions 

Table 6a. The mean volume of growing stock by tree species and roundwood assortment on 

forest and poorly productive forest land by regions 

Table 6b. The growing stock volume by tree species and roundwood assortment on forest 

land and poorly productive forest land by regions 

Table 6c. The mean volume of growing stock by tree species and roundwood assortment on 

forest and poorly productive forest land available for wood supply by regions 

Table 6d. The growing stock volume by tree species and roundwood assortment on forest 

land and poorly productive forest land available for wood supply by regions 
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Table 7a. The mean volume of growing stock by tree species and roundwood assortment on 

forest land by regions 

Table 7b. The growing stock volume by tree species and roundwood assortment on forest 

land by regions 

Table 7c. The mean volume of growing stock by tree species and roundwood assortment on 

forest land available for wood supply by regions 

Table 7d. The growing stock volume by tree species and roundwood assortment on forest 

land available for wood supply by regions 

Table 8a. The biomass of the tree compartments available for energy wood by tree species in 

young thinning stands on forest land by regions. Stands with proposed cutting for 

the first 5-year period selected. The assessed removal by plot stand based on re-

gional thinning regimes 

Table 8b. The biomass of the tree compartments available for energy wood by tree species in 

mature stands on forest land by regions 

Table 8c. The biomass of the tree compartments available for energy wood by tree species in 

young thinning stands on forest land available for wood supply by regions. Stands 

with proposed cutting for the first 5-year period selected. The assessed removal by 

plot stand based on regional thinning regimes 

Table 8d. The biomass of the tree compartments available for energy wood by tree species in 

mature stands on forest land available for wood supply by regions 

Table 9. The biomass of tree compartments by tree species on forest and poorly productive 

forest land by regions 
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