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The volume models that have been used in Finland for the last 40 years, while generally well thought-out, exhibit
an illogical behaviour for small trees. In recent studies, tree stem form was observed to have changed in time
and also involve spatial variation attributable to environmental factors. It is yet unclear how the stem taper
has actually changed. To overcome these problems, we fitted a completely new set of volume and taper curve
models and examined whether this change is attributable to the changes in management and environmental
factors rather than to measurement errors in the previously used datasets. For the latter, we added a dataset
into the analysis, which was smaller but of higher quality due to the destructive nature of the stem taper
measurements. We aim at (1) developing a new non-linear variable form factor volume function that works
with trees of all sizes, (2) improving the description of the variation of the stem form in time and space by
including temperature sum and soil type as predictors, (3) understanding the changes in the stem form by
fitting new taper curve models and (4) improving the statistical properties of the predictions by using mixed
model techniques and by addressing the effect of parameter uncertainty. To assess the impact of renewing the
models, we (5) predicted the mean volume and its confidence interval with each model for forest inventory data
at country level. The results show that the tree stem form has a spatial trend that can be described with the
temperature sum. Moreover, the changes in stem form also have a spatial trend, with largest changes in Lapland.
The difference is mostly observable in the lowest part of the stem, and it is especially large in the largest pines.
We conclude that environmental variables can help to improve national stem taper functions in countries with
pronounced environmental gradients.

Introduction
Volume models are the most important allometric models in
forestry, needed for any tree species and region, as measuring
tree volume in the field is usually not possible. The models
of Laasasenaho (1982), which are frequently used in Finland,
include one-predictor models with diameter at breast height (dbh
, diameter at a 1.3 m height above ground) as the sole predictor,
two-predictor models with dbh and height (h) as predictors, and
three-predictor models with dbh, h and diameter at height of
6 m (d6) as predictors. His set of models also include taper
curve functions for average stem form with diameter at 20 per
cent of the total height as a predictor and correction functions
for predicting individual deviations from the average taper curve
form with dbh and h as predictors. The two-predictor volume
models are used in practically all forest planning systems in
Finland, while the three-predictor model is mainly used in the
National Forest Inventory (NFI) for calculating the sample tree

volumes. The taper curve models are used to buck the stems into
logs and pulpwood.

The models of Laasasenaho (1982), in general, have a geo-
metrically well thought-out structure, and they have shown a
very good performance with the original data used to fit the
model. However, the models are old and have a set of problems
that need to be tackled for future applications. For instance, the
most-often used volume models based on dbh and h do not
behave logically for the smallest trees (Laasasenaho, 1982, p. 43;
Kangas et al., 2020, see section 3.2). Different approaches have
been used to overcome this problem in the NFI and in various
forest simulators. Our hypothesis in this study is that by analysing
the theoretical properties of the models, an improved solution
can be found.

The classical starting point for modelling is the Schumacher
function, which is based on the logarithmic transformation of the
function v = AdBhC (e.g. Schumacher & Hall 1933; Zianis et al.,
2005; Burkhart and Tomé, 2012; Vibrans et al., 2015; Goussanou
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et al., 2016). The model is justified by the shape of tree stems:
using B = 2 and C = 1, the formula will provide the volumes
of cylinder and cone as special cases with base diameter d and
height h, depending on the value of A, which in turn determines
the breast height form factor as 4A/π. The form factors for
cylinder and cone are 1 and 1/3, respectively. For most trees, the
form factor should be between these values. For some species,
the form factor is fairly constant, whereas for others, it varies with
tree size (Vallet et al., 2006; Kershaw et al., 2016). When the pow-
ers B and C of diameter and height are estimated empirically, the
differences from the theoretical values of 2 and 1 actually model
the dependence of form factor on diameter and height. As we
will show later, the two-predictor model of Laasasenaho (1982)
can be seen as such an extension of the model of Schumacher,
where the form factor depends on diameter and height and is
restricted to be positive. However, the form factor has no upper
bound, which causes the abovementioned unrealistic behaviour
for small trees. Little work has been carried out in modelling the
form factor explicitly (see, however, Vallet et al., 2006). A reason
for the lacking efforts to improve the model may be that they lead
to models that cannot be linearized easily and require the use of
non-linear model fitting techniques. However, methods are well
developed nowadays and have been widely available already for
decades (Mehtätalo and Lappi, 2020).

The data for the old models were collected during 1968–1972
from the plots of the fifth NFI by climbing the living trees and
conducting diameter measurements at multiple heights (later
referred to as climbed data). When these models were used
in later NFIs to predict the sample tree volumes, the mean
differences between Laasasenaho’s two-predictor models (dbh,
h) and three-predictor models (dbh, h, d6) exhibit an increasing
trend (Kangas et al., 2020), indicating that the shape of the stems
has changed since the fifth NFI. This conclusion is based on
the three-predictor model, including information of the changed
shape (d6), while the two-predictor model does not include such
information. To quantify this change, a new point cloud dataset,
containing detailed information in individual trees’ stem forms,
was measured with terrestrial laser scanning (later referred to
as scanned data; for details, see Kangas et al., 2020) and was
used in combination with the climbed data to re-calibrate the old
models. The plots to be scanned were selected from the plots of
the 12th NFI.

The results showed evidence for a change in the stem form
for all tree species (Kangas et al., 2020). It was noted that when
conditioned on diameter, expected volumes in the scanned data
were higher than those in the climbed data, and when condi-
tioned on both diameter and height, the expected volumes in the
scanned data were smaller than those in the climbed data. Thus,
the trees were taller and slenderer in the scanned data than in
the climbed data. In Kangas et al. (2020), the change was mainly
attributed to changed forest management and denser forests.

Yet, there was also evidence of regional variation in those
differences and therefore environmental or climatic differences
may have further induced that change on top of forest man-
agement. Traditionally, volume models are fitted without any
environmental factors (e.g. Zianis et al. 2005). However, recent
studies have shown evidence of environmental factors affecting
the allometry. Mean temperature and mean precipitation are
most commonly used variables in the allometric models. For

instance, Fortin et al. (2019), Qiu et al. (2021) and Xu et al. (2022)
used those as predictors in height models, Schneider et al. (2018)
used those as predictors in volume models and Chave et al.
(2014) and Fu et al. (2017) used those as predictors in biomass
models. Other climatic factors, such as temperature sums, mean
solar radiation and length of frost-free period, have also been
used (e.g. Xu et al., 2021). Other environmental factors, such as
soils, have also shown to have an effect. For instance, Cysneiros
et al. (2021) included both climatic and soil variables in their
allometric models.

In Finland, the temperature sums (or degree days, sum of
degrees for days with mean temperature >5◦C) at different parts
of country have a variation from around 400 in the northernmost
part of Finland to around 1300 in the southernmost part of
Finland. That can be assumed to be the most important envi-
ronmental factor affecting the stem form. Moreover, the trees
located on peatlands and mineral lands were not separated
when the old models were fitted, even though this may have
an effect on the stem form. Thus, there is a need to address
the potential effect of these factors in the new models. To take
this on board, the original two-predictor and three-predictors
models were also refitted in this study with environmental factors
included.

It is also important to find out the relative height where the
largest changes in the stem form have occurred since that will
affect the volumes of different timber assortments. Therefore,
there is also a need to re-fit the old taper curve models to address
this question.

In the recent studies, Kangas et al. (2020) and Pitkänen et al.
(2021) noted the possibility of the observed changes in stem
form being due to the differences of the error structure rather
than from actual change in time. To overcome this problem,
we decided to add a third dataset, collected during 1988–2001,
into the analysis. As in this dataset, the trees were felled and
measured on the ground (later referred to as felled data), it can be
assumed to be the most accurate of the three datasets. There-
fore, we hypothesized that these data will help in confirming if
the changes in stem form are due to changes in time rather than
artefacts of the measurements and also give further insights into
the effect of the environmental factors.

Finally, the volume models fitted by Kangas et al. (2020) were
re-calibrations of old models, meaning the models were fitted
as linearized OLS models. We deemed it important to introduce
new techniques available, such as non-linear mixed models, into
the modelling exercise. In addition, new techniques may also be
used to address the parameter uncertainties of the models in
addition to the residual errors. This is important since, even if
the parameters are estimated using a method that gives unbi-
ased predictions of the response variable, the expected values
of prediction errors are zero only over repeated sampling of the
model fitting dataset and not for any single model fitting dataset.
Because the parameter estimates are based on one dataset
only, the prediction errors induced by the errors in the parameter
estimates do not cancel out. Instead, they behave like bias, i.e.
remain constant irrespective of the number of predictions (see
Mehtätalo and Lappi, 2020, p. 127). This differs from the effects
of residual errors, which cancel out if predictions are done for a
large number of trees. For example, if the parameter uncertainty
results in a 1 per cent overestimate in the volume, all inventory
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Mixed linear and non-linear tree volume models

Table 1 The number of observations in different datasets

All observations Observations with d6 > 0

Species Climbed Felled Scanned Climbed Felled Scanned

Pine 2326 797 943 2013 722 925
Spruce 1864 479 623 1668 435 619
Birch 863 258 355 827 242 351

Table 2 The means, minima and maxima of tree characteristics by dataset (all observations included) and by species

Species Dataset Stem volume, v, dm3 Breast height diameter, dbh, cm Upper diameter, d6, cm Height, h, m

Mean Min Max Mean Min Max Mean Min Max Mean Min Max

Pine Climbed 312.4 0.4 1920.5 20.2 0.9 50.6 14.5 0.0 44.2 13.7 1.5 28.3
Felled 212.0 4.7 1920.3 16.7 5.0 44.6 11.1 0.0 38.2 12.3 3.2 31.4
Scanned 336.9 3.8 1947.7 20.8 3.9 49.7 16.0 0.0 40.4 16.5 4.1 29.6

Spruce Climbed 264.5 0.6 3795.9 18.0 1.5 61.9 13.1 0.0 52.4 13.8 1.8 32.7
Felled 316.4 5.8 2483.1 18.5 4.9 49.8 13.6 0.0 47.6 14.8 3.9 32.1
Scanned 448.3 7.4 2856.4 22.2 5.6 57.0 17.9 0.0 47.7 18.2 4.5 32.7

Birch Climbed 228.6 0.4 2026.0 16.7 1.2 49.7 12.5 0.0 39.0 15.3 2.4 29.5
Felled 116.1 5.6 2112.4 12.4 5.0 45.3 7.9 0.0 37.8 12.2 4.5 32.0
Scanned 211.2 4.3 1427.7 16.1 4.0 42.5 12.2 0.0 34.8 16.1 4.5 29.8

results and growth simulators give the respective overestimate.
The exact value of this systematic error is unknown, but a confi-
dence interval can be produced for it.

To overcome the problems discussed above, we decided to fit
a completely new set of volume and taper curve models. We aim
at (1) developing a new non-linear variable form factor volume
function that works with trees of all sizes, (2) improving the
description of the variation of the stem form in time and space
by including temperature sum and soil type as predictors, (3)
understanding the changes in the stem form by fitting new taper
curve models and (4) improving the statistical properties of the
predictions by using mixed model techniques and by addressing
the effect of parameter uncertainty. To assess the impact of
upgrading the models, we (5) predicted the mean volume and
its confidence interval with each model for forest inventory data
at country level. The new models are reported as an R-object
and prediction function that produces confidence intervals to
quantify the systematic error due to parameter uncertainty.

Material
Our study material consists of three datasets: (1) The climbed
data that include 2326 Scots pine (Pinus sylvestris L.), 1864
Norway spruce (Picea abies L. Karst.) and 863 silver (Betula pen-
dula Roth) and downy (Betula pubescens Ehrh.) birches collected
between 1968 and 1972; (2) the felled data with 797 pines,
479 spruces and 258 birches collected between 1988 and 2001
and (3) the scanned data with 943 Scots pine, 623 Norway

spruce and 355 downy or silver birch collected between 2017
and 2018 (Table 1). The trees were in all cases measured in
a selection of NFI plots, with 4.1 plots from the same cluster
on average. The main characteristics of the three datasets are
shown in Table 2. For more details concerning the climbed data,
see Laasasenaho (1982); for the felled data, see Korhonen and
Maltamo (1990); and for the scanned data, see Pitkänen et al.
(2019). For modelling the tree volume, the three datasets were
merged into one dataset and the differences between datasets
were parameterized into the models.

In the original publication of volume models based on the
climbed data (Laasasenaho, 1982) and their re-calibration
(Kangas et al., 2020), only trees in productive forest land were
included. In this study, trees in poorly productive stands were
included, as the volumes for these trees are also needed in
applications. Most of the observations are from mineral soils,
(N = 6711) and the rest (N = 1795) are from peatlands (Table 3).
For the volume models including upper diameter, only trees with
d6 > 0 were considered.

In the climbed and felled data, the volumes of the trees
were predicted using a natural cubic spline (splinefun, R Core
Team, 2021) to interpolate the taper curve between measured
diameters at given relative heights. The volumes were obtained
by integrating the resulting taper curve using v = π/4

∫ h
0s2(x)dx

(Lahtinen and Laasasenaho, 1979), where s denotes the diame-
ter as the function of height, h is the height of the tree and 0 is
the stump height level.

Taper curves for the scanned data were based on a large
number of diameters, which were derived from circles fitted to
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Table 3 Observations by soil types and land classes

Soil type Land class

Mineral Peatland Productive forest
land

Poorly productive
forest land

Unproductive land

Climbed 4115 938 4727 292 34
Felled 1133 401 1534 0 0
Scanned 1463 456 1906 15 0

the point cloud data using the random sample consesus algo-
rithm (Fischler and Bolles, 1981). To prevent substantial over-
or underestimates of diameters, earlier measurement data and
taper curve models estimated with the method presented by
Lappi (1986, 2006) were used as prior information to filter out
expected gross errors resulting from poorly fitted circles (Pitkänen
et al., 2021).

The final taper curves were predicted using cubic splines
like in the original study (Laasasenaho, 1982; Pitkänen et al.,
2021). In scanned data, however, a smoothing spline function
(smooth.spline, R core team, 2021) was used instead of an
interpolating spline, as there are much more diameter/height
combinations available than in climbed or felled data. The
flexibility of the curve was set with the ‘spar’ parameter in the
algorithm. In scanned data stem, volumes above the stump
height were predicted using the cubic spline and Huber formula
(Husch et al., 1972) with 1-cm slices.

In order to analyse the regional environmental variation, the
coordinates of the original plots were used to get the tempera-
ture sum from the databases of Finnish Meteorological Institute.
That data were also used to divide the area to four regions
with an equal number of observations (Figure 1). Data collected
in the 11th NFI (Korhonen et al., 2017) were also used in our
demonstration of the application potential of the models. That
data included 31 237 pine, 18 885 spruce and 12 316 birch sam-
ple trees from the forest land and poorly productive forest land
(national classification, see Tomppo et al., 2011), with measured
dbh and h and d6 for trees with h > 8 m and no forks between
1.3 and 6 m.

In the climbed data, a pre-defined number of diameter mea-
surements along the stem were carried out. Since the measure-
ments were taken in standing trees, it is possible that there
are errors in the relative heights and diameters, especially in
the upper part of the stem. In the scanned data, an arbitrary
amount of diameters along the stem can be calculated from
the laser point cloud data, but in each scan, only one side of
the stem can be seen. While several scans can be combined to
circumvent this problem, windy weather may make the merging
challenging. In addition, branches and other trees may cause
occlusion problems in the upper part of the stem. In the felled
dataset, all measurements were carried out from felled trees,
and therefore, this dataset can be assumed to be the most
accurate of the tree datasets, specifically in the upper parts of
the stem. The error structures (i.e. means, variances and corre-
lations of errors at different parts of the stem) of these three
datasets are very different, which needs to be taken into account

when interpreting the results. To minimize the potential effects
of the different error structures, all variables used as predictors
(dbh, h, d6 and diameter at stump height (dsh)) of all datasets
were measured in the field.

Methods
Volume functions
We fitted three forms of tree-level volume models to our
datasets:

v
π·dbh2·h/40

= a + b · dbh + c · h + d · 1
h + e ·

(
dbh2+dbh·d6+d62

)

dbh2h

+f ·
(

d62·(h−6)
)

dbh2·h + εcluster + εplot + εtree

(1)

log(v) = a + b · log
(
dbh

) + c · log(h) + d · log
(
h − 1.3

)

+e · dbh + εcluster + εplot + εtree (2)

and

v = logit−1(a + b · dbh + c · h + d · 1
h

+ e · dbh · h

+f · 1
dbh · h

+ εcluster + εplot
) · π · dsh2 · h

40
+ εtree, (3)

where v is the stem volume in dm3; and dbh, d6 and dsh,
respectively, are the diameters at 1.3 m, 6 m, and stump height
in cm and h is the height in m. Values of parameters a− f were
estimated from the data as explained below, and εcluster, εplot
and εtree are, respectively, the zero-mean cluster-, plot- and tree-
level random effects that follow the standard assumptions of
mixed-effects models (e.g. Mehtätalo and Lappi, 2020). Model
(3) included the inverse logit transformation logit−1

(x) = 1/(1 +
exp(−x)) ∈ (0, 1) and the approximation

dsh = [
w

(
h, λ

) + (
1 − w

(
h, λ

)) h
h−1.3

]
dbh (4)
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Figure 1 The four regions defined by the locations of the observations and quantiles of temperature sum. Background map: EuroGeographics/UN-FAO.
The colours depict the datasets.
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of the stump height diameter, which was assumed unobserved.
Here,

w
(
h, λ

) = 2 − 2 exp((h−1.3)/ exp(λ))
1+exp((h−1.3)/ exp(λ))

(5)

and λ is a parameter estimated from the data.
Models (1) and (2) are the two- and three-predictor models

recommended by Laasasenaho (1982) (61.3 and 61.5). In this
study, we introduce the temperature and soil type as well as
the change due to the dataset to these models. Model (3) is our
new non-linear ‘variable form factor volume function’ described
in more detail in Variable form factor volume model section. Note
that regression parameters a − f have different interpretations
in different models; the right-hand sides (RHS) of equations (1–
3) with random effects set to zero give global uncorrected pre-
dictions of form factor, log-volume and volume, respectively (for
bias corrections, see Volume predictions and model diagnostics
section).

Variable form factor volume model
A problem with Laasasenaho’s two-predictor volume function (2)
is that it has a minimum as a function of h at h = 1.3c/(c + d). In
all models presented by Laasasenaho (1982) (61.3), c > 0, d < 0
and |c| > |d| so that the minimum occurs at h > 1.3 m.

Thus, model (2) can produce illogical predictions for the smallest
trees. Specifically, the volume tends to infinity as tree height
approaches 1.3 m. The aim in developing our new model (3) was
to achieve equal flexibility to model (2) while avoiding its illogical
behaviour for the smallest trees.

To justify the form of model (3), let us first note that the fixed
part of model (2) can be expressed as v = exp(a + e · dbh +
d · log(h − 1.3)) · dbhb · hc,which shows that it is a variable form
factor version of the Schumacher’s model v = A · dbhB · hC,
where the form factor depends on dbh and h but has no upper
bound. Compared with model (3), the powers B and C are also
estimated, and their departure from B = 2 and C = 1 also
models the dependence of form factor on diameter and height.
We regard model (3) as better justified because it models the
form factor completely within the logit link, thus ensuring that
the form factor remains within the range [0, 1].

Model (3) was developed from Schumacher’s general form by
replacing dbh with dsh, fixing B = 2 and C = 1 and search-
ing for a sufficiently flexible form factor model. A linear model
was specified to the logit-transformed form factor η = 40A/π

, resulting in the restriction 0 < η < 1. This is well justified,
since η = 1 gives the volume of a cylinder with diameter dsh
and height h. If η = 1/3, then the function gives the volume of

a cone with base diameter dsh and height h. The shape of tree
stem is usually between these two extremes but may be neiloid,
especially for very short trees, which suggests η < 1/3. η can be
characterized as the only first-order parameter of the model in
the context discussed in Mehtätalo and Lappi (2020, Chapter 7).
Assuming a common η for all trees would mean that the stem
shape is the same regardless of tree size, which is unrealistic.
Therefore, we included such parametric transformations of dbh
and h in the linear predictor of η which empirically resulted in

a good fit. The coefficients of these terms – parameters a, b, c,

d, e and f in equation (3) – are the second-order parameters of
the model. Notice that defining these second-order predictors at
tree level is included in the model definition of Pinheiro and Bates
(2000, Chapter 7.1).

The above discussion used stump height diameter, which is
usually not measured and needs to be approximated using dbh
. The shape of the bottom part of the stem is usually a fustum
of a neiloid or cylinder (Kershaw et al., 2016), but for robustness
and simplicity, we use the approximation between cone and
cylinder. A conical approximation for the lowest part of the stem
gives dsh = h

(h−1.3)
dbh, where 1.3 is the applied breast height.

The conical approximation is well justified for large trees but is
unrealistic for trees that are only slightly taller than the breast
height. For those trees, a conical approximation would imply that
dsh and v approach infinity as h approaches 1.3 m same way as
in model (2). For short trees, a cylinder approximation dsh = dbh
is better and sufficiently realistic. Equations (4) and (5) were

motivated by these considerations: equation (4) is a weighted
mean of the two approximations and the weights of equation (5)
were based on the right tail of a scaled logit-function. Parameter
λspecifies how quickly the weight of a cylinder approximation
approaches zero as height increases (the smaller the λ, the faster
is the decrease). For example, if exp(λ) = 0.2, the weight of
cylinder approximation falls <0.01 already when height is 2.3 m.
The form of equation (5) guarantees that (h − 1.3)/ exp(λ) is
positive for any estimated value of λ.

To find appropriate transformations of dbh and h to the linear
predictor of η, the empirical approximations of form factor were
computed for each tree as η = 40v/π · dsh2 · h, where the
applied dsh was based on initial approximation exp(λ) = 0.2. The
behaviour of form factor as a function of dbh and h was explored
by smoothing the surface of η’s using a lowess smoother to find a
sufficiently good function to model the surface (see supplemen-
tary material, Figure a).

Model fitting and simplification
Each of the three models was fitted separately to the subsets
of pine, spruce and birch trees; and in each of the models, the
parameters a, b and c of the models 1–3 were allowed to vary
regionally and between datasets and soil types. The parame-
ters are described using second-level parameters α (intercept),
β (coefficient for the temperature sum, ts), γ (coefficients for the
dataset factors, ds) and δ (coefficients for the soil type factor, s).
So, for tree i,

ai = αa + βa · ts(i) + γa,ds(i) + δa,s(i),
bi = αb + βb · ts(i) + γb,ds(i) + δb,s(i),
ci = αc + βc · ts(i) + γc,ds(i) + δc,s(i).

(6)

where ts(i) is the effective temperature sum at the growing site
of tree i, ds(i) ∈ {climbed, felled, scanned} is the dataset that
includes measurements of tree i and s(i) ∈ {mineral, peatland}
is the soil type on which tree i was growing. For identifiability,

parameter values γ·,climbed and δ·,mineral were set to 0 so that, for
example, αa + βa · ts(i) is the a parameter for mineral soil trees i
in climbed data and γa,felled is the difference in a between felled

and climbed trees and so on.
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Mixed linear and non-linear tree volume models

Models (1) and (2) were fitted as linear mixed models
with separate variance components σ2

cluster, σ2
plot and σ2

tree,ds
for cluster-, plot- and tree-level intercepts εcluster, εplot and

εtree, respectively. The tree-level residual variance σ2
tree,ds was

allowed to vary between datasets. The volume-transformations
of these models led to residuals that were homoscedastic
enough so that the assumption of constant variances was
justified. Heteroskedasticity in the untransformed volumes of
model (3) was modelled with prediction-dependent residual
variance according to the power model: var(εtree,i) = σ2

tree,ds(i)v̂
2ϕ

i .
R packages lme and nlme (Pinheiro et al., 2013; Bates et al., 2015;
R Core Team, 2021) were used in model-fitting.

The full models specified by equations (1–6) were simplified as
far as possible without significant losses in model fit using back-
ward elimination. Starting from the full model, each step of the
elimination process consisted of dropping one of the remaining α

or β parameters, one group of γ or δ parameters (i.e. categorical
predictor dataset or soil from the model of a, b or c), or one of
the tree-level parameters d, e or f . The effect that was the least
significant according to the F-test (‘type III ANOVA’) was chosen
for elimination. The process was continued until all remaining
effects were significant at level 0.01. This strict limit was imposed
to avoid over-fitting due to a large number of trees. The principle
of marginality (Nelder, 1977) was followed in the elimination: α·
was not dropped, if any of plot-level effects for the same tree-

level parameter a, b or c were still present, αa was not dropped
if either of αb or αc were present, and the same principle was
followed for β, γ and δ.

Volume predictions and model diagnostics
All predictions reported in this paper were computed using only
the fixed part of the model, and bias corrections were used
when needed as follows (Mehtätalo and Lappi, 2020, Section
10.2). Linear back-transformation of predictions obtained from
the right-hand side of equation (1) into volumes, v̂ = π · dbh2 ·
h · (RHS of (1) with ε’s set to 0)/40, does not result in any
need of bias correction. The back-transformed predictions from
equation (2) were multiplied by bias correction exp{(σ2

cluster +
σ2

plot+σ2
tree,ds(i))/2}. As the residual error in model (3) is additive (i.e.

not affected by the non-linear transformation), it does not cause
bias. However, the random plot and cluster effects within the
model function (i.e. affected by the non-linear transformation)
cause bias. That bias can be corrected by averaging the prediction
over the distribution of random effects (Mehtätalo and Lappi,
2020). Because the model includes only random intercept in
the logit-transformed form factor, such prediction can be easily
computed using numerical integration algorithms, such as R-
function integrate (R Core Team, 2021).

Model diagnostics and comparisons were based on relative
prediction errors rpred = (vpred − vobs)/vobs and relative differences
dpred = (vpred − vpred0)/vpred0, where pred0 refers to a refer-
ence or baseline model. For well-fitting models, they should be
approximately independent of vpred. For model (3), also Pearson
residuals (i.e. residuals divided by square root of the expected
value of residual variance) were used for evaluating the model
fit (Mehtätalo and Lappi, 2020).

In order to clarify the effects of dataset, soil and temperature
sum, volume predictions were computed for all trees of the study
material using their measured dbh, h and d6 and all three-way
combinations of the levels of predictors ‘dataset’ and ‘soil’ and
two rather extreme ‘temperature sum’ values (0.125 and 0.875
quantiles). The 3 × 2 × 2 = 12 different volume predictions were
thereby obtained for each tree. The effects were high-lighted by
computing their relative differences dpred from predictions vpred0
obtained from null models fitted without any temperature sum,
dataset or soil effects.

Reasonability of the assumed linear effect of temperature
sum was assessed by fitting alternative models that were oth-
erwise similar to the final reduced models, but included, instead
of temperature sum, a categorical region effect using the regions
of Figure 1. The estimated region effects were plotted against the
average temperature sum values of the regions and the linearity
(or, at least, general monotonicity) of the resulting graphs was
assessed visually.

Behaviour of the two-predictor models for the shortest trees
was demonstrated by volume predictions computed at a series
of h values between 1.35 and 3 m. The applied dbh values were
obtained as a function of h from a simple model

log
(
dbh

) = a + b · log(h) + ε

with parameters a and b estimated from the trees of the study
material with h ≤ 3 m.

The nature of the change in the stem was addressed by
estimating the average stem curve model separately in each
dataset using the formula (Laasasenaho, 1982)

dl
d.2h

= b1x + b2x2 + b3x3 + b4x5 + b5x8 + b6x13 + b7x21

+b8x34 + ε,
(7)

where x = 1 − l/h, i.e. the relative distance to the top, d.2h is the
diameter at 20 per cent height and dl is the diameter at height l.
This model was then used for predicting the average stem form
in the datasets in order to illustrate the change along the taper
curve.

Evaluating the model predictions at area level
In order to test the relevance of updating the volume models cur-
rently in use, various comparable mean volume estimates from
the NFI11 sample tree measurements based on the NFI division
of the country into South and North Finland were computed. The
tree-level volume predictions used by Korhonen et al. (2017) –
to be called NFI volumes in this paper – were mainly based on
the three-predictor model of Laasasenaho (1982). We computed
alternative volume predictions for the NFI11 sample trees with
the models developed in this paper. We mainly used the param-
eters associated to the scanned dataset as their measurement
time is closest to NFI11 among our study material. To verify
that the differences are, indeed, due to changes in stem form
measurements rather than due to the updated modelling strat-
egy, we also computed predictions of model (1) with parameters
associated to the climbed dataset.
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Forestry

From each set of alternative volume predictions for the NFI11
sample trees, we computed estimates of mean volume per ha of
forest land and poorly productive forest land using the usual NFI
routines (e.g. Tomppo et al., 2011) adapted to the use of sample
trees only. The results computed with the NFI volumes will be
slightly different from those reported in Korhonen et al. (2017)
because the tally trees (i.e. trees with dbh as the only measured
characteristics) were also used in the latter.

The estimates of mean volume based on the new models were
affected by the uncertainty in parameter estimates, and there-
fore, we also provided the standard errors and prediction intervals
of the estimates of the mean. This was done through repeated
simulation of new parameter values from multivariate normal
distribution with mean vector equal to the parameter estimates
and covariance matrix equal to their estimated covariance (the
Monte Carlo method, e.g. Robert and Casella, 2004). The mean
volume estimates were computed using tree volume predictions
obtained with each of the T = 500 simulated set of parameters,
standard error was the standard deviation of these estimates and
end points of the prediction interval were their 0.025 and 0.975
quantiles (the percentile method, e.g. Davison and Hinkley, 1997).

It should be noted that these uncertainty metrics are different
from the sampling errors that are conventionally reported with
the NFI results. The conventional sampling errors are not relevant
in our comparison, where the different models are applied to
the same set of sample tree measurements, i.e. our comparison
is conditional on the realized sampling error of the NFI mea-
surements. Parameter uncertainty reported here results from the
sampling of modelling data and not from the sampling of the
data to which the models are applied. In applications, this error
component is systematic: the same realized errors in parameters
are replicated in all applications of the model. The value and the
sign of this systematic error remain unknown, but our standard
errors and prediction intervals due to parameter uncertainty pro-
vide an estimate about the magnitude of this error component
when the model is applied in forestry routinely.

Our model fitting dataset and the functions to fit the models
of form (3) and to compute the predictions of a fitted model are
available in R-package lmfor (Mehtätalo and Kansanen, 2020).
The prediction function allows a bias correction based on averag-
ing the prediction over the distribution of random plot and clus-
ter effects using numerical integration. Also a simple approach
based on a two-point distribution approximation was imple-
mented (Mehtätalo and Lappi, 2020, p. 318). Prediction errors
associated with parameter uncertainty can be estimated by two
methods: using a Monte-Carlo simulation (see above) with the
fitted non-linear model parameters, or applying the analytical
formulas of linear model with a linearized model, which is based
on the widely used first-order Taylor approximation of the non-
linear model (e.g. Mehtätalo and Lappi, p. 217). The R-script for
fitting the full model of form (3) (including routines for finding
initial guesses for parameters) is also included in the supplemen-
tary material, Appendix.

Results
The currently used three-predictor (model type 1) and two-
predictor (model type 2) volume models of Laasasenaho (1982)
over-estimated the volumes of the scanned trees by 1.19–3.44

per cent on average, respectively, depending on species and
the type of model (Table 4). In all cases, except for the three-
predictor model for spruce, this tendency is also apparent for
the felled trees. In this study, the original models showed lack
of fit also with the climbed data. This is due to the fact that the
trees from the poorly productive sites, which were not used by
Laasasenaho (1982), were also included in our analysis.

Soil was not a significant predictor in any of the new three-
predictor models (1). All parameters of the pine model, the
intercept and either dbh or h coefficient of the spruce model,
and the intercept of the birch model significantly depended
on the dataset and temperature sum (supplementary material,
Appendix E, Appendix A). A few more significant effects remained
in the two-predictor models for spruce and birch. For example,
significant differences were found between soil types in model
(2) for spruce (supplementary material, Appendix E, Appendices B
and C). In three-predictor models, trees from the felled dataset
had the largest residual variation for all species (Appendix A),
and in two-predictor models, trees from the scanned dataset
had generally the smallest variance (Appendices B and C).

The dataset effects imply that stem volumes of trees with the
same dbh, h and d6 were generally greater in the oldest dataset
(climbed) and smaller in the newest one (scanned; Figure 2). For
pine and spruce, the relative differences between the datasets
increased with tree size. Temperature sum was clearly an impor-
tant predictor in two-predictor models, especially for pine and
birch. The dependence of form factor on tree diameter and
height for each dataset and species is shown in (supplementary
material, Figure b).

The nature of the difference in the stem form between the
datasets was illustrated with the average taper curve for each of
the datasets (Figure 3). This confirms that the volume is smaller in
the newest, i.e. the scanned dataset, and that the change is more
obvious in the lower part of the stem (parameters for model (7)
in Appendix D).

Except for the smallest pines in the felled and scanned
datasets, the relative prediction errors of the two sets of two-
predictor models, models (2) and (3), were quite similar (Table 5,
see also supplementary material, Figure c). The improvement
achieved by including d6 was at the same level as reported in
Laasasenaho (1982, p. 43). The respective values for the volumes
based on integrating the taper curves, with h and diameter at 20
per cent as predictors, were 7.20 per cent for pine, 6.44 per cent
for spruce and 7.71 per cent for birch.

When the temperature sum was replaced by region in the
final forms of models (2), it was found that the region effect
to parameters a, b and c were relatively monotonic functions of
the regional mean temperature sums (Figure 4). Thus, our more
easily applicable model with a linear effect of the continuous
temperature sum predictor seems acceptable.

The problem of models (2) is that their volume predictions
often have a minimum at h > 1.3 m when considered as a
function of tree height. In addition to the values of the model
parameters, the location of this minimum depends on dbh − h
relationship in the target data. Model (3) does not have that

problem (Figure 5).
NFI11 mean volume estimates would have been up to 2 per

cent smaller if the new three-predictor models for the scanned
dataset had been used (Figure 6, Table 6). Considering uncer-
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Mixed linear and non-linear tree volume models

Table 4 Mean %-difference of the predictions of Laasasenaho (1982) models (61.3) and (61.5) from the measured volumes for all trees in the
modelling data

2-var models (61.3) 3-var models (61.5)

Dataset Pine Spruce Birch Pine Spruce Birch

Climbed 0.43 0.90 0.79 0.24 0.09 0.69
Felled 1.41 1.39 1.83 1.07 0.09 1.33
Scanned 1.19 2.53 3.44 1.40 1.38 2.14

Figure 2 Difference in volume predictions for different values of predictors dataset, soil and temperature sum. Predictions were computed for all trees
in the modelling data using the measured dbh, h and d6 (when available) and applying 12 combinations of the other predictors to each tree. They
are presented as % differences from the predictions of a null model fitted without any dataset, soil or temperature sum-effects.

tainty in parameter estimates of the new models, the difference
was significant in all other strata except for spruces in North
Finland. The results with models for climbed data were gen-
erally closer to those with sample tree volumes of Korhonen
et al. (2017). This makes sense since the latter were based on
models of Laasasenaho (1982) fitted to the climbed data. Both
two-predictor models led to remarkably larger mean volume
estimates in South Finland and for spruce also in the North.
Note that the effect of parameter uncertainty does not decrease
with increasing size of the target data (Table 6, whole study
region vs South/North). However, the effect is generally smaller

for all species combined than for individual species because
errors in parameter estimates can be assumed to be independent
between species.

The parameter uncertainty with model (3) was estimated
using simulation with non-linear models, which is slow but reli-
able. Alternatively, a linearized model was considered for these
purposes, which is fast but may be problematic due to the unac-
counted errors of the linear approximation. In the datasets of this
study, the results from these approaches were very similar. The
effect of bias correction was negligible. The numerical integration
and two-point distributions led to very similar results.
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Figure 3 The average stem form in the three datasets by species.

Table 5 Root mean squares of relative prediction errors, rpred, % of measured volume, within the study material. In the column ‘models (1 & 2)’,
model (2) was used for trees with missing d6; values in column ‘models (1)’ were computed from those trees only that had non-missing d6

Species Model (3) Model (2) Models (1 & 2) Model (1)

Pine 6.63 6.58 4.55 3.94
Spruce 6.98 6.95 4.34 3.61
Birch 8.13 8.21 5.59 5.29

Figure 4 Parameter estimates for region effects (differences from the northernmost region) in alternative versions of model (2), where continuous pre-
dictor temperature sum, ts, in (6) was replaced by categorical region. The estimates were plotted against the regional mean of the temperature sum.

Discussion
Some of the model forms used in previous allometric studies are
not theoretically sound and such model forms should be avoided
(Sileshi, 2014). Laasasenaho (1982) motivated each model selec-
tion with a thorough theoretical analysis of the stem form. For
instance, the three-predictor model was assumed to consist of a
cylinder in the butt section, truncated cone in the middle section
and a cone in the uppermost section. The thorough analysis has
paid off: it proved to be difficult to improve the fit from the model
formulations that Laasasenaho (1982) had originally used, and
in this study, we ended up using two of the original model forms
again.

Despite this, the original two-predictor model provides illogical
results with the smallest trees, which has been problematic in

many applications (e.g. Tomppo et al., 2011). With the new
formulation (model (3)), it was possible to improve the model
behaviour with the smallest trees markedly, while maintaining
the good performance with large trees (Figure 5). The non-linear
approach allowed us to include a justified model formulation
of the variable form factor function to approximate the stump
diameter using dbh as weighted sum of conical and cylindrical
approximations (equation (5)) and to apply restriction of the form
factor to range [0, 1] using a logit link. This is a step forward from
the original model forms.

Most volume models used do not include any variables
describing the environment or the stand (cf. Zianis et al., 2005).
In this study, we included the temperature sum and soil as
additional predictors into the basic equations. Thus, we treated
the temperature sum and soil as secondary parameters of the
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Mixed linear and non-linear tree volume models

Figure 5 Volume predictions of the two-predictor models for the smallest
pines obtained using dbh values predicted as a function of h and the
parameters for mineral soils, scanned dataset and average temperature
sum over the study plots. The dots show the measured heights and
volumes of the smallest pines in the study material; the applied dbh
prediction model was fitted to these 19 trees.

models (1–3). This implies that we assume that the primary
parameters of the model vary as a function of some additional
variable (Mehtätalo and Lappi, 2020). This approach is especially
useful in the context of non-linear models, which generally have
only a limited number of parameters (e.g. Mehtätalo et al., 2015).
The temperature sum proved to be significant for all models (1–3)
for at least one of the parameters a, b or c (Appendices A–C).

The temperature sums are given as 30-year averages. Thus,
the temperature sums primarily reflect regional differences in the
environment. To be able to separate the effect of environmental
change from the regional effect, we would need temperature
sums for more than one time period. New temperature sums for
years 1991–2020 will be available soon, and these temperature
sums are likely to reflect the environmental change from the
years 1961–1990 temperature sums used in this study. However,
even then it would be difficult to define what weight each set
of temperature sums should get for trees of different age at
measurement times. Obviously, larger living trees would have
lived through changes occurring before the younger trees even
started their growth, and many of the trees in the old datasets
would have been harvested before any major effects of climate
change. The fact that trees in northernmost part of Finland
are older, when conditioned on size, would also complicate the
analysis.

Separating the effect of forest management from other pos-
sible causes has been left to future studies. The regional differ-
ences in the stem form can be due to environment, the forest
management applied, or both. Especially for pine and spruce,
the northernmost part of Finland clearly differs from the other
parts (Figure 4), which may be due to the fact that the southern
part of Finland have been under heavy use much longer than
the northern part of Finland (Henttonen et al., 2020). However,
as the regional effect is dependent on the dataset, also the
environmental change (Henttonen et al., 2017) may have had an
effect on the observed change.

The most commonly used environmental factors in previous
studies were the mean annual temperature and mean precip-
itation (e.g. Chave et al., 2014; Schneider et al., 2018; Fortin
et al., 2019), also given as 30-year mean values. Thus, also these
climatic factors share the problem that the 30-year period used

has a different significance in the lives of the different trees in the
data, while the effect of the climate is likely to be accumulative
through time. In this study, the temperature sum was preferred
over the mean annual temperature as it combines the latter and
the length of the frost free season, which is also an important
environmental factor in Finland. Length of winter varies from
roughly 100 days in the southern part to 200 days in the northern
part of Finland. Precipitation was not deemed as important, as it
is rarely a limiting factor of growth.

Including the upper diameter into the model markedly
reduced the need for the temperature sum as an explanatory
variable, especially for birch but also for pine (Figure 2). This
implies that this variable to some extent can reflect the changes
in the forest management as well as those in environment,
although tree breeding may also have had an effect. One possible
explanation is that selective logging was banned in 1948. Since
then, commercial forestry in Finland has been based on clear-
cutting and planting. The mean volume per hectare in the clear-
cut stands has more than doubled (from 98 m3 ha−1 in 1970
to current 225 m3 ha−1 based on NFI results). This may be
reflected, for instance, in the mean upper diameters: the climbed
data had larger mean upper diameters in the Northernmost
region (Figure 1) for pine and birch than the other datasets but
smaller for spruce. The change was especially important in the
Northern part of Finland, where large areas of selectively logged
stands were clear-cut (largest single clear-cut area being 18 000
hectares). The oldest age classes (≥100 years) have largely been
harvested in this region, and it means that forest management
may have had a larger effect in this region than elsewhere. This
also implies the need of updating the models used for predicting
the upper diameter in the future.

In the previous study with the climbed and scanned data
(Kangas et al., 2020), the dataset effect proved to be highly
significant. It needs to be noted, however, that the dataset effect
includes the effect of measurement time as well as that of
the measurement method. While Pitkänen et al. (2021) and Li
et al. (2021) tested the scanned data to volume modelling with
promising results, the error structures are different from the more
traditional datasets. For instance, in the scanned data, the lowest
and highest parts of the stem is often hard to detect due to the
visibility problems caused by the understory vegetation or occlu-
sion by other trees. In addition, with climbed data, the possible
deviation from a round tree assumption can be accounted with
two measured diameters; in laser scanned data, the algorithm
assumes a circular cross-section of the stem and assuming an
ellipsoid rather than a circle as the shape of the stem slices would
have been difficult. Moreover, using spline smoothing rather than
interpolation may have caused some error.

The potential problem of measurement errors was addressed
through different approaches. First, an additional dataset was
collected in the interval between the collection of the climbed
data and the scanned data was included. This dataset, with
all diameters measured from felled trees, has a yet different
measurement error structure. The assumption was that if the
felled data show a change in stem form that is consistent with
the other datasets, the strength of the argument of change in
time increases, even though the measurement error effect is
still confounded with the time effect. When the average taper
curve models for all species were calculated, it turned out that
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Figure 6 Relative differences, %, of mean volume estimates based on sample tree predictions with the models of this study to those based on sample
tree volumes used in Korhonen et al. (2017). Horizontal bars indicate uncertainty due to parameter estimation. Further details are available in the
Methods section and the caption of Table 7.

the shape of stems has really changed consistently in time,
with the trees on average getting slenderer in time. From the
average taper curves, it is also evident that the largest change
has happened in the butt area (Figure 3).

Second, the error sources were minimized as much as possible
by using field-measured stump height and stump height diame-
ter as well as total height in the volume calculations (Pitkänen
et al., 2021). Using the field-measured values of stump-height
diameter should markedly reduce the possibility that the thin-
ner butts of the scanned trees is a phenomena related to the
scanning rather than the tree shape. Moreover, the explanatory
variables included in the datasets were all measured in the field
so that any error-in-variables bias would have been similar across
datasets.

At regional level, i.e. in the NFI sample trees, the differences
between the models were fairly large and also significant. Espe-
cially, the large difference between the three-predictor models
and two-predictor models in the regional test was surprising.
Even though the volumes conditioned to dbh and h are smaller in
the new datasets, the three-predictor models (both old and new)
provided even smaller volumes on average. The difference is due
to the NFI11 trees being slenderer on average than the scanned
data for all tree species. This, in turn, can partly be explained by
the representativeness of the data and partly by the measure-
ment method. Particularly, the d6 measurements with a calliper
and a 5-m rod have been noted to be on average underestimated
(by 0.1 cm, Päivinen et al., 1992). This highlights the importance
of updating the approach used to calculate volume.

In this study, we linearized the models (1) and (2) but fitted
model (3) as a non-linear model. Model (1) was fitted as a form
factor model and transformed into a volume model afterwards.
Model (2) was linearized using the logarithmic transformation,
a bias correction being then needed to make predictions in the
linear scale. As a result of this transformation, heteroscedasticity
was not apparent in the residuals and thus an explicit model for
the variance was not needed. In model (3), a specific variance
function was needed to account for the heteroscedasticity. While
there was no need for backtransformation, there is still a bias
correction to be considered as a result of having plot and cluster
random effects within the logit link function: if the model function
is non-linear with respect to the random effects, the ‘plug-in’
predictions where random effect are given their expected value
of zero are biased. However, that bias component is often small
compared with linear models for transformed variables, as the
residual error is additive and not affected by the non-linear logit
link function. Also with our model (3), the effect of this bias
correction was negligible.

We tested different structures to the random effects. How-
ever, only random intercepts were finally used. More complicated
models often had convergence problems and, when successfully
estimated, did not significantly improve the model fit.

We also developed tools to address the prediction error due
to the parameter uncertainty. The effect of parameter uncer-
tainty to the confidence interval of the predictions was analysed
through a simulation exercise that used the distribution of the
parameters. A computationally less intensive approach based
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Mixed linear and non-linear tree volume models

Table 6 Estimates of mean volume, m3 ha−1, from the sample trees of NFI11 in South Finland (excluding Åland islands) and North Finland (excluding
northernmost Lapland); column ‘NFI11’ reports results based on sample tree volumes that were used in Korhonen et al. (2017), mainly based on the
three-predictor models of Laasasenaho (1982); the other columns report results based on sample tree volumes predicted with the models presented
in this study for dataset scanned; columns ‘s.e.’ report standard errors in the estimates due to parameter uncertainty

Region Species Nfi11 Model (1) Model (2) Model (3)

m3 ha−1 m3 ha−1 s.e., % m3 ha−1 s.e., % m3 ha−1 s.e., %

South Pine 63.2 62.3 0.2 64.9 0.3 64.7 0.3
Spruce 50.4 49.7 0.2 51.3 0.4 51.1 0.4
Birch 23.5 23.2 0.4 24.2 0.5 24.1 0.6
Total 137.1 135.1 0.1 140.3 0.2 139.8 0.2

North Pine 44.6 44.0 0.2 44.8 0.4 45.0 0.4
Spruce 15.7 15.7 0.3 16.1 0.5 16.1 0.6
Birch 12.7 12.5 0.5 12.7 0.7 12.7 0.8
Total 73.1 72.2 0.2 73.7 0.3 73.8 0.3

Whole region Pine 54.7 53.9 0.2 55.7 0.3 55.6 0.3
Spruce 34.4 34.0 0.2 35.1 0.4 35.0 0.4
Birch 18.5 18.3 0.4 18.9 0.5 18.8 0.6
Total 107.7 106.2 0.1 109.7 0.2 109.4 0.2

on first-order Taylor approximation for linearized models was
additionally implemented for model (3). The results from both
approaches were very similar. In general, the standard errors
related to the parameter uncertainty were approximately some
0.4 per cent for each species separately, which implies that there
is a systematic error in all volume estimates based on these
models. This likely amounts to <1 per cent for each of the three
species. While it is not really possible to correct that system-
atic error due to the prediction errors (otherwise we could have
estimated an unbiased model in the first place), it is possible to
address its importance in all analyses. It is important to account
this effect, especially with large-scale calculations, such as NFI
results, and long-term calculations.

Conclusion
The strong effect of dataset (representing a time-period of 50
years in this study) in the volume models identified in this study
serves as evidence of a changed tree stem shape in the studies
time period. Introduction of the independent felled dataset into
the analysis corroborates the observed change in stem shape
over time, even though it is not possible to fully exclude the effect
of the measurement technique. This is due to the measurement
effect being confounded with the time. This change can be
attributed either to a changed management or to a changed
environment. The significant effect of temperature sum, on one
hand, points to environmental change, and the role of upper
diameter in the three-predictor model points to the changed
management, on the other. The old stem taper models were
based on thorough theoretical analysis of the stem form, and
therefore, no linear or linearizable model form could outperform
the forms selected in 1980s. With non-linear modelling, it was
possible to make a more rigorous theoretical analysis and find
a model that outperforms the old two-parameter models with

small trees and also fits to larger trees. That required using a
variable form factor model with weighted mean of two approxi-
mations of a stump diameter, one suitable for smallest trees and
the other for larger trees. The change in the models is significant
when compared with the model used in NFI calculations. We
furthermore found out that including environmental variables,
in our case temperature sum, into the stem taper models can
improve the model performance on national scale. This suggests
that volume models need to be updated from time to time
since tree shapes can change due to changes in management
or environmental condition and that the integration of environ-
mental variables into the stem taper models can help to improve
their performance in countries with pronounced environmental
gradients.
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Appendix A Parameter estimates for models defined by equations (1) and (6). The right-hand side of equation (1) with εcluster = εplot = εtree = 0
gives the global prediction of form factor and needs to be multiplied with π · dbh2 · h/40 to obtain the volume prediction. Estimates of parameters
appearing in equations (1) and (6) are accompanied by standard errors and P-values from the Wald’s test of difference from 0. β parameters describe
the temperature sum effects. αa, αb and αc are the a, b and c parameters for the mineral soils of the climbed dataset and γ parameters quantify their
difference from those of the other datasets, e.g. afelled = αa + γa,felled. Note: Estimates are provided here only for illustration. For proper numerical
precision, R model objects provided as electronic supplements should be used when applying the models.

Parameter Pine Spruce Birch

Estimate Standard error P > 0 Estimate Standard error P > 0 Estimate Standard error P > 0

αa −0.08654 0.01558 0.0000 −0.10467 0.01496 0.0000 −0.07734 0.02396 0.0013
αb 0.00070 0.00033 0.0360 −0.00175 0.00012 0.0000 −0.00198 0.00019 0.0000
αc −0.00005 0.00093 0.9548 0.00306 0.00079 0.0001 0.00635 0.00083 0.0000
d 2.88178 0.04476 0.0000 2.53886 0.04313 0.0000 2.37385 0.07796 0.0000
e 1.28343 0.03379 0.0000 1.59561 0.03533 0.0000 1.32783 0.07508 0.0000
f 0.49211 0.00927 0.0000 0.46154 0.00908 0.0000 0.37397 0.01548 0.0000
βa −0.00034 0.00007 0.0000 −0.00038 0.00007 0.0000 −0.00014 0.00005 0.0085
βb −0.00002 0.00000 0.0000
βc 0.00004 0.00001 0.0000 0.00002 0.00000 0.0002
γa,felled −0.00566 0.00325 0.0817 0.00656 0.00271 0.0161 −0.00182 0.00225 0.4193
γb,felled −0.00091 0.00025 0.0004 −0.00031 0.00013 0.0146
γc,felled 0.00142 0.00041 0.0005
γa,scanned −0.00316 0.00321 0.3247 0.00771 0.00245 0.0019 −0.00981 0.00196 0.0000
γb,scanned −0.00110 0.00017 0.0000 −0.00060 0.00011 0.0000
γc,scanned 0.00118 0.00030 0.0001
σcluster 0.00403 0.00097 0.00508
σplot 0.00680 0.00498 0.00620

σtree,climbed

0.01712 0.01651 0.02276

σtree,felled 0.02279 0.01943 0.02565

σtree,scanned

0.01644 0.01692 0.02321
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Appendix B Parameter estimates for models defined by equations (2) and (6). The right-hand side of equation (2) with εcluster = εplot = εtree = 0
gives the global prediction of log-volume, which needs to be exponentiated to obtain a (biased) volume prediction; the bias correction is presented
in Volume predictions and model diagnostics section. Estimates of parameters appearing in equations (2) and (6) are accompanied by standard
errors and P-values from the Wald’s test of difference from 0. β parameters describe the temperature sum effects, γ parameters describe the dataset
effects, δ parameters the soil effects and α parameters describe the intercepts (see caption of Appendix A for further details). Note: Estimates are
provided here only for illustration. For proper numerical precision, R model objects provided as electronic supplements should be used when applying
the models.

Parameter Pine Spruce Birch

Estimate Standard error P > 0 Estimate Standard error P > 0 Estimate Standard error P > 0

αa −3.68354 0.05275 0.0000 −3.42955 0.07059 0.0000 −4.65382 0.11833 0.0000
αb 2.18652 0.02664 0.0000 1.78430 0.02584 0.0000 2.12488 0.03852 0.0000
αc 2.21490 0.04849 0.0000 2.78307 0.04388 0.0000 3.79665 0.13451 0.0000
d −1.23539 0.03046 0.0000 −1.47244 0.03807 0.0000 −2.41251 0.11858 0.0000
e −0.00381 0.00050 0.0000 −0.00690 0.00063 0.0000 −0.00771 0.00117 0.0000
βa 0.00216 0.00036 0.0000 −0.00235 0.00048 0.0000 0.00264 0.00070 0.0002
βb −0.00195 0.00022 0.0000 0.00065 0.00017 0.0001 −0.00139 0.00028 0.0000
βc 0.00100 0.00028 0.0004
γa,felled −0.00376 0.01939 0.8462 0.07736 0.02169 0.0004 −0.01438 0.00692 0.0385
γb,felled −0.08112 0.01362 0.0000 −0.02892 0.00763 0.0002
γc,felled 0.08922 0.01538 0.0000
γa,scanned 0.02241 0.02105 0.2870 0.08346 0.02220 0.0002 −0.03312 0.00651 0.0000
γb,scanned −0.07316 0.01120 0.0000 −0.03325 0.00743 0.0000
γc,scanned 0.06688 0.01400 0.0000
δa,peatland 0.00345 0.01941 0.8591
δb,peatland 0.06530 0.01854 0.0004
δc,peatland −0.07016 0.01985 0.0004
σcluster 0.01514 0.01135 0.01982
σplot 0.02497 0.02760 0.02264
σtree,climbed 0.06058 0.06496 0.07490
σtree,felled 0.06435 0.06297 0.07130
σtree,scanned 0.04802 0.04999 0.07058
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Appendix C Parameter estimates for models defined by equations (3–6). The right-hand side of equation (3) with εcluster = εplot = εtree = 0
gives a slightly biased global volume prediction; the bias correction is presented in Volume predictions and model diagnostics section. Estimates

of parameters appearing in equations (3), (5) and (6) are accompanied by standard errors, and P-values from the Wald’s test of difference from 0. β

parameters describe the temperature sum effects, γ parameters describe the dataset effects and α parameters describe the intercepts (see caption
of Appendix A for further details). Note: Estimates are provided here only for illustration. For proper numerical precision, R model objects provided as
electronic supplements should be used when applying the models.

Parame-
ter

Pine Spruce Birch

Estimate Standard error P > 0 Estimate Standard error P > 0 Estimate Standard error P > 0

αa 0.01368 0.04493 0.7609 0.23709 0.06839 0.0005 −0.67021 0.10719 0.0000
αb 0.00704 0.00186 0.0002 −0.02423 0.00119 0.0000 0.00910 0.00453 0.0447
αc −0.01102 0.00425 0.0095 0.00652 0.00415 0.1160 0.03081 0.00355 0.0000
d −3.04833 0.13171 0.0000 −3.68858 0.22357 0.0000 −2.15717 0.41955 0.0000
e 0.00015 0.00005 0.0020 −0.00036 0.00012 0.0029
f 1.00773 0.29721 0.0007 2.99481 0.53185 0.0000 2.79948 0.70398 0.0001
λ −1.73570 0.13012 0.0000 −1.32830 0.12557 0.0000 −0.78318 0.27983 0.0053
βa −0.00043 0.00032 0.1745 −0.00223 0.00040 0.0000 0.00076 0.00053 0.1564
βb −0.00014 0.00002 0.0000 −0.00014 0.00003 0.0001
βc 0.00013 0.00003 0.0003 0.00011 0.00003 0.0001
γa,felled −0.02526 0.01513 0.0951 0.05019 0.01750 0.0042 −0.02081 0.01094 0.0576
γb,felled −0.00589 0.00123 0.0000
γc,felled 0.00902 0.00200 0.0000 −0.00390 0.00106 0.0003
γa,scanned 0.00035 0.01706 0.9838 0.05793 0.01764 0.0010 −0.04935 0.01043 0.0000
γb,scanned −0.00407 0.00092 0.0000
γc,scanned 0.00396 0.00160 0.0136 −0.00515 0.00097 0.0000
σcluster 0.02694 0.02016 0.03033
σplot 0.04282 0.04573 0.03964

σtree,climbed

0.07526 0.08248 0.07571

σtree,felled 0.07977 0.08323 0.07195

σtree,scanned

0.06301 0.06895 0.07381

ϕ 0.95396 0.94456 0.99095
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Appendix D Parameter estimates for taper curve models (7).

Dataset Pine Spruce Birch

Estimate Std. Error t value Estimate Std. Error t value Estimate Std. Error t value

Climbed b1 2.209654 0.02610472 84.64576 2.332404 0.03310898 70.44626 0.9836599 0.05281394 18.625
b2 −1.253057 0.2136512 −5.864966 −3.266161 0.2709988 −12.05231 3.845336 0.4322544 8.896002
b3 −0.4930451 0.4713317 −1.046068 3.605485 0.597877 6.030479 −7.758683 0.9535947 −8.136248
b4 1.448394 0.665182 2.177441 −1.963125 0.843823 −2.326466 8.780191 1.345801 6.524136
b5 −1.732559 0.7179847 −2.413086 −0.7298747 0.9108443 −0.8013167 −9.483963 1.45264 −6.528778
b6 2.128949 0.5529165 3.850398 3.102304 0.7014588 4.422646 8.923729 1.118676 7.977048
b7 −1.747868 0.2971082 −5.882936 −3.392779 0.3769354 −9.000956 −6.416295 0.601119 −10.67392
b8 1.090554 0.08409131 12.96868 2.063306 0.1066867 19.33986 2.937096 0.1701366 17.26316

Felled b1 2.558634 0.03376175 75.78499 2.658635 0.04560419 58.29803 1.218756 0.07872799 15.48059
b2 −4.119581 0.2945941 −13.98392 −5.274632 0.3980434 −13.2514 1.723098 0.6806427 2.531575
b3 5.30609 0.6755294 7.854713 7.359041 0.9129659 8.060586 −3.365435 1.55176 −2.168786
b4 −5.373937 0.9940529 −5.406088 −6.660855 1.34408 −4.955699 3.101181 2.267446 1.367698
b5 4.398924 1.10618 3.97668 4.411605 1.496449 2.948048 −3.209363 2.507854 −1.279725
b6 −1.977288 0.8739062 −2.262586 −1.3565 1.182941 −1.146719 3.443886 1.970122 1.748057
b7 0.3657713 0.4801638 0.7617636 −0.4385974 0.6508456 −0.6738886 −2.807817 1.077735 −2.605296
b8 0.3571666 0.1390495 2.568629 0.8862659 0.1891905 4.684516 1.563363 0.3111132 5.025061

Scanned b1 2.303274 0.02511136 91.72237 2.009117 0.03436261 58.46811 1.7017 0.0607347 28.01858
b2 −1.543539 0.2188965 −7.051457 −1.344592 0.2995304 −4.489 −0.5352576 0.5294261 −1.011015
b3 −0.02144857 0.5014357 −0.0427743 0.6853101 0.6861284 0.9988074 0.5671405 1.212779 0.467637
b4 0.358095 0.7364097 0.4862714 −0.7139362 1.007613 −0.7085423 −2.239303 1.781091 −1.257265
b5 0.6176541 0.8171306 0.7558817 1.45179 1.118027 1.298529 3.649125 1.976324 1.846421
b6 −1.405169 0.6426328 −2.186582 −2.275319 0.8792501 −2.587794 −3.863442 1.554281 −2.485679
b7 1.51449 0.3506372 4.31925 2.137261 0.4797323 4.455113 2.988462 0.8480561 3.523897
b8 −0.4192849 0.1003352 −4.178841 −0.5428525 0.1372739 −3.954521 −0.7675704 0.2426722 −3.162993
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