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Concept learning is considered a high-level adaptive ability.
Thus far, it has been studied in laboratory via asocial trial and
error learning. Yet, social information use is common among
animals but it remains unknown whether concept learning by
observing others occurs. We tested whether pied flycatchers
(Ficedula hypoleuca) form conceptual relationships from the
apparent choices of nest-site characteristics (geometric symbol
attached to the nest-box) of great tits (Parus major). Each wild
flycatcher female (1 =124) observed one tit pair that exhibited
an apparent preference for either a large or a small symbol and
was then allowed to choose between two nest-boxes with a
large and a small symbol, but the symbol shape was different
to that on the tit nest. Older flycatcher females were more likely
to copy the symbol size preference of tits than yearling
flycatcher females when there was a high number of visible
eggs or a few partially visible eggs in the tit nest. However, this
depended on the phenotype, copying switched to rejection as a
function of increasing body size. Possibly the quality of and
overlap in resource use with the tits affected flycatchers’
decisions. Hence, our results suggest that conceptual
preferences can be horizontally transmitted across coexisting
animals, which may increase the performance of individuals
that use concept learning abilities in their decision-making.

1. Introduction

Optimal behaviour requires information about current and future
conditions. An important way to perceive the world and adapt
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unrestricted use, provided the original author and source are credited.
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Figure 1. The experimental set-up. This design was intended to simulate a situation for pied flycatchers that great tits had
apparently preferred either of the size of the symbol (large circle in this example) and flycatchers were then given a choice to
either copy or reject the size concept preference of great tits but the symbol shape on available nest-boxes (triangle in this
example) was different from those on the great tit nest-boxes. The order of the large/small symbol in each nest-box pair was
randomized as well as the symbol shape (circle/triangle) attached to great tit nest-hoxes. Replicate set-ups were set at least
1 km apart to ensure independence.

one’s own behaviour is a capability to form relative associations, such as larger—smaller, better—worse
and same-different, between stimuli. Such an ability—concept learning—is considered higher order
learning and adaptive because it enables individuals to extrapolate learned associations into different
contexts, thereby reducing the time used in learning and decision-making [1-3]. Often thought to be
solely a human trait and forming the foundations of human cognition and culture [1], recent studies
have shown that concept learning exists widely in the animal kingdom, in non-primate mammals
[1,4,5], birds [6,7] (see [3] for a review) and insects [8-10] (see [11] for a review). Our current
knowledge of concept learning comes from laboratory-reared animals that have been trained to solve
tasks in isolation via asocial trial and error learning using either repeated rewards or punishment (or
both) (but see [12]). While these studies laid the foundation for the study of concept learning, they
miss an important dimension of learning: how social learning in which the behaviour and choices of
other coexisting individuals [13-16], including heterospecifics [17,18], is used to guide one’s own
behaviour. Asocial and social learning most likely depend on the same learning mechanisms [19], but
it is unknown whether concept learning through social learning exists. If concept learning can take
place by observing others, it would substantially expand our understanding of how animals perceive
the world and adjust their own behaviour.

Cavity nesting resident great tits (Parus major) and migratory flycatchers (Ficedula spp.) form an ideal
system to study various types of social information use and learning in the wild. Great tits and
flycatchers have overlapping resource needs, and they are putative competitors [20,21], which is
predicted to increase the probability of interspecific information use [17]. Indeed, flycatchers use tits
as a source of information when making offspring investment decisions [21,22] and seek the vicinity
of tits because they have a higher fitness there [23]. Moreover, using an apparent novel niche
experiment (ANNE) match-to-sample task, we have shown that flycatchers not only copy the
apparent choices of tits [24] but also selectively either copy or reject tit preferences, depending on
the perceivable fitness correlate (number of eggs) of the tits [25-27]. ANNE uses abstract symbols,
such as triangles and circles on the nest-boxes, that reflect the niche dimensions of the tits and
especially portray the apparent preferences of nest-site characteristics of tits.

Here, we use a field experiment to test whether concept learning (or in a broader context, conceptual
social information use) exists in an interspecific context and to determine which individual characteristics
of the demonstrator and observer species affect the manifestation of learning. We used wild resident great
tits (the demonstrator species) and migratory pied flycatchers (the observer species) as study organisms
and the selection of nest-site characteristics as the behavioural trait. We modified our ANNE design and
tested whether flycatchers use the relative size difference of abstract symbols on tit nests as a cue in their
own nest-site choice (figure 1). This brings the larger-smaller concept into the experiment. Each
flycatcher female observed one demonstrator tit pair that exhibited an apparent novel preference for
either large or small symbols (triangle or circle) and was then allowed to choose between two nest-
boxes with large or small symbols that were different from that on the demonstrator tit nest (figure 1).

Based on our previous study manipulating the clutch size of the tits [27], we expect the demonstrator
tit’s clutch size and its visibility (but not the phenotype of the tits) to affect the flycatcher’s probability of

262007 6 s adp 205y sosyfeunol/BuoBunsindiiaposieior g



Downloaded from https://royal societypublishing.org/ on 04 August 2022

copying or rejecting the tit’s relative size concept preference. Flycatchers visit tit nests upon arrival from B

migration [28,29] and plausibly then can perceive the clutch size of tits. Tit individuals with good
breeding performance plausibly make better choices [30], meaning that copying any of their
preferences (such as tit's symbol size preference here) or choices (e.g. nest-site choices, foraging
decisions and anti-predator strategies) is potentially adaptive [14,31,32]. Conversely, choices of poorly
performing individuals are plausibly poor and thus should be rejected to avoid potentially poor
outcomes. Hence, we predict that flycatcher symbol size preferences should more often match with
tits having a high number of visible eggs, while preferences of tits with a low number of visible eggs
should be actively rejected [26,27]. The age of the flycatcher females may also affect social information
use [27] and old flycatcher females are predicted to have a higher probability to copy apparent tit
choices than females breeding for the first time. There is also a genetic component in the preference of
nest-site characteristic [33,34]. Nest-site is an important element of ecological niche in birds and can be
under divergent selection among species because of the increasing risk of nest-predation with
increasing similarity of nest-site characteristics [35]. Finally, we hypothesize that the phenotype of
flycatcher females affects the interspecific information use because it affects resource use overlap and
thus the intensity of competition with the demonstrator species [17]. Body size is an important trait
affecting resource use [36], so we expect that the body size of a flycatcher female affects its copying
or rejection decision. Flycatchers are smaller than great tits (average body masses ca 14-15 g versus
20-21 g), and we expect that increasing body size of flycatchers increases the probability of rejecting
apparent size choice of tits to avoid the possible costs of overlap in resource use [36] and trade-offs in
the value of information and costs of competition [17].

2. Methods
2.1. Set-up of the experiment

The experiment was conducted in mixed and coniferous forests near the city of Oulu, in northern
Finland, between 2012 and 2014. Nest-boxes were situated along small roads and great tits were
allowed to settle and breed freely. The basic sampling unit in the study was a set of two pairs of
closely situated nest-boxes inhabited by a pair of great tits and a pair of pied flycatchers (figure 1).
Prior to the arrival of flycatchers, we randomized one of the symbol shape (triangle/circle)-symbol
size (large/small) associations and attached a white plastic symbol around the entrance hole of an
active great tit nest. An empty nest-box was then erected near (3-6 m) the great tit’s nest-box on a tree
of the same species, at the same height and facing same direction as the occupied box, and the same
symbol shape but opposite symbol size compared to that on the tit nest-box was attached on the
empty box (figure 1). Two empty boxes, entrance holes facing towards the tit box pair, were erected
20-25 m from the great tit's nest-box and 3-6 m apart from each other, with both symbol sizes, but
the opposite symbol shape compared to that on the great tit's nest-box randomized on the boxes.
These two vacant nest-boxes were meant for flycatchers to choose between. We put one litre of
sawdust into both vacant nest-boxes because flycatchers highly prefer it as a nest platform over empty
nest-boxes or great tit nests [37]. This reduces the risk that pied flycatchers take over the great tit nest
or choose the empty nest-box near the great tit nest. These set-ups were situated 1km apart to
minimize the risk that flycatchers perceive more than one symbol size association apparently
preferred by great tits.

This design was intended to inform arriving flycatchers that the resident great tit pair had apparently
preferred one of the sizes of the symbol. Flycatchers were then given a choice to either copy or reject the
size concept preference of tits with symbols whose shape was different from that on tit nest. In this way,
the only cues provided by the tits that the flycatchers could use were the nesting success (clutch size) and
its association with the symbol size (large/small). The sizes of the symbols were small and large triangle:
17.7 and 83.6 cm?, respectively, and small and large circle: 19.5 and 40.5 cm?, respectively. The size
differences between small triangles and small circles as well as large triangles and large circles were
about 10% and 50%, respectively, and were chosen to avoid the possibility that flycatchers would use
the surface area of the small and large symbols in making the choice and not the relative size
difference. To avoid the possibility that the previous year’s symbol shape and size preferences of tits
affect current choices, the study area was changed annually. Great tits and pied flycatchers were
breeding in natural cavities in the study area in low numbers but there were no nest-boxes other than
ours in the area.
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2.2. Measurements

We visited the nests at least every second day and determined the choice of each flycatcher female upon the
appearance of nest material in the nest-box. During egg-laying, great tits usually cover eggs totally or
partially but sometimes leave them totally exposed. We therefore monitored how many eggs were visible
and the clutch size in great tit nests on the day of flycatcher choice. Once the flycatcher had made a
choice, all symbols and the two empty nest-boxes were removed. Flycatcher females were captured
during incubation and their age was estimated and their tarsus length was measured. Age of the females
was estimated from tail and wing feathers as young (born in the previous year and therefore breeding
for the first time) or adult (at least 2 years old and probably has bred earlier) [38]. All birds were
handled and measured by J.T.F. under his ringing licence (2975) and following the Finnish legislature.

2.3. Statistical analyses

Usually, most tits have initiated egg-laying prior to the arrival of flycatchers [29]. However, in our data,
21 flycatchers out of 124 made a choice and settled before great tits had laid their first egg. We therefore
analysed the data in two parts: (i) data including choices made during egg-laying or incubation of great
tits and (ii) data including all choices irrespective of the state of great tit reproductive cycle. Great tit nests
where egg-laying was not initiated before flycatcher choice mostly consisted of undeveloped moss nests
or nearly/fully finished nests with hair cover but where egg-laying was not yet initiated, or were
deserted nests and did not result in a nesting attempt (but at the moment of flycatcher choice it was
not known whether the great tit territory was active or not). This division is biologically meaningful
because our previous studies have demonstrated that the perceivable clutch size of the tits provides
important information for flycatchers and strongly affects their choices [25-27,39]. The possibility to
perceive eggs in great tit nests also confirms that the great tit territory is active because tits often start
nest-building in several cavities, one of which is chosen. The level of testosterone also decreases from
nest-building to egg-laying state [40], which plausibly reflects to the behaviour of great tits. In the
main text, we present the results of the data including choices made during egg-laying or incubation
of great tits, while the results of the whole data are shown in the electronic supplementary material.

In both datasets, we tested how the phenotype of the nest of the demonstrator tit and the phenotype
of the flycatcher female explain flycatcher choices. We used generalized linear models (R function ‘glm’,
binomial error distribution and logistic link function) to determine if tit clutch size (6.1 +0.28 s.e. eggs),
the proportion of visible eggs on the day of flycatcher choice (0.56 +0.046), the phenotype of the
flycatcher female in terms of morphology (length of tarsus; 19 + 0.047 mm) and age (adult/born in the
previous year; 59 adults and 44 yearlings) explain the symbol size choice of the flycatcher female
(binary variable: matching (44 times; coded as 1) versus opposing (59 times; coded as 0) symbol size
choice than that on the tit’s nest). The full model included all main effects, the three-way interaction
among tit clutch size at the time of choice, the proportion of visible clutch size and flycatcher female
age, as well as all two-way interactions among these three variables. Visual evaluation of residual
plots indicated that the full model fitted the data well, and residual deviance (114 on 97 degrees of
freedom) did not indicate overdispersion.

All analyses were conducted using R (v. 4.1.2) [41]. We derived all meaningful sub-models of the full
model with the function ‘dredge’ [42], ranked the models using Akaike’s information criterion adjusted
for small sample sizes (AICc) [43] and derived the 95% confidence set of models (i.e. the set of models
over which the cumulative sum of Akaike weights is less than or equal to 0.95) for further consideration.
We further removed all models that were more complex extensions of the model with the lowest AICc
value from the model set (suggested by [43,44] and all models that were greater than 6 AICc units
from the best model (suggested by [44]). We used AAICc, Akaike weights of the models and their
evidence ratios to determine if there was a single superior model explaining the data or a set of nearly
equal models. If there was no single best model (AAICc less than 2 and evidence ratio less than 5), we
used model averaging ([43,45]; function ‘modelavg’ [42] in model parameter estimation and
inference). Otherwise, we based our inferences on the single best model.

3. Results

In our multi-model comparison, eight models were originally included in the 95% confidence set but,
after removing more complex extensions of the best model, four models were retained, all of which
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Figure 2. Regression surfaces (i.e. model predictions) illustrating the flycatcher probability to copy tit choice (vertical axis) in relation
to tit clutch size and proportion of visible eggs in the tit nest. The regression surfaces are shown separately for young (a—c) and old
(d—f) flycatcher females with minimum (a,d), mean (b,e) and maximum (c,f) tarsus length to demonstrate the main effects of
flycatcher age and body size on predictions (table 1; note that the main effects only affect the elevation of the regression surface in
the scale of the linear predictor). The regression surfaces are derived from a generalized linear model (table 1) using data that
include choices made during egg-laying or incubation of great tits. Blue and red colour show those parts of the fitted
regression surfaces where flycatchers copied and rejected great tit symbol size choices, respectively (i.e. 95% confidence
intervals of the regression surface did not encompass 0.5). In the grey parts of the regression surfaces, flycatcher choices did
not differ from random (i.e. 95% confidence intervals encompassed 0.5).

Table 1. Parameter estimates of generalized linear models explaining flycatcher symbol choices (probability of chosen symbol
size matching that of great tits) in relation to the number and visibility of eggs in great tit nest as well as the phenotype of the
flycatcher female. Link function was logistic and error distribution binomial.

parameter 20 p-value
intercept
proportion of visible eggs

great tit dlutch size

fycatcher age (adult)

flycatcher tarsus length

roparton of visib|e' eggsxgreat mdutchsue R 000044

%tandard error.

were less than 6 AICc units from the best model (electronic supplementary material, table S1). The model
including the main effects of flycatcher female age and tarsus length, the proportion of visible eggs in
great tit nest and great tit clutch size, as well as an interaction between the latter two variables was
clearly outperforming all the other models in explaining flycatcher choices (AAICc=3.35 to the next-
best model, evidence ratio of the Akaike weights =5.46 between the two best models). Each of the
number of eggs in the great tit nest, the proportion of visible eggs, their interaction, and the age
and tarsus length of the flycatcher female explained flycatcher choices (table 1). We interpret these
multi-dimensional results on the grounds of predictions, presented as regression surfaces in (figure 2).

762022 °6 05 todp 205 'y sosy/jeumnol/bioBusygndisaposiefor [



Downloaded from https://royal societypublishing.org/ on 04 August 2022

In general, old females had a higher tendency to copy apparent tit symbol size preference than young [ 6 |

females (figure 2) and the probability to reject tit preference strongly and consistently increased with
increasing tarsus length in both young and old females (figure 2). Both adult and yearling females
with short tarsi tended to copy tit preference when the number of eggs in the tit nest was small and
they were mostly hidden, whereas adults tended to copy also when there was a large number of
visible eggs (figure 2). However, the females with long tarsi almost systematically rejected the
simulated tit symbol size preference (figure 2).

4. Discussion

Our results highlight two novel findings about conceptual rule use. First, we demonstrate selective
relative conceptual rule transmission in the wild between two competing species via social
information use by pied flycatchers observing the apparent choices of great tits. Second, we show that
the decision rule of whether to copy or reject the information source’s apparent preference towards
nest-site characteristic (small/large abstract symbol) is strongly affected by the extended phenotype of
the information source (visibility and number of eggs) and the phenotype (tarsus length and age) of
the information user. Our results suggest that the reliability of the information (visibility of eggs),
apparent quality of the information source (number of eggs) and phenotype (body size) of the
information user modify how animals apply selective rules. Importantly, our experimental design did
not include pre-training and neither rewards nor punishments, demonstrating that animals can swiftly
implement such a strategy in their decision-making process. Given that most animals are consistently
interacting with con- and heterospecifics and readily use intra- and interspecific social learning
mechanisms [17,46], our results imply that conceptual rule use is more common in the behavioural
repertoire of animals than is currently recognized.

The importance of the ecological context of the learning task—the choice of nest-site characteristics—
plausibly explains the strong preferences of flycatchers. Pied flycatchers only choose nest-sites three—four
times in their lifespan and it has strong effects on fitness and is under natural selection, driven mainly by
nest-predation [47], towards safer elements of characteristics of the nesting site [35,48]. In a natural
context, our results suggest that birds may compare nest-site characteristics, such as the width or
height of the nesting tree or bush or the size of the cavity or entrance hole, of the potential and
chosen sites or perceivable fitness differences of existing nests and then adjust their own choice
accordingly. Such a capability may be highly adaptive and can plausibly be applied in other contexts
(foraging and predator recognition) and drive the resource use of coexisting species. In asocial and
within-species contexts, honeybees have been shown to form conceptual spatial relationships (above/
below) between stimuli [49], which may be highly adaptive in foraging or navigation decisions [50].
In nature, coexisting individuals can readily perceive others’ behavioural patterns and performance. If
observable foraging success of con- or heterospecific individuals is associated with certain targets
where foraging occurs (e.g. small trees over tall trees or different parts of a tree), conceptual learning
should lead to selective use of available resources.

Flycatcher’s copying and rejection decisions were strongly affected by the extended phenotype
(visibility and number of eggs) of the information source, the tits and its own physical phenotype
(tarsus length and age). These results have two ecological foundations. First, the effects of the number
and visibility of tit eggs and the age of the female flycatcher on flycatcher choice match well with
Loukola et al. [27] who showed that old flycatcher females have an overall higher probability of
copying apparent tit choices than females breeding for the first time. Both high and low numbers of
visible and covered eggs, respectively, increase the probability of copying while uncertainty in egg
number results in rejection [17]. Higher copying probability of old females is most likely due to their
previous experience with eggs, which females that are about to breed for the first time lack [22].
Plausibly the clutch size of the tit honestly reflects the quality of the decisions or behavioural
repertoire of the demonstrator tit because the clutch size of great tit females has been shown to be
associated with better problem-solving skills, smaller foraging ranges and smaller investment in time
in foraging than non-solver females with smaller clutches [30]. Second, young and old flycatcher
females with long tarsi were more likely to reject the tit symbol size preference. This was expected as
tarsus length strongly correlates with body size in birds [51], which is an important proxy affecting
the resource use of individuals [36]. As flycatchers are smaller than great tits in general, larger
flycatchers are more similar in size to tits. Increasing similarity in size means more ecological overlap
and increasing competition between the two species and this may result in rejection of great tit
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choices, which may then reduce the costs of coexistence [17]. This suggests that flycatchers may take their
own body size into account in their decision-making and exhibit some degree of self-awareness [52].

Whatever the reason is, rejection instead of random choice, in a large part of the trait space (figure 2),
reveals an important and rarely considered social learning strategy of rejection. Usually, if not always,
social learning studies consider copying as the only response [15,32]. However, rejection can be an
adaptive strategy if the tutor seems to be performing poorly [26,53] or important information related to
the perceivable choices of the tutor are not available [27], because it effectively decreases the probability
of adopting harmful behaviours. We hypothesize that risk aversion is a more common social learning
strategy and important for the evolution of social learning than is currently acknowledged. Indeed, in
the human context, the economic prospect theory by Kahnemann & Tversky [54] predicts that humans
rather avoid losses than aim for gains of a similar value. Similar behaviour has also been shown in
capuchin monkeys [55,56]. Hence, emphasis on avoiding poor decisions and losses rather than making
good decisions and gains may be a universal bet-hedging learning strategy in the animal kingdom that
has gone unnoticed in the social learning research design agenda.

Our field experiment is the first to demonstrate selective concept learning in the wild, between two
competing species via social information use by observing the choices of others that included no
pre-training and neither rewards or punishments. Hence, our results are significant and substantially
increase our knowledge about the occurrence and implications of concept learning in nature. Given
that most animals are consistently interacting with con- and heterospecifics and readily use intra- and
interspecific social learning mechanisms [17,46] in guiding their own behaviour, it is likely that
learning about concepts through social information use is much more common in animals than is
currently known. This implies that (i) adaptive conceptual preferences can be transmitted across
individuals and species boundaries among coexisting animals by copying and (ii) acquisition of
non-adaptive conceptual preferences can be avoided, which may enhance the performance of the
members of local animal community. Such a capacity may enable animals to adapt to local or new
conditions. The adaptive significance of interspecific information use is clear because, in most systems,
the majority of coexisting individuals are heterospecifics, whose different perceptual capacities,
decisions, resource use and asynchrony in breeding may reveal novel information that is unattainable
from conspecifics. Indeed, in many systems, there seem to be key-species which inadvertently provide
information that is particularly valuable and others have adapted or learned to perceive and use that
information [57-60]. Hence, to maximize understanding and benefits of the constant information flow
in multi-species communities, it is likely that concept learning exists also between demonstrator and
observer belonging to different species but they have not been documented so far.
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