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A B S T R A C T   

Columnaris disease is an emerging disease affecting farmed rainbow trout (Oncorhynchus mykiss) globally. In 
aquaculture breeding, genomic selection has been increasingly used to improve traits that are difficult to measure 
on candidate fish (such as disease resistance traits). Following a natural outbreak of columnaris disease, 3054 
exposed fish and their 81 parents (33 dams and 48 sires) were genotyped with the 57 K SNP Axiom™ trout 
genotyping array. Genetic parameters of host resistance (measured as a binary survival trait) were estimated, a 
genome wide association study was performed, and the accuracy of pedigree-based and genomic prediction was 
estimated. After quality controls, 2874 challenged fish (1403 dead fish and 1471 alive fish) and 78 parents 
genotyped for 27,907 SNPs remained. Pedigree based heritability was estimated to be 0.18 and 0.35 on the 
observed and underlying scale, respectively. Genomic heritability was estimated to be 0.21 and 0.43 on the 
observed and underlying scale, respectively. A quantitative trait loci (QTL) was detected on chromosome Omy3, 
significant at the genome-wide level, along with several suggestive QTLs on two other chromosomes. The ad
ditive effect on mortality proportion of the peak SNP from Omy3 was estimated to be 0.11 (0.018; se), implying 
approximately 22% difference in survival between alternate homozygous fish at the QTL. Pedigree-based pre
diction accuracy was 0.59, and the use of genomic evaluation increased the prediction accuracy by at least 
13.6%. Using the second iteration of a weighted genomic-based evaluation increased the prediction accuracy by 
18.6% compared to the pedigree-based model. These results confirm that resistance to columnaris disease is a 
suitable target trait for genetic improvement by selective breeding, that a natural outbreak of columnaris disease 
in a farm environment can be used to select for fish that are more resistant and that genomic selection is a useful 
approach to speed up this process.   

1. Introduction 

Rainbow trout (Oncorhynchus mykiss) is an important aquaculture 
species globally, and is produced both in freshwater and sea water. In
fectious diseases are a major threat to aquaculture production world
wide, with major impacts on fish welfare, the environment, and the 
sustainability of aquaculture (Houston, 2017; Yáñez et al., 2014). Water 
temperatures are rising due to global warming, and fish farms could be 
subject to more frequent and longer periods of warm water, conditions 
often more conducive to fish pathogens (Karvonen et al., 2010). One of 
the pathogens that take advantage of warmer temperature is 
F. columnare, a gram-negative bacterium, responsible for columnaris 

disease (CD) that affects various fish species of importance for aqua
culture worldwide, including rainbow trout (Declercq et al., 2013). 
Outbreaks of CD occur in rainbow trout farms mainly during the sum
mer, when the water temperature rises above 18 ◦C, with up to 100% 
mortality in the absence of antibiotic treatment (Pulkkinen et al., 2010; 
Suomalainen et al., 2005a). F. columnare causes both acute and chronic 
infections with necrosis of tissues resulting in skin lesions, fin erosions, 
mouth rot and gill necrosis often leading to the death of the fish 
(Declercq et al., 2013). A modified live F. columnare vaccine for channel 
catfish (Ictalurus punctatus) and largemouth bass (Micropterus salmoides) 
has been developed and tested (Shoemaker et al., 2011) and is now 
available commercially AQUAVAC-COL™. However, for rainbow trout 
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there is no licensed commercial vaccine available against F. columnare. 
The treatments used in rainbow trout consist of adding salted water to 
increase the salinity (Declercq et al., 2013; Suomalainen et al., 2005b) or 
using antibiotics, either in a bath treatment or in the feed (Bullock, 
1986). The use of antibiotics and antimicrobial agents to treat CD is not a 
sustainable solution as it can contribute to antimicrobial resistance, a 
major concern for human and animal health (Serrano, 2005). Thus, 
other means to control the disease are needed. 

Increasing innate genetic resistance of rainbow trout through selec
tive breeding could be a sustainable solution to this major problem. The 
Finnish national breeding programme for rainbow trout was established 
in the late 1980’s, targeting production traits such as growth, age of 
maturity, external appearance, fish welfare, visceral percentage, and 
survival recorded on fish reared in brackish sea and fresh water (Kause 
et al., 2003; Kuukka-Anttila et al., 2010; Vehviläinen et al., 2012). To 
date, estimation of breeding values has been based on pedigree infor
mation that is obtained by rearing families initially separated in a large 
number of family tanks followed by individual tagging and pooling of all 
the fish. The development and availability of new genomics tools such as 
genotyping-by-sequencing or single nucleotide polymorphism (SNP) 
arrays (Palti et al., 2015; Robledo et al., 2017) have facilitated studies of 
the genetic architecture of valuable production traits. The same tech
nologies have also supported the testing and implementation of genomic 
selection (GS) in aquaculture breeding programmes for several major 
species for aquaculture (Houston et al., 2020; You et al., 2020). Genomic 
selection relies on the use of thousands of genetic markers (such as SNPs) 
spread over the entire genome to estimate the breeding values of se
lection candidates. A reference population with both phenotypes and 
genotype data is used to train a prediction model that is then used to 
estimate breeding values of the candidates that are typically genotyped 
but not phenotyped (Meuwissen et al., 2001). Although genomic selec
tion has been routinely implemented commercially in the major aqua
culture species such as Atlantic salmon (Norris, 2017), it is still in its 
early days for other species. Recent studies show that in rainbow trout, 
resistance against F. columnare is indeed heritable and that genomic 
selection could be a potential way to improve the resistance (Evenhuis 
et al., 2015; Silva et al., 2019a, 2019b). 

The objective of this study was to investigate the genetic architecture 
of resistance to F. columnare and quantify the potential of genomic se
lection to improve resistance in a rainbow trout breeding programme. 
Specifically, the heritability of resistance to F. columnare was estimated 
in a rainbow trout population from Finland, then a Genome Wide As
sociation Study (GWAS) was performed to investigate the genetic ar
chitecture of resistance, and finally, the accuracy of breeding value 
predictions was compared between genomic evaluation and traditional 
pedigree-based evaluation approaches. The results contribute to the 
cumulating evidence of the benefits and suitable ways of implementing 
genomic selection in aquaculture breeding. 

2. Material and methods 

2.1. Ethical statement 

The establishment of progeny families at Luke’s research facilities 
followed the protocols approved by the Luke’s Animal Care Committee, 
Helsinki, Finland. Hanka-Taimen Oy, a fish farming company, has 
authorisation for fish rearing and experiments, and both parties comply 
with the EU Directive 2010/63/EU for animal experiments. 

2.2. Fish rearing and phenotyping 

On the 15th of May 2019, 105 rainbow trout families (from 33 dams 
and 48 sires) were produced from the Finnish national breeding pro
gramme maintained by Luke at Enonkoski research station in east 
Finland. This breeding programme was established in early 90’s. 
Annually, around 250–400 family tanks were used for initial rearing of 

the families, however for the current study, no family tanks were 
needed. The parents for each generation were selected based on their 
estimated breeding values (EBV) for growth (since 1992), maturity age 
(since 2001), external appearance (since 2001), skeletal deformations 
(since 2002), fillet colour (2003− 2012), cataract caused by Diplostomum 
parasite (since 2003), visceral percentage (2005) and survival (since 
2010). No selection for resistance to diseases caused by F. columnare has 
been practiced. To control the rate of inbreeding, the optimal genetic 
contributions method was used since 2002 to select the individuals with 
the highest selection index but which are not highly related, and to 
assign the number of mattings and mating pairs of the selected in
dividuals (Kause et al., 2005). 

After stripping and fertilisation, a sample of eggs from all families 
were pooled and sent to the multiplier farm of Hanka-Taimen Oy 
(Hankasalmi, Finland). The eggs were incubated and fingerlings reared 
in bulk. In June 2019, around 30,000 fry were distributed into three 
fingerling tanks, about 100 fish per family per tank and the fish were 
reared following commercial practices. 

The multiplier farm uses water from a nearby stream, and natural 
F. columnare outbreaks occur frequently. From the day the fish were in 
the three tanks (day 0 of the study), signs of any disease and mortality 
were monitored twice a day. On days 11 fish in all three tanks started to 
show signs of CD (saddleback lesions), from day 14 to 16, seven dead or 
sick fish were collected by tank and the presence of the pathogen was 
confirmed by PCR. From day 20 to 24 a piece of tail was taken from 
around 510 fish per tank, randomly chosen amongst the dead fish with 
clear CD signs, for later genotyping. These 1538 fish were considered as 
susceptible fish in the analysis. The three tanks were treated, from day 
26 to day 32, for F. columnare with approved treatments of salt, chlo
ramine, and medical feeds. CD signs and increased mortality were 
observed also on days 56 and 71 and fish were treated again with an 
approved treatment. On the last day of the study (day 99, October 2019), 
a piece of tail was collected, for later genotyping, on around 506 
randomly sampled surviving fish per tank. These 1519 fish were 
considered as resistant fish. By design the mortality rate in the geno
typed samples was 50% since about 1500 dead fish and 1500 alive fish 
were sampled. During the three months of the trial, water temperature 
was recorded daily. 

2.3. Genotyping, quality controls, parentage and sex assignment 

Samples from 3057 fish from the trial and 567 fish from the parental 
generation including the 81 parents were all sent to IdentiGEN Ltd. 
(Dublin, Ireland) for DNA extraction and genotyping using the 57 K SNP 
Axiom ™ Trout Genotyping Array (Palti et al., 2015). Prior to the calling 
of genotypes, quality controls on the 57,501 SNPs from the SNP array 
were performed following D’Ambrosio et al. (2019): the SNP probes 
were aligned, using a BLASTn® procedure to the Omyk_1.0 genome 
assembly available at the time of the analysis (Gao et al., 2018; Pearse 
et al., 2019) and only SNPs mapping to a single position on the genome 
(50,820 SNPs) were retained for the next stage of quality control. Ge
notypes of all 3624 sampled fish were called together in a single run 
using Axiom Analysis Suite software (v. 4.0.3.3) with standard SNP 
quality control (QC) thresholds and customized sample QC thresholds 
(DQC ≥0.82, QC call rate ≥90, percent of passing samples ≥80, average 
call rate for passing samples ≥95). SNPs that were classified by Axiom 
Analysis Suite software as “off-target variant” or “other”, monomorphic 
SNPs and SNPs for which no homozygous individual was observed for 
the minor allele were discarded and hence 36,020 polymorphic SNPs 
were kept for further analysis. Using plink software (v.1.9, Chang et al., 
2015), further quality controls were performed on both SNPs and in
dividuals. A total of 26 duplicated individuals were detected using the 
–genome option from plink, two individuals with an identity-by-descent 
value over 0.90 were considered as duplicated and both individuals 
were removed from the analysis. Only the individuals with a call rate 
over 0.90 and the SNPs with a minor allele frequency (MAF) higher than 
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0.05, call rate higher than 0.95 and that passed the Hardy-Weinberg 
equilibrium test (p-value <10− 6) were retained. The final dataset used 
for downstream genetic analyses comprised 3435 fish (2874 challenged 
fish, and 561 fish from the parental generation including 78 parents) 
genotyped for 27,907 high-quality SNPs. 

Since three parents (two dams and one sire) were missing from the 
final dataset, parentage assignment was performed in two steps. First 
using a subset of 200 SNPs with a 100% call rate in both generations, the 
pedigree was reconstructed for fish with no missing parents using the R 
package APIS (Griot et al., 2020) with a mismatch assignment set to 1%. 
In the second step, the genomic relationship values derived from a 
genomic relationship matrix (GRM) built with GCTA software (Eq.1, 
Yang et al., 2011a) were used to infer the family where one parent was 
missing from the genotyped dataset. The full pedigree was inferred for 
97.6% of the fish while the remaining 68 fish had one parent unassigned 
/ missing. 

2.4. Genomic relationship matrix 

The GCTA software was used to compute the GRM, and the genetic 
relationship between individuals j and k (gjk) was estimated following: 

gjk =
1
N

∑N

i=1

(
xij − 2pi

)
(xik − 2pi)

2pi(1 − pi)
(1)  

in which N is the total number of SNPs (27,907), xijand xik are the 
number of copies of the reference allele for the ith SNP for both the jth 

and kth fish, respectively, and pi is the frequency of the reference allele 
estimated from the markers. Two GRM were constructed, a first one with 
all fish from both generation which was used to recover the pedigree. A 
second GRM, built only with the fish with a phenotype value (i.e. the 
offspring), was used for the GWAS. 

2.5. Estimation of genetic parameters 

Variance components and heritability were estimated based either 
on pedigree-based relationships or GRM using ASReml (v.4.1, Gilmour 
et al., 2015) with two different approaches, a linear mixed model (Eq.2) 
and a logistic regression model (Eq. 3) to assess the trait on the observed 
and underlying scales, respectively: 

yi = μ+Ti + ui + ei (2)  

P(yi = 1) =
e(μ+Ti+ui+ei)

1 + e(μ+Ti+ui+ei)
(3)  

in which, for the ith fish, yi is the phenotype recorded as binary survival 
(0 for alive and 1 for dead fish), μ is the population mean, Ti is the fixed 
effect of tank (3 levels), ui is the random additive genetic value of in
dividual i, following a normal distribution u~N(0,Gσg

2) or u~N(0,Aσg
2) 

with σg
2 the estimated genetic variance, where G is the GRM built with 

GCTA (Eq.1) and A is the pedigree-based relationship matrix. Finally, ei 
is the residual effect following a normal and independent distribution 
e~N(0, Iσe

2) with σe
2 being the residual variance. 

2.6. Genome wide association study 

To identify SNPs associated with resistance to F. columnare, a GWAS 
was performed using a mixed linear model association (Eq.4) with the 
leave-one-chromosome-out (loco) option implemented in GCTA: 

yi = μ+Ti + ajgij + ui + ei (4)  

in which yi is the observed phenotype of the ith individual (0 for alive 
and 1 for dead), μ the overall mean in the population, Ti the fixed effect 
of the tank (3 levels), aj is the additive genetic effect of the reference 
allele for the jth SNP with its genotype for individual i (gij) coded as 0, 1 

or 2. And ei is the residual effect following a normal and independent 
distribution e~N(0, Iσe

2) with σe
2 the residual variance. Finally, ui the 

random vector of polygenic effects followed a normal distribution u~N 
(0,Gσg

2) with σg
2 the estimated genetic variance and G a partial GRM 

constructed with 28 chromosomes after removing the chromosome 
containing the jth SNP since the analysis was performed using the leave- 
one-chromosome-out (mlma-loco) approach. 

2.7. QTL characterisation 

For the GWAS, a Bonferroni correction with α = 5% was used to 
determine the genome-wide significance threshold [− log10(α/n)] and 
the chromosome-wide suggestive threshold [− log10(α/[n/29])], with n 
the number of SNPs in the analysis. Only the SNPs with a -log10(p-value) 
over the chromosome wide threshold were considered to detect QTL 
associated with the resistance. For each QTL, the additive effect (a) of 
the top SNP was used to estimate the proportion of genetic variance 
explained by this peak SNP using: 

%Vg =
2p(1 − p)a2

σ2
g

*100 (5)  

with σg
2 the total genetic variance estimated using the linear model 

(Eq.2) with ASReml and p the minor allele frequency of the target SNP. 
The concordance between observed and predicted p-values was 

estimated with the λ value (Yang et al., 2011b). 
Candidate genes located within a 2 Mb window around the peak SNP 

(1 Mb each side) for each QTL were investigated using the NCBI 
O. mykiss Annotation Release 100 (GCF_002163495.1). 

2.8. Genomic prediction of breeding values 

The efficiency of genomic prediction of breeding values was assessed 
using 20 replicates of Monte-Carlo “leave-one-group-out” cross- 
validation tests. For each replicate, fish were randomly assigned to 
five groups, four-fifths of the fish (n = 2300) with known phenotypes 
and genotypes were used as the training set and one fifth of the fish (n =
575) with known genotypes and masked phenotypes were used as the 
validation set. Mixed linear BLUP animal model (Eq.2) and logistic 
regression model (Eq.3) were used to estimate pedigree-based (EBV) and 
genomic breeding values (GEBV) of fish in the validation set using 
phenotypic values of fish in the training set and the relationship matrix, 
based on pedigree or genomic information, using two different software, 
BLUPF90 (Misztal et al., 2002) and ASReml. 

For the Genomic BLUP (GBLUP), two approaches were implemented 
using the BLUPF90 software, a standard GBLUP and a weighted GBLUP 
(wGBLUP) approach. The wGBLUP is an iterative approach in which, at 
a given kth iteration, a weight is determined for each SNP based on the 
SNP variance (derived from the SNP additive effect) estimated at the (k- 
1) iteration (Wang et al., 2012). For the first iteration, weights are fixed 
to 1 which is equivalent to a standard GBLUP and we performed three 
iterations (labelled w2GBLUP and w3GBLUP). 

The accuracy (r) of genomic prediction was computed as the Pearson 
correlation coefficient between the (G)EBV and the true phenotype (y) of 
the fish in the validation set divided by the square root of the genomic 
based heritability obtained on the observed scale (h2

obs), following 
Legarra et al. (2008) using the formula: 

r =
[(G)EBV , y]

̅̅̅̅̅̅̅̅

h2
obs

√ (6) 

Since resistance was measured as binary survival, receiver operator 
characteristic (ROC) curves were also used to assess the accuracy of 
classifying animals as susceptible or resistant using the different models. 
The area under the ROC curve (AUC) metric was used to assess the 
performance of the classifier: an AUC value of 1 represents a perfect 
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classifier and an AUC value of 0.5 representing a random classifier 
(Hanley and McNeil, 1982). According to Wray et al. (2010) this AUC 
value should be considered relatively to a theoretical maximum AUC 
value (AUCmax) that would be obtained for a disease when the test 
classifier is a perfect predictor of the genetic risk. AUCmax depends on 
the disease prevalence and the heritability of the trait obtained on the 
underlying scale and was estimated using the formula from Wray et al. 
(2010) computed using a homemade R function (Supplementary File 
S1). 

3. Results 

3.1. Sample and data collection from farm outbreak 

A small number of mortalities occurred in tanks 1 and 2 in the first 
few days after the transfer, with a peak at day 3 with 44 and 58 mor
talities recorded in tank 1 and 2, respectively. Higher mortality was 
recorded after day 1 in tank 3, with a peak on day 4 (119 dead fish) after 
which mortality decreased to a base level of 30 mortality/day on 
average for a week. No specific causes were observed for these 
mortalities. 

Mortalities accompanied by clear signs of F. columnare started on day 
16 for fish in tanks 1 and 2 and on day 18 for fish in tank 3 (Fig. 1). On 
day zero at the end of June, the average daily water temperature was 
above 17 ◦C and started to rise above 18 ◦C from day 2 onwards with a 
peak temperature at 25 ◦C on days 33 and 34. At the end of the recording 
period, the final mortality was 39.4% (Fig. 1). 

3.2. Genetic parameter estimates 

The estimates of genetic parameters using the linear and the logistic 
regression models are summarised in Table 1. Estimates of the pedigree- 
based heritability of binary survival were 0.18 (± 0.038; se) and 0.35 (±
0.046; se) on the observed and underlying scale, respectively. Genomic 
heritability of binary survival to F. columnare were slightly higher than 
the pedigree-based estimates, at 0.21 (± 0.030; se) and 0.43 (± 0.042; 
se) on the observed and underlying scale, respectively. 

3.3. Genome wide association study 

A highly significant QTL affecting the binary trait of resistance was 
detected on chromosome 3 (Fig. 2). There were a total of 28 SNPs that 
were significantly associated with resistance to F. columnare, with a 

-log10(p-value) that was over the 5% chromosome-wide Bonferroni 
threshold (− log10(p-value) = 4.28). Those SNPs were located within 
three chromosomes with 23 SNPs on Omy3, one SNP on Omy12 and four 
SNPs on Omy15 (Fig. 2). 

On chromosome 3, 23 SNPs (one SNP at 38.165 Mb and the rest 
spanning from 55.715 Mb to 79.557 Mb) had a -log10(p-value) at least 
over the 5% chromosome-wide threshold level (Supplementary 
Table S1), including 8 SNPs with a -log10(p-value) that surpassed the 5% 
genome-wide threshold with the peak SNP located at 64.39 Mb 
(Table 2). The peak SNP explained an estimated 11.2% of the additive 
genetic variation and the additive effect of the peak SNP from Omy3 on 
mortality proportion (the binary resistance trait) was estimated to be 
0.11 (0.0018; se), implying approximately 22% difference in survival 
between alternate homozygous fish at the QTL. 

On chromosome 12, the only SNP that exceeded the 5% suggestive 
threshold was located at 5.316 Mb and explained 4.40% of the total 
genetic variance of resistance to F. columnare (Table 2 and Supplemen
tary Table S1). On chromosome 15, the first suggestive SNP was located 
at 13.36 Mb and the remaining three significant SNPs spanned from 

Fig. 1. Survival curves and water temperature for the three tanks for the duration of the study at the multiplier farm.  

Table 1 
Estimates of variance components for resistance to Flavobacterium columnare.  

Model Relationship 
matrix 

σa2 (± se) σp2 (± se) σe2 (± se) h2 (± se) 

Linear A 0.044 ±
0.010 

0.25 ±
0.008 

0.21 ±
0.008 

0.18 ±
0.038 
(0.34) 

Linear G 0.054 ±
0.009 

0.25 ±
0.008 

0.20 ±
0.007 

0.21 ±
0.030 
(0.40) 

Logit A 0.54 ±
0.108 

1.54 ±
0.108 

1 0.35 ±
0.046 

Logit G 0.76 ±
0.132 

1.76 ±
0.132 

1 0.43 ±
0.042 

A: the pedigree-based relationship matrix. 
G: the genomic relationship matrix. 
Logit: logistic regression. 
σa

2: genetic variance. 
σp

2: phenotypic variance. 
σe

2: residual variance. 
h2: For the linear models, heritability is estimated on the observe scale and 
transformed on the underlying scale (value in brackets) using the formula from 
Dempster and Lerner (1950). For the logistic regression models, heritability is 
estimated on the underlying scale with the residual variance fixed to 1 by 
convention. 
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41.173 to 47.018 Mb with the peak SNP explaining 5.70% of the total 
genetic variance (Table 2). 

The observed p-values were inflated with a λ value of 1.362 as ex
pected for a population with large full and half-sib families (a λ of ~1.1 
indicates a relatively good concordance between observed and predicted 
p-values, Yang et al., 2011b). 

3.4. Genomic prediction of breeding values 

For both linear and logistic models, genomic-based predictions of 
breeding values resulted in a higher accuracy than pedigree-based pre
diction, with an increase of 15.3% between the w3GBLUP and the 
pedigree-based BLUP (PBLUP) models and of 18.6% between the 
w2GBLUP and the PBLUP models (Table 3). Correlations and accuracies 
obtained under the linear or logistic regression models were very 
similar. The increase in accuracy between the pedigree-based and the 
genomic-based logistic regression (+13.6%) was slightly lower than 
between the pedigree-based and genomic-based linear model (+15.3%). 

Fig. 2. Manhattan plot of QTL associated with resistance to Flavobacterium columnare detected using a GWAS under a MLMA-LOCO model. 
The dark blue line is the 5% significance threshold at the genome-wide level, the red line is the 5% suggestive threshold at the chromosome-wide level. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Detection of QTLs associated with resistance to Flavobacterium columnare in 
rainbow trout.  

Chr Peak SNP 
name 

Peak SNP 
position 
(bp) 

Peak SNP 
additive 
effect (±
se) 

Peak 
SNP p- 
value 

Peak 
SNP- 
log10(p- 
value) 

%Vg 
explained 
by peak 
SNP 

3 Affx- 
89944857 

64,390,419 − 0.11 ±
0.0018 

1.69E- 
09 

8.77 11.20% 

12 Affx- 
88908225 

5,316,265 − 0.073 
± 0.0172 

2.30E- 
05 

4.64 4.40% 

15 Affx- 
88949366 

41,172,606 0.093 ±
0.0213 

1.25E- 
05 

4.90 5.70% 

Chr: chromosome. 
%Vg = 2p(1-p)a2/0.054 (Eq. 5), the proportion of total genetic variance 
explained by the peak SNP, with p the SNP minor allele frequency and a the SNP 
additive effect. 

Table 3 
Efficiency of genomic evaluation for resistance to Flavobacterium columnare in 
rainbow trout.  

Analysis Model Relationship 
matrix 

Correlation Accuracy AUC 

PBLUP BLUP A 0.27 ±
0.037 

0.59 ±
0.080 

0.66 
±

0.021 
GBLUP BLUP G 0.31 ±

0.035 
0.68 ±
0.075 

0.68 
±

0.020 
w2GBLUP BLUP A 0.32 ±

0.032 
0.70 ±
0.071 

0.68 
±

0.019 
w3GBLUP BLUP G 0.31 ±

0.031 
0.68 ±
0.068 

0.68 
±

0.019 
PLOGIT Logistic 

regression 
A 0.27 ±

0.037 
0.59 ±
0.080 

0.66 
±

0.021 
GLOGIT Logistic 

regression 
G 0.31 ±

0.035 
0.67 ±
0.076 

0.68 
±

0.020 

Mean +/− sd are presented. 
A: the pedigree-based relationship matrix. 
G: the genomic relationship matrix. 
PBLUP: Pedigree-based BLUP. 
GBLUP: Genomic BLUP. 
w2GBLUP and w3GBLUP are the second and third iteration of the weighted 
GBLUP, respectively. 
PLOGIT: Pedigree-based logistic regression. 
GLOGIT: Genomic-based logistic regression. 
Correlation: Pearson correlation coefficient between phenotype and estimated 
breeding values [(G)EBVs]. 
Accuracy = cor(phenotype, (G)EBVs)/sqrt(h2

gen). With h2
gen the genomic herita

bility estimated on the observed scale (0.21). 
AUC: area under the receiver operator characteristic (ROC) curve. 
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Based on the AUC values of the ROC curves, the genomic-based 
relationship matrix classified the fish in the validation population with 
a success rate of 68% for all models, 2% better than pedigree-based 
relationship matrix (Table 3). No differences were observed between 
the linear or logistic regression models on the classifier. To estimate the 
AUCmax of columnaris disease in this population the heritability on the 
underlying scale was estimated to be 0.40 (Table 1) and the disease 
prevalence in the sampled population was 0.5, which resulted in an 
AUCmax of 0.80. 

4. Discussion 

Rainbow trout, an aquaculture species of great importance world
wide, faces major threats due to infectious disease outbreaks in hatch
eries and farms. Columnaris disease has become increasingly important 
over the past 20 years in rainbow trout production and could continue to 
increase as summer water temperatures rise because of global warming 
(Karvonen et al., 2010; Pulkkinen et al., 2010). The results presented 
herein show that selective breeding is a promising approach to enhance 
the natural resistance of broodstock, and that genomic selection may be 
an effective approach to increase genetic gain. 

4.1. Resistance to F. columnare is moderately heritable 

Resistance to F. columnare in this rainbow trout population was 
moderately heritable, with estimates ranging from of 0.18 to 0.43, 
pedigree-based heritability being slightly lower than genomic-based 
heritability. This implies that this trait can be improved by selective 
breeding. The heritability values estimated in the current study were in 
the range of previously estimated heritability (0.17–0.51) for resistance 
to F. columnare in rainbow trout populations from the USA infected in an 
experimental challenge (Evenhuis et al., 2015; Silva et al., 2019a, 
2019b). As expected, the heritability estimated on the underlying scale 
using a logistic regression model were significantly higher than the 
heritability estimated on the observed scale. When the linear estimates 
obtained on the observed scale were corrected as proposed by Dempster 
and Lerner (1950), estimates were close to the one obtained on the 
underlying scale with the logistic regression. 

4.2. A major QTL on chromosome Omy3 

One main genome-wide significant QTL was located on chromosome 
Omy3 (peak at 64.390 Mb), several less significant QTLs located on two 
other chromosomes (Omy12 and Omy15) as well as a polygenic back
ground contribution. To the best of our knowledge, there is only one 
published study that investigated genetic resistance to F. columnare in 
rainbow trout after an experimental bath challenge in a controlled 
environment with a water temperature of 16 ◦C (Silva et al., 2019a). 
They detected 40 QTLs across 14 chromosomes associated with resis
tance in two populations, however none of the QTLs detected in the 
present study were reported in their study (see Supplementary 
Table S3). Chromosome 12 was the only common chromosome reported 
in both studies with two QTLs (between 45.5 and 46.5 Mb and second 
one between 49.2 and 50.1 cM) reported by Silva et al. (2019a) and one 
QTL detected in the current study (peak SNP at 5.3 Mb) but the distance 
between those QTLs suggest they are different ones. In the current study, 
several SNPs located on chromosome Omy3 were associated with 
resistance. The first significant SNP, with a p-value over the 5% 
chromosome-wide threshold, was located at 38.165 Mb and the next 
significant SNP located at 55.715 Mb. Such a long distance between the 
two successive significant SNPs (17.55 Mb) may potentially reflect the 
presence of two QTLs (Supplementary Fig. S1 and Table S1). This first 
SNP association may also reflect linkage disequilibrium (LD) with the 
peak SNP from the most significant QTL at 64.390 Mb, given that long 
range LD is common in rainbow trout. LD values between two markers at 
about 1 Mb distance ranging between 0.13 and 0.25 were reported 

previously by D’Ambrosio et al. (2019) and Vallejo et al. (2018). In the 
current study, the LD between two SNPs about 1 Mb apart was 0.11 on 
average (± 16; SD) (data not shown). The detection of one main sig
nificant QTL on Omy3 with a 22% difference in survival between 
alternate homozygous fish at the peak SNP that explained 11.2% of the 
total genetic variance along with other suggestive minor-effect QTLs and 
a polygenic background contribution show that resistance to 
F. columnare in rainbow trout is oligogenic in this population. 

In the Flavobacterium genus there are two bacteria species which are 
responsible for diseases with similar signs and that target similar fish 
species. F. columnare, the focus of the current study, is responsible for CD 
in warm waters, and Flavobacterium psychrophilum is responsible for cold 
water disease (BCWD) (Bernardet and Bowman, 2006). Those two 
bacteria are closely related (Kumru et al., 2017), thus it is plausible that 
a certain proportion of genetic resistance mechanisms in the fish might 
be common between the two diseases. In the two studies on rainbow 
trout populations from the USA Evenhuis et al. (2015) and Silva et al. 
(2019b) estimated a moderate positive genetic correlation (ranging 
between 0.35 and 0.40) between the resistance to F. columnare and to 
F. psychrophilum. In addition, some of the QTLs detected in our study as 
associated with resistance to F. columnare may co-localised with previ
ously published QTLs associated with resistance to F. psychrophilum. For 
instance, the main QTL on chromosome Omy3 (peak at 64 Mb) has been 
identified also in two previous studies on resistance to F. psychrophilum, 
after a natural outbreak in a French rainbow trout population (Fraslin 
et al., 2019) as well as after an experimental challenge in isogenic lines 
of rainbow trout (Fraslin et al., 2018) or rainbow trout population from 
the USA (Vallejo et al., 2017). QTLs associated with resistance to 
F. psychrophilum in different rainbow trout populations have also been 
previously detected on chromosomes Omy12 (Liu et al., 2015; Palti 
et al., 2015; Vallejo et al., 2014) with QTL located between 18.722 and 
78.020 Mb (see supplementary Table S3) and Omy15 with QTLs located 
between 5.701 and 48.678 Mb in Fraslin et al. (2018) or at 
38.446–39.557 Mb in Vallejo et al. (2017). Even if those QTL were 
detected at different positions on the chromosome, they were located 
within wide confidence intervals and thus might be identical between 
the two diseases. The favourable genetic correlation for resistance to 
both diseases as well as the potentially common QTLs associated with 
resistance to F. columnare and F. psychrophilum on chromosomes Omy3, 
12 and 15, although estimated in different rainbow trout populations 
with different genetic backgrounds, are encouraging for breeders. They 
suggest that improving the resistance to one pathogen could improve the 
resistance to its cold/warm counterpart. 

We investigated the putative candidate genes located within a 2 Mb 
window around the peak SNPs using the NCBI O. mykiss Annotation 
Release 100 (GCF_002163495.1). Overall eleven genes involved in im
mune response, through the pro-inflammatory response of cytokine or 
the receptor-mediated endocytosis by macrophage or dendritic cells in 
response to bacteria activity, were located around the peak SNPs on the 
three chromosomes with QTLs (supplementary Table S2). Focusing on 
the peak SNP with the lowest p-value on chromosome Omy3 (located at 
64,390 Mb), two genes were identified as being involved in the pro- 
inflammatory response of cytokine, transforming growth factor beta re
ceptor type-2-like (TGF-beta 2) located between 63,826,317 and 
63,853,315 bp, and an interleukin-1 receptor type 1 (il-1r1) located be
tween 65,103,069 and 65,123,204 bp. Since the QTLs detected in our 
study covered a large region of the chromosome, this list of putative 
candidate genes has to be confirmed by more studies. One approach 
could be to refine the QTL position using whole-genome-sequence and 
imputation (Fraslin et al., 2020a; Yoshida and Yáñez, 2021) to refine the 
list of positional candidate genes. Other approaches such as RNAseq 
(Marancik et al., 2015; Robledo et al., 2019; Robledo et al., 2018; Zwollo 
et al., 2017) or knout-out by CRISPR/Cas9 approaches that have been 
recently used successfully in other fish species (Gratacap et al., 2020; 
Luo et al., 2022; Pavelin et al., 2021) could be used to validate their 
implication in the immune response to F. columnare. 
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4.3. Genomic evaluation increases the accuracy of breeding values 

Using genomic information significantly increased the accuracy of 
prediction, by at least 13.6%, compared to breeding values estimated 
with only pedigree-based information. Both linear and logistic regres
sion models gave similar results. The highest accuracy and highest AUC 
values were obtained with the weighted GBLUP approach, using the 
second iteration (w2GBLUP). The small decrease of the accuracy of 
genomic prediction after the third iteration (w3GBLUP) compare to 
w2GBLUP has been reported previously (Irano et al., 2016; Melo et al., 
2016; Vallejo et al., 2017; Vallejo et al., 2016). Wang et al. (2012) 
explained this decrease of accuracy by an over weighting of SNPs in 
large effect QTL and an underweighting of SNPs in small effect QTLs. 
The better performance of the weighted model compared to the standard 
GBLUP approach reflects the fact that, resistance to F. columnare in this 
population is oligogenic, controlled by a main QTL, several smaller ef
fect QTLs together with a polygenic background contribution. The 
utility of using a weighted approach in the presence of a main QTL have 
been demonstrated in various fish species for other traits of interest (Lu 
et al., 2020; Song and Hu, 2021; Vallejo et al., 2018). The AUC metrics 
obtained from the ROC curves are a way of accounting for both sensi
tivity (true positive rate) and specificity (true negative rate) of a test, and 
are a complementary approach to accuracy of genomic prediction to 
estimate the predictability of a model for disease resistance traits (Wray 
et al., 2010). In the current study, AUC values were already high for the 
PBLUP model (0.66) the models using genomic information ((w)GBLUP 
and GLOGIT) better predicted the outcome of the disease with a 0.2 
increase in AUC. Although 0.2 represent a small increase in the pre
dictability of the model, this value should be consider relative to the 
AUCmax (Wray et al., 2010) that represent an upper limit to the pre
dictability of the model taking in account the disease prevalence and the 
heritability on the underlying scale and was estimated to be 0.8 in the 
current study. The AUC value of 0.68 obtained were in the range of what 
was obtained by Palaiokostas et al. (2018) for viral nervous necrosis 
resistance in European seabass (Dicentrarchus labrax), a trait with similar 
disease prevalence and heritability as resistance to F. columnare in our 
study. However, the 0.2 increase of AUC in our study was lower than the 
increase in Palaiokostas et al. (2018) that reported an increase between 
0.8 and 0.13 but the predictability of the pedigree-based model in the 
current study (0.66) was better than in their study (0.62). 

Prediction accuracy using genomic information in the w2GBLUP 
model was 18.6% higher than the pedigree-based prediction accuracy. 
This result confirmed that genomic selection is a useful approach to 
increase resistance to F. columnare in this rainbow trout population. A 
recently published study (Silva et al., 2019a) also concluded that 
genomic selection was a more promising approach than pedigree-based 
selection or marker assisted selection to increase rainbow trout resis
tance to F. columnare due to the polygenic architecture of the trait. They 
observed an improved prediction accuracy of about 40% when using 
genomic models compared to pedigree-based models. Those results 
along with the one of the current study confirm the major benefit of 
using genomic selection to improve resistance to F. columnare in 
different rainbow trout populations, with different genetic architecture 
of resistance. It should be noted that diseases like F. columnare infect 
small fish well before they can be individually tagged, and hence gen
otyping is needed to establish relationships between individuals. 
Therefore, the cost-efficiency of genomic selection may be reasonable, 
since genotyping is routinely performed anyway, even if at lower density 
than the SNP array. 

4.4. Phenotyping for resistance after a natural disease outbreak 

Natural outbreaks and controlled challenge tests can be both used to 
obtain information to improve disease resistance using breeding pro
grammes. In our study, we took advantage of a natural outbreak of 
columnaris disease to detect QTL associated with resistance to the 

pathogen agent responsible of the disease and to estimate the potential 
of selective breeding to increase the resistance of this rainbow trout 
population. Experimental challenges are usually used for disease resis
tance studies since they allow a more controlled experiment, knowing 
the time when the fish was infected and when it died or sometimes 
showed signs of infection (Fraslin et al., 2020b; Ødegård et al., 2011; 
Robinson et al., 2017; Saura et al., 2019). However, experimental 
challenge requires advanced knowledge of the bacteria in order to 
isolate and replicate it while still keeping the infectivity high enough to 
induce mortality in an infectious challenge. Experimental pathogen 
challenge usually needs to be performed in different facilities, under 
strict controls, and thus could be expensive to set up within a breeding 
programme. Furthermore the results obtained in a controlled environ
ment would potentially need to be validated in a field setting before 
being implemented in a commercial breeding programme (Wiens et al., 
2018). Field or natural outbreak data can provide very valuable phe
notypes for disease resistance, as the fish are exposed to realistic com
mercial conditions. Opportunistic sampling of fish during a natural 
outbreak could be used in selection for increased resistance and to 
benchmark the experimental challenge trial with the disease resistance 
measured in a farm environment. In various fish species resistance 
measured after an natural disease outbreak has been successfully used to 
estimate genetic parameters (Bangera et al., 2014; Barría et al., 2020; 
Lillehammer et al., 2013) and detect QTL associated with resistance 
(Barría et al., 2021; Fraslin et al., 2018; Houston et al., 2008). However, 
they also have disadvantages such as being unpredictable and the un
certainty of which specific pathogens are responsible for the observed 
disease or mortality. Furthermore, in the current study, the fish had to be 
treated for the disease. Thus, the fish that were considered as resistant 
fish (still alive at the end of the 3 months rearing periods) might not all 
be truly resistant fish but fish that were very slow to develop disease 
symptoms, or by chance were not in contact with the bacteria before the 
treatment, or fish that were infected but cured by the treatment they 
received. Thus, the resistance phenotype measured in our study may not 
be the true resistance to the pathogen as usually defined in disease 
resistance studies (Fraslin et al., 2020b; Robinson et al., 2017). How
ever, the co-location between the QTL detected in our study and pre
viously published QTLs associated with resistance to F. psychrophilum 
(mainly on Omy3) as well as the concordance of heritability estimated in 
the current study and in previous study after a controlled challenges 
(Evenhuis et al., 2015; Silva et al., 2019b) suggests that resistance 
measured in the current study is indeed an appropriate measure of ge
netic resistance. Furthermore, the results of the current study suggest 
that phenotyping of resistance after a natural outbreak can be performed 
as part of the normal rearing process with little effort (collecting the 
dead fish prior to the treatment) which is potentially less time 
consuming and less expensive than designing an experimental challenge 
on siblings of the breeding candidates. 

5. Conclusion 

In the current study, a moderate heritability of resistance to 
F. columnare was estimated in a rainbow trout population after a natural 
disease outbreak. Resistance was controlled by a major QTL, located on 
chromosome Omy3, together with various smaller QTLs and a polygenic 
background contribution. Finally, genomic selection was shown to be an 
efficient solution to improve genetic resistance, giving approximately 
14% higher breeding values accuracy than pedigree approaches. 
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