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2

18 Abstract

19

20 Forest resource assessments based on multi-source and multi-temporal data have become more 

21 common. Therefore, enhancing the prediction capabilities of forestry dynamics by efficiently pooling 

22 and analyzing time-series and spatial sequential data is now more pivotal. Bayesian filtering and 

23 smoothing provide a well-defined formalism for the fusion or assimilation of various data. We 

24 ascertained how often the generic, standardized Bayesian framework is used in the scientific 

25 literature and whether such an approach is beneficial for forestry applications. A review of the 

26 literature showed that the use of Bayesian methods appears to be less common in forestry than in 

27 other disciplines, particularly remote sensing. Specifically, time-series analyses were found to favor 

28 ad hoc methods. Our review did not reveal strong numeric evidence for better performance by the 

29 various Bayesian approaches, but this result may be partly due to the challenge in comparing a 

30 variety of methods for different prediction tasks. We identified methodological challenges related to 

31 assimilating predictions of forest development; in particular, combining modeled growth with 

32 disturbances due to both forest operations and natural phenomena. Nevertheless, the Bayesian 

33 frameworks provide possibilities to efficiently combine and update prior and posterior predictive 

34 distributions and derive related uncertainty measures that appear under-utilized in forestry.

35

36 Keywords: Forest inventory; Hierarchical Bayes Model; Kalman filter; Markov Chain Monte Carlo 

37 (MCMC); Credible interval

38
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3

39 1. Introduction

40

41 1.1. Motivation and objectives

42

43 Systematic forest inventories have been carried out for over a century (Kangas et al., 2018a) and 

44 have utilized remote sensing and other digital map data already for decades to estimate forest 

45 variables (Katila and Heikkinen, 2020). While historical and new data have considerable potential to 

46 improve forestry-related predictions, this is not self-evident and may not be realized unless sampling, 

47 modelling and estimation methods are used appropriately with respect to the different properties of 

48 the data sources (Kangas et al., 2018b, 2019). It becomes valid to ask whether lessons learned from 

49 data fusions in other fields could be applied to rationalize forest inventory data processing. In 

50 particular, the field of engineering has developed a standardized, formal approach for estimating the 

51 state of the system through noisy observations (Särkkä, 2013). Many of the observations made by 

52 Särkkä (2013) on generic measurement systems can easily be extended to forestry data: even with 

53 the most carefully measured field plots, much of the signal may remain hidden (i.e., the forestry 

54 dynamics that we attempt to model). Instead, we must deal with “noise” (Särkkä, 2013) in the form 

55 of measurement, model and sampling errors (cf., Kangas et al., 2019).

56

57 The sequential filtering, smoothing and prediction process described by Särkkä (2013) is based on the 

58 Bayesian approach that exploits the posterior distribution of model parameters in contrast to 

59 analyses that optimize a predefined objective function. Based on reviews and applications of 

60 Bayesian data fusion in forest inventories (Varvia, 2018) and ecosystem modeling (Van Oijen, 2017; 

61 Mäkelä, 2020), the Bayesian approach provides a well-defined formalism to 1) define a problem in a 

62 practical probabilistic framework, 2) incorporate a priori (expert) knowledge to the observed data, 3) 

63 incrementally update the posterior distribution as more data become available, and 4) express and 

64 incorporate the uncertainty of estimated model parameters and predictions. These properties 
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4

65 suggest that fusing data, while quantifying the related uncertainties based on exact schematics of the 

66 Bayesian approach could be beneficial for forest inventories. 

67

68 In this study, we reviewed the concepts of Bayesian data fusion, especially with regard to the 

69 applicability of these concepts to sequential forestry data. We defined the concepts of sequential 

70 Bayesian estimation (Section 1.2) and specified the interests for the review (Section 1.3). The 

71 following sections specifically review: 

72  How often algorithms related to Bayesian smoothing, filtering, and prediction have been 

73 used in forestry to date, compared to other scientific fields, and what features do the 

74 reported key applications of these concepts provide to forestry (Section 2)?

75  To what extent do forestry applications that use either ad hoc or Bayesian methods, and in 

76 the latter case, take advantage of the features related to Bayesian smoothing, filtering, and 

77 prediction(Section 3)?

78  Currently realized numeric and potential future benefits from standardizing the formulation 

79 of these problems using Bayesian approaches and proposals (Sections 4–5).

80

81 1.2. Key generic concepts

82

83 As in Knödel et al. (2007), we consider “fusion” and “assimilation”, as well as “combination”, 

84 “integration”, “merging”, “synergy” and “interaction” as possible synonyms for the purpose of using 

85 information from various sources with an objective to improve extraction of relevant information 

86 from the data. We describe Bayesian estimation as a means to these purposes, i.e., to estimate the 

87 value of an unknown random variable θ given the series of observations y1:T = {y1, y2, …, yT}, by 

88 updating the posterior probability distribution p(θ|y1:T) using the Bayes’ rule:

89 (1)𝑝(𝜃│𝑦1:𝑇) =
𝑝(𝑦1:𝑇│𝜃) 𝑝(𝜃)

𝑝(𝑦1:𝑇)
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5

90 where  is the prior distribution assumed of the phenomena before actual measurements, and 𝑝(𝜃) 𝑝

91 is a normalization constant. As the latter is independent of , it is often ignored for the (𝑦1:𝑇) 𝜃

92 posterior distribution or is approximated, the consequence of which is derived on p. 18 or pp. 118–

93 120, respectively, in Särkkä (2013). The posterior distribution is obtained by assimilating observations 

94 and prior knowledge. The point estimate is, for example, the maximum (termed “Maximum A 

95 Posteriori”, MAP estimate) or other similar statistic of the distribution.

96

97 Because of the intractability of computing the posterior distribution for the full history of 

98 observations, our interest here is in the marginal posterior distribution of the given state. The states 

99 and related measurements form sequences, for which reason the application of Eq. 1 is called 

100 sequential Bayesian estimation. Depending on the marginal posterior distribution of interest (or 

101 measurements available for the state to be estimated), the estimation can be divided into sub-

102 categories of smoothing, filtering and prediction (Särkkä 2013, p. 11). An analogy between these 

103 categories and the typical steps related to the processing observed and predicted forest inventory 

104 data can easily be elucidated (Figure 1):

105  Smoothing distributions — when the interest is in the state before the current measurement;

106  Filtering distributions — when the interest is in the current state; and

107  Prediction distributions — when the interest is in a future state, 

108 and the current and previous measurements are taken into account in all three categories.

109

110 [ FIGURE 1 AROUND HERE ]

111

112 The sequential Bayesian estimation is carried out using recursive equations, in which the posterior 

113 probability distribution of interest is initialized with the prior and then estimated by repeating the 

114 update and prediction steps to:

115 - update the state by combining the prior and observation likelihoods by the Bayes rule (Eq. 1),  
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6

116 - predict the next state-distribution by propagating the state of the previous measurement according 

117 to the specific transition model.

118 The updated probability distribution is obtained by multiplying the prior and observation likelihoods, 

119 whereas the predicted distribution is the integral of the products of the probability distributions 

120 associated with the current state and the transition from the previous to the current state. As 

121 elaborated by Särkkä (2013), different Bayesian filtering and smoothing algorithms adapt these 

122 general equations: for instance, the updating and prediction equations in the well-known Kalman 

123 filter (Kalman 1960) assume linear Gaussian models for both the measurements and the transition.

124

125 1.3. Specifications for the review

126

127 While the analogy between Bayesian concepts and forestry applications has been noted, the 

128 juxtaposition of generic concepts and forest inventory applications, as reviewed by Kangas et al. 

129 (2019) for example, highlighted a number of issues that guided our approach here. In our review, we 

130 re-considered a priori information (i.e., prior in time (Särkkä 2013)) with regard to the options 

131 (filtering, predicting and smoothing) related to time sequences (Figure 2a). Typical forest inventory 

132 applications (Figure 2) add at least another dimension to a priori information: the spatial element of 

133 the forest data that introduces sampling error to the estimates in addition to the temporal noise in 

134 observations over time. Thus, in addition to a time-series, forestry applications may account for 

135 spatially structured errors in sequential data. For example, kriging (e.g., Cressie 1993) can be seen as 

136 a special case of Bayesian inference with the prior acting as the spatial correlation. A simpler model 

137 with a constant correlation assumption, such as Empirical Best Linear Unbiased Prediction or the 

138 EBLUP estimator, is a special case of kriging. All these are referred to as spatial models. 

139

140 However, if we consider “prior understanding of the phenomena modelled”, for instance, realized as 

141 the model form, then a priori information must be, at least, three-dimensional. First, this type of 
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7

142 prior knowledge can be related to neighboring trees or stand(s); for instance, the application of 

143 regression models results in additional information that is essentially new information for one time 

144 point in space, although the estimation can also employ data from multiple time points (Figure 2b). 

145 Second, all Bayesian models are weighted models and use different inferential methods, and the 

146 model forms produce additional information to estimate the state at a time point (Figure 2c). Third, 

147 further information could be based on the prediction of results for smaller computation units using 

148 the whole dataset of a large area-of-interest, i.e., using a “small area estimation” type of method 

149 (Figure 2d). Building upon these considerations and attempting to verify our stated hypothesis on the 

150 temporal vs. spatial dimensions of a priori information, we searched for published papers that 

151 considered Bayesian estimation for sequential observations in time and space.

152

153 [ FIGURE 2 AROUND HERE ]

154

155 In addition, we found that it was useful to contrast between approaches that were formally defined 

156 as Bayesian data fusion and those termed ad hoc methods. For the latter, we refer to the Cambridge 

157 Academic Content Dictionary (Cambridge University Press) that defines ad hoc as a method "for a 

158 particular purpose or need, especially for an immediate need". By this distinction, we acknowledged 

159 that the tasks outlined in Figures 1–2 can be accomplished by means of a method (chain) that is 

160 mathematically less reasoned but was selected due to its simplicity to solve the particular task. We 

161 wanted to determine the possible benefits of formally defined Bayesian methods that associate the 

162 data points with the probability or uncertainty of the event. Therefore, we categorized studies that, 

163 without any supporting information, weighted data points equally as ad hoc methods. The latter 

164 category includes the maximum likelihood of the joint probability of measurements, which can be 

165 seen as a MAP-estimate with uniform prior (Särkkä 2013). 

166

167 2. Systematic review 
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168

169 In this review, we used a systematic keyword search to approximate the extent that the algorithms 

170 proposed for the Bayesian approach are used in forestry vs. other disciplines. The construction of the 

171 literature search and its findings are described in Table S1 and Figure S2, respectively, of the 

172 Supplementary material. Based on the search, we found a total of 21 articles for qualitative analyses 

173 that were required to be related to forest attributes with ground truthing, i.e., we excluded those 

174 articles related to land use/land cover or similar classifications based on remotely sensed data. The 

175 resulting studies ranged from the estimation of forest stand characteristics to forest inventories and 

176 classification of species, including a varying number of data points and sources. Data types varied 

177 between simulated and observed data but were mainly based on inventory sample plots where the 

178 parameters of interest were measured. The studies were mostly focused on boreal forest but all 

179 biogeographical zones (Boreal, Temperate, and Tropical) were covered. 

180

181 The list of studies that could be compared in terms of improvement or the rate of error change in 

182 percentage points, computed as the difference between two relevant error rates thereby 

183 demonstrating the improvement from the reference method or single point in time by means of 

184 Bayesian or similar methods is shown in Table 1. The root mean squared error (RMSE) was 

185 considered as the main error criterion; in cases where it was not stated in a publication, an alternate 

186 error measure (e.g., coefficient of variation, variance, error ratio, or error increase or decrease based 

187 on some benchmark criterion) was recorded. If multiple forest variables were evaluated within a 

188 particular study, we either selected the inventory variable of main interest, the variable considered 

189 most representative among the multiple variables studied, or the variable that was most comparable 

190 between studies (usually the growing stock volume (GSV) or above-ground biomass (AGB)).

191

192 In the Sequence-column of Table 1, we indicated the main dimension (temporal or spatial) of the 

193 variability accounted for by the studied methods. Hou et al., (2019) could not be unambiguously 
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9

194 classified, as the improvement noted for that study was essentially based on information from 

195 another model rather than from these dimensions. In addition to the studies listed in Table 1, there 

196 were similar cases that could not be strictly assigned as temporal or spatial considerations, which is 

197 reflected in the sub-title structure of the qualitative review (Section 3). We found studies that used 

198 the Bayesian approach in an abstract form without comparing it to other statistical approaches (de 

199 Groot et al., 2019; Mölder et al., 2019), reporting an improvement (compared with another study or 

200 within their study), or whether the method was effective. Some studies did not report a measure 

201 that could be compared to those in Table 1, although improvements due to the use of the Bayesian 

202 method or data fusion were reported (Uusitalo et al., 2006; Picard et al., 2012; Lu et al., 2019). 

203 Further, the results of two studies were reported at the individual tree-level (Picard et al., 2012; Van 

204 Oijen et al., 2005), whereas Table 1 covered studies reported at the area-level. The studies listed in 

205 this paragraph were not included in the summary table, but are nevertheless qualitatively reviewed 

206 below.

207

208 [ TABLE 1 AROUND HERE ]

209

210 The error measures shown in Table 1 varied from 2.3% to 38.4%, with a median of approximately 

211 13%. The rate of error change (improvement) ranged from 1% to ≈57%, with a median of 4.7%. The 

212 number of time points (Tp#) varied by up to 25. The time span in studies with multiple time points 

213 varied from 2 years to a maximum of 40 years (observed, Babcock et al., 2016) or 50 years 

214 (simulated, Ehlers et al., 2013) between data acquisitions. For growing stock volume estimations, 

215 Katila and Heikkinen (2020) utilized the greatest number of sample plots (42,541) to cover the largest 

216 area of interest. The computation units in Ver Planck et al. (2018) were stands that varied from 0.6 

217 ha to 47 ha, with an average size of 6.6 ha.

218
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219 In attempting to schematize the time, space and improvement factors in Table 1, we noted that the 

220 largest (>10 percentage points) improvements were reported based on relatively small datasets 

221 (number of plots × plot size <15 ha and total inventory area ≤10,000 ha). In contrast, the least 

222 improvements were reported for the National Forest Inventory (NFI) or similar inventory contexts 

223 where the area covered hundreds of thousands or millions of hectares. Between these scales, there 

224 was a notable absence of studies that considered regional scales or larger datasets that modelled 

225 small areas. The rate of the error change seemed to benefit from expansion of the temporal 

226 dimension by increasing the number of time points, but especially by increasing the interval of the 

227 updates. We came to this conclusion by comparing the rates of error change in studies #5 and #11 

228 (with approximately 4.5 and 9 years between data acquisitions, respectively) to studies #8, #10, and 

229 #13 which reported more frequent data acquisitions. However, the remarks above should be treated 

230 with caution due to the small number of studies that measured different aspects. 

231

232 3. Qualitative review of Bayesian methods and applications for forest variable estimation

233

234 3.1. Filtering and data assimilation

235

236 Bayesian or Kalman filtering (Kalman, 1960), also termed Data Assimilation (DA), was introduced for 

237 forest variable estimation by Dixon and Howitt (1979) and for forest inventory data updating and 

238 forest monitoring by Czaplewski et al. (1988). Gertner (1984) used filtering to merge forest growth 

239 estimates with observations. Interestingly, the motivation for his study was the relative 

240 inexpensiveness of utilizing growth projections compared to the collection of new observations, and 

241 the need for a method that was not as restrictive as the Kalman filter in terms of the model forms 

242 and data; both aspects were re-invented in later studies (Section 3.1.1). The work was further refined 

243 by the identification of samples to be collected in the future (Gertner, 1987), by updating the model 

244 parameter estimates of the different growth projections (Gertner, 1987; Gertner et al., 1999), and by 
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245 dealing with uncertainty in both a priori or sampled information (Gertner and Zhu, 1994). Van 

246 Deusen (1987) employed the Kalman filter to analyze dendrochronological time-series. Kangas (1991) 

247 also presents one of the early filtering approaches, while Green and Strawderman (1992) utilized 

248 posterior distributions in Bayesian analyses. The Bayesian filtering and smoothing methods have 

249 been used in many fields of science (e.g., health sciences, ecology, learning, or adaptive systems) to 

250 employ prior and future observations (Särkkä 2013).

251

252 In some studies, Kalman filter and Bayesian methods were used in a manner that would suggest they 

253 were two different approaches (see Ehlers et al., 2013; Nyström et al., 2015; Fortin et al., 2020). 

254 However, according to Särkkä (2013), these can both be classified as Bayesian inference-based 

255 methods, where the Kalman filter falls under general Bayesian theory (see Section 1.2). It is 

256 important to note that Smoothing and Filtering are concepts of sequential Bayes estimation over 

257 time using incremental measurements (time-series data taking into consideration past and current 

258 observations) and should not be confused with the same terms as used in image processing or similar 

259 contexts. It is also worth noting that the use of formalism of time-varying measurements is for 

260 illustrative purposes and is not strictly adhered to or applicable to other sequential data types.

261

262 3.1.1 Applications of time-series filtering to stand-level inventories

263

264 Work by Ehlers et al. (2013), Nyström et al. (2015) and Lindgren et al. (2017) illustrated the potential 

265 benefit of DA for stand-level forest inventories with remotely sensed support data. Ehlers et al. 

266 (2013) tested two methods, a general Bayesian (providing distributions) and an Extended Kalman 

267 Filter (EKF; did not provide distributions but estimated mean and variance) with simulated data. 

268 When the two methods were compared, generally higher predicted variance values were reported 

269 with the Bayes method compared to EKF. The mean values were nearly equal, possibly due to the 

270 linearization of the growth model by the EKF. However, the variance depended on the prediction 
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271 error of the growth model used. The methodology in this particular case study performed best in 

272 low-precision volume estimates for short time periods and with the use of an accurate growth 

273 prediction model.

274

275 Nyström et al. (2015) tested the EKF approach on empirical data. Updating past estimates of forest 

276 variables with growth models and integrating those with current models that use DA led to an 

277 improvement in the precision compared to using the target time-point estimates as such, although 

278 the increase was not high compared to the most recent estimate. The study highlighted that DA can 

279 be based in multiple Bayesian filtering approaches, but that the properties of the method affect the 

280 applicability. As explained in Section 1.2, the standard Kalman filter assumes Gaussian (normal) 

281 distribution both for the predictions and measurements, and for linear forecasting models. As many 

282 forest variables cannot be assumed to be normally distributed, the EKF approach based on the Taylor 

283 approximation is applicable to non-linear forest growth models (Lindgren et al., 2017).

284

285 The follow-up study by Lindgren et al. (2017) was motivated by improved data availability as they 

286 used alternative remote sensing data (Synthetic Aperture Radar) and Bayesian updating to predict 

287 the interval before the next optical remote sensing dataset was available. The time-series of Nyström 

288 et al. (2015) consisted of 6 observations over eight years. While 19 observations over 4 years 

289 (Lindgren et al. 2017) can be considered an improvement, it is still far less than in other study fields 

290 that use DA (e.g., engineering, signal processing and meteorological fields).

291

292 3.1.2 Applications of time-series filtering in National Forest Inventory (NFI) contexts

293

294 Fortin (2020), building upon the stand-level experiences of the Bayesian methods reviewed above, 

295 increased the NFI sample size by updating the sample plots from past inventory campaigns, which 

296 were then used in combination with the new plots. Use of the updated plots increased the precision 
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297 of the estimates, and the Bayesian method yielded similar improvements (best-case coefficient-of-

298 variation ~ 2.28) compared to a multiple imputation method. A similar value (2% error reduction) 

299 was reported by Katila and Heikkinen (2020) who fused historical data to Finnish MS-NFI estimates of 

300 growing stock volumes. This is the number of municipalities with significant estimate error reduction 

301 based on a GLS estimator, which used the covariance matrix to determine the weighted average 

302 from three time-points. The performance was possibly hindered by the relatively short time-series of 

303 only three time-points. Although the data fusion concept was not explicitly Bayesian, it follows the 

304 same concept of using prior data to improve existing estimates. Hou et al. (2021) list several 

305 methodological benefits of a procedure based on Bayesian DA with linear mixed models to combine 

306 results from a rotating panel inventory, measured in a cycle of 5–10 years, to a single date under a 

307 given sampling error requirement.

308

309 3.2. Time-series smoothing

310

311 As strictly defined by Särkkä (2013), diverse types of smoothing, such as specifically fixed interval 

312 smoothing (that uses all observations available for a specific target to make an estimate), fixed lag 

313 smoothing (implements latency in the steps, and uses the current values to update the earlier steps, 

314 and so on), and fixed point smoothing (starts as a Kalman filter, but at a specific point begins to 

315 backward update all previous measurements), were absent from the review. When the concept of 

316 smoothing is considered more generically, the study by Mäkinen et al. (2010) can be fitted to this 

317 category. In that study, forest data mining techniques were used to detect outliers in compartment-

318 wise field inventory data. This approach is closely associated with machine learning concepts in 

319 identifying hidden patterns and undiscovered structures within a dataset. Suty et al. (2013) used past 

320 measurement data to investigate the bias introduced by field protocols to stem volume increment 

321 estimates for the Swedish NFI. The simulations in the study indicated that both the permanent and 

322 temporary types of inventory sample plots were insensitive to random measurement errors, 
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323 although a theoretical chance of bias for larger trees was identified and attributed to the scarcity of 

324 these observations in the empirical inventory data. Neither Mäkinen et al. (2010) nor Suty et al. 

325 (2013) could be categorized as employing a Bayesian approach, but both shared similar aims with the 

326 smoothing concept in that they attempt to improve data reliability by investigating current and prior 

327 observations. Therefore, the concept of Bayesian smoothing could possibly be studied further to fit 

328 these types of applications. 

329

330 3.3. Time-series prediction

331

332 Future predictions are an important use of forest inventory data, in addition to the various statistics 

333 related to the current state of forest resources (Kangas et al., 2019). Although it was difficult to 

334 isolate the exact prediction and updating steps in the frameworks reviewed, forecasting state time 

335 behavior that has not yet been measured can be obtained by iterating the prediction step of the 

336 optimal filter (Section 1.2; see also Särkkä, 2013). Below, we review the studies that used Bayesian 

337 approaches in a somewhat similar way to the generic concept described above.

338

339 An exhaustive European-wide study of growth models (Van Oijen et al., 2005) benchmarked Bayesian 

340 calibration, Bayesian model comparison, and Bayesian model averaging (BMA; see also Leamer, 

341 1978; Fragoso et al., 2014) to account for either the parametric or structural uncertainty of the 

342 growth models. In particular, BMA provides a robust approach to predict forest growth, as it 

343 assimilates predictions by the empirical or process models as weighted averages with weightings that 

344 relate to posterior probabilities (see also Section 3.4). Lu et al. (2019) used the BMA method to 

345 model tree mortality in relation to environmental factors. According to Lu et al. (2019), stepwise 

346 regression was found to predict tree mortality less accurately than BMA; the latter exhibited a more 

347 narrow and reliable confidence interval, and greater accuracy associated with parameter estimation, 

348 which was clearly shown by the posterior probability.
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349

350 Minunno et al. (2019) applied DA to calibrate process-based forest growth predictions based on NFI 

351 and permanent growth experiment data. The calibration guided the parameterization of the process 

352 model closer to experimental conditions, thus reducing uncertainties related to model outputs. In an 

353 area-based matrix model, European Forestry Dynamics Model (EFDM; Packalen et al., 2014), the 

354 transition matrix for forest stands between the states that represent forest development was 

355 estimated through a Bayesian procedure by two consecutive observations. The Bayesian approach of 

356 EFDM is connected to recursive filtering in the case of insufficient NFI plot data – in that case, the 

357 prior, computed from the observations or assumptions, is applied to fill the transition probabilities. 

358 Aside from making predictions, their up- or downscaling may be desired. Tian et al. (2020) 

359 theoretically demonstrated the breakdown of stand growth to individual trees using Bayesian 

360 calibration of a whole-stand growth series with diameter distribution of one time point. 

361

362 Bayesian methods become useful for future predictions that involve uncertainty in the model 

363 predictions and inventory observations. Nyström and Ståhl (2001) showed that Monte-Carlo 

364 simulation could estimate error propagation in growth models that often need extensive simulation 

365 to obtain reliable estimates. Quantifying and reducing uncertainty (Section 3.5) requires 

366 computational considerations, as reviewed by Van Oijen (2017) and summarized in Section 3.6.

367

368 3.4. Using spatial sequential data and other information

369

370 Many of the Bayesian approaches applied in the reviewed studies did not fit within the structural 

371 definition of system state and time as defined by Särkkä (2013). In addition, our review highlighted 

372 many other Bayesian approaches that have been used for different types of inferences, which could 

373 not be categorized as accounting for temporal or spatial variability. Below, we review the approaches 
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374 based on spatial data and those categorized as benefiting from additional information from other 

375 models.

376

377 3.4.1 Using spatial sequential data

378

379 Finley et al. (2008, 2011, 2013, 2014) and Ver Planck et al. (2018) sought an initiative template for 

380 spatially explicit modeling of forest variables at the landscape-scale through remotely sensed 

381 covariates. For instance, Finley et al. (2014) modelled spatially misaligned light detection and ranging 

382 (LiDAR) data and sample plots to yield predictive maps for biomass-related attributes. The Bayesian 

383 hierarchical approach allowed the uncertainty in forest canopy height metrics and variables 

384 measured from inventory plots to be associated with the candidate models. Predictions based on the 

385 posterior predictive distribution sampling averaged parameter estimates over uncertainty. The 

386 increasing prevalence of correlation structures between response variables, which could otherwise 

387 lead to poorer data fits, was successfully addressed. This concept, however, was limited by the 

388 computational workload of a complete multivariate geostatistical model, which resulted in the use of 

389 only 50% of the dataset (see Finley et al., 2008). 

390

391 Babcock et al. (2016) used a Hierarchical Bayesian Modeling concept to couple LiDAR and long-term 

392 forest inventory data. That study, as well as the studies described in the previous paragraph, was 

393 based on the Markov Chain Monte Carlo (MCMC; see also Section 3.6.) approach as a numeric 

394 method to sample from the predicted posterior distributions of AGB to compute statistics related to 

395 mean, variance, and credible intervals of the distributions. The method is relatively easy to 

396 implement for sequential DA with the Bayesian system and it allows for appropriate complex 

397 parameter associations and the propagation of uncertainty on through to prediction.

398

399 3.4.2 Using additional information from another model or inferential method 
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400

401 A number of variants that worked under the same principles but were not strictly in Bayesian 

402 formalism were identified in our review. First, the studies of Van Oijen et al. (2005) and Picard et al. 

403 (2012) can be regarded as data fusion of multiple models to retrieve a fused, single estimate of the 

404 variable of interest. In their abstract, Minunno et al. (2019) referred to this principle as “model data 

405 assimilation”. In the BMA approach (Section 3.3.), a weighted average of probability density 

406 functions, based on the individual predictions, is the predictive function of the quantity of interest. 

407 The weightings of the models that produce the predictions are equal to the posterior probabilities. 

408 The BMA predictive variance can be split into two parts: one corresponding to the variability 

409 between the models and the other to the variability within the models. Notably, Katila and Heikkinen 

410 (2020) used a similar concept for improving the estimate, and both studies reported a small but 

411 consistent improvement in the forest variables of interest.

412

413 As an alternative to text book Kalman filtering, Hou et al. (2019) employed DA by incorporating 

414 seemingly unrelated regressions (SUR) and best linear unbiased prediction (BLUP). The justification to 

415 develop this approach was to circumvent the need for the continuous collection of observations 

416 before updating by means of Kalman filtering, which might not be operationally feasible with the 

417 non-permanent network of sample plots. Junttila et al. (2008) and Zhao et al. (2020) used a Bayesian 

418 regression technique called Sparse Bayesian Modeling (Tipping, 2004), where the model was 

419 designed to compare various weighted combinations of feature values with each other to obtain 

420 optimum weight distribution and an optimum collection of features. When used in different forest 

421 zones (as in Zhao et al., 2020), the method showed equal efficiency, especially when limited sample 

422 plots were available. Finally, Bayesian spike-and-slab regression (Mölder et al. 2019) is an option to 

423 utilize a priori information in modelling. Spike and slab (Mitchell and Beauchamp, 1988) refer to the 

424 type of prior regression coefficient used in linear regression models. These terms assume that the 

425 regression coefficients are mutually independent with a two-point mixture distribution that consists 
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426 of a uniform flat distribution (slab) and a degenerate distribution at zero (spike). This method is 

427 particularly useful when the number of possible predictors is greater than the observations.

428

429 3.5. Managing uncertainty

430

431 Bayesian methods allow more flexible management of uncertainties in parameter estimates than the 

432 more frequently used statistical approaches. These features are specifically reviewed here, because 

433 comprehensive uncertainty analysis would decrease the chance of non-optimal decisions in various 

434 applications, such as ecological risk assessment, forest planning, inventory sampling design, and 

435 environmental decision support. The Bayesian school offers a quantitative measure of uncertainty 

436 (on the basis of available evidence) as the probability around an estimate. Conceptually, the notation 

437 is close to the frequently used confidence interval concept, which is interpreted (e.g., with 95% 

438 confidence level) such that in 95% of hypothesized repeats of the experiment, the true (unknown) 

439 estimate would lie within the lower and upper limits of the interval (the parameter is a fixed value 

440 and the limits are random values). Interpretation of the Bayesian credible interval in a corresponding 

441 case would be that the true (unknown) estimate lies with 95% probability within the interval (the 

442 estimated parameter is a random value, while the limits are fixed). The credible interval is dependent 

443 on the evidence provided by the observed data, and it corresponds to the confidence interval in case 

444 of uninformative (uniform) prior (cf., discussion of ML and MAP estimates on p.18 of Särkkä 2013).

445

446 Theoretically, the inclusion of a large number of data streams into the assimilation may enhance the 

447 data fusion result, although the addition of data at different scales may cause bias or inconsistency 

448 between the content of various data observations, or among the input data and the processing 

449 model (MacBean et al. 2016). Thum et al. (2016) found an inconsistency when assimilating both 

450 annual increment and total biomass data to improve the broader period of mortality and turnover 

451 processes. Minunno et al. (2019) demonstrated a reduction in the uncertainty of parameters after 
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452 applying the calibration. Therefore, it is essential to detect whether DA of one data stream produces 

453 a better or worse fit, and whether this should lead to the determination of an optimal fit among the 

454 datasets.

455

456 Varvia et al. (2017) used the Bayesian approach to investigate the feasibility of posterior probability 

457 density and point estimate measures for area-based forest attribute estimation at the plot-level.  

458 Posterior variances and credible intervals were generated for species-wise growing stock volumes 

459 and used for uncertainty analyses. The study found that the Bayesian 95% CI provided a reliable 

460 measure for the estimated uncertainty when the training datasets were well distributed with a 

461 species-wise compartment.  The point estimate of various species-specific forest variables was less 

462 accurate compared with a benchmark k-nearest neighbor estimate, although the Bayesian point 

463 estimate yielded a more accurate estimate for the total figure (i.e., all forest species summed-up) 

464 and, overall, the ability to report CI could be considered an asset. The methods underestimated the 

465 abundant tree species, such as pine and overestimated the less frequent tree species (e.g., 

466 deciduous). Regardless, the method exhibited equal robustness compared to other state-of-the-art 

467 methods for forest inventories. 

468

469 Similarly, Mäkelä (2020) addressed the uncertainty in ecosystem modeling through the Bayesian 

470 approach of canonical correlation analysis (CCA; Hotelling, 1937), which is a technique for detecting 

471 correlations between two multivariate or random variables and extracting linear components that 

472 represent the correlation. The method was equally useful in identifying the uncertainty caused by 

473 varied factors on ecosystem modeling. For instance, it found that forest management was the 

474 dominant factor that contributed to the uncertainty in the study. The idea of identifying uncertainty 

475 elements is intriguing, especially with Bayes, as illustrated by Varvia (2018) and Mäkelä (2020).

476

477 3.6. Computational aspects
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478

479 In summary, the adoption of a Bayesian approach requires that the modelling framework is defined 

480 as probability distributions of parameter uncertainty. Skewed and multi-dimensional distributions 

481 result in a high computational demand, which requires advanced algorithms (van Oijen, 2017). Aside 

482 from extensions (e.g., EKF described above),  alternative approaches are available. When propagating 

483 errors in growth models, Nyström and Ståhl (2001) assumed Gaussian distributions, although other 

484 forms of distributions could lead to intractable calculations following their approach. Motivated by 

485 these drawbacks, Gove (2009) re-formulated the approach based on sequential Monte Carlo filters 

486 (particle filters) to allow for nonlinear, non-Gaussian assumptions, as well as the integration of new 

487 inventory information with model predictions. The presented filter is close to a regular Kalman filter 

488 but differs in the sampling mechanism, in which many particles generated by Monte Carlo methods 

489 represent random variation, while a small deterministic sample of the stated space is taken to 

490 estimate the mean and covariance of each state. 

491

492 Somewhat cognate to the above-reviewed methods, Gibbs sampling reduces the impractical 

493 restrictions of the Kalman filter for real-world data analyses and was used by Green and 

494 Strawderman (1992). It was also employed by Liénard et al. (2015) to parameterize biomass 

495 transition matrices from forest inventories in order to predict forest development under 

496 disturbances (see also Liénard and Strigul, 2016). Itter et al. (2017, 2019) proposed a hierarchical 

497 model structure for the radial growth of individual trees. Their model hierarchy was built from fixed 

498 stand and tree parameters and climate parameters that evolve over time, thereby affecting the stand 

499 and, subsequently, tree growth. The model parameters were solved and updated by means of MCMC 

500 and Gibbs sampling, which is described in detail in Appendix S1 in Itter et al. (2017).

501

502 As elaborated by Van Oijen (2017), the application of Bayesian methods to more complex problems 

503 over time has shifted thinking from exact solutions of a single parameter vector to algorithms that 
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504 approximate these parameters. The idea of MCMC, in brief, is to explore the parameter space 

505 toward the highest posterior probability, where the prior multiplied by the likelihood for that 

506 parameter vector guides the representative sampling from the posterior distribution. Yet, our review 

507 also noted more deterministic alternatives to MCMC. For instance, de Groot (2019) modeled spatially 

508 explicit forest management history and pest control by means of Integrated Nested Laplace 

509 Approximations (INLA; Rue et al., 2007), which is an alternative to the MCMC-based statistical 

510 inference in latent Gaussian models. The key benefit of INLA is that it has simpler computation based 

511 on individual posterior marginal model parameters, thereby avoiding posterior predictive 

512 simulations, and so permits rapid and accurate computations (Nothdurft, 2020). Indeed, Nothdurft 

513 (2020) estimated annual radial increments with a hierarchical model motivated by Itter et al. (2017, 

514 2019), but that was solved by the INLA approach. We include this here as an example of how the 

515 Bayesian method can reduce structural uncertainty and simplify the process involved. 

516

517 4. Discussion

518

519 4.1. Summarized key findings and limitations of the review

520

521 We used exact search terms based on Särkkä (2013) to discover relevant literature for the 

522 quantitative analysis (Figure 3). The success of a literature review depends on whether the concept 

523 and algorithm names were used in the published studies. We believe that our choice here was 

524 successful, since the search results had to be augmented by only a few papers in the qualitative 

525 analysis. According to our literature search results, there is a clear trend that studies employing 

526 Bayesian methods are slowly increasing. However, the adoption of these methods appears to be less 

527 common in forestry than in other disciplines, in particular remote sensing. It was previously 

528 identified that the possibilities to use Bayesian filters to evaluate the past and to predict the future 

529 are not commonly recognized in forest inventories or related studies (Kangas et al., 2019).

Page 21 of 41 Canadian Journal of Forest Research (Author?s Accepted Manuscript)

© The Author(s) or their Institution(s)

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

M
E

T
L

A
/L

E
H

T
IS

A
L

I 
on

 0
1/

19
/2

2
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



22

530

531 The median error change due to the introduction of a Bayesian or ad hoc approach for data fusion 

532 was 4.7 percentage points (Table 1). There was a strong variation between studies and the degree of 

533 improvement depended, for example, on the type of data, the forest variables of interest, target 

534 species, sample size, and study design. No more detailed numeric recommendation (such as a model 

535 explaining the performance) could be developed based on a meta-analysis, as the results varied 

536 considerably with regard to the aforementioned aspects. Therefore, it is important to give due 

537 consideration to the various characteristics of the experiment that is under study.

538

539 A detailed examination of Vastaranta et al. (2018) provides an example on how difficult it was to 

540 assign some of the studies in Table 1. In their work, they combined new inventory data from 2016 

541 with older data collected in 2014 and updated to 2016 by a growth model. Their reported RMSE 

542 values improved from 26.0% (based on the use of 2016 data alone) to 20.4% with best-case 

543 weightings for the combination of the two datasets. This equates to an error change of 5.6 

544 percentage points and was, therefore, included in Table 1. However, according to Vastaranta et al. 

545 (2018), merely updating the 2014 dataset would have yielded a change in 11.4 percentage points 

546 (from an RMSE value of 33.2% based on validation of the 2014 models with 2016 data to 21.8% 

547 based on the 2014 data updated with the growth model). Therefore, the improvement in RMSE 

548 attributable to the acquisition of new data, from 21.8% (best-case result with one time point) to 

549 20.4% (best-case with two time points), is equal to 1.4 percentage points. This is in line with the 

550 other studies presented in Table 1 and indicates that the values included in our table may depend to 

551 some extent on the reporting practices of the individual studies.

552

553 In our review, we ignored many factors related to forest status, such as site index, management and 

554 development stage. On the one hand, we noted that the comparison of relatively similar studies (cf., 

555 Junttila et al., 2008, and Varvia et al., 2017, in terms of forest conditions and sample plot data) based 
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556 on different Bayesian approaches yielded very different results. Junttila et al. (2008) reported an 

557 initial RMSE value of 19.9%, while Varvia et al. (2017) reported a value of 17.7%,  and improvements 

558 of 1 and almost 10 percentage points, respectively. On the other hand, Hou et al. (2019) reported a 

559 33% reduction in the RMSE value compared with non-calibrated values in juvenile forests, which are 

560 generally considered a difficult target. It is possible that predictions of forest stand characteristics, 

561 such as growing stock volume based on high-resolution auxiliary data, such as LiDAR are already 

562 highly accurate and may be difficult to improve upon, although the methods could differ in the 

563 prediction of species-specific and minor species’ properties (although see Varvia et al. 2019 for 

564 contradictory results). Yet, the results described above also indicate that there are considerable 

565 differences within the Bayesian procedures that should be further explored.

566

567 Compared to some ad hoc methods included in the review, we did not find strong numeric evidence 

568 for better performance in the prediction of forest variables by the various Bayesian approaches. This 

569 result may be partly because we compared a variety of methods for different prediction tasks. 

570 However, our review highlighted the interpretation of the prior information compared to the 

571 theoretical representation (Sections 1.2. and 1.3; Särkkä, 2013). In Table 1, greater improvements 

572 were more frequently observed by the Bayesian approach with data from a single time point rather 

573 than employing a time-series. In these cases, the prior information either originated from spatial 

574 data outside the computation unit, from another model (BMA, SUR) or from other relevant 

575 information (location accuracy). Lower gains were observed for inventories that were employed at 

576 larger scales, where the sampling error may be the dominant source of error. Lower gains were also 

577 observed with large datasets and higher gains were noted with small datasets, where the original 

578 uncertainties can obviously be greater. This finding may suggest that the additional spatial 

579 information from neighboring trees or stands at one time point is more useful than actual prior 

580 information in time. However, this may require confirmation from studies where these aspects were 

581 specifically considered. The result could be explained by additional sources of variation that accrue 
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582 from the requirement to use several data acquisitions over time, rather than just one used in space. 

583 At the national level, several acquisitions include remote sensing campaigns with different 

584 parameterizations that may result in additional variation.

585

586 4.2. Utilizing the full potential of Bayesian methods

587

588 Even though the adoption of a Bayesian approach resulted in unexpectedly small numeric benefits, it 

589 may rationalize the analyses by accounting for the features of the Bayesian approaches that we 

590 identified in the introduction section. In summary, one of the more promising disciplines of 

591 sequential Bayesian estimation is when evaluating observations at varying points in time; Särkkä 

592 (2013) approached optimal filtering and smoothing as the least-squares optimality of the posterior 

593 distribution of states of a system observed through marginal distributions of noisy, time-varying 

594 measurements. The estimate of the state space is affected by the prior probability distribution, 

595 transition probability distribution (a Markov chain), and measurement model. Särkkä (2013) further 

596 lists several numerical approximation methods (or categories) that can be operated based on 

597 different assumptions. In the following section, we consider how some of these properties are 

598 exhibited in related forestry studies.

599

600 4.2.1. Prior

601

602 The prior distribution, or assumptions on information used as the prior, was identified to have a 

603 major role in delivering accurate results. For instance, validations carried out over very different 

604 geospatial scales (e.g., Nyström et al., 2015; Fortin, 2020) all denote the significant contribution of an 

605 accurate growth model toward good performance. In DA studies, the variance related to growth 

606 predictions has generally been smaller than the sampling variance related to the acquisition of new 

607 plots, which has led to an emphasis in the utility of updating the plots with the growth model over 
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608 the acquisition of new data. Yet, when focused only on the growth model, the meaning of prior is 

609 considerably narrower, and analyses could potentially be improved by re-thinking its meaning and 

610 role. Firstly, because of the long history of forest inventories, we always have some prior information 

611 to narrow down the interval of possible results. Secondly, even a minor degree of prior information 

612 can be useful when it is used judiciously: for instance, in imputing-like fashion with observations to 

613 fill gaps due to sparse field sample in NFI-based forest development matrices, which has been 

614 proposed by Packalen et al. (2014) and was applied as part of the EFDM software, for instance, by 

615 Vauhkonen et al. (2019). 

616

617 4.2.2. Change model

618

619 In the context of estimating forest variables, the findings of Fortin (2020) and Kangas et al. (2020) 

620 suggest that the growth model should actually be considered as the “change model”, as it is used to 

621 predict all possible changes in the forest stand during the growing period; therefore, abrupt changes 

622 in forest conditions need to be addressed. Notably, both Fortin (2020) and Kangas et al. (2020) 

623 suggest disturbances (both natural and forestry operations) are the most difficult changes to model. 

624 If harvests in the past sample-plot data could be detected, and the difficulties associated with this 

625 task were acknowledged, then the use of prior data could be expected to yield more accurate results 

626 (Kangas et al., 2020; Fortin 2020). A sudden change in the forest stand (e.g., clear-cutting) can be 

627 relatively easy to detect from plotted time-series, whereas it can be difficult to model for future 

628 development within the overall utilized modeling scheme. For that reason, Fortin (2020) used a 

629 harvest probability model rather than observations obtainable from a GIS database. Driven by the 

630 possibility to continuously update the posterior distribution by new observations from harvesters 

631 (e.g., Uusitalo et al. 2006), more observations from actual harvests could be expected. Yet, the 

632 inability by most current forest development models to consider disruptive events can be seen as a 

633 limit to their use in updating forest inventory data (Fortin, 2020). Indeed, Fortin (2020) and Kangas et 
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634 al. (2020) were among the first studies to take changing forest conditions (including harvests) into 

635 account in DA, and it is reasonable to expect further developments on these aspects in the future. 

636

637 4.2.3. Weighting of the prior and new observations

638

639 With filtering, it has been accepted that the combined use of past and current inventory data 

640 produces more accurate estimations (Ehlers, 2013; Lindgren et al., 2017; Nyström et al., 2015), 

641 although Kangas et al. (2020) did not find this to be self-evident. To gain benefits, the estimates from 

642 the different time points or data sources must be properly weighted, which is typically caried out by 

643 assigning weightings (inversely) proportional to the variance of the different estimates. Work by 

644 Lindgren et al. (2017) assimilating multiple time points (and the follow-up by Ehlers et al., (2018) that 

645 was based on analyzing the correlations of the non-independent errors of these estimates) provide 

646 ideas and “rules-of-thumb” as to the value of the weightings. In Lindgren et al. (2017), the 

647 predictions that used past data received a greater weighting than the new data after 2–3 

648 assimilations (depending on the forest attributes), and the weighting placed on new acquisitions was 

649 < 10% after ≈7 acquisitions. Although the performance varied in estimating forest attributes based 

650 on single data acquisitions, the variation associated with the assimilated result decreased and 

651 stabilized after the first iterations. Yet, all benefits of assimilating past data were not necessarily 

652 visible due to an underestimation in the variances of inter-correlated estimates (Ehlers et al., 2018). 

653 According to Ehlers et al. (2018), independent observations based on a different acquisition 

654 technique or estimation method should receive a greater weighting as they are less correlated. A 

655 graphical analysis of the values in Ehlers et al. (2018) suggests that even two time-points based on 

656 independent sensors or modeling should not be treated equally, i.e., combined with the same 

657 weighting, but that the correlation of the errors should be accounted for in the variance estimates. In 

658 cases of availability and the use of accurate auxiliary data, the resulting overall error might not be 

659 significantly lowered compared to the use of prior inventory data or accurate auxiliary data (Nyström 
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660 et al., 2015; Kangas et al., 2020), although the internal consistency of the estimates could be 

661 improved to a degree that is beneficial for later applications. 

662

663 4.2.4. Posterior distributions and uncertainty quantification

664

665 The use of posterior probability densities, which are also an inherent property of many Bayesian 

666 methods, creates possibilities for approaches such as uncertainty assessments. One example where 

667 uncertainty metrics were determined based on the posterior density and point estimates is 

668 illustrated by Varvia (2018). In this study, which was based on a leave-one-out subset of data, the 

669 accuracy of the Bayesian 95% credible intervals was found to be ideal for uncertainty analyses. One 

670 important initial finding of this study was that the prediction accuracy of the variables may improve 

671 when the variable pools are increased, although this may reduce the possibilities for uncertainty 

672 quantification. On the other hand, as outlined above, the full utilization of the posterior distribution 

673 may require the abandonment of parametric and Gaussian assumptions that lead to difficulty in 

674 solving the related modeling tasks analytically. As such, there is a subsequent need for 

675 computationally efficient techniques, such as MCMC (e.g., Babcock et al., 2016; Varvia et al., 2019). 

676 The instructive example of Varvia et al. (2019), who obtained considerable computational advantages 

677 by avoiding exact computations and pre-computing some parameters, suggests that some of the 

678 techniques reviewed above may require similar computational considerations in order to become 

679 operational. Establishing rules as to when to use a Bayesian or other paradigm would be especially 

680 useful for improving methodological choices for forest variable estimation. This will be a challenge as 

681 the choice depends on the applications and data usage. Moreover, RMSE or bias is not always an 

682 appropriate measure of accuracy. Loss attributable, for example, to misrepresentation of net present 

683 value requires consideration of the monetary element of these errors. Therefore, the question could 

684 possibly be approached through the concept of value of information (e.g., Kangas, 2010) by 
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685 computing the (computational) costs and losses associated with the adoption of a Bayesian vs. an 

686 alternative approach. 

687

688 5. Conclusion

689

690 Bayesian approaches have been increasingly utilized in many applications during the last decade, 

691 although less so in forestry than in the other reviewed scientific disciplines. However, state-of-the-art 

692 data processing frameworks and cross-disciplinary technologies allow for the integration of remotely 

693 sensed and forest inventory data, which are available at more frequent intervals and produce a 

694 longer time-series. The Bayesian frameworks provide the possibility to incorporate prior information, 

695 utilize the posterior distribution, as well as update it incrementally with more data, and efficiently 

696 measure and quantify uncertainties. These properties appear under-utilized in various data fusion 

697 approaches that characterize forest stand conditions. Thus, more significant contributions from the 

698 adoption of Bayesian approaches could likely be reached by developing know-how and competence 

699 in using standard formal methods instead of ad hoc methods. 

700

701 We have identified the following as important aspects that affect the choice of whether to build a 

702 time-series analysis concept upon Bayesian formalism: 1) whether a forest variable estimate is 

703 treated as a time-series or as a time epoch, 2) access to a change model that, in addition to forest 

704 growth, is able to model sudden changes due to disturbances, 3) number of data points and time 

705 span of the time series, acquisition means and optimal interval for the time points during the total 

706 time span, and 4) assumed distributions of the data (in particular, Gaussian vs. other). Whether the 

707 choice is a Bayesian method, we further suggest that 5) Bayesian filtering should be combined with 

708 Bayesian smoothing whenever applicable, 6) uncertainty quantification should be built upon an 

709 analysis of credible intervals of posterior distributions to assess which sources of uncertainty 

710 predominate in forest variable estimation, and 7) advanced algorithms can be used for the 
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711 calculation of numerical approximations of multi-dimensional integrals to reduce the computational 

712 time due to the adoption of the Bayesian method.

713

714 Acknowledgements

715 Funding: This work was supported by the Academy of Finland [grant number 324193].

716

717 References

718

719 Babcock, C., Finley, A.O., Bradford, J.B., Kolka, R., Birdsey, R., and Ryan, M.G. 2015. LiDAR based 

720 prediction of forest biomass using hierarchical models with spatially varying coefficients. Remote 

721 Sens. Environ. 169, 113-127.

722 Babcock, C., Finley, A.O., Cook, B.D., Weiskittel, A., and Woodall, C.W. 2016. Modeling forest biomass 

723 and growth: Coupling long-term inventory and LiDAR data. Remote Sens. Environ. 182, 1-12.

724 Cressie, N.A.C. 1993. Statistics for spatial data – revised edition. John Wiley & Sons. ISBN 0-471-

725 00255-0, 902 p.

726 Czaplewski, R.L., Alig, R.J., and Cost, N.D. 1988. Monitoring land/forest cover using the Kalman filter: 

727 A proposal. In: Ek, A.R.; Shifley, S.R., Burk, T.E. (Eds.), Forest growth modelling and prediction: 

728 Volume 2. Gen. Tech. Report NC-120. Dept. of Agriculture, Forest Service, North Central Forest 

729 Experiment Station, St. Paul, MN, USA, p. 1089-1096, 

730 https://www.fs.usda.gov/treesearch/pubs/download/32871.pdf 

731 de Groot, M., Diaci, J., and Ogris, N. 2019. Forest management history is an important factor in bark 

732 beetle outbreaks: Lessons for the future. For. Ecol. Manage. 433, 467-474.

733 Dixon, B., and Howitt, R. 1979. Continuous forest inventory using a linear filter. For. Sci. 25, 675-698.

734 Ehlers, S., Grafström, A., Nyström, K., Olsson, H., and Ståhl, G. 2013. Data assimilation in stand-level 

735 forest inventories. Can. J. For. Res. 43, 1104-1113.

Page 29 of 41 Canadian Journal of Forest Research (Author?s Accepted Manuscript)

© The Author(s) or their Institution(s)

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

M
E

T
L

A
/L

E
H

T
IS

A
L

I 
on

 0
1/

19
/2

2
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



30

736 Ehlers, S., Saarela, S., Lindgren, N., Lindberg, E., Nyström, M., Persson, H.J., Olsson, H., and Ståhl, G. 

737 2018. Assessing error correlations in remote sensing-based estimates of forest attributes for 

738 improved composite estimation. Remote Sens., 10(5), 667. 

739 Finley, A.O., Banerjee, S., and Cook, B.D. 2014. Bayesian hierarchical models for spatially misaligned 

740 data in R. Methods Ecol. Evol. 5, 514-523.

741 Finley, A.O., Banerjee, S., and MacFarlane, D.W. 2011. A hierarchical model for quantifying forest 

742 variables over large heterogeneous landscapes with uncertain forest areas. J. Amer. Stat. Ass. 106, 

743 31-48.

744 Finley, A.O., Banerjee, S., Cook, B.D., and Bradford, J.B. 2013. Hierarchical Bayesian spatial models for 

745 predicting multiple forest variables using waveform LiDAR, hyperspectral imagery, and large 

746 inventory datasets. Int. J. Appl. Earth Obs. Geoinfo. 22, 147-160.

747 Finley, A.O., Banerjee, S., Ek, A.R., and McRoberts, R.E. 2008. Bayesian multivariate process modeling 

748 for prediction of forest attributes. J. Agr. Biol. Env. Stat. 13, 60-83.

749 Fortin, M. 2020. Updating plots to improve the precision of small-area estimates: the example of the 

750 Lorraine region, France. Can. J. For. Res. 50, 648-658.

751 Fragoso, T.M., Bertoli, W., and Louzada, F. 2018. Bayesian Model Averaging: A systematic review and 

752 conceptual classification. Int. Stat. Rev. 86, 1-28.

753 Gertner, G.Z. 1984. Localizing a diameter increment model with a sequential Bayesian procedure. 

754 For. Sci. 30, 851-864.

755 Gertner, G. 1987. A procedure to evaluate sampling schemes for improving already calibrated 

756 models. For. Sci. 33, 632-643.

757 Gertner, G.Z., Fang, S., and Skovsgaard, J.P. 1999. A Bayesian approach for estimating the parameters 

758 of a forest process model based on long-term growth data. Ecol. Mod. 119, 249-265.

759 Gertner, G.Z., and Zhu, H. 1996. Bayesian estimation in forest surveys when samples or prior 

760 information are fuzzy. Fuzzy Sets Syst. 77, 277-290.

Page 30 of 41Canadian Journal of Forest Research (Author?s Accepted Manuscript)

© The Author(s) or their Institution(s)

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

M
E

T
L

A
/L

E
H

T
IS

A
L

I 
on

 0
1/

19
/2

2
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



31

761 Gove, J.H. 2009. Propagating probability distributions of stand variables using sequential Monte Carlo 

762 methods. Forestry, 82, 403-418.

763 Green, E.J., and Strawderman, W.E. 1992. A comparison of hierarchical Bayes and empirical Bayes 

764 methods with a forestry application. For. Sci. 38, 350-366. 

765 Hotelling, H. 1936. Relations between two sets of variates. Biometrika, 28, 321-377.

766 Hou, Z., Mehtätalo, L., McRoberts, R.E., Ståhl, G., Tokola, T., Rana, P., Siipilehto, J., and Xu, Q. 2019. 

767 Remote sensing-assisted data assimilation and simultaneous inference for forest inventory. 

768 Remote Sens. Environ. 234, 111431.

769 Hou, Z., Domke, G.M., Russell, M.B., Coulston, J.W., Nelson, M.D., Xu, Q., and McRoberts, R.E. 2021. 

770 Updating annual state- and county-level forest inventory estimates with data assimilation and FIA 

771 data. For. Ecol. Manage. 483, doi: 10.1016/j.foreco.2020.118777 

772 Itter, M.S., D'Orangeville, L., Dawson, A., Kneeshaw, D., Duchesne, L., and Finley, A.O. 2019. Boreal 

773 tree growth exhibits decadal-scale ecological memory to drought and insect defoliation, but no 

774 negative response to their interaction. J. Ecol. 107, 1288-1301.

775 Itter, M.S., Finley, A.O., D'Amato, A.W., Foster, J.R., and Bradford, J.B. 2017. Variable effects of 

776 climate on forest growth in relation to climate extremes, disturbance, and forest dynamics. Ecol. 

777 Appl. 27, 1082-1095.

778 Junttila, V., Maltamo, M., and Kauranne, T. 2008. Sparse Bayesian estimation of forest stand 

779 characteristics from airborne laser scanning. For. Sci. 54, 543-552.

780 Kalman, R.E. 1960. A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35-45.

781 Kangas, A. 1991. Updated measurement data as prior information in forest inventory. Silva Fenn. 25, 

782 181-191.

783 Kangas, A.S. 2010. Value of forest information. Eur. J. For. Res. 129, 863-874.

784 Kangas, A., Astrup, R., Breidenbach, J., Fridman, J., Gobakken, T., Korhonen, K. T., Maltamo, M., 

785 Nilsson, M., Nord-Larsen, T., Næsset, E., and Olsson, H. 2018a. Remote sensing and forest 

786 inventories in Nordic countries–roadmap for the future. Scand. J. For. Res. 33, 397-412. 

Page 31 of 41 Canadian Journal of Forest Research (Author?s Accepted Manuscript)

© The Author(s) or their Institution(s)

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

M
E

T
L

A
/L

E
H

T
IS

A
L

I 
on

 0
1/

19
/2

2
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



32

787 Kangas, A., Korhonen, K.T., Packalen, T., and Vauhkonen, J. 2018b. Sources and types of uncertainties 

788 in the information on forest-related ecosystem services. For. Ecol. Manage. 427, 7-16.

789 Kangas, A., Räty, M., Korhonen, K.T., Vauhkonen, J., and Packalen, T. 2019. Catering information 

790 needs from global to local scales-potential and challenges with national forest inventories. Forests 

791 10, 9.

792 Kangas, A., Gobakken, T., and Næsset, E. 2020. Benefits of past inventory data as prior information 

793 for the current inventory. For. Ecosyst. 7(1), 20.

794 Katila, M., and Heikkinen, J. 2020. Reducing error in small-area estimates of multi-source forest 

795 inventory by multi-temporal data fusion. Forestry 93, 471-480.

796 Knödel, K., Toloczyki, M., Bohn, A., Abel, T., Lange, G., and Tejedo, A. 2007. Data fusion. p. 1054 in 

797 Environmental Geology - Handbook of Field Methods and Case Studies. Edited by K. Knödel, G. 

798 Lange, H.-J. Voigt. Springer-Verlag Berlin Heidelberg, ISBN 978-3-540-74669-0

799  Leamer, E.E. 1978. Specification searches: Ad hoc inference with nonexperimental data. Wiley, New 

800 York.

801 Liénard, J.F., and Strigul, N.S. 2006. Modelling of hardwood forest in Quebec under dynamic 

802 disturbance regimes: a time-inhomogeneous Markov chain approach. J. Ecol. 104, 806-816. 

803 Liénard, J.F., Gravel, D., and Strigul, N.S. 2015. Data-intensive modeling of forest dynamics. Environ. 

804 Mod. Soft. 67, 138-148. 

805 Lindgren, N., Persson, H.J., Nyström, M., Nyström, K., Grafström, A., Muszta, A., Willén, E., Fransson, 

806 J.E.S., Ståhl, G., and Olsson, H. 2017. Improved prediction of forest variables using data 

807 assimilation of Interferometric Synthetic Aperture Radar data. Can. J. Rem. Sens. 43, 374-383.

808 Lu, L., Wang, H., Chhin, S., Duan, A., Zhang, J., and Zhang, X. 2019. A Bayesian Model Averaging 

809 approach for modelling tree mortality in relation to site, competition and climatic factors for 

810 Chinese fir plantations. For. Ecol. Manage. 440, 169-177.

Page 32 of 41Canadian Journal of Forest Research (Author?s Accepted Manuscript)

© The Author(s) or their Institution(s)

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

M
E

T
L

A
/L

E
H

T
IS

A
L

I 
on

 0
1/

19
/2

2
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



33

811 MacBean, N., Peylin, P., Chevallier, F., Scholze, M., and Schürmann, G. 2016. Consistent assimilation 

812 of multiple data streams in a carbon cycle data assimilation system. Geosci. Model Dev. 9, 3569-

813 3588.

814 Mäkelä, J. 2020. Bayesian methods applied for ecosystem model calibration and uncertainty source 

815 estimation. Finnish Meteorological Institute Contributions 160, 

816 http://hdl.handle.net/10138/310949

817 Mäkinen, A.M., Kangas, A.S., and Tokola, T. 2010. Identifying the presence of assessment errors in 

818 forest inventory data by data mining. For. Sci. 56, 301-312.

819 Minunno, F., Peltoniemi, M., Härkönen, S., Kalliokoski, T., Makinen, H., and Mäkelä, A. 2019. Bayesian 

820 calibration of a carbon balance model PREBAS using data from permanent growth experiments 

821 and national forest inventory. For. Ecol. Manage. 440, 208-257.

822 Mitchell, T.J., and Beauchamp, J.J. 1988. Bayesian variable selection in linear regression. J. Amer. 

823 Stat. Ass. 83, 1023-1032.

824 Mölder, A., Sennhenn-Reulen, H., Fischer, C., Rumpf, H., Schönfelder, E., Stockmann, J., and Nagel, 

825 R.V. 2019. Success factors for high-quality oak forest (Quercus robur, Q. petraea) regeneration. 

826 For. Ecosyst. 6(1), 49.

827 Nothdurft, A. 2020. Climate sensitive single tree growth modeling using a hierarchical Bayes 

828 approach and integrated nested Laplace approximations (INLA) for a distributed lag model. For. 

829 Ecol. Manage. 478, doi: 10.1016/j.foreco.2020.118497

830 Nyström, K., and Ståhl, G. 2001. Forecasting probability distributions of forest yield allowing for a 

831 Bayesian approach to management planning. Silva Fenn. 35, 185-201.

832 Nyström, M., Lindgren, N., Wallerman, J., Grafström, A., Muszta, A., Nyström, K., Bohlin, J., Willén, E., 

833 Fransson, J., Ehlers, S., Olsson, H., and Ståhl, G. 2015. Data assimilation in forest inventory: First 

834 empirical results. Forests 6, 4540-4557.

835 Packalen, T., Sallnäs, O., Sirkiä, S., Korhonen, K., Salminen, O., Vidal, C., Robert, N., Colin, A., 

836 Belouard, T., Schadauer, K., Berger, A., Rego, F., Louro, G., Camia, A., Räty, M., and San-Miguel, J. 

Page 33 of 41 Canadian Journal of Forest Research (Author?s Accepted Manuscript)

© The Author(s) or their Institution(s)

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

M
E

T
L

A
/L

E
H

T
IS

A
L

I 
on

 0
1/

19
/2

2
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



34

837 2014. The European Forestry Dynamics Model. Concept, design and results of first case studies. 

838 Publications office of the EU, Report EUR 27004 EN, doi: 10.2788/153990

839 Picard, N., Henry, M., Trotta, C., and Saint-Andre, L. 2012. Using Bayesian Model Averaging to predict 

840 tree aboveground biomass in tropical moist forests. For. Sci. 58, 15-23.

841 Rue, H., Martino, S., and Chopin, N. 2009. Approximate Bayesian inference for latent Gaussian 

842 models by using integrated nested Laplace approximations. J. Royal Stat. Soc. B, 71, 319-392.

843 Särkkä, S. 2013. Bayesian filtering and smoothing. Cambridge University Press, 232 p. ISBN 

844 9781139344203, doi: 10.1017/CBO9781139344203

845 Suty, N., Nyström, K., and Ståhl, G. 2013. Assessment of bias due to random measurement errors in 

846 stem volume growth estimation by the Swedish National Forest Inventory. Scand. J. For. Res. 28, 

847 174-183.

848 Thum, T., MacBean, N., Peylin, P., Bacour, C., Santaren, D., Longdoz, B., Loustau, D., and Ciais, P. 

849 2017. The potential benefit of using forest biomass data in addition to carbon and water flux 

850 measurements to constrain ecosystem model parameters: Case studies at two temperate forest 

851 sites. Agr. J. For. Meteorol. 234-235, 48-65.

852 Tian, X., Sun, S., Mola-Yudego, B., and Cao, T. 2020. Predicting individual tree growth using stand-

853 level simulation, diameter distribution, and Bayesian calibration. Ann For. Sci. 77(57), doi: 

854 10.1007/s13595-020-00970-0

855 Tipping, M.E. 2004. Bayesian inference: An introduction to principles and practice in machine 

856 learning. In Carbonell, U.J.G., Siekmann, G.J. (Eds.), Advanced Lectures on Machine Learning, Vol. 

857 3176, p. 248. Springer-Verlag, Berlin Heidelberg. doi: 10.1007/978-3-540-28650-9_3

858 Uusitalo, J, Puustelli, A., Kivinen, V.P., Nummi, T., and Sinha, B.K. 2006. Bayesian estimation of 

859 diameter distribution during harvesting. Silva Fenn. 40, 663-671.

860 van Deusen, P.C. 1987. Testing for stand dynamics effects on red spruce growth trends. Can. J. For. 

861 Res. 17, 1487-1495.

Page 34 of 41Canadian Journal of Forest Research (Author?s Accepted Manuscript)

© The Author(s) or their Institution(s)

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

M
E

T
L

A
/L

E
H

T
IS

A
L

I 
on

 0
1/

19
/2

2
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



35

862 van Oijen, M. 2017. Bayesian methods for quantifying and reducing uncertainty and error in forest 

863 models. Curr. For. Rep. 3, 269-280.

864 van Oijen, M., Rougier, J., and Smith, R. 2005. Bayesian calibration of process-based forest models: 

865 Bridging the gap between models and data. Tree Physiol. 25, 915-927.

866 Varvia, P. 2018. Uncertainty quantification in remote sensing of forests. Dissertations in Forestry and 

867 Natural Sciences, Publications of the University of Eastern Finland 313, 44 p, 

868 http://urn.fi/URN:ISBN:978-952-61-2867-2

869 Varvia, P., Lähivaara, T., Maltamo, M., Packalen, P., Tokola, T., and Seppänen, A. 2017. Uncertainty 

870 quantification in ALS-based volume estimation. IEEE Trans. Geosci. Remote Sens. 55, 1671-1681.

871 Varvia, P., Lähivaara, T., Maltamo, M., Packalen, P. and Seppänen, A. 2018. Gaussian process 

872 regression for forest attribute estimation from airborne laser scanning data. IEEE Trans. Geosci. 

873 Remote Sens. 57, 3361-3369.

874 Vastaranta, M., Yu, X., Luoma, V., Karjalainen, M., Saarinen, N., Wulder, M.A., White, J.C., Persson, 

875 H.J., Hollaus, M., Yrttimaa, T., Holopainen, M. and Hyyppä, J. 2018. Aboveground forest biomass 

876 derived using multiple dates of WorldView-2 stereo-imagery: quantifying the improvement in 

877 estimation accuracy. Int. J. Remote Sens. 39, 8766-8783.

878 Vauhkonen, J., Berger, A., Gschwantner, T., Schadauer, K., Lejeune, P., Perin, J., Pitchugin, M., Adolt, 

879 R., Zeman, M., Johannsen, V.K., Kepfer-Rojas, S., Sims, A., Bastick, C., Morneau, F., Colin, A., 

880 Bender, S., Kovacsevics, P., Solti, G., Nagy, D., Kolozs, L., Nagy, K., Twomey, M., Redmond, J., 

881 Gasparini, P., Notarangelo, M., Rizzo, M., Makovskis, K., Lazdins, A., Lupikis, A., Kulbokas, G., 

882 Anton-Fernandez, C., Castro Rego, F., Nunes, L., Marin, G., Calota, C., Pantic, D., Borota, D., 

883 Roessiger, J., Bosela, M., Seben, V., Skudnik, M., Adame, P., Alberdi, I., Canellas, I., Lind, T., 

884 Trubins, R., Thürig, E., Stadelmann, G., Ditchburn, B., Ross, D., Gilbert, J., Halsall, L., Lier, M. and 

885 Packalen, T. 2019. Harmonised projections of future forest resources in Europe. Ann. For. Sci. 

886 76(3), 79.

Page 35 of 41 Canadian Journal of Forest Research (Author?s Accepted Manuscript)

© The Author(s) or their Institution(s)

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

M
E

T
L

A
/L

E
H

T
IS

A
L

I 
on

 0
1/

19
/2

2
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



36

887 Ver Planck, N.R., Finley, A.O., Kershaw, J.A., Weiskittel, A.R., and Kress, M.C. 2018. Hierarchical 

888 Bayesian models for small area estimation of forest variables using LiDAR. Remote Sens. Environ. 

889 204, 287-295.

890 Zhang, T., Su, J., Liu, C., and Chen, W.H. 2019. Bayesian calibration of AquaCrop model for winter 

891 wheat by assimilating UAV multi-spectral images. Comput. Electronics Agr. 167, 105052.

892 Zhang, X., Duan, A., and Zhang, J. 2013. Tree biomass estimation of Chinese fir (Cunninghamia 

893 lanceolata) based on Bayesian method. PLoS ONE 8(11), e79868.

894 Zhao, P., Gao, L., and Gao, T. 2020. Extracting forest parameters based on stand automatic 

895 segmentation algorithm. Sci. Rep. 10, 1-13.

896

Page 36 of 41Canadian Journal of Forest Research (Author?s Accepted Manuscript)

© The Author(s) or their Institution(s)

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

M
E

T
L

A
/L

E
H

T
IS

A
L

I 
on

 0
1/

19
/2

2
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



37

897 FIGURE CAPTIONS

898

899 Figure 1. Schematic diagram of a forest time-series between current (t) and previous time points (t-1) 

900 that will be predicted into the future (t+1). Example forestry dynamics to be predicted include forest 

901 operations (clearing of trees on the left side of the plot), mortality (brown tree crown in the middle), 

902 survival and growth of remaining trees, and ingrowth of small trees. If the trajectory is considered 

903 generically as a time-varying system, the concepts of smoothing, filtering, and prediction (Särkkä, 

904 2013) can be identified as shown in Figure 1. The up- and downward brackets in the diagram indicate 

905 the time points used as inputs and obtained as outputs, respectively.

906

907 Figure 2. Schematic diagram of (a) the filtering and smoothing concept adapted from Särkkä (2013), 

908 where the sequence of hidden states at time points t-1, t and t+1 is inferred through noisy 

909 observations with a (linear) temporal element but no spatial element(s). Three sub-figures illustrate 

910 the spatial element that should be considered when employing these concepts in typical forest 

911 inventory applications. Arrows indicate the possible desired outputs of using circular plots at varying 

912 time points and located in an area of interest outlined by a solid black line in (b) regression modeling 

913 of a variable of interest y using covariate(s) x, coefficients β and error term e, (c) large area 

914 estimation for population total or mean (μ) based on inclusion probabilities π and observations of y 

915 from plots {i} in the area, and (d) small area estimation, where the aim is to predict for 

916 subpopulations of interest i using the observations and estimators derived from those 

917 subpopulations, In (d), kriging would be a point estimate based on spatial correlation.

918

919
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Table 1. Synthesis of the reviewed studies. Study denotes literature reference by author name and year; 

Sequence denotes the type of sequential information (temporal, spatial, other; asterisks in this column 

indicate that the method did not belong to the Bayesian school); Variable denotes the forest variable of 

main interest; AOI denotes inventory area for which the results were generalized (** indicate that the 

results were not reported in the study, but were assumed to be related to the national forest inventory 

context, i.e., at a scale of millions of hectares); CU denotes the area of the initial computation unit; Plots 

denotes the number of sample plots; Tp# denotes the number of time points; TSp denotes the time span of 

the acquisition from the first to last datapoint in years; Error denotes the initial error rate; Rate denotes the 

improvement due to the inclusion of additional time points or methodological changes. The latter 

parameter was computed as the difference (in percentage points) between the error rate before and after 

the application of data fusion.

Study Sequence Variable AOI 
(ha)

CU 
(m2)

Plots Tp# TSp 
(a)

Error 
(%) 

Rate 
(pp) 

1. Junttila et 
al., 2008

Spatial GSV (m3 
ha−1)

1,200 254 472 1 0 19.90 1.00

2. Finley et 
al., 2013

Spatial GSV 
growth 
(Mg ha−1)

15,782 80 451 1 0 2.33 1.20

3. Babcock 
et al., 2015

Spatial AGB (Mg 
ha-1)

10,472 200 62 1 0 38.43 1.77

4. Katila & 
Heikkinen, 
2020

Temporal * GSV (m3 
ha−1)

18×106 100 42,451 3 4 3.02 2.00

5. Fortin, 
2020

Temporal GSV (m3 
ha−1)

537× 
103

113 180 4 9 2.28 2.09

6. Ehlers et 
al., 2013

Temporal GSV (m3 
ha−1)

** ×106 400 8,793 25 50 11.16 3.13

7. Finley et 
al., 2008 

Spatial AGB (Mg 
ha-1)

1,053 1,000 437 1 0 27.71 4.43
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8. Nyström 
et al., 2015

Temporal GSV (m3 
ha−1)

1,500 314 15,131 6 8 13.50 4.70

9. 
Vastaranta 
et al., 2018 

Temporal * AGB (Mg 
ha-1)

2,000 256 332 2 2 20.40 5.60

10. Lindgren 
et al., 2017

Temporal GSV (m3 
ha−1)

1,200 314 137 19 4 30.00 6.00

11. Kangas 
et al. 2020 

Temporal AGB (Mg 
ha-1)

853 200 174 2 11 3.10 6.22

12. Varvia et 
al., 2017 

Spatial GSV (m3 
ha−1)

10,000 255 492 1 0 17.70 10.30

13. Babcock 
et al., 2016

Temporal

Spatial

AGB (Mg 
ha−1) 

1,600 78 604 40 40 17.52 25.36

14. Hou et 
al., 2019

Other (model) 
* 

Mean 
height (m)

56 22 200 1 0 9.59 33.00

15. Ver 
Planck et al., 
2018

Spatial AGB (Mg 
ha−1)

1,500 66× 
103

195 1 0 10.60 56.90
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Figure 1. Schematic diagram of a forest time-series between current (t) and previous time points (t-1) that 
will be predicted into the future (t+1). Example forestry dynamics to be predicted include forest operations 

(clearing of trees on the left side of the plot), mortality (brown tree crown in the middle), survival and 
growth of remaining trees, and ingrowth of small trees. If the trajectory is considered generically as a time-

varying system, the concepts of smoothing, filtering, and prediction (Särkkä, 2013) can be identified as 
shown in Figure 1. The up- and downward brackets in the diagram indicate the time points used as inputs 

and obtained as outputs, respectively. 
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Figure 2. Schematic diagram of (a) the filtering and smoothing concept adapted from Särkkä (2013), where 
the sequence of hidden states at time points t-1, t and t+1 is inferred through noisy observations with a 
(linear) temporal element but no spatial element(s). Three sub-figures illustrate the spatial element that 

should be considered when employing these concepts in typical forest inventory applications. Arrows 
indicate the possible desired outputs of using circular plots at varying time points and located in an area of 
interest outlined by a solid black line in (b) regression modeling of a variable of interest y using covariate(s) 

x, coefficients β and error term e, (c) large area estimation for population total or mean (μ) based on 
inclusion probabilities π and observations of y from plots {i} in the area, and (d) small area estimation, 

where the aim is to predict for subpopulations of interest i using the observations and estimators derived 
from those subpopulations, In (d), kriging would be a point estimate based on spatial correlation. 
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