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The impact of global change on biodiversity is commonly assessed in terms of changes 
in species distributions, community richness and community composition. Whether 
and how much associations between species are also changing is much less docu-
mented. In this study, we quantify changes in large-scale patterns of species associations 
in bird communities in relation to changes in species composition. We use network 
approaches to build three community-aggregated indices reflecting complementary 
aspects of species association networks. We characterise the spatio–temporal dynamics 
of these indices using a large-scale and high-resolution dataset of bird co-abundances 
of 109 species monitored for 17 years (2001–2017) from 1969 sites across France. We 
finally test whether spatial and temporal changes in species association networks are 
related to species homogenisation estimated as the spatio–temporal dynamics of species 
turnover (β-diversity) and community generalism (community generalisation index). 
The consistency of these relationships is tested across three main habitats, namely 
woodland, grassland and human settlements. We document a directional change in 
association-based indices in response to modifications in species turnover and com-
munity generalism in space and time. Weaker associations and sparser networks were 
related to lower spatial species turnover and higher community generalism, suggesting 
an overlooked aspect of biotic homogenisation affecting species associations and may 
also have an impact on species interactions. We report that this overall pattern is not 
constant across habitats, with opposite relationships between biotic homogenisation 
and change in species association networks in urban versus forest communities sug-
gesting distinct homogenisation processes. Although species associations contain only 
partial signatures of species interactions, our study highlights that biotic homogeni-
sation translates to finer changes in community structure by affecting the number, 
strength and type of species associations.

Keywords: Avifauna, community, homogenisation, interaction network, species 
association, β-diversity
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Introduction

Among the major effects of global change on biological diver-
sity, the modification or even the extinction of species interac-
tions has early on been identified as being pervasive, but is still 
poorly understood (Janzen 1974, Diamond 1989). A pertur-
bation in species interactions may be decoupled from changes 
in species richness or community composition because there 
are many more interactions than species (Poisot et al. 2015, 
Gravel et al. 2019). In particular, modifications affecting spe-
cies interactions can be stronger (Valiente-Banuet et al. 2015) 
or weaker (Li et al. 2018) than those affecting species rich-
ness. The structure and dynamics of species interactions are 
among the main drivers of community dynamics (Davis et al. 
1998, Barabás et al. 2016), and therefore represent a criti-
cal subject of study for ecology and biodiversity conservation 
(Kissling and Schleuning 2015, García-Girón et al. 2020). 
Despite the importance of integrating species interactions 
into conservation biology, we still have a limited understand-
ing of the drivers and consequences of changes in the strength 
and the structure of species interactions.

In the last decades, there has been an increasing use of 
network approaches to study species interactions in empiri-
cal and theoretical communities (Bascompte et al. 2003, 
Ings et al. 2009, Kéfi et al. 2015, Trøjelsgaard and Olesen 
2016). Ecological communities can thus be depicted as 
interaction networks by defining nodes as individuals or 
species, and links between the nodes as species interactions 
(Newman et al. 2006). The estimation of species interactions 
is, however, subject to a conceptual question (how are the 
strength and type of interactions defined?) and a technical 
challenge (how to estimate an interaction?). In some cases 
(e.g. in simple trophic networks with few taxa), observations 
or experiments can address both issues as the existence and 
type of species interactions are clearly identified. However, 
these cases provide inference of species interactions in local 
and specific systems, which makes it difficult to derive general 
rules for interactions in larger communities (Whittaker et al. 
2005, Denny and Benedetti-Cecchi 2012). The empirical 
identification and measure of interactions in species-rich 
communities in particular, is challenging because of the high 
number of potential interactions to be estimated (propor-
tional to the square of species number) (Barner et al. 2018). 
An alternative approach is to assume that species associations 
(inferred from their spatial aggregation) are shaped, at least 
to some extent, by the combination of true interactions (i.e. 
clear ecological relationships such as competition or preda-
tion). In this case, studying communities with a large num-
ber of species and broad spatial coverage should be a good 
framework for estimating species associations, although the 
ability of spatial co-occurrence patterns to infer pairwise spe-
cies interactions is still controversial (Blanchet et al. 2020).

Nonetheless, species co-occurrence might be an informa-
tion-rich proxy of the outcome of direct and indirect biotic 
interactions in communities (Delalandre and Montesinos-
Navarro 2018, Freilich et al. 2018). Indeed, the composition 
of a local community results from interspecific interactions 

as well as multiple intertwined processes generating patterns 
of spatial aggregation between species (Fig. 1) (Wisz et al. 
2013). These factors include neutral processes (regional dis-
persion and local stochasticity (Hubbell 2001)), historical 
processes (phylogeography (Kraft et al. 2007)) and niche 
processes (HilleRisLambers et al. 2012, Letten et al. 2017). 
Niche processes combine what are sometimes referred to 
as Grinnellian and Eltonian processes (Chase and Leibold 
2003, Devictor et al. 2010a). Grinnellian processes (Grinnell 
(1917); later extended by Hutchinson (1957)) consider 
the niche as the species’ response to environmental condi-
tions acting as an environmental filter for the community. 
Eltonian processes (Elton 1927) consider the niche as the 
species’ impact on its environment and refers to the mutual 
dependency of species with each other, including the limit-
ing similarity hypothesis (i.e. the niche overlap between two 
species that limits their coexistence) (MacArthur and Levins 
1967, Abrams 1975, Martin and Bonier 2018) and facili-
tation between species (e.g. cooperation, exchange of social 
information (Seppänen et al. 2007, Gil et al. 2019, Tu et al. 
2019)).

Refining the Eltonian component (i.e. the part of the co-
occurrences due to the biotic filter) can be done through 
multiple approaches (Kissling et al. 2012). Based on null 
models, one can control for the species associations that are 
simply expected by chance rather than grounded in ecologi-
cal processes by testing whether species are found together 
more or less frequently than expected by chance (Gotelli 
2000, Ulrich and Gotelli 2010, Kohli et al. 2018). Indirect 
effects between species (i.e. the effect of a third species on 
the association between two other species) can be evalu-
ated using partial correlations (Faust and Raes 2012, Harris 
2016). Recent progress with joint species distribution mod-
els have also provided ecologists with new tools for estimat-
ing species associations by studying residual co‐occurrence 
patterns after accounting for environmental niches from 
large datasets (Tikhonov et al. 2017, Zurell et al. 2018). 
Overall, recent methods removing non-Eltonian compo-
nents from co-occurrences (Azaele et al. 2010, Faisal et al. 
2010, Ovaskainen et al. 2010, Lindenmayer et al. 2015) 
are promising for uncovering species association net-
works (Araújo et al. 2011, Morueta-Holme et al. 2016). 
Co-occurrences are thus information-rich proxies of direct 
and indirect biotic interactions in communities (Delalandre 
and Montesinos-Navarro 2018, Freilich et al. 2018). 
Association networks based on species co-occurrences are 
useful for capturing community organisation through aggre-
gated community indices, i.e. statistics summarising an 
aspect of the network at the community level (Barner et al. 
2018) even if interaction networks may remain out of reach 
(Sander et al. 2017, Thurman et al. 2019).

Tracking large-scale changes in species associations might 
represent a significant advance for macro-ecology and con-
servation biogeography. Indeed, ecological processes are 
ultimately influenced by which and how species interact 
(Cardinale et al. 2002, Goudard and Loreau 2008). Moreover, 
the responses of species associations to environmental changes 
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are not necessarily proportional to the responses of individual 
species (Valiente-Banuet et al. 2015). Therefore, measuring 
community changes through the change in species diversity 
within local communities or, at a larger scale, between com-
munities (for instance using β-diversity) may mask impor-
tant modifications of the structure and properties of those 
communities (Poisot et al. 2017). For instance, the replace-
ment of a set of diverse and mainly specialist species by a 
few generalists (McKinney and Lockwood 1999, Olden et al. 
2004) is a well-documented form of biotic homogenisation 
(Clavel et al. 2011). In those communities, the composition 
tends to be closer to random expectations (Barnagaud et al. 
2017), i.e. with less and less visible niche processes. Yet, 
anthropogenic perturbations can also act as a strong filter 
selecting for more specialist species (Gaüzère et al. 2020), in 
which case the Grinellian filter may outweigh the Eltonian 
one. While many studies have evidenced the impact of 
global change on biotic homogenisation (Newbold et al. 
2018), whether homogenisation in species composition (as 
a decrease in species turnover and an increase in community 
generalism) is related to a directional change in species asso-
ciations remains to be explored (Li et al. 2018).

In this study, we conducted a large-scale spatio–tempo-
ral analysis of bird species association networks. Birds form 
a relevant group to estimate ecologically meaningful species 
associations (Sridhar et al. 2012). Indeed, the Eltonian fil-
ter is likely to impact bird co-occurrences since competi-
tive exclusion as well as social information exchanges have 

been frequently shown to occur between birds among 
other interacting processes (Thomson et al. 2003, Forsman 
and Thomson 2008, Magrath et al. 2015). Furthermore, 
the fact that bird species have been widely monitored for 
decades allows to track changes in species association pat-
terns in space and time; an opportunity that is not possible 
for most of other groups of organisms. Using data from the 
French Breeding Bird Survey, we addressed the following two 
objectives:

1) reconstruct species association networks in communities 
from co-abundance data,

2) test whether biotic homogenisation was linked to direc-
tional changes in association networks.

Material and methods

Overview

We first inferred species associations from co-abundance 
(co-occurrence with abundance) data (Fig. 2a) corrected for 
non-Eltonian co-occurrence processes. We then quantified 
different structural properties of the species association net-
works using three complementary network indices: intensity, 
attractiveness and clique structure of the network. Intensity 
corresponds to the mean association strength, attractiveness 
is the ratio of positive to negative associations, and clique 

Figure 1. Community assembly processes and species co-abundance. Species interactions that influence species spatial aggregation (or seg-
regation) and temporal change in abundance are referred to as the Eltonian component of species co-abundance. In addition to the Eltonian 
component, co-abundances are also the result of habitat filtering (Grinellian), random processes due to neutral dispersal, as well as historical 
processes related to the species’ phylogeography. The result of all these processes leads to the observed species co-abundances. Each letter 
stands for a different species. Species U and Z share a common biogeographic region and random processes have not prevented them from 
co-occurring. As they live in a similar habitat and interact in a way that enables their coexistence, they can be observed together in the same 
location at the same time.
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structure describes the structural complexity of the associa-
tion network (Fig. 2b).

We then analysed the relationships between the spatio–
temporal dynamics in bird network indices and the spa-
tio–temporal dynamics in biotic homogenisation (through 
species turnover and community generalism) at a large scale 
and separately in three main types of habitats: woodland, 
grassland and human settlements.

All the analyses were done with the R software (ver. 3.4.4, 
<www.r-project.org>) and the R scripts and data are avail-
able on Dryad (Rigal et al. 2021).

Bird data

Bird data were extracted from the French Breeding Bird 
Survey (FBBS) (Jiguet et al. 2012). In this scheme, volun-
teer ornithologists monitored common bird species on 2514 
sites (Fig. 2a) from 2001 to 2017, following a standardised 
protocol. Sites are 2 × 2 km squares in which abundances of 
breeding bird species were monitored on 10 homogeneously 
distributed sampling points across habitats in the landscape. 
Each sampling point was monitored for 5 min, 1–4 h after 
sunrise, twice a year, the first between 1 April and 8 May 
and the second after an interval of 4–6 weeks, between 9 

May and 15 June, to account for early and late breeding 
birds. For each sampling point and each year, in addition to 
bird abundance and identity, the geographical coordinates, 
weather conditions, altitude, distance of the contacts from 
the observer and main habitat (44 types) were recorded. In 
order to avoid habitat classes with too few observations, we 
grouped the 44 types of habitat described in the field into 
19 classes for the estimation of species associations. We also 
distinguished the three main types of habitats of our dataset 
(woodland, grassland and human settlements) for network 
analyses (for habitat details see the Supporting information). 
Among the 242 species recorded in the dataset, we selected 
the 109 most abundant species (representing 99% of the total 
abundance) to avoid any over-representation of rare species 
(that are therefore more difficult to monitor). Moreover, we 
used the abundances corrected for the detectability of the 
species (Supporting information) and kept only the maxi-
mum abundance of the two passages for each species. After 
removing rare species and the sites only monitored once, our 
dataset comprised 19 580 sampling points in 1969 sites and 
109 species (species listed in the Supporting information). 
Hereafter, a community corresponds to birds monitored in a 
sampling point and for which a species association network 
can be calculated.

Figure 2. From bird monitoring to association network indices. (a) Spatial distribution of the 1969 selected (out of 2514) sites from the 
2001 to 2017 FBBS (STOC-EPS). On each site (2 × 2 km square), bird observations were recorded on 10 sampling points. Mainland 
France was split into 4 biogeographic regions (Alpine, Atlantic, Continental and Mediterranean). (b) Association network indices: intensity 
(i.e. mean strength of species associations), attractiveness (predominance of positive (light orange) or negative (dark purple) species associa-
tions) and clique structure (level of structuration of the species association network). (c) Geographically weighted regressions using data 
from moving windows were used to assess β-diversity and species association metric values. For each index, examples corresponding to low 
and high values are displayed from left to right, respectively and lines represent species associations. For β-diversity, site colours represent 
site composition, the more diverse the colours in the window, the higher β-diversity. For intensity, the thicker the line, the higher the abso-
lute value of the association. For attractiveness, the high value example is 0.5 (three positive associations and one negative association out 
of 4 existing associations) and the low value is −0.5. For clique structure, the high value is 0.125 (two realised cliques out of 16 possible 
cliques) and the low value is 0.
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Species associations

We estimated associations between pairs of species from bird 
co-abundance data (Morueta-Holme et al. 2016) for each 
year (2001–2017), for each of the four biogeographic regions 
and for each of the 19 habitats using the five following steps 
(Fig. 3).

Step 1. In order to limit the influence of phylogeogra-
phy and habitat features on species associations, we first 
grouped the data by biogeographic region (Continental, 
Atlantic, Mediterranean, Alpine), by habitat (each sam-
pling point comes with information about its habitat 
(among the 44 types) from the field observer and this 
habitat type was actualised according to the grouping 
made in this study (19 habitat classes, Supporting infor-
mation)) and by year to estimate an association for each 
pair of bird species, for each year, for each of the four 
biogeographic regions (EEA 2016) and for each of the 19 
habitat classes. Bird assemblages are indeed different in 
the four biogeographical areas as some species are specific 
to one biogeographical region (e.g. the Sardinian warbler 
Curruca melanocephala in the Mediterranean area and see 
species repartition in the Supporting information). Note 
that we used the most detailed habitat information avail-
able but, as finer habitat grain is out of reach, we admit 
that not all the influence of the Grinnellian filter has been 
removed by this first grouping (which captures 5.36% of 
the co-abundance variance, Supporting information).
Step 2. In each biogeographic region and habitat, we 
used the log-transformed co-abundance data (to obtain 
normally distributed data) to calculate observed associa-
tions as partial correlations between each pair of species 
(Schäfer and Strimmer 2005) as follows (Eq. 1):

Pc O i, j
i j

i i j j

( ) =
- ( )

( )´ ( )

-

- -

å
å å

O

O O

,

, ,

1

1 1
  (1)

with O the matrix of observed abundance (species × sites), 
Pc(O)i,j the partial correlation between species i and j, and 
Σi,j

−1 the value for species i and j of the inverse of the cova-
riance matrix. This approach partially removes the indi-
rect effects of other co-occurring species on the estimated 
association between the two considered species by focus-
ing on the conditional association (Harris 2016).
Step 3. Partial correlations can be affected by species com-
monness, since common species have higher probabilities 
to co-occur than less abundant species because of a higher 
representativeness in the data (Blüthgen et al. 2008). To 
correct this bias, we computed partial correlations on 
1000 random co-abundance datasets obtained by keeping 
constant the total number of individuals in a given sam-
pling point, and assuming that the probability for a spe-
cies to occur in a given sampling point was proportional 

to its frequency in the dataset. We then calculated stan-
dardised effect sizes of partial correlations between species 
i and j (SESi,j) as follows (Eq. 2):

SES
Pc O Pc N

Pc N
i, j

i, j i, j

i, j

=
( ) - ( )( )

( )( )
m

s
  (2)

where Pc(O)i,j is the observed partial correlation between 
species i and species j, μ(Pc(N))i,j and σ(Pc(N))i,j the mean 
and standard deviation of partial correlations from the 
1000 randomly sampled datasets.
Step 4. In order to identify significant associations, we 
calculated a two tail p-value for each pairwise association 
using the rank of the observed association in the Gaussian 
distribution of null associations obtained from step 3. That 
is, we determined the number of replicates for which the 
absolute value of the observed partial correlation is greater 
than the absolute null partial correlation (p-values were 
corrected for multiple comparisons following Benjamini 
and Hochberg (1995)). Significant associations therefore 
corresponded to SESi,j for which adjusted p-values were 
below 0.05.
Step 5. For each species pair, for each biogeographic 
region and for each habitat, we averaged the significant 
associations over the 17 annual associations (one for each 
year, i.e. if an association was not significant for some 
years, these years were removed and the averaged asso-
ciation was calculated using association values from the 
remaining years). If there was no significant association 
across the 17 years, the association for this given species 
pair in this given biogeographic region and this given 
habitat was set to zero. This step was carried out for all 
260 191 combinations (5886 pairs of species × four bio-
geographic regions × 19 habitats, but note that some spe-
cies pairs were not observed in all biogeographical areas 
and all habitats).

Association network indices

We considered three mathematically independent indices 
that describe different aspects of the network built upon pair-
wise association estimates (Fig. 2b and see examples in the 
Supporting information). The three indices were calculated 
for 121 172 species association networks corresponding to 
the communities monitored in the 19 580 sampling points 
between 2001 and 2017 (17 years × 19 580 sampling points, 
but note that each sampling point was not necessarily moni-
tored on each year).

Intensity I quantifies the strength of associations in the 
species association network of a community. It reflects the 
average intensity of the associations in the network. It is 
weighted to account for the differences between species’ 
abundances (Eq. 3).
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Figure 3. Workflow for estimating species association networks. For each biogeographical region and each habitat (step 1), an observed 
association matrix was obtained by partial correlations (step 2) (positive correlations in orange, negative correlations in purple, colour 
intensity proportional to correlation strength) from co-abundance data (species D, K, G, U as an example). Random association matrices 
were calculated using partial correlations on permuted datasets (1000 times) and were used to calculate standard effect sizes (step 3) of 
observed associations as well as their adjusted p-values to obtain significant SES of the observed association matrix (step 4). Step 1–4 were 
repeated for each year providing annual associations, which were then averaged over years for each species pair. species associations were 
finally added to the spatial co-abundance data to obtain a species association network for each of the sampling points (step 5).
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with n the number of species, n′ij the number of pairs of spe-
cies i and j in the community pool and αij the association (as 
defined in step 5) between species i and j (with i ≠ j; when i 
= j, αij = 0). I varies between 0 and |α|max. High values of I are 
reached in communities including mainly strong associations.

Attractiveness A quantifies the prevalent sign of the asso-
ciations as the number of positive associations minus the 
number of negative associations standardised by the total 
number of associations (Eq. 4). Attractiveness is analogous 
to the association ratio in plant networks (Saiz et al. 2014). 
However, we choose to label this metric attractiveness rather 
than association ratio because it also stands for methods esti-
mating associations (Chiyo et al. 2011).
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with π+ the number of positive associations and π− the number 
of negative associations. It varies between −1 (if all the asso-
ciations are negative) and 1 (if all the associations are positive).

Clique structure C quantifies the level of structuring of the 
species association network. It is calculated using the num-
ber of existing cliques (i.e. fully connected groups of species 
(Luce and Perry 1949)) with three or more nodes (obtained 
with the R package igraph, Csardi 2013), standardised by the 
number of potential cliques in a given network (Eq. 5).
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with cmax the maximum possible number of 3- to n-cliques, 
cobs the observed number of 3- to n-cliques, n the number of 
species in the network.

C quantifies the complexity of the network architec-
ture resulting from the interweaving of associated species 
(Supporting information). Networks with high C values 
have a complex structure, with multiple imbricated groups of 
interconnected species. Networks with low C only have a few 
small sized interconnected groups of species.

Spatial estimates and temporal trends in association 
network indices

Spatial estimates of association network indices
For spatial analyses, we averaged the annual values of each 
index (I, A and C) for each sampling point, resulting in 
one value for each index for each sampling point. We then 
computed the spatial window values of each association net-
work index, for each site and for each year, using an 80-km 
radius window. We determined the window size as a com-
promise between a large spatial coverage and a fine spatial 
resolution and we conducted the analyses for various radii to 
assess the robustness of our results to changes in the window 
size (Supporting information). Spatial window values were 
computed to analyse, on a similar spatial scale, the relation-
ships between community indices and β-diversity which is an 
inter-site measure based on species data from multiple sites. 
It also provided more complete data when sampling points or 
sites were not monitored every year, in particular for calcu-
lating temporal trends. We estimated spatial window values 
using geographically weighted regression (GWR, using the R 
package spgwr, (Brunsdon et al. 1996, Gollini et al. 2015). 
In this approach, the centre of each site was consecutively 
considered as the centre of a fixed radius window. Each index 
was calculated using data from all sampling points encapsu-
lated within the spatial window. A weight was attributed to 
each sampling point, which decreased with the distance to 
the central selected site following a bisquare kernel function.

Temporal trends of association network indices
We estimated the spatial window trends as the temporal trend 
of each association network index (I, A and C) following the 
same framework as for spatial window values. The trend of each 
index corresponds to the coefficient of a linear regression calcu-
lated using annual index values in the selected sampling points, 
weighted according to their proximity to the central site.

In addition to being calculated on the whole dataset, spa-
tial and temporal window values were also computed for each 
of the three main groups of habitat (woodland, grassland and 
human settlements). In this case, we selected sampling points 
that 1) belonged to the type of habitat considered, and 2) 
were located within sites dominated by this type of habitat. 
We recalculated spatial averages of network indices (too few 
trends were significant to conduct temporal analyses) using 
the subset of sampling points for each of the three main 
groups of habitat.

Species turnover and community generalism

Spatial and temporal variation
We assessed biotic homogenisation using the spatial and 
temporal variations of species turnover (using β-diversity) 
and community generalism (using community generalisa-
tion index, CGI) following the same framework as for spa-
tial window values of I, A and C. β-diversity corresponds to 
species diversity between a set of sites and is the result of two 
components, species turnover sensu stricto and nestedness 
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(Baselga 2010). A raw observed species turnover between 
two communities, κ1 and κ2, can result from a simple dif-
ference in community size if κ2 includes fewer species. In 
this case, part of the observed turnover is due to the nested 
composition of κ2 in the composition of κ1. That is, a simple 
species loss from κ1 to κ2 generates a turnover due to a varia-
tion in community size. In contrast, the species turnover 
s.s. corresponds to the species not shared by the two com-
munities, i.e. resulting from the replacement of one species 
by another. We first aggregated species data from sampling 
point level to site level to obtain species data for each site. 
We then randomly selected 10 sites in each spatial window 
(Devictor et al. 2010b) and computed the species turnover 
s.s. (hereafter referred to as species turnover) of the set of sites 
in that window using the betapart R package (Baselga and 
Orme 2012). We repeated this selection step 10 times, and 
we took the mean of β-diversity.

We used the species generalisation index (SGI) from 
Godet et al. (2015) to calculate for each community (i.e. 
at each sampling point) a community generalisation index 
(CGI). SGI corresponds to the habitat specialisation value of 
a species independently from its abundance and range. For the 
109 bird species, SGI ranges from 0 to 46.06 (mean = 28.73, 
SD = 9.74). CGI represents the average habitat specialisa-
tion of species in a given assemblage, weighted by their local 
abundances. CGI by sampling point ranges from 0 to 40.26 
(mean = 28.26, SD = 3.86) and by site (after GWR) from 
23.34 to 32.05 (mean = 28.19, SD = 1.61).

Association network indices versus species turnover and 
community generalism
We analysed the spatial relationships between species turn-
over (β-diversity) and the three association network indices 
as well as the spatial relationships between community gen-
eralism (CGI) and network indices by performing gener-
alized additive models (GAM, using the R package mgcv, 
Wood and Wood 2015) to assess the linear relationship 
between each of the three network indices and species turn-
over or community generalism, while explicitly modelling 
the spatial autocorrelation (Eq. 6). That is, each index (I, A 
and C) of association networks i was successively considered 
as the response variable R (Gaussian family, link identity) 
regressed over β-diversity or CGI (explanatory response E). 
We explicitly modelled the spatial autocorrelation using a 
tensor product of a thin plate regression spline based on 
geographic coordinates (longitude lon and latitude lat) of 
sites following Wood (2003, 2017). As species richness may 
influence network indices, we added species richness SR as 
a covariable to disentangle the effect of species turnover or 
community generalism from the effect of species richness on 
network indices. In addition, as part of the results could be 
driven, at least to some extent, by unchecked structural rela-
tionships between association indices and species turnover, 
we tested whether the observed relationships could be due 
to the intrinsic redundancy between network indices and 
β-diversity using simulated and permuted data (Supporting 
information).

R E SR fi i i i i i= + + + ( ) +a b g elon lat,   (6)

with α the intercept, β the effect of the explanatory variable 
(β-diversity or CGI), γ the effect of species richness and εi ~ 
N(0,σ).

Using a similar model, we also tested the temporal rela-
tionship between the trends in the three association network 
indices and the trend in species turnover or community gen-
eralism (controlling for the trend in species richness) using 
their spatial window trends. Limits of relying on space-for-
time substitution (i.e. relying only on spatial gradient to infer 
temporal relationships) are well documented (Damgaard 
2019) and required to complement spatial relationships with 
temporal ones when possible. In this study, this temporal 
analysis was possible at the national scale but not in each of 
the main types of habitats. Diagnostics for all models are in 
the Supporting information.

Results

Species associations from co-abundance

We found 8.1% of positive associations, 38.3% of negative 
associations, whereas 53.6% of associations were non-signif-
icant. 40% of the species pairs showed qualitatively constant 
associations (i.e. significant associations that were positive or 
negative in more than 90% of cases) across habitat/biogeo-
graphic region combinations. On average, each species was 
associated with 1–93 other species (mean = 41, SD = 26) with 
variations between habitats and biogeographic regions (asso-
ciations available in the Supporting information). In particu-
lar, in woodland, we found 4.3% of positive associations (e.g. 
between the Eurasian wryneck Jynx torquilla and the lesser 
spotted woodpecker Dryobates minor), 28.7% of negative asso-
ciations (e.g. between the European robin Erithacus rubecula 
and the common cuckoo Cuculus canorus) and 67.0% of non-
significant associations. In grassland, we found 7.8% of posi-
tive associations (e.g. between the calandra lark Melanocorypha 
calandra and the Eurasian skylark Alauda arvensis), 29.1% of 
negative associations (e.g. between the red-legged partridge 
Alectoris rufa and the grey partridge Perdix perdix) and 63.1% of 
non-significant associations. In human settlements, we found 
4.6% of positive associations (e.g. between the house sparrow 
Passer domesticus and the Eurasian collared dove Streptopelia 
decaocto), 30.1% of negative associations (e.g. between the 
house sparrow Passer domesticus and the carrion crow Corvus 
corone) and 64.7% of non-significant associations.

Relationships between association network indices, 
species turnover and community generalism

Intensity was positively related to species turnover in space 
and time (Fig. 4a, Table 1) and negatively to community gen-
eralism in space and time (Fig. 4d, Table 1). Attractiveness 
was negatively related to species turnover in space and time 
(Fig. 4b, Table 1) but negatively related to community 
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generalism in time (but not in space Fig. 4e). Clique structure 
was positively related to species turnover in space and time 
(Fig. 4c, Table 1) and negatively to community generalism in 
space and time (Fig. 4f, Table 1).

In woodland, intensity was positively related to species 
turnover but not to community generalism (Table 1, Fig. 4). 
Attractiveness was not significantly related to species turn-
over and negatively related to community generalism. Clique 

structure was positively related to species turnover but not 
related to community generalism.

In grassland, intensity was not significantly related to spe-
cies turnover and negatively related to community general-
ism. Attractiveness was negatively related to species turnover 
and positively related to community generalism. Clique 
structure was positively related to species turnover and nega-
tively related to community generalism.

Figure 4. Relationships between network indices versus spatial species turnover (β-diversity) and community generalism (community gen-
eralisation index (CGI)) for all habitats (black dots), woodland (green dots), grassland (yellow dots) and human settlements (red dots). First 
row: relationships between (a) intensity and β-diversity, (b) attractiveness and β-diversity, (c) clique structure and β-diversity. Second row: 
relationship between (d) intensity and CGI, (e) attractiveness and CGI, (f ) clique structure and CGI. Dots correspond to partial residuals 
of the regression models regressed over predictors and regression lines (solid lines) with confidence intervals (dashed lines) are shown when 
significant. Coefficients of partial determination (R2

part) are provided for each model.
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In human settlements, intensity was not significantly 
related to species turnover and positively related to commu-
nity generalism. Attractiveness was not significantly related to 
species turnover but positively related to community general-
ism. Clique structure was not significantly related to species 
turnover but negatively related to community generalism.

Discussion

Our study unravelled clear relationships between biotic 
homogenisation and changes in species associations. These 
relationships have been revealed thanks to the reconstruc-
tion of association networks from co-abundance data and to 
the ability of tracking modifications in the structure of those 
association networks. Biotic homogenisation (i.e. the replace-
ment of a diversity of mainly specialist species by a few gener-
alists, McKinney and Lockwood 1999) triggered by ongoing 

global change (Lockwood et al. 2000, Devictor et al. 2008, 
Godet et al. 2015) is considered as one of the most pervasive 
aspects of the biodiversity crisis (Olden et al. 2004). At the 
local scale, we measured the homogenisation of bird commu-
nities as a decrease in species turnover (McGill et al. 2015) 
and an increase in community generalism. We showed that 
biotic homogenisation was linked to weaker intensity and 
clique structure, and more positive attractiveness. In other 
words, more similar areas in terms of species composition 
sheltered weaker and relatively more positive associations but 
less structured association networks.

Networks of detailed interactions between birds remained 
limited to local communities (Orchan et al. 2013) and asso-
ciation networks to woodland assemblages (Lane et al. 2014) 
or mixed-species flocks (Mokross et al. 2014). Our results 
include communities from different habitats at large scale 
and provide relationships consistent in space and time. They 

Table 1. Result summary of the GAM models, coefficient estimates (species turnover (β-diversity) or community generalism (community 
generalisation index, CGI)), standard errors (SE), associated t value, significance level (p-value), coefficient of partial determination (partial 
r2) and degree of freedom (df). p-value < 0.05 in bold.

All habitats Species turnover (β-diversity) SE t-value p-value Partial r2 df

Intensity 2.06 0.60 3.42 6 × 10−4 0.13 1943
Attractiveness −1.06 0.08 −13.90 < 2 × 10−16 0.20 1943
Clique structure 0.60 0.07 8.17 5 × 10−16 0.11 1943

β-diversity trend SE t-value p-value Partial r2 df
Intensity trend 0.27 0.10 2.57 0.01 0.01 1296
Attractiveness trend −0.07 0.01 −5.33 1 × 10−7 0.02 1296
Clique structure trend 1.5 × 10−2 0.7 × 10−2 1.99 4.7 × 10−2 0.01 1296

Community generalism (CGI) SE t-value p-value Partial r2 df
Intensity −0.05 0.02 −3.24 1 × 10−3 0.07 1945
Attractiveness −2 × 10−3 2 × 10−3 −0.91 0.36 0.03 1945
Clique structure −0.02 2 × 10−3 −10.17 < 2 × 10−16 0.01 1945

CGI trend SE t-value p-value Partial r2 df
Intensity trend −0.28 0.02 −11.63 < 2 × 10−16 0.05 1945
Attractiveness trend −0.02 3 × 10−3 −7.69 2 × 10−14 0.01 1945
Clique structure trend −5 × 10−3 2 × 10−3 −3.84 1 × 10−4 0.04 1945
Woodland Species turnover (β-diversity) SE t-value p-value Partial r2 df
Intensity 3.75 1.53 2.45 0.01 0.05 548
Attractiveness 0.02 0.07 0.33 0.74 0.05 548
Clique structure 0.72 0.20 3.55 4 × 10−4 0.05 548

Community generalism (CGI) SE t-value p-value Partial r2 df
Intensity 0.06 0.05 1.35 0.18 0.14 548
Attractiveness −0.01 2 × 10−3 −5.82 1 × 10−8 0.21 548
Clique structure −2 × 10−3 6 × 10−3 –0.26 0.80 0.09 548
Grassland Species turnover (β-diversity) SE t-value p-value Partial r2 df
Intensity 0.60 0.70 0.86 0.39 0.04 987
Attractiveness −0.57 0.10 −5.50 5 × 10−8 0.15 987
Clique structure 0.52 0.12 4.44 1 × 10−5 0.11 987

Community generalism (CGI) SE t-value p-value Partial r2 df
Intensity −0.17 0.02 −8.58 < 2 × 10−16 0.02 988
Attractiveness 7 × 10−3 3 × 10−3 2.26 0.02 0.02 988
Clique structure −0.03 3 × 10−3 −7.93 6 × 10−15 0.01 988
Human settlements Species turnover (β-diversity) SE t-value p-value Partial r2 df
Intensity −2.53 2.70 −0.94 0.35 0.06 221
Attractiveness 0.01 0.13 0.05 0.96 0.08 221
Clique structure 0.45 0.31 1.47 0.14 0.06 221

Community generalism (CGI) SE t-value p-value Partial r2 df
Intensity 0.23 0.08 2.96 3 × 10−3 0.17 221
Attractiveness 0.01 3 × 10−3 3.16 2 × 10−3 0.04 221
Clique structure −0.02 0.01 −2.55 0.01 0.03 221
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emphasize that biotic homogenisation and modifications in 
association networks are not independent processes. This 
brings about a new repercussion of environmental change 
and species community homogenisation (Li et al. 2018). 
Overall, intensity decreases with biotic homogenisation 
(intensity declines with community generalism and increases 
with species turnover in space and time) implying that 
homogenised communities are mainly composed of habi-
tat generalist species weakly associated with each other. The 
negative link between species turnover and community gen-
eralism (Supporting information) corresponds to an overall 
pattern visible at the European level (Le Viol et al. 2012) in 
which species contributing to increased community similar-
ity are more likely to be habitat generalists. These two metrics 
are however not totally redundant, since the attractiveness 
decreases with species turnover but also with community 
generalism in time. It implies that negative associations are 
predominant in the differentiated communities (as opposed 
to homogenised communities), but also that negative associa-
tions become relatively predominant in communities where 
habitat generalists become more numerous. This could result, 
in particular, from competitive behaviour for instance for nest 
location or food as previously found in bird communities 
(Orchan et al. 2013, Lane et al. 2014). Finally, clique struc-
ture decreases with biotic homogenisation (clique structure 
increases with species turnover and declines with community 
generalism). It suggests that differentiated communities tend 
to have more complex network structures than homogenised 
communities. In other words, as the Eltonian filter is less and 
less visible, biotic homogenisation shapes sparse association 
networks in communities with weakly associated generalists.

However, patterns found between network indices and 
biotic homogenisation were not similar among all habitats. 
In forest areas, spatial species turnover was high compared 
to other habitats and not related to community generalism 
(Supporting information). This indicates that forest com-
munities were mostly composed of species with the same 
level of specialisation, as previously found in the French avi-
fauna (Julliard et al. 2006). More particularly, specialists were 
together with other functionally close specialists, and gen-
eralists with other functionally close generalists (Supporting 
information). In those differentiated (either specialised or 
generalised) forest communities, associations were stronger 
and formed more complex networks. However, associations 
were more negative in communities with habitat generalists 
than in communities with specialists. This may imply that 
social information should be more important among habitat 
specialists and competition among habitat generalists.

Conversely, in human settlements, which are more per-
turbed than woodland, association intensity and species 
turnover were not related. Instead, intensity was negatively 
related to the amount of habitat specialists. The most dif-
ferentiated communities were shaped by the strong envi-
ronmental filter formed by the urban environment. This 
selected mostly specialist species, considered as urban win-
ners (Guetté et al. 2017), forming differentiated commu-
nities of species able to deal with this environment. Such 

a filter selection for specialists in perturbed areas was pre-
viously shown on bird species (Gaüzère et al. 2020). But 
these specialists were functionally far from each other. 
Consequently, they may not strongly interact as they do not 
‘know’ the other species (Mönkkönen et al. 2017). Social 
information that can be shared by those species is therefore 
limited which can explain the low attractiveness observed. 
This leads to a scenario in which differentiated communi-
ties with specialists are composed of weakly and negatively 
associated species, selected for their ability to subsist in an 
environment strongly modified by humans, forming sparse 
association networks. In other words, the Grinellian filter 
appears to strongly outweigh the Eltonian filter in those 
communities. Grassland communities had intermediate 
levels of diversity and specialisation compared to the two 
other types of habitats (Supporting information). Intensity 
of associations was not linked to species diversity but to 
the prevalence of habitat specialists. Specialists, in differ-
entiated communities, were also more negatively associated 
and formed more complex association networks. Biotic 
homogenisation in grassland seems therefore to be at the 
expense of the competing habitat specialists while reshap-
ing association networks toward weakly and less negatively 
associated generalist species forming sparse association 
networks.

Several studies have recently shown the difficulties of using 
species associations as reliable proxies for species interactions 
(Sander et al. 2017, Freilich et al. 2018, Blanchet et al. 2020). 
Species associations are indeed potentially affected by non-
biotic filters and some types of species interactions remain 
inaccessible from co-occurrence (e.g. amensalism (Morales-
Castilla et al. 2015)). While our methodology takes into 
account non-biotic filters, it is still subject to remnant effects 
of those filters and additional processes linked to life-history 
traits (e.g. dispersal abilities). That means that some of the 
species associations we found are still likely to result from, for 
instance, fine grain habitat filtering. For example, the nega-
tive association between the short-toed treecreeper Certhia 
brachydactyla and the Eurasian robin Erithacus rubecula is 
probably due to the preference of the latter for young forest 
whereas the former is rather found in old stands (Laiolo et al. 
2004). Another pitfall is the difficulty of estimating tempo-
ral variation in species associations from co-occurrence data. 
Currently, only state–space models allow to quantify species 
interrelations in varying environments (Deyle et al. 2016) 
and this approach requires long time-series generally not 
available across multiple sites and at large scales. This pre-
vented us from estimating temporal variations in associations, 
although species interactions are known to vary in the short 
(Price et al. 2005, Olesen et al. 2008) and long term (Li and 
Waller 2016, Lyons et al. 2016) particularly in response to 
environmental changes (Rico-Gray et al. 2012, Bimler et al. 
2018, Clark et al. 2018).

In spite of these limitations, our approach was able to 
capture pairwise associations that could be related to existing 
knowledge on bird behaviour and interactions. For instance, 
the negative associations inside the Parus guild, in particular 
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between the goldcrest Regulus regulus and titmice (Poecile 
montanus, Lophophanes cristatus) may be related to dominance 
behaviour of the last two species leading to the spatial exclu-
sion of the goldcrest (Alatalo et al. 1985). Negative associa-
tions between the red-legged and the grey partridge are in line 
with the interspecific competition reported by Rinaud et al. 
(2020). The positive association between the Eurasian wry-
neck and the lesser spotted woodpecker can be related to the 
reuse of lesser spotted woodpecker’s cavities by the wryneck 
(Pakkala et al. 2019). The calandra lark and the Eurasian sky-
lark, positively associated, are known to reciprocally attract 
each other (Delgado et al. 2013). In addition to these exam-
ples, species associations also verified theoretical expectations 
based on species interactions (see the Supporting information 
for the relationship between species associations and func-
tional distance). Furthermore, association network indices 
that we used correspond to aggregated indices that are likely 
to provide a useful proxy to explore the drivers of changes 
in ecological communities, even considering the gap between 
species associations and species interactions (Barner et al. 
2018). We are therefore convinced that species associations 
encapsulate relevant information about the structure of these 
communities and its changes in space and time.

In conclusion, exploring the fate of species associations 
provides a new dimension to the biotic homogenisation pro-
cess: in addition to the homogenisation of species composi-
tion, homogenised communities have, in general, weaker, less 
negative and more simple association networks. Using species 
associations could also help to discriminate between several 
forms of biotic homogenisation that took place in different 
habitats in which the role of Grinnellian and Eltonian filters 
varies. Accounting for species association has highlighted that 
differentiated communities, even when composed by habitat 
specialists, can hide very different processes resulting either 
in complex and strongly associated networks or very sparse 
association networks.
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