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Abstract: Species identification is a critical factor for obtaining accurate forest inventories. This paper
compares the same method of tree species identification (at the individual crown level) across three
different types of airborne laser scanning systems (ALS): two linear lidar systems (monospectral and
multispectral) and one single-photon lidar (SPL) system to ascertain whether current individual tree
crown (ITC) species classification methods are applicable across all sensors. SPL is a new type of
sensor that promises comparable point densities from higher flight altitudes, thereby increasing lidar
coverage. Initial results indicate that the methods are indeed applicable across all of the three sensor
types with broadly similar overall accuracies (Hardwood/Softwood, 83–90%; 12 species, 46–54%;
4 species, 68–79%), with SPL being slightly lower in all cases. The additional intensity features that are
provided by multispectral ALS appear to be more beneficial to overall accuracy than the higher point
density of SPL. We also demonstrate the potential contribution of lidar time-series data in improving
classification accuracy (Hardwood/Softwood, 91%; 12 species, 58%; 4 species, 84%). Possible causes
for lower SPL accuracy are (a) differences in the nature of the intensity features and (b) differences
in first and second return distributions between the two linear systems and SPL. We also show that
segmentation (and field-identified training crowns deriving from segmentation) that is performed on
an initial dataset can be used on subsequent datasets with similar overall accuracy. To our knowledge,
this is the first study to compare these three types of ALS systems for species identification at the
individual tree level.

Keywords: airborne lidar; tree species identification; multispectral lidar; single photon lidar; Random
Forest; feature selection; individual tree crown delineation

1. Introduction

Forests are important global resources that affect numerous natural cycles as well as
contributing to natural biodiversity, i.e., flora and fauna [1]. Forested lands also constitute
the largest terrestrial carbon sink on the planet, with approximate relative contributions
of 80% being made by above-ground biomass and 40% being made by below-ground
biomass [2].

Forest structural information cannot be fully exploited if species information is missing.
Indeed, precise species identification is a crucial variable for forest inventories [3], for the
quantification and monitoring of biodiversity [4], and for the study of forest ecosystems and
habitats [5]. Accurate tree species identification is the information that is most frequently
requested by the forestry industry and by government organisations in the elaboration of
forest inventories [6]. However, it is economically unfeasible to sample large numbers of
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trees in the field. As a consequence, remote sensing is essential not only to supply forest
inventories with primary data [7–9], but also to address environmental information needs.

High-resolution optical imagery is the most common source of remotely sensed data
for species identification. For such images, pixel sizes that are larger than a tree crown may
contain foliage from more than one species, leading to ambiguity and frequent identification
errors. A small pixel size (e.g., 20–40 cm) implies that a tree crown would necessarily be
composed of multiple pixels, leading to a situation where individual pixels will be spectrally
representative of neither the tree nor the species. The pixels composing each crown thus
include intra-specific spectral variability, which reduces classification accuracy [10]. For this
reason, most studies pertaining to tree species identification use object-based classification,
which is frequently denoted Individual Tree Crown (ITC) segmentation or delineation [11].
Once the tree crown is delineated, the individual pixels are extracted and summary statistics
(e.g., mean spectral signature) and a gamut of features (spectral, spatial, and contextual
features, among others) are calculated per crown, which reduces intra-specific spectral
variation [12,13]. Optical imaging sensor methods also suffer from major shortcomings
when used for species identification at the individual tree level. First, passive optical
methods provide information regarding the top of the canopy, especially in dense broadleaf
cover, but yield little to no information regarding vertical canopy structure [2]. The second
shortcoming of optical methods is related to the anisotropy of reflectance (dependent upon
sun-sensor viewing geometry relative to the object) causing different spatial radiometric
patterns of the spatial objects (e.g., sun-light vs. shaded crowns) [14,15]. The fact that the
bidirectional reflectance distribution function (BRDF) effect is dependent upon the species
further complicates the retrieval of information from optical imagery.

Within the broad range of remote sensing technologies that are available to practition-
ers, airborne laser scanning (ALS) is particularly well adapted to precision forestry, as it
provides detailed structural information (given the laser pulse capacity to penetrate closed
canopy) [16]. Linear ALS systems are composed of a laser emitter (or multiple emitters in
the case of multispectral systems) that produces pulses, which are emitted at a repetition
rate of hundreds of kHz. The detector requires a flux of at least 500–1000 photons to register
the backscattered laser energy from the target [17]. The detector generates an electronic
signal directly and linearly proportional to the backscattered laser energy from the target,
hence the name “linear ALS.” The width and amplitude of the returned energy pulse
depends upon the target characteristics. Proprietary algorithms transform the multiple
peaks of a given waveform into discrete multiple returns. Semi-porous targets such as
forest canopies can backscatter multiple peaks corresponding to different components of
the canopy (top of crown, leaves, branches, trunk, ground).

The use of ALS data addresses some passive optical sensor limitations that are related
to tree species identification. Give that it is an active sensor, lidar signal acquisition is
permanently in the hot-spot configuration (the emission angle of the laser pulses is always
the same as the viewing angle), which resolves many anisotropy issues [18]. The ALS
returns penetrate the canopy to various depths, sometimes reaching the ground. Therefore,
the spatial ALS information (i.e., X, Y and Z coordinates) provides species-related structural
information concerning the crown, branches and leaves [19]. This canopy penetration and
ground resolution capability is the major advantage of linear ALS over other remote sensing
methods in the production of enhanced forest inventories.

ALS return intensity values, which are measures of the backscattered laser energy,
bring supplemental information about tree species. Intensity values are not only strongly
related to the type of foliage [20] and its spectral signature, but the size, orientation, density,
and clumping of leaves as well [21,22]. One of the main disadvantages of airborne lidar
systems is that there are still many unanswered questions regarding the algorithms that
are used to calculate ALS intensity values (they are proprietary to the various instrument
manufacturers) and they preclude the comparison of lidar acquisitions that are provided
by different sensors and over-flights. Additionally, the linear ALS system used in this study
is monospectral, which precludes the use of vegetation indices to improve classification
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accuracy. In order to address the latter point, multispectral ALS systems is one of the latest
major innovations to have developed over the past few years [23]. The three channels
with different wavelengths provide additional intensity features and permit the calculation
of ratios analogous to NDVI. The intensity comparison issues between different surveys
remain with MSL however, as with all lidar systems.

ALS technology is undergoing rapid evolution. One of the most important variables
in ALS acquisition specifications is the point density or the average number of returns per
m2. This density depends upon flight altitude and flight speed for a given pulse repetition
frequency. Therefore, there is a direct relationship between the cost ($/km−2) of acquisition
and the point density. There is also a relationship between ALS point density and classification
accuracy for ITC methods. Conversely, methods using the Area-Based Approach (ABA)
provide good results at lower point densities and results accuracy that do not necessarily
improve proportionally with point density [24]. Even if the importance of these relationships
is well known, it remains unclear what effect ALS point density exerts on ITC identification.

As soon as the first commercial linear ALS systems appeared in the mid-1990s, re-
searchers also started to explore the use of photon-counting instruments, i.e., Single-Photon
Lidar (SPL), to address some shortcomings of conventional or linear ALS systems such as
the high cost to obtain coverage of an area, even when compared to optical imaging sensors.
SPL covers larger areas at comparable densities at much higher flight altitude, potentially
reducing costs [25]. SPL also provides opportunities for more frequent over-flights. SPL
instruments utilise beam energy in a more efficient manner than linear ALS; therefore,
the former obtains a higher point density for a given flight altitude than the latter [26].
Alternatively, SPL achieves acceptable point densities while flying at a higher altitude,
thereby permitting greater coverage [27]. SPL systems use a laser that is split into a 10
× 10 array of “beamlets” with the return energy being acquired by a 10 × 10 array of
single-photon sensitive detectors [28,29]. The intensity value for each SPL return pulse is
not well defined and is derived differently from that of linear systems. For example, the
data provider for the SPL over-flight that was used in this study uses the pulse width of the
returned energy as an analogue of linear lidar intensity. In addition, the return distribution,
such as the ratio of first to second returns, is different in the SPL case when compared to
linear ALS systems.

The short recovery time of the detector is a crucial element of SPL technology, as it
enables multiple close-by photon measurements along the beam’s path for each laser pulse
that is emitted. The high sensitivity that is required of the pulse detector to detect single
photon returns from the surface also makes it susceptible to background noise; the most
important noise source is solar illumination reflecting off said surface [30]. This background
noise is proportional to the instrument Field-Of-View (FOV) and to the receiver telescope
aperture, both of which are reduced in the type of sensor that is used for this paper. Noise
filtering algorithms, such as the Differential Cell Count method, are used to further reduce
interference from background solar illumination [31].

Several ABAs that have been developed under linear ALS systems were adapted
for use with SPL data to map forest attributes. ABA metrics that were derived under
multispectral ALS and SPL systems were comparable [32,33]. The SPL data resulted in
slightly better estimates for all canopy structural variables compared to multispectral
linear ALS, except for basal area. Since SPL covers 590 km2 h−1 compared to 50 km2 h−1

for multispectral linear ALS at equivalent point density, SPL sensors clearly provided a
productivity advantage over linear ALS systems for methods using ABA [34]. However,
the classification performance of SPL for tree species identification has yet to be ascertained
since the SPL point cloud exhibits both a different vertical distribution as well as differences
in the ratio between first and second returns compared to linear mode systems.

The main objective of this study is to compare the tree species identification capabilities
from three datasets that were acquired respectively with linear monospectral ALS, linear
multispectral ALS, and an SPL system. To our knowledge, this is the first study to compare
these three types of ALS systems when used for species classification at the individual
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crown level. In particular, we wish to verify whether the methods that were developed
for linear ALS data perform as well with SPL data. Species identification methods were
tested at three classification levels: broad species types (hardwood, HW vs. softwood,
SW), narrow species groups (e.g., pines, spruces), and specific tree species. A secondary
objective was to determine whether an increased number of species identification features
that were derived from multispectral lidar or the higher point density of SPL provides
greater classification accuracy compared to the standard mono-spectral linear ALS baseline.
Finally, additional specific questions were addressed: Are the most relevant features the
same for the three sensor types, or do they differ significantly? Does feature selection affect
classification accuracy in the same manner for these three datasets?

2. Materials
2.1. Study Area

The Petawawa Research Forest (PRF) is a 10,000 ha forest that is situated about 200 km
NW of the City of Ottawa, ON, Canada. PRF is composed of mixed-mature natural stands
as well as plantations and is representative of the Great Lakes-St. Lawrence Forest type [35].
Common species include eastern white pine (Pinus strobus), red pine (Pinus resinosa), trem-
bling aspen (Populus tremuloides), paper or white birch (Betula papyrifera), yellow birch (Betula
alleghaniensis), red maple (Acer rubrum), and sugar maple (Acer saccharum). Both boreal
species and shade-tolerant hardwoods exist throughout the area. The climate of PRF is
characterised by a mean annual temperature of 5.6 ◦C (−11.8 ◦C in January, 20.3 ◦C in July),
and average annual precipitation of 859 mm, with 682 mm falling as rain and 182 cm as
snow [36]. The research forest lies on the southern edge of the Precambrian Shield, with
elevations ranging from 140 to greater than 280 m above sea level [37]. Its gentle topography
is strongly influenced by glaciation and post-glacial outwashing. Three types of terrain
characterise the PRF: extensive sand plains of mostly deltaic origin; imposing hills with
shallow sandy soils, as well as bedrock outcrops; and gently rolling hills that are composed
of moderately deep, loamy sand that contains numerous boulders. Figure 1 shows the extent
of the common study area (line in red) for the three datasets used in this study.

Figure 1. Overview and location of common study area (red outline), Petawawa Research Forest,
Ontario, Canada.
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2.2. Airborne Laser Scanning Data

Three different datasets were used for this study. First, a monospectral linear ALS
(Riegl 680i; 1550 nm) was flown in 2012 (hereafter, designated as ALS12), a multispectral
linear ALS (Optech Titan; 532, 1064 and 1550 nm) was flown in 2016 (MSL16), and a photon-
counting lidar (Leica SPL100; 532 nm) was acquired in 2018 (SPL18). Information on the
respective acquisition parameters and sensors is provided in Table 1. In an ideal situation,
the three datasets would have been acquired simultaneously and then compared. Logistical
and financial considerations rendered this unpractical. The main difference between
the three datasets is the altitude flown during acquisition; 3760 m for SPL compared
to 600–750 m for the linear systems. Despite the much higher flying altitude, the point
density of SPL remains much higher than that of the other sensors owing to the principle of
single photon measurements. The triple-beam configuration of the MSL system provides
increased point density (similar to SPL18) when compared to the monospectral ALS system.
The use of the 532 nm green wavelength in the SPL system, much like the green channel of
the MSL system, hampers pulse penetration in thicker canopies, as witnessed by the much
lower point density of the MSL16 green channel compared to the IR channels.

Table 1. Acquisition parameters and information for lidar datasets.

Parameter ALS12 MSL16 SPL18

Acquisition date 17–20 August 2012 20 July 2016 1–2 July 2018
Sensor Riegl 680i Optech Titan Leica SPL100

Laser wavelength (nm) 1550 532/1064/1550 532
Laser beam divergence (mrad) 0.5 0.7/0.7/0.35 0.08
Avg. flying altitude (m AGL) 750 600 3760

Avg. flying speed (kts) <100 <140 <180
Pulse repetition frequency (kHz) 150 375 (3 channels) 60

Frequency (Hz) 76.67 40 23
Scan angle (degrees) ±20 ±35 ±15

Field-of-View (degrees) 40 30 30

Aggregate point density (points/m2) 5.8 4.8/12.4/11.9
~30 (combined) 28.6

Prior to our use of the information, the ALS12 and SPL18 datasets were processed
by their respective vendors to classify the ground/non-ground points using proprietary
software. For the multispectral dataset (MSL16), the three channels (C1, C2 and C3) were
combined into a single point cloud (C321) for the calculation of the geometric feature set. In
contrast, intensity features were calculated per channel, as pooled intensity features would
be meaningless. Normalised differences between channels were computed to produce
NDVI-like features, as found in [38].

Transects that were taken of the same area, but from the three different point clouds,
provide an example of monospectral ALS (ALS12—Figure 2 (top)), multispectral ALS
(MSL16—Figure 2 (middle)), and photon-counting lidar (SPL18—Figure 2 (bottom)) datasets.
Photon-counting lidar featured a high point density when compared with the other two
datasets despite being flown at a higher altitude. Differences in the middle-story and
ground hits can also be seen between the three datasets.
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Figure 2. Transect extracted from the three lidar datasets: (top) monospectral ALS (ALS12); (middle)
multispectral ALS (MSL16), with the three channels combined; and (bottom) photon-counting
lidar (SPL18).

3. Methods

For the purposes of this study, all processing was performed using in-house software
developed in the Python and R languages. This processing ranged from the initial data
layers, i.e., the point cloud, digital terrain model (DTM), digital surface model (DSM),
and canopy height model (CHM), to feature extraction and balanced Random Forest
classification [39]. The species identification methods that are proposed in this article
were initially developed for operational deployment with an industrial partner over large
(e.g., 200,000 ha) commercial forests. Given this criterion, processing speed was one of
the primary drivers guiding method development. This explains, for example, the use of
raster-based methods rather than more sophisticated point cloud methods for individual
tree crown segmentation, together with the need for feature selection in our Random Forest
models. We (and others) [40] have found that parsimonious classification models perform
better when they are applied to a large study area, while also making the analysis of
selected features easier to implement.

3.1. Individual Tree Crown (ITC) Segmentation

As the MSL16 point cloud was not processed to classify ground points, the 2012
point cloud was used to produce the reference DTM. This was generated with Whitebox
Tools [41] at a 25 cm-resolution using a Delaunay triangular irregular network fitted to
the lidar ground points. The DSM for both the ALS12 and MSL16 dataset was processed
using the same algorithm. DTM, DSM, and CHM rasters were provided with the SPL18
dataset. SEGMA (https://en.geophoton.ca/t%C3%A9l%C3%A9chargements (accessed on
17 October 2021)) software v 0.3 [42] was used to delineate the ITCs from the ALS12 CHM.

https://en.geophoton.ca/t%C3%A9l%C3%A9chargements
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Within SEGMA, the CHM with XY resolution of 0.25 m is first filtered using a Gaussian filter,
in which the σ (sigma) value varies proportionally to the local CHM height. Local maxima
are then detected on the filtered CHM using an exclusion radius that was proportional
to local CHM height; for a local maximum to be detected, a pixel must be higher than all
of the pixels that are found within a radius determined by the local height. Regions are
grown around these maxima until certain criteria are met, such as reaching a crown height
much smaller than the local maximum [42]. At this stage, a certain number of attributes
are computed, such as the height (maximum unfiltered CHM height within the crown),
crown area, diameter, height-to-area ratio, vertical extent (difference between the highest
and lowest unfiltered CHM height in a crown), crown ratio (vertical extent over height),
circularity and eccentricity, among others. A delineation score is computed automatically as
a weighted mean of these attributes. Crowns having a low delineation score or improbable
proportions (e.g., an outlying value of height to area ratio) are resegmented by erosion. The
final crowns are polygons that are recorded in a vector layer (shapefile) with their attributes.

After automated delineation, the quality of the ITC was appraised visually by overlay-
ing the delineated crowns onto the CHM or onto ortho-photos to ensure that delineation
problems would not compromise subsequent methodological steps. Using visual analy-
sis (which we recognise as being subjective), ITC delineation performance was generally
very good, but lower in dense, hardwood-dominated forests. This may have introduced
omission and commission errors when identifying tree crowns.

Crown matching is required to be coherent between datasets. Therefore, crown delin-
eation was performed using SEGMA on the ALS12 dataset. These crown polygons were
subsequently used to extract features on all three datasets. Visual inspection of the ALS12
crown outlines (Figure 3a,b) that were overlaid on the MSL16 (Figure 3c,d) and SPL18
(Figure 3e,f) showed that most properly delineated crowns still showed good agreement
with the crowns that were visible in the CHM of the two more recent datasets.

Figure 3. Cont.
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Figure 3. Individual tree crown alignment comparisons for the three datasets: ALS12 (a,b); MSL16
(c,d); SPL18 (e,f). The crown polygons in red are crowns that were delineated on the ALS12 dataset
(a,b), field identified and carried forward for training on the other two datasets. The crowns still
align well visually with the respective CHMs.

3.2. Feature Calculation

Geometric and intensity features that were derived from the ALS points of each
delineated crown were used to identify species. The geometric features (based on X, Y
and Z lidar data) included tree proportions, vertical crown profile, and porosity to laser
pulses, among others. The intensity features were based on measures of central tendency
(mean, median) and dispersion (standard deviation) of the laser return intensities. We used
a subset of the features that were described by [38]; these are enumerated in Tables 2 and 3.

Table 2. Description of 3D-based features for each crown (prefix = 3D_).

Symbol Description Return Types Statistics

DI Dispersion (coefficient of variation of return heights) all, 1st cv

SLOPE Slope of the lines connecting the highest return to each of the
other returns all, 1st mn, sd, cv, p25, p50, p75

RB Ratio of the number of returns in different height bins (% of
height) over total number of returns all Counts: 60_80, 80_90, 90_100,

95_100
CH Ratio of the convex hull volume over maximum height cubed all N/A
RM Ratio between different statistics and different types of return all, 1st, 2nd mn, p50

Abbreviations: all = all returns, 1st = first returns, cv = coefficient of variation, mn = mean, sd= standard deviation,
p = percentile.

Table 3. Description of intensity-based features for each crown (prefix = I_).

Symbol Description Return Types Statistics

DI Dispersion (coefficient of variation of intensity) 1st sd, cv
PE Intensity values at given height percentiles 1st p5, p10, p25, p50, p75, p90, p95
MI Mean intensity of returns between interval of percentiles 1st mn: all, p5_95, p10_90,
RM Ratio between different statistics all, 1st, 2nd mn, p50

G_IR1 (MSL) Type 1 Green Normalised Difference Vegetation Index (532 nm and 1064) 1st mn, p50, p75
G_IR2 (MSL) Type 2 Green Normalised Difference Vegetation Index (532 nm and 1550 nm) 1st mn, p50, p75
NDIR (MSL) IR Normalised Difference Vegetation Index (1064 nm and 1550 nm) 1st mn, p50, p75

Simple ratios of 3 MSL wavelengths 1st mn, p50, p75

Abbreviations: all = all returns, 1st = first returns, 2nd = second returns, cv = coefficient of variation, mn = mean,
sd= standard deviation, p = percentile.

In the case of geometric features, it is possible to normalise each laser return elevation
to height above ground by subtracting the underlying raster DTM elevations under each
ALS return. We avoided this normalisation because this warps the 3D shape of tree crowns
in the presence of terrain slope [43]. Instead, we extracted a single DTM value at each
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crown’s centroid and used this single value to normalise all of the ALS points falling within
the corresponding crowns.

The following steps involved extracting the laser returns for each crown and normalis-
ing them to the single DTM height. Points below 2 m above ground were discarded. In
addition, all geometric features that relate to tree size, e.g., the height at the ith percentile,
were normalised relative to the tree height, as:

Fn(i) = F(i)/H(i) (1)

where Fn is the normalised feature value based upon the absolute value of F, and H is the
height of the ith tree. Calculating Fn ensures that species identification remains independent
of the height distribution of trees in the training samples [44]. Adimensional geometric
features, such as the ratio of crown area to height, or the slope of the lines connecting the
highest return to each of the other returns, were not transformed.

No intensity normalisation was required, since range information was unavailable for
all three datasets. Our preliminary tests showed a negligible effect of intensity normalisation
using alternative methods to determine range (such as using the above-ground altitude of
the aircraft and the scan angle as a proxy for range for the study area) on the classification
accuracy of our Random Forest models.

Overall, a total of 34 3D features (all three MSL channels were combined into a single
channel for the calculation of these 3D features), and 16 intensity features (65 in the case of
MSL where each individual channel was used) were computed for each tree.

3.3. Species Classification Model
3.3.1. Training Crown Selection

Reference training crowns were sampled and identified based on ITC delineation
(using SEGMA) performed on the ALS12 dataset. An initial set of training crowns (N = 331)
was identified in 2014 by trained photo-interpreters with Ontario Ministry of Natural
Resources and Forestry (MNRF) with high confidence in conifer identification and good
confidence with regard to hardwoods. A second set of training crowns (n = 1109) was
identified by field crews that were cruising targeted areas to achieve the proper spatial
distribution of training crowns in the summer of 2015. For this campaign, field crews
cruised the forest with an SX-Blue GNSS receiver that was obtained from Geneq Inc.
(Montreal, QC, Canada). The GNSS receiver contained GPS, GLONASS (a Russian satellite-
based navigation system), and a Wide Area Augmentation System (WAAS). The WAAS-
corrected geo-location was shown on a field tablet displaying the CHM raster and the
delineated crown polygons. Matching was sometimes complex because an actual crown
may bear little resemblance to the associated polygon; additionally, the field position may
drift due to GPS positioning error.

Based upon geo-location-assisted visual association between a tree in the field and
its representation on the tablet, the matching crown polygon species label was added to
the training crown shapefile on the tablet. The training crowns were curated using recent
high-resolution aerial imagery to remove felled or dead crowns. Throughout the sampling
campaign, care was applied to gathering trees of different heights, from 5 m to height
at maturity for each species. The overall goal was to collect an equal number of sample
crowns per species; this proved to be difficult, as abundance varied between species and
per stand. Three crowns were removed during a visual quality control step and species
with fewer than 40 exemplars were removed. The resulting number of sample crowns
per species is presented in Table 4. Due to the complexity and expense related with field
training crown selection, it was unfeasible to conduct campaigns for the MSL16 and SPL18
acquisitions; hence, the ALS12 training crowns were used as a reference in this study.
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Table 4. Number of training crowns per species ALS12 (n = 1413).

Species n

Black ash 45
White ash 40
Basswood 56

Beech 70
Balsam fir 78

Paper birch 53
Yellow birch 40

Eastern white cedar 44
Eastern larch 46
Sugar maple 137
Red maple 54

Red oak 72
Jack pine 89

Bigtooth aspen 100
Red pine 109

Trembling aspen 48
White pine 159

Black spruce 65
White spruce 108

3.3.2. Classification Groupings

We performed four different groupings to compare classification across the three
datasets: two tree types (HW/SW); four genera with four species; five functional groups;
and a species grouping with twelve species, as seen in Table 5. Differences in species
counts reflect the fact that some features in the MSL and SPL datasets cannot be calculated
for those crowns; we cannot use crowns with missing values to train our Random Forest
models; therefore, they are discarded. This is likely due to the tree having been felled
during the time interval between initial acquisition and delineation (2012), or to differences
between the features that were calculated depending upon the lidar system being used. For
example, the green channel of the MSL system has been shown to attain a lesser degree
of penetration than do the other two IR channels [45], resulting in some crowns having
no second returns in the MSL acquisition. One type of 3D feature (RM from Table 2) uses
second returns, so these features cannot be computed for crowns without second returns.
A similar problem exists for SPL systems, since far fewer second returns are recorded by
these systems than by linear ALS systems (see Figure 1) [46], resulting in crowns being
discarded as well.

Table 5. Training crown groupings.

HW/SW ALS12 MSL16 SPL18

Hardwood 683 614 596
Softwood 673 566 546

Four Genera

Acer (maple) 185 175 155
Pinus (pine) 345 280 302

Populus (poplar) 135 102 139
Picea (spruce) 171 154 130

Functional Group (Fct. Gr.)

Hardwood 308 297 262
Intolerant hardwood 375 317 334

Other softwood 157 132 114
Pine 345 280 302

Spruce 171 154 130
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Table 5. Cont.

12 Species

Ash (Black/White) (AS) 81 70 66
Basswood (BA) 56 53 48

American Beech (BE) 67 69 59
Birch (Paper/Yellow) (BI) 89 80 77
Eastern White Cedar (CE) 44 43 36

Balsam Fir (BF) 69 53 43
Eastern Larch (LA) 44 36 35

Maple (Red/Sugar) (MA) 185 175 155
Red Oak (OK) 70 65 52

Pine (Red/White) (PI) 345 280 302
Trembling Aspen (PO) 135 102 139

Spruce (Black/White) (SP) 171 254 130

3.3.3. Random Forest Training and Feature Selection

The species were identified using a Random Forest (RF) classifier. This classification
method offers several advantages compared to other methods. It leads to the best or
at least equivalent accuracy when compared to other methods [47]. RF has been found
to be well suited for several tree species classification studies [6,22,38,48]. RF has been
shown to not rely upon assumptions of normality and homoscedasticity. We applied the
Shapiro–Wilk test to our datasets and found that none of the features followed a normal
distribution. This lack of normality eliminates widely used parametric statistical tests, such
as linear or quadratic discriminant analysis. Finally, RF is able to handle a very large set
of predictors and exhibits a low sensitivity to collinearity between features [49] as well as
a low propensity to over-fit the model [39]. However, it is sensitive to unbalanced data
(such as ours), that include large discrepancies in the number of samples per class. Various
sub-sampling strategies can be applied to the training set to balance the classes for model
training [50].

The number of geometrical and intensity features that were calculated (as per Sec-
tion 3.2) resulted in a large feature set. Using the complete feature set (high dimensionality),
especially given the paucity of training crowns per species (N = 35 in the worst case, after
crowns with missing features are removed), can result in a reduction in prediction power,
over-fitting, and a reduction in the generalisability of the models. These problems, par-
ticularly the loss of predictive power, exemplify the Hughes effect, or what [51] referred
to as “the curse of dimensionality.” Due to the number of features that were calculated,
we proceeded with two widely used feature reduction methods: an initial ranking and
filtering of all features [52], followed by stepwise selection of the final features. The first
criterion that was selected in the initial feature filtering step was the mean decrease in
accuracy (MDA) function, found in the Random Forest package [53] of R [54]. Only features
with an MDA > 0.1 were retained. Next, features with a correlation > |0.9| with another
were removed, retaining the one having greater usefulness (largest MDA value) in the
inter-correlated pair.

The Variable Selection Using RF (VSURF) algorithm [55] was then used to perform the
final feature selection. VSURF is a wrapper-based algorithm that uses the MDA information
contained in the RF model to select features. The desired number of features is ranked
based upon MDA scores over 50 permutations; features that include negligible or zero
contributions to the classification are removed. The remaining variables are then tested in
a variety of RF models with the most accurate model being retained; MDA is only used
initially to rank the features. An ascending stepwise function is then used, which removes
redundant features based upon their contributions to the out-of-bag (OOB) error. The
threshold for rejecting a feature is based upon a function that minimises OOB error. These
remaining features were subsequently used to train the RF models for each dataset. As
a result, the retained features differed for each dataset, depending upon the usefulness
of the features in their respective datasets and their degree of inter-correlation. Retained
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features were used to construct the final RF model for each species grouping and for each
dataset. Due to the heuristic nature of the VSURF algorithm, the resulting feature set is
not necessarily the best set of features, but rather a good one to train our models [56].
The resulting models were run 20 times on the training data to calculate the average
overall accuracy. A classification was performed and its accuracy was assessed using three
feature sets for each dataset: (1) all selected features; (2) the 25 best features; and (3) the
15 best features.

Finally, to understand the respective roles of the 3D and intensity features, we report
classification accuracies resulting from using only 3D features, only intensity features,
or all features. Furthermore, to explore the advantages of using a combination of sys-
tems, and acquisition over multiple years, we combined the features of all systems into a
single classification.

4. Results

The RF classification accuracies were compared for four different species groupings,
three ALS systems (ASL12, MSL16, SPL18), and four broad feature groupings: 3D only;
intensity (I) only; all the features of a given ALS system; and all the features of all the ALS
systems pooled (Table 6). This comparison was performed following an initial variable
selection (based upon MDA, inter-correlation, and VSURF). The best accuracies were
achieved for the first level of classification, i.e., the type distinction between hardwood and
softwood species, while the lowest accuracies occur at the 12 species level. At the finest
classification level, there was a noticeable difference in accuracy between most hardwood
(in the grey background of Table 7) and softwood species (in the white background of
Table 7) for the best model (all sensors, all features) with eastern larch (Larix laricina) being
a notable exception to this pattern. This result was not necessarily surprisingly, given that
larch is a deciduous softwood.

Multispectral ALS (3D + intensity features) produced the best results in all species
groups, and all feature subsets, while SPL ALS displayed a systematically lower accuracy
compared to the two other types of sensors. The decrease in performance was almost
always greater going from standard ALS to SPL, highlighting the different nature of SPL
compared to the two linear ALS systems. However, both linear ALS systems (standard and
MSL) generally produced comparable results, with a small advantage being shown by the
MSL sensor in most cases.

Table 6. Random Forest classification accuracy in % (20 runs) broken down by 3D and intensity (I)
features, pooled by system (All), and pooled across all systems and features (ALL ALS, All).

ALS12 MSL16 SPL18 ALL ALS

3D I All 3D I All 3D I All All

Type (HW/SW)
All features 84.0 76.2 86.4 82.9 85.2 90.4 80.1 59.1 82.9 90.3
25 features N/A N/A 86.1 N/A 85.2 90.4 N/A N/A N/A 91.1
15 features 84.1 N/A 86.3 82.9 85.0 89.9 80.1 N/A 82.7 91.0
4 genera

All features 65.4 64.7 75.1 67.8 71.7 78.6 64.5 50.1 68.3 83.4
25 features 65.5 N/A 74.3 N/A 71.8 78.1 N/A N/A N/A 83.5
15 features 63.6 N/A 74.2 66.4 71.8 76.8 63.5 N/A 68.1 81.4

Functional Group
All features 55.7 52.5 68.9 54.3 64.1 69.6 50.4 43.3 63.6 75.0
25 features N/A N/A 67.4 N/A 64.3 69.2 N/A N/A N/A 73.0
15 features 55.3 N/A 66.2 54.1 64.1 68.6 50.0 N/A 64.4 72.5
12 species

All features 38.9 33.2 50.7 36.8 48.2 53.2 37.8 25.8 44.5 58.0
25 features N/A N/A 51.3 N/A 48.5 53.5 N/A N/A N/A 57.0
15 features 38.3 N/A 48.7 37.3 47.5 51.5 38.4 N/A 44.8 54.2
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Table 7. Confusion matrix for 12 species classification using best model (all sensors, all features).
Definitions of the two-letter acronyms for tree species are given in Table 5, softwood species in grey.

AS BA BE BI CE BF LA MA OK PI PO SP OOB Accuracy %

AS 22 4 1 5 0 0 1 5 9 4 4 1 39

BA 10 13 3 2 0 0 1 3 4 5 4 1 28

BE 1 0 36 2 0 0 0 14 0 0 2 1 64

BI 7 1 4 21 3 0 0 6 9 5 10 1 31
CE 4 1 0 1 26 0 1 0 0 0 0 3 72
BF 0 1 1 0 2 22 1 0 2 0 0 5 65
LA 0 0 0 0 4 0 10 0 0 4 0 11 35
MA 4 5 28 5 1 1 0 81 2 7 10 2 56

OK 5 2 0 3 0 0 0 2 31 1 2 1 66
PI 3 6 0 1 13 4 10 1 2 185 16 10 74
PO 11 5 4 10 4 4 1 2 3 6 42 4 44
SP 0 3 0 0 5 7 3 1 0 7 3 88 75

The relative information contents of the 3D and intensity features varied across systems.
Unsurprisingly, the three-wavelength intensity features of MSL provided greater species
identification performance than did its 3D features. The reverse was true in the case of the
two other systems. In most cases, the contrast between the discrimination power of the 3D
and the intensity features was greater in SPL, with the 3D features performing much better
than the intensity features. The SPL models displayed two fewer intensity (I_) features
than the standard ALS, given that they were more strongly correlated and were removed
in the feature selection process. It must be reiterated that SPL intensity is an ill-defined
quantity and care must be taken in the interpretation of results that are derived from it. In
all cases, the single intensity channel of standard ALS provided greater accuracy than that
of the SPL system, while the accuracy that was provided by the 3D features of SPL was
similar to that of the other two sensors, or slightly lower.

For each ALS system and each species grouping, the greatest accuracy was attained
when the 3D and intensity features were combined. For the simplest classification level
(hardwood vs. softwood), the pooled 3D and intensity variables did not feature sub-
stantially greater accuracy compared to that of the best subset (intensity-only or 3D-only,
depending upon the case). For the most complex level (12 species), the contrast was greater,
particularly in the case of standard ALS, where the numbers rose from 38.9% (3D-only) to
50.7% (all).

Combining all the features from all the systems improved the accuracy in all cases but
one (type discrimination using all available features). This improvement, in general, was
about 5% compared to using MSL only, except for the classification of tree type. Figure 4
shows the feature rankings for the 12 species-all sensors-all features model that were
ordered by Mean Decrease Gini and which were produced with the varImpPlot function
of the Random Forest package in R. The Mean Decrease Gini (unitless) is the mean of a
feature’s total decrease in node impurity, weighted by the proportion of samples reaching
that node in each individual decision tree in the Random Forest. It is a measure of how
important a feature is for classification accuracy across all the trees in the Random Forest.
The relative ranking of the features is of interest in these Figures. The suffix following the
variable name of each feature refers to the dataset from which the feature was calculated.
Slope features figured amongst the most important, as did both green channel-based multi-
spectral vegetation indices. The first return intensity dispersion coefficient from standard
ALS is the most significant feature for the 12 species classification. Figures 5 and 6 break
down in order of importance the features by 3D and intensity, respectively.

In most cases, more parsimonious classification models, i.e., using only the best 25
or 15 features, displayed only a slight decrease of accuracy compared to using all of the
pre-selected features. This decrease was very small (≤0.5%, except for SPL) for the type
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level, and more apparent, while rarely exceeding 2% for the other classification systems.
Our results indicate that the more complex sensors (MSL and SPL) did not substantially
improve the performance of our models, with the SPL models being the least accurate in
all cases.

Figure 4. Mean Decrease Gini for the 12 species classification (all sensors, top 10 features). The suffix
after each feature (_12, _16, _18) refers to the dataset (ALS12, MSL16, SPL18) from which the feature
was calculated.

Figure 5. Mean Decrease Gini features for the 12 species classification (all sensors, top 10 3D features
only). The suffix after each feature (_12, _16, _18) refers to the dataset (ALS12, MSL16, SPL18) from
which the feature was calculated.
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Figure 6. Mean Decrease Gini features for the 12- species classification (all sensors, top 10 I features
only). The suffix after each feature (_12, _16, _18) refers to the dataset (ALS12, MSL16, SPL18) from
which the feature was calculated.

5. Discussion
5.1. Factors Influencing Tree Identification Accuracy

The results that are presented here represent the first time that the classification
accuracy of automatically delineated ITC was directly compared amongst single ALS,
multispectral ALS and SPL systems. The main factors influencing the classification accuracy
include system type (ALS, MSL, SPL), the type of feature that is being used (3D, I) and
the number of species classes that need to be identified. The richer I feature set that was
provided by the three-channel MSL (26, compared to 8 for ALS, and 6 for SPL) resulted
in higher classification accuracies across all cases than using 3D features only. This is
consistent with results that were found by [6,36] using the same MSL sensor. The best
results across all the system types are obtained when combining 3D and I features with the
MSL system, which once again featured the highest accuracies of all three system types.
The MSL overall feature set (45) was also richer compared to ALS (31) and SPL (23). The
NDVI-like features that were provided by MSL consistently emerged as the top 10 most
important features that are selected by the Random Forest models (e.g., Figures 4 and 6).
Furthermore, larger numbers of features increase the number of features that remain after
the correlation filter is applied, which provided more information when training our model.

SPL’s higher point density does not seem to mitigate its limitations when classifying
species. As shown in Figure 2 (bottom), the point cloud that was provided by SPL over
dense canopy is more akin to the photogrammetric point clouds that are obtained through
stereo image matching, with most of the returns being provided by the uppermost part
of the canopy and composed of singleton returns. The distribution of returns (first vs.
second) is very different from that for linear ALS, with MSL having almost four times the
number of pulses with multiple returns than does SPL [46]. A possible explanation for this
observation is that data acquired with SPL systems require extensive noise removal for
daytime acquisitions [31]. Most methods for noise suppression in SPL are based upon the
elimination of isolated points, which potentially removes signal photons. The remaining
points are clustered and, therefore, are likely to be redundant. Spurious return filtering
is not required for linear ALS systems (except for the occasional very high or low points).
Lastly, the positional precision of the SPL sensor (Leica SPL100, Leica Geosystems Ltd.
(North America), Lachine, QC, Canada) has been shown to be weaker than that of the
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MLS sensor (Optech Titan, Teledyne Optech, Toronto, ON, Canada) that was used in this
study [46], which may lead to the “blurring” of 3D features.

As was the case for the intensity features that were derived from the linear ALS,
the precise interpretation of the intensity values that were provided by SPL was also
problematic for reasons similar to those evoked for 3D features. Linear ALS systems
detectors produce voltage that is linearly proportional to the number of photons being
recorded [30]. There are still many unanswered questions regarding the algorithms that
are used to calculate ALS intensity values (they are proprietary to the various instrument
manufacturers) and they preclude the comparison of lidar acquisitions that are provided
by different sensors and over-flights. SPL detectors yield a binary response to incoming
photons, theoretically precluding the calculation of an intensity value for each (single
photon) return. It is thus approximated by computing a measure of local point density for
each cloud [57]: the detector in the SPL system can register multiple single-photon hits
(from the same pulse) in each channel and sum the output to form an analogue value of
intensity for each return [46]. This ambiguity exacerbates the existing limitations of using
linear ALS intensity values in classification models, as described above.

Comparing our results to those of other studies is difficult, given that most (80%) of
the 97 studies that were analysed in a review by [56] classified four or fewer species classes.
Furthermore, several species identification papers use a manual or semi-manual process for
delineating crowns and combine other datasets, such as optical and hyperspectral imagery,
with the lidar data (e.g., [58,59]. Additionally, there are very few species identification
studies using MLS or SPL systems at the individual tree crown level. Comparing study
accuracies relative to each other is difficult since the number of species, species included,
the type of forest biome, and different acquisition parameters can vary so much between
studies. The Number of Categories Adapted Index (NOCAI) has been proposed as a means
of enhancing comparability between tree species classification studies [60]. It is calculated
by dividing the accuracy that is obtained for a given model by the expected accuracy
of randomly assigned tree species. The expected accuracy is modelled by 1/k, with k
representing the number of species classes for a given study. Higher values of NOCAI
indicate a better performance by the classifier.

The authors of [36] achieved an accuracy of 76% (NOCAI = 7.6) for 10 similar species
and 95% (1.9) for type (HW/SW), while [54] obtained a similar accuracy of 77% (7.7) for
10 species in Sweden, and [42] obtained an accuracy of 88% (5.3) on a subset of 6 needle-
leaved species, with all of these studies using the same MSL system. The results for the best
12 species classification that were obtained in this study was 58% (7.0). While the accuracies
in the aforementioned papers are much higher than the ones that were obtained in this
paper for the highest number of species classes, one difference that distinguishes them from
our method is the manual delineation of tree crowns rather than automatic delineation that
was used in this paper. Furthermore, the aforementioned studies used nearly double the
number of training crowns that were used in our study. However, the results for the coarser
level groupings, the functional group 75% (3.8), and HW/SW 91% (1.8) are consistent with
the studies mentioned above.

The authors of [6] achieved 86% (2.6) accuracy and [60] achieved 89% (2.7) accuracy
for three species in Finland, once again using the same MSL sensor. Notwithstanding
the difference in forest structure between Finland and Canada, which makes automatic
delineation less challenging to perform accurately, our results at the four-genera level with
MSL at 79% (3.2) accuracy compare with the results obtained in these two papers, especially
as most of our genera classes contained more than one species. Our results differ from those
reported in the former papers, in which the authors found that MSL performs better than
ALS when more species were classified. More generally, our results are consistent with the
survey by [56], who found that across numerous studies, classification accuracy decreases
with the number of species classes being considered. In addition, the average NOCAI
that was calculated for the best-performing studies compare favourably to those that we
obtained in the two-species (1.9 in review average vs. 1.8 in this paper) and four-species
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(3.4 vs. 3.2) cases. Our Functional Group model with 3.8 performed in a manner similar to
the five-species classification review average of 4.0.

The inferior performance of SPL for species identification that was found in this paper
is contrary to studies that are based upon ABA, which found that SPL is comparable to
MSL [34] and ALS [61] when it comes to calculating forest inventory parameters (e.g.,
Lorey’s height, basal area, stem volume, aboveground biomass). This difference can be
explained by the fact that ABA uses statistical methods that are based upon the height
distribution of the lidar returns, rather than the type of return (first vs. second under our
method used in our example). The discrepancies in penetration depth between ALS and SPL
are not exploited under ABA. Furthermore, a classification problem (species identification)
is fundamentally different from modelling structural attributes with regression models,
or others.

When combining the features from all three datasets (last column of Table 6), we see
that it improved results by about 5% in all cases, except for the type classification (HW/SW).
Each system likely provides a specific type of information content that is not redundant
or repeated between systems, thereby increasing classification accuracy. An additional, or
alternative, explanation is that having thus created a 6 year time series of data, perhaps
inter-species differences in feature evolution (e.g., specific growth patterns) are captured as
well. Even though multiple acquisitions on the same area by these three different systems
may not be economically recommended, the temporal aspect may have made multiple
acquisitions by standard ALS systems more useful as additional data for our models.

When examining the relative importance of features for the 12 species classification
using the combined dataset (Figure 4), slope-based features were the major single contrib-
utor. However, intensity features composed most of the top 10. It should be noted that
the two MSL green channel vegetation indices (I_G_IR1 and _IR2) appeared in the top
10 features. SPL contributed the least number of features, i.e., two. When looking at 3D
features only (Figure 5), slope-based features contributed significantly, as did convex hull
features from the ALS and MSL datasets. Given that the SPL data are mainly composed of
first returns near the top of the canopy, a convex hull value was not computed for many
crowns, reducing the value of the THREED_CH_18 feature. SPL once again contributed
the least number of features to the model: two. Figure 6 shows the intensity features
in isolation. Three MSL-based spectral indices were amongst the top 10 features of the
model; features that were based upon the ratio of median intensity values between first
and second returns contributed to the model as well. Finally, the most significant feature in
the combined model and the intensity-only model was the coefficient of dispersion of first
return intensity values (I_DI_1st_sd_12) from the ALS dataset.

5.2. Implications for Forest Inventory

Generally, the most requested output from the remote sensing acquisitions of forests
consists in the species-specific size distributions of their individual trees [6]. The results
that are presented in Table 7 for the 12 species classification (58% using 97 features from the
combined datasets) fall short (with 70% being a reasonable threshold, in our opinion) of
being sufficiently accurate for operational use. There was also a clear difference amongst
most hardwood and softwood accuracies, with the accuracy of most softwood species
being much higher (≥60%, except for LA) compared with hardwood species (≤40%). This
illustrates the continuing challenge of accurate tree crown delineation and identification in
dense, mixed hardwood forests.

Higher accuracies have been achieved through the fusion of hyperspectral imagery
and ALS. For example, an accuracy of 88% was obtained for eight savannah tree species [62].
The delineation of savannah trees is greatly facilitated when compared with dense natural
forests. However, there are geometric and radiometric registration challenges when two
different sensors are used, given that data are usually acquired at different times and
from differing viewing geometries between lidar and optical systems [63,64]. Evidently,
automated delineation is required for operational use. Errors of commission and omission
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arising from delineation, and the difficulties of identifying training crowns in the field, or
label noise (see next section), are all factors that affect classification accuracy when using
machine-learning classifiers such as Random Forest.

Linear ALS systems are now widely used to provide the structural information that
is used to construct enhanced forest inventories, specifically with the ABA [8]. Cost is an
important factor to consider, due to the large areas that need to be covered operationally.
The ground that is sampled by an ALS sensor at any given time is a function of flight
altitude, speed, and maximum scan angle. For ALS systems, there is a direct relationship
between point density and cost. If a sensor, such as SPL, can cover more km2 h−1 at the
same theoretical point density, then there is a clear cost advantage in using SPL, at least in
the case of the ABA [34,61]. As demonstrated by our results, there are apparent differences
in the point cloud that was produced by linear ALS and SPL systems, resulting in lower
accuracies across the board for SPL acquisitions. The structure of the returns (far fewer
second returns) arising from the lower penetration of the canopy achieved by the SPL
system is different when compared to linear systems [65]. When combined with the fact
that features using the ratio of first vs. second returns are frequently retained in our models,
this results in the lower accuracies that were recorded for the SPL system.

5.3. Limitations and Research Avenues

Our study revealed some limitations when we tried to apply machine-learning method-
ologies to a natural environment and on a large scale. The first limitation concerns the
sparseness of our training data. Machine-learning classifiers, such as Random Forest, show
a corresponding increase in accuracy when the sample size is increased [66–68]. At the
12 species classification level, some species consist of 35 exemplars, which is a very small
number when compared to typical machine-learning image classification problems, where
each class features tens of thousands (millions in the case of deep learning) of exemplars for
each class [69]. Without mitigation measures such as feature selection (this is especially true
when using balanced Random Forest models, as in this paper), the paucity of our training
data would also lead to issues that are related to the aforementioned curse of dimensionality,
since the ratio of training crowns to calculated features would be far too low.

The noisiness, or occasional mislabelling, of our training data is another limitation of
this study. The software that was used to delineate the crowns attempts to assign a precise
delineation to detected tree-tops to produce the crown polygon layer depicting theoretical
crowns. This layer is then used (as discussed in Section 3.3.1) to identify training crowns
and to assign a species to them. Several sources of systematic error are then introduced into
the model: GPS drift and difficulties in spatial orientation, which originates from relating
the crowns that are generated by SEGMA to the canopy that is observed by looking upward,
mean that some training species are obviously mislabelled, or suffer from label noise [70],
such as two entwined crowns growing together. An additional source of training crown
impurity is delineation error, especially at the edges of the crowns. If delineation is not
exact, then there can be different species that are included in the training crown around its
edges. Although Random Forest is shown to exhibit robustness to label noise [71], higher
levels of label noise exert a subsequent negative effect upon classification accuracy [72].

As mentioned in the previous section, there are possible temporal decorrelation issues
that are related to the training data acquired in 2012, while SPL was acquired in 2018. The
strong results that were obtained from the MSL 2016 acquisition mitigate this possibility.
The differences between SPL and linear ALS data for species classification at the individual
crown level need to be investigated further, together with accuracies that must be improved
across the board, to become operational at large scales. An encouraging observation from
this study, however, shows that training crowns that are acquired in one year can be used
in subsequent acquisitions, even when accounting for the usual intensity standardisation
problem between different lidar sensors, and even with the same instrument. This shows
the potential for building a library of training crowns that would be usable across different
datasets when accuracy levels become high enough to be operational.
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To bring forward actionable species information for enhanced forest inventories at the
individual crown level, future research should concentrate on improving the delineation
process. Improvements in the accuracy of the delineation process should translate directly
to enhanced accuracy of tree species identifications at all levels of fineness. We can also ask
ourselves whether we need to delineate the entire crown exactly; perhaps a circular (or other
shape) buffer around radius of a given distance from the local maximum could provide
features that suffer less from the label noise effects that are caused by uncertain crown edges
than are experienced currently. The temporal effect species signal that may exist for features
calculated across multiple data acquisitions should also be further investigated. This does
not require three types of sensors to capture this signal per se, but it would be interesting
to observe whether just two ALS over-flights that are separated by a few years exhibit the
same behaviour as found in this study. To reach its maximum potential usefulness, more
must be known about lidar intensity (across all systems) to be able to standardise the values
across acquisitions. This would surely increase the already significant classification power
of intensity features for species identification.

6. Conclusions

This paper compared the performance in tree species identification achieved by three
different lidar systems, including multispectral and single-photon instruments, at the
individual tree crown level, using the same training crowns and methodology across the
three datasets.

MSL provided the greatest species identification accuracy across all the groupings,
while SPL displayed the lowest. In the case of the combined dataset, MSL provided more
intensity features, while ALS and SPL provided mostly 3D features. When the results
were broken down by feature type (3D vs. I), we found that geometric features performed
better than intensity features for the monospectral linear and single-photon instruments.
As expected, the enhanced intensity features of linear multispectral lidar performed better
than the geometric features, even with the enhanced point density that had been acquired
by the three laser beams in that particular instrument. In all cases, the combined geometric
and intensity features performed the best. Single-photon lidar intensity features performed
the poorest across all datasets. Interpreting this result is made difficult by the fact that the
derivation and meaning of the SPL intensity measurements is still not well described in
published research.

In dense mixed forests such as PRF, hardwoods remain a classification challenge at the
12 species classification level, while softwoods are classified more accurately. Hardwoods
are more challenging to delineate accurately and are more prone to identification error
when selecting training crowns in the field. The low number of exemplars in certain species
classes lowered the effectiveness of the Random Forest classifier, since all classes would
have their training data limited by the class with the lowest count.

The fact that training crown polygons were segmented and field-sampled in one
year (2012) and used in subsequent lidar over-flights (2016 and 2018) is encouraging, as
it means that fieldwork does not have to be duplicated to use a more recent acquisition.
A novel combination of all three dataset features in a single classification model, which
improved accuracy by an additional 5% in most cases, was performed as well. The success
of this combination suggests that multi-temporal species differences between features
arising from multiple lidar acquisitions would not necessarily have to originate from three
different types of sensors, as were used in this study, but these differences in features could
contribute to accuracy improvement, which merits further investigation.
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