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ARTICLE

Substantial hysteresis in emergent temperature
sensitivity of global wetland CH4 emissions
Kuang-Yu Chang 1✉, William J. Riley 1✉, Sara H. Knox 2, Robert B. Jackson 3,4, Gavin McNicol 3,

Benjamin Poulter 5, Mika Aurela 6, Dennis Baldocchi 7, Sheel Bansal8, Gil Bohrer 9,

David I. Campbell 10, Alessandro Cescatti11, Housen Chu1, Kyle B. Delwiche3, Ankur R. Desai 12,

Eugenie Euskirchen 13, Thomas Friborg 14, Mathias Goeckede 15, Manuel Helbig 16,17,

Kyle S. Hemes 18, Takashi Hirano19, Hiroki Iwata 20, Minseok Kang21, Trevor Keenan 1,7,

Ken W. Krauss 22, Annalea Lohila 6,23, Ivan Mammarella 23, Bhaskar Mitra 24, Akira Miyata25,

Mats B. Nilsson 26, Asko Noormets 27, Walter C. Oechel 28, Dario Papale 29, Matthias Peichl 26,

Michele L. Reba30, Janne Rinne 31, Benjamin R. K. Runkle 32, Youngryel Ryu 33, Torsten Sachs 34,

Karina V. R. Schäfer35, Hans Peter Schmid36, Narasinha Shurpali 37, Oliver Sonnentag 17,

Angela C. I. Tang 38, Margaret S. Torn 1, Carlo Trotta 29,39, Eeva-Stiina Tuittila 40,

Masahito Ueyama 41, Rodrigo Vargas 42, Timo Vesala23,43, Lisamarie Windham-Myers 44,

Zhen Zhang 45 & Donatella Zona28,46

Wetland methane (CH4) emissions (FCH4
) are important in global carbon budgets and cli-

mate change assessments. Currently, FCH4
projections rely on prescribed static temperature

sensitivity that varies among biogeochemical models. Meta-analyses have proposed a con-

sistent FCH4
temperature dependence across spatial scales for use in models; however, site-

level studies demonstrate that FCH4
are often controlled by factors beyond temperature.

Here, we evaluate the relationship between FCH4
and temperature using observations from

the FLUXNET-CH4 database. Measurements collected across the globe show substantial

seasonal hysteresis between FCH4
and temperature, suggesting larger FCH4

sensitivity to

temperature later in the frost-free season (about 77% of site-years). Results derived from a

machine-learning model and several regression models highlight the importance of repre-

senting the large spatial and temporal variability within site-years and ecosystem types.

Mechanistic advancements in biogeochemical model parameterization and detailed mea-

surements in factors modulating CH4 production are thus needed to improve global CH4

budget assessments.
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Methane (CH4) is the second most important climate
forcing trace gas influenced by anthropogenic activities
after carbon dioxide (CO2)1–3. Wetlands are the largest

and most uncertain natural CH4 source, contributing 19–33% of
current global terrestrial CH4 emissions (FCH4

)4–6. Top-down
estimates from atmospheric inversion models and bottom-up esti-
mates from in situ measurements both indicate gradual increases in
natural wetland FCH4

from 2000 (147–180 Tg CH4 yr−1; bottom-
up vs. top-down) to 2017 (145–194 Tg CH4 yr−1), although FCH4

estimates from both approaches vary widely4,6. In addition,
atmospheric CH4 concentrations have rapidly increased since
2007 (+6.9 ± 2.7 ppb CH4 yr−1 for 2007–2015 vs. +0.5 ± 3.1 ppb
CH4 yr−1 for 2000–2006), with increases arising from both
biogenic (primarily agriculture and waste sectors) and fossil fuel-
related sources7,8. Observed atmospheric CH4 concentrations
have risen consistently with RCP8.5 (Representative Concentra-
tion Pathway of 8.5Wm−2)9 projections since 2007, and are
growing relatively faster than observed increases in CO2 con-
centrations during the same period8.

Wetland FCH4
estimates are poorly constrained due to high

temporal and spatial variability10,11, compounded by insufficient
measurements of fluxes (e.g., latitudinal data bias) and predictor
variables (e.g., soil temperature and moisture), knowledge gaps in
CH4 biogeochemistry12, and incomplete process representation in
biogeochemical models4,5,13–15. Several factors have been sug-
gested to regulate wetland FCH4

through effects on methano-
genesis (i.e., production), methanotrophy (i.e., oxidation), and
CH4 transport, including gross primary productivity (GPP)16,
water table depth (WTD)17, vegetation composition18,19, redox
conditions20, substrate quality and availability21,22, pore water
CH4 solubility23, microbial community dynamics and activity24,
and temperature25. At ecosystem scale, some in situ observations
indicate that FCH4

are mainly controlled by 20–35 cm depth soil
temperatures and are not sensitive to WTD variations as long as
anoxic conditions exist26–28. Although FCH4

appears to be posi-
tively correlated with temperature and CH4 production24–27, how
to parameterize CH4 production, oxidation, and emission rates in
models remain key uncertainties. Reducing the uncertainties is
required to improve global CH4 budget assessments and increase
confidence in future climate projections, as the temperature
sensitivity of CH4 biogeochemistry is parameterized differently
among CH4 models13,14,29. A recent meta-analysis reported that
CH4 production temperature sensitivities derived from laboratory
cultures are consistent with those of FCH4

inferred from
ecosystem-scale measurements and could therefore be used as an
empirical basis for FCH4

temperature sensitivity in models30.
However, site-specific emergent FCH4

temperature dependen-
cies inferred from different measurement periods show sub-
stantial intra-seasonal variability over the course of the year31–33,
highlighting effects from other environmental drivers. For
example, intra-seasonal variability may stem from hysteretic (i.e.,
temporally offset) microbial and abiotic interactions34: higher
substrate availability increases methanogen biomass and CH4

production and emission later in the frost-free season33. Similarly,
higher FCH4

for a given GPP later in the frost-free season has
been reported, which may be caused by the time required to
convert GPP to methanogenesis substrates26. Further, changes in
WTD can regulate the emergent FCH4

temperature sensitivity
through controls on soil redox potential31,35–37, especially when
the WTD is below the site-specific rooting depth and critical zone
of CH4 production17,38,39.

Here, we evaluated observationally based emergent relation-
ships among FCH4

, GPP, WTD, and air (Tair) and soil (Tsoil)
temperatures using the global FLUXNET-CH4 database40. We
analyzed data recorded in eight ecosystem types: bog, fen, marsh,

peat plateau, rice paddy, salt marsh, swamp, and wet tundra that
spans 207 site-years across 48 wetland and rice paddy sites
(Supplemental Fig. 1 and Supplemental Table 1). The FLUXNET-
CH4 database provides half-hourly ecosystem-scale eddy covar-
iance measurements of FCH4

and other fluxes (e.g., CO2, water
vapor, and energy) measured at 83 sites across the globe40

(including uplands, wetlands, and rice paddy sites). Apparent
FCH4

hysteresis has been observed in response to WTD17,31,
GPP26, Tair33, and Tsoil27,32,33 at individual sites, but has not been
synthesized across ecosystem types over distinct climate zones.
Here, we analyzed intra-seasonal changes in emergent depen-
dencies of FCH4

on these potential controls at each site-year. We
focused on relationships of FCH4

with Tair because Tair is directly
relevant to climate policy and better characterized in climate
models41. In addition, the amount of Tair data (207 site-years) in
the FLUXNET-CH4 database is about twice than that of Tsoil
measured at the shallowest (0–18.3 cm; 112 site-years) and dee-
pest (32–50 cm; 97 site-years) site-specific soil depths. We show
that consistent intra-seasonal changes in emergent dependencies
of FCH4

were derived with Tair and Tsoil measurements at the sites
where both measurements were available.

We quantified emergent FCH4
–Tair dependencies using a

quadratic relationship (Methods; Eq. 1) fit to daily measurements
reported during the frost-free season (defined by Tair > 0 °C,
Methods). This quadratic functional form was chosen because it
is consistent with MacroMolecular Rate Theory33 analyses of the
temperature sensitivity of CH4 production and oxidation34 and
produced reliable estimates of FCH4

for our study sites (Supple-
mental Fig. 2). For each frost-free season, seasonal FCH4

hysteresis
was quantified as changes in emergent FCH4

–Tair dependencies
inferred from earlier and later periods separated by the maximum
seasonal Tair. We did not consider FCH4

outside the frost-free
season, although they can be important in some high-latitude
wetlands32,42. We used two metrics to quantify intra-seasonal
changes in emergent FCH4

–Tair dependence: (1) Normalized area
of seasonal FCH4

hysteresis (HA; i.e., the area enclosed by emer-
gent earlier and later period FCH4

–Tair relationships (Fig. 1d)
normalized by maximum seasonal FCH4

and Tair; Methods); and
(2) Mean seasonal FCH4

hysteresis (Hμ; i.e., the difference between
mean daily FCH4

inferred from measurements taken between later
and earlier periods of the frost-free season). These two metrics are
conceptually similar to those used to quantify temperature hys-
teresis in soil respiration43 and soil CO2 concentrations44. Posi-
tive and negative HA and Hμ values represent higher (e.g., Fig. 1d)
and lower (e.g., Supplemental Fig. 3d) FCH4

later (i.e., after
reaching maximum seasonal Tair) in the frost-free season,
respectively.

Results and discussion
A case study of positive seasonal CH4 emission hysteresis. As
an example of seasonal hysteresis, we examined daily estimates
obtained from measurements taken at the Bibai Mire in Northern
Japan (JP-BBY) where FCH4

is insensitive to the relatively shallow
WTD from 2015 to 201727 (Fig. 1b, c). Although the seasonality
shown in FCH4

appears to follow Tair (Fig. 1a, b), a time-
dependent FCH4

-Tair relationship varies from earlier to later parts
of the frost-free season (Fig. 1d–f). Specifically, plotting daily FCH4

as a function of Tair results in a counterclockwise loop from
beginning to end of the frost-free season. Similar hysteretic pat-
terns were found using Tsoil (Supplemental Fig. 4) and gap-filled
CH4 emissions45 (Supplemental Fig. 5), indicating that the hys-
teresis is not caused by time lags between Tsoil and Tair resulting
from heat transfer into the soil46, and is not driven by biases
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caused by missing data. These hysteretic patterns suggest that
FCH4

should not be represented as a single static function of Tair.

Seasonal CH4 emission hysteresis among site-years. Overall, we
detect positive seasonal FCH4

hysteresis in most site-years recorded
in the FLUXNET-CH4 database, both in terms of HA and Hμ

(75–77% of site-years; Fig. 2). Consistent hysteresis patterns and
magnitudes were found with monthly FCH4

and Tair estimates
(72–74%, Supplemental Fig. 6), indicating the observed seasonal
FCH4

hysteresis is not sensitive to temporal resolution. The non-zero
HA and Hμ values demonstrate intra-seasonal changes in emergent
FCH4

–Tair dependencies among wetland and rice paddy sites across
the globe, and their negatively skewed distribution indicates that the
hysteretic responses are not likely to be random. Ignoring seasonal
FCH4

hysteresis leads to overestimated (28 ± 46%) and under-
estimated (−9 ± 35%) FCH4

predictions earlier and later in the frost-
free season across wetland and rice paddy sites, and such prediction
bias is overlooked by using seasonally invariant Tair dependence
models (−4 ± 7%, Supplemental Fig. 7). For example, FCH4

pre-
dictions made by a seasonally invariant emergent FCH4

–Tair
dependence at JP-BBY (i.e., black lines in Fig. 1d–f) are generally
biased high and low in the earlier and later parts of the frost-free
season, respectively.

To examine how potential controls are related to the observed
seasonal FCH4

hysteresis, we analyzed the distribution pattern of
HA under different site classifications and microclimatic condi-
tions. The majority of site-years show positive seasonal FCH4

hysteresis when HA values are categorized into (1) different
ranges of mean Tair measured in the frost-free season (Supple-
mental Figs. 8), (2) different wetness conditions indicated by
higher and lower mean WTD later in the frost-free season
(Supplemental Fig. 9), and (3) different ecosystem types
(Supplemental Fig. 10). Intra-seasonal changes in emergent
GPP–Tair dependencies show about equal site-year proportions
of positive and negative HA values (48% and 52%, respectively;
Supplemental Fig. 11a), suggesting that GPP does not directly
contribute to the observed seasonal FCH4

hysteresis. Further,
predominantly positive seasonal FCH4

hysteresis is detected using
Tsoil measured at the shallowest (Supplemental Fig. 12) and
deepest (Supplemental Fig. 13) site-specific soil layers, indicating
substantial intra-seasonal variability in the FCH4

-Tsoil relationship.
Overall, the wetland and rice paddy observations in the current
FLUXNET-CH4 database suggest that FCH4

are generally higher
later (i.e., after reaching maximum seasonal Tair or Tsoil) in the
frost-free season at a given Tair and Tsoil. These hysteretic
responses emerged across climate zones with various GPP and
frost-free season lengths, and were not directly attributable to
intra-seasonal changes in Tair and Tsoil (Supplemental Fig. 14).

Divergent temperature responses among sites and years. In
terms of the magnitude of seasonal FCH4

hysteresis, intra-seasonal
changes in emergent FCH4

-Tair dependence vary substantially
among site-years within each ecosystem type (Fig. 3), despite
being predominantly positive (Fig. 2). For each ecosystem type,

Fig. 1 Daily mean CH4 emissions have hysteretic responses to air temperature. The quality-controlled daily air temperature (a), CH4 emissions (b),
precipitation (c, left axis), and water table depth (c, right axis) measured at the Bibai Mire in Japan (JP-BBY) from 2015 to 2017. CH4 emission-air
temperature dependencies (lines) derived from daily estimates (dots) recorded at JP-BBY for 2015 (d), 2016 (e), and 2017 (f). The results inferred from
earlier and later parts of the frost-free season, and full frost-free season are colored in red, blue, and black, respectively. Start and end dates represent the
beginning and ending of the frost-free season, respectively. Values of HA and Hμ denote the normalized area of seasonal CH4 emission hysteresis
(normalized area enclosed by the blue and red lines) and the mean seasonal CH4 emission hysteresis calculated in each site-year, respectively.
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the large inter-annual (i.e., different years within the same site)
and inter-site (i.e., different site-years within the same ecosystem
type) variability highlights the challenge of quantifying a uni-
versal and robust emergent FCH4

–Tair dependence across wetland
and rice paddy sites. For example, using the
Boltzmann–Arrhenius function (Methods) to represent the
emergent FCH4

-Tair dependence of an ecosystem type cannot
accurately reflect the site- and time-specific emergent relation-
ships between FCH4

and Tair (Fig. 3). A single static function of
Tair thus cannot provide accurate estimates of FCH4

, even though
meta-analyses using the same functional form suggested that such
a representation would lead to consistent emergent FCH4

–Tair

dependencies among aquatic, wetland, and rice paddy
ecosystems30. Considering intra-seasonal variability in emergent
FCH4

–Tair dependence leads to higher and lower apparent acti-
vation energies for FCH4

during earlier and later parts of the frost-
free season, respectively (Supplemental Fig. 15a). Our findings
indicate that the FCH4

temperature sensitivity is an emergent
property that varies substantially with space and time and thus
cannot be sufficiently generalized for formulating mechanistic
CH4 models, regardless of its functional form.

Factors other than temperature modulate CH4 emissions. We
applied two approaches to evaluate factors regulating the emer-
gent FCH4

-Tair dependence and examine the degree of complexity
needed in FCH4

parameterizations in biogeochemical models. In
the first approach, we examined the effects of Tair, ecosystem-type
variability (i.e., differences between ecosystem types), inter-site
variability, inter-annual variability, and intra-seasonal variability

on FCH4
predictions. Specifically, FCH4

estimates obtained from
six sets of regression models selectively representing the above-
mentioned variability (Methods; Supplemental Table 2) were
evaluated to investigate how spatial and temporal complexity
influences model performance. In the second approach, we
trained a random-forest model (Methods) with the FLUXNET-
CH4 database to identify factors controlling the hysteresis para-
meter ahys (Methods) that quantifies the functional relationship
between FCH4

and Tair. To assess whether an observationally
inferred model can be constructed for FCH4

estimates, we eval-
uated the predictive power of a hybrid model that uses the
random-forest predicted ahys to describe the emergent FCH4

–Tair
dependence (Methods; Eq. 1) in each part of the frost-free season.

The seven Tair dependence models (six regression and one
hybrid) can be broadly categorized into three tiers based on the
absolute bias relative to the measured FCH4

: (1) employing a
universal emergent FCH4

–Tair dependence inferred from measure-
ments across the globe without representing spatial and temporal
variability (76.2% biased); (2) including ecosystem-type varia-
bility (i.e., the emergent FCH4

–Tair dependence is inferred from
measurements collected at the same ecosystem type, so sites
within an ecosystem type are uniformly represented; 63.5–63.9%
biased); and (3) including ecosystem-site variability (i.e., the
emergent FCH4

–Tair dependence is inferred from measurements
collected at each site; 38.1–45.9% biased) (Fig. 4). Our results
suggest that representing ecosystem-type variability does not
necessarily improve FCH4

estimates, because the absolute bias of
modeled FCH4

is comparable with that estimated by using a
universal emergent FCH4

–Tair dependence, except for bog, peat
plateau, and wet tundra sites (Fig. 4a). For each ecosystem type,
the absolute bias of modeled FCH4

is reduced when ecosystem-site
variability is represented, demonstrating the need to recognize
inter-annual and inter-site variability (e.g., Fig. 3). For each Tair
dependence model, the absolute bias of modeled FCH4

is generally
higher in rice paddies and salt marshes than in other ecosystem
types, suggesting that FCH4

in these systems are sensitive to
factors other than Tair. For example, timing of irrigation,
drainage, planting, and harvesting can all affect FCH4

dynamics
in rice paddies47.

Results derived from our random-forest model confirm the
importance of ecosystem-site variability in regulating ahys and
thereby FCH4

predicted by the hybrid model in each part of the
frost-free season (Supplemental Fig. 16). Our random-forest
predictor importance analysis indicates that site-year specific
FCH4

and Tair values are more important for ahys estimates than
other predictors such as latitude, GPP, and ecosystem type. The
weak relationships found between seasonal FCH4

hysteresis and
latitude (Supplemental Fig. 14h) and GPP (Supplemental Fig. 14d)
are consistent with the relatively low predictor importance for
ahys found in our random-forest model. Collectively, our results
demonstrate the importance of recognizing inter-site, inter-
annual, and intra-seasonal variability for the interpretation of
emergent FCH4

–Tair dependence inferred from measurements
across distinct site-years.

When using a universal emergent FCH4
-Tair dependence that

only represents a generic Tair sensitivity of FCH4
(i.e., the top row

in Fig. 4a), the resulting FCH4
predictions substantially under-

estimate the range of FCH4
measured across wetland and rice

paddy sites (Fig. 5a). This generic Tair sensitivity of FCH4
flattens

the high temporal and spatial variability10,11 that strongly
controls the timing and magnitude of FCH4

, reinforcing the need

Fig. 2 Predominantly positive seasonal CH4 emission hysteresis inferred
from ecosystem-scale measurements across the globe, i.e., CH4

emissions are generally higher later in the frost-free season at the same
temperature. The distribution of normalized area of seasonal CH4 emission
hysteresis (HA; a, b) and mean seasonal CH4 emission hysteresis (Hμ; c, d)
to air temperature among site-years derived from the FLUXNET-CH4

database. Positive seasonal CH4 emission hysteresis indicates higher CH4

emissions later in the frost-free season at the same temperature (e.g.,
Fig. 1d–f). Red dashed lines represent no hysteresis. The corresponding
boxplot of site-year specific HA (b) and Hμ (d) derived from the FLUXNET-
CH4 database. The red central mark, and the bottom and top edges of the
blue box indicate the median, and the 25th and 75th percentiles,
respectively. The black whiskers extend to the most extreme data points
not considered outliers denoted in red plus symbol.
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to parameterize factors other than Tair in CH4 models. Including
factors other than a generic Tair sensitivity of FCH4

(i.e., the
bottom row in Fig. 4a) improves FCH4

predictions (Fig. 5b, c),
which suggests that FCH4

and emergent FCH4
–Tair dependence

strongly depend on site- and time-specific environmental
conditions. Therefore, models should mechanistically represent
CH4 biogeochemistry, because site- and time-specific emergent
FCH4

-Tair dependence cannot be accurately parameterized every-
where and all the time. Although many CH4 models parameterize
methanogenesis, methanotrophy, and CH4 transport for FCH4

modeling13, only three of 40 recently reviewed CH4 models
mechanistically represent CH4 biogeochemistry based on explicit
microbial dynamics29. Consequently, implementing process-
based representations of CH4 biogeochemistry in CH4 models is
necessary to improve FCH4

predictions across ecosystem and
global scales. Such efforts are imperative because the FCH4

prediction error can increase substantially with increased FCH4
,

especially for the relatively simple parameterization that only
represents a generic Tair sensitivity of FCH4

(Fig. 5c).

Limitations and implications. Additional measurements and
analysis of factors controlling methanogenesis, methanotrophy,
and CH4 transport will be needed to investigate the cause of the
predominantly positive seasonal FCH4

hysteresis we observed

across wetland and rice paddy sites. When anoxic conditions
are prevalent and Tsoil is the most important driver regulating
FCH4

26,27 (e.g., Supplemental Fig. 4), the observed positive
seasonal FCH4

hysteresis is consistent with the higher FCH4

driven by higher substrate availability later in the frost-free
season25. We identified some environmental drivers affecting
the emergent FCH4

–Tair dependence at sites where the necessary
measurements were available: (1) When WTD drops below the
critical zone of CH4 production later in the frost-free season31,
the reduced FCH4 may drive negative seasonal FCH4

hysteresis
in a given site-year (e.g., the Kopuatai bog in New Zealand (NZ-
Kop), Supplemental Fig. 3). (2) FCH4

may become more sensi-
tive to Tair changes under higher salinity48, and our results
indicate that seasonal FCH4

hysteresis shifts from positive to
negative with increased salinity (e.g., the Sacramento-San Joa-
quin Delta of California in USA (US-Myb), Supplemental
Fig. 17).

As for the emergent FCH4
–Tsoil dependence, our results suggest

that the functional relationship between FCH4
and Tsoil may vary

non-monotonically along the soil profile. For example, the
positive seasonal FCH4

hysteresis inferred from Tsoil measured at
16 cm depth is stronger than those at 8 and 32 cm depths at US-
Myb (Supplemental Fig. 18). Such a non-monotonic relationship
indicates that the magnitude of seasonal FCH4

hysteresis is not

Fig. 3 Large differences in intra-seasonal, inter-annual, and inter-site FCH4
emergent temperature dependencies are found for all examined ecosystem

types. Thin lines represent the site- and time-specific emergent dependencies of CH4 emissions on air temperature inferred from daily measurements
collected at bog (a), fen (b), marsh (c), peat plateau (d), rice paddy (e), salt marsh (f), swamp (g), and wet tundra (h) sites. Thick black lines represent
ecosystem-type specific emergent dependencies of CH4 emission on air temperature inferred from the Boltzmann–Arrhenius function that do not
recognize spatial heterogeneity and temporal variability. The results inferred from earlier and later parts of the frost-free season, and full frost-free season
are colored in red, blue, and black, respectively.
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simply caused by time lags between Tsoil and Tair, suggesting that
factors other than temperature can strongly control FCH4

. Tsoil
measured at depths where methanogenesis is occurring will be
needed to rigorously examine the emergent dependence of FCH4

on Tsoil across the globe, but such depth-dependent measure-
ments are not yet available among sites in the FLUXNET-CH4

database. To improve understanding of mechanisms leading to
seasonal FCH4

hysteresis, we urge further long-term measure-
ments on factors modulating CH4 biogeochemistry (e.g., WTD,
Tsoil, microbial activity, and substrate availability), especially in
the tropics and the Southern Hemisphere, both of which are
sparsely represented in the FLUXNET-CH4 database. Although
seasonal FCH4

hysteresis occurs across seasonal climate and
latitudinal gradients (Supplemental Fig. 14), better-representing
ecosystems south of 30 °N could affect the partitioning of negative
and positive seasonal FCH4

hysteresis inferred from existing
measurements. While our synthesis in tropical and subtropical
regions shows intra-seasonal changes in emergent FCH4

–Tair

dependence (Supplemental Fig. 19), future studies are needed to
examine seasonal FCH4

hysteresis in wetlands south of 30 °N (that
account for about 75% of global wetland FCH4

6).
The observed seasonal FCH4

hysteresis provides a benchmark to
evaluate modeled FCH4

functional responses and should inform
and motivate CH4 model development and refinement. Studies
have shown that temporal variations in FCH4

are strongly
modulated by substrate and microbial dynamics33,49,50, which
may explain the substantial seasonal FCH4

hysteresis identified in
our wetland and rice paddy sites. For example, a model that
explicitly represents substrate and microbial dynamics repro-
duced the observed hysteretic FCH4

to temperature relationships
in several wetlands with different vegetation and hydrological
conditions33. Such dynamics could be parameterized in the
terrestrial components of Earth system models49. Our synthesis
thus provides observational evidence for incorporating substrate
and microbial dynamics into next generation CH4 models.

Using the largest available database of ecosystem-scale CH4

emissions measured by eddy covariance flux towers, we show that

the apparent relationships between CH4 emissions and air and
soil temperatures are hysteretic and vary strongly with sampling
location and measurement period. Approximately 77% of site-
years recorded in the wetland and rice paddy subset of the
FLUXNET-CH4 database40 show that CH4 emissions become
higher later in the frost-free season at the same air temperature.
This predominantly positive seasonal CH4 emission hysteresis
may be driven by substrate-mediated higher CH4 production25

later in the frost-free season33. Changes in environmental
conditions also modulate seasonal CH4 emission hysteresis and
thus ecosystem-scale CH4 emissions.

Our results demonstrate that the relationship between CH4

emissions and temperature is an emergent property that varies
substantially across space and time. A direct integration of
measurements across the globe (e.g., inferring a generic
temperature sensitivity of CH4 emissions) may not improve
CH4 model parameterization because such an approach over-
simplifies factors controlling CH4 emissions. Therefore, meta-
analyses of CH4 biogeochemistry should recognize the large intra-
seasonal, inter-annual, and inter-site variability of biotic and
abiotic conditions that regulate ecosystem-scale CH4 emissions.
Collectively, our analyses highlight the importance of observing
and modeling spatial heterogeneity and temporal variability for
the modeling of CH4 biogeochemistry. Since most existing CH4

models are developed using empirically based CH4 production or
emission temperature dependencies29, our study motivates
models to mechanistically represent methanogenesis, methano-
trophy, and CH4 transport to refine estimates of global CH4

emissions and climate feedbacks51.

Methods
FLUXNET-CH4 database. The FLUXNET-CH4 initiative is led by the Global
Carbon Project (https://www.globalcarbonproject.org) in coordination with
regional flux networks (in particular AmeriFlux and the European Fluxes Data-
base) to compile a global CH4 flux database of eddy covariance and supporting
measurements encompassing freshwater, coastal, natural and managed wetlands,
and uplands40. Database descriptions, including existing sites, data standardization,
gap-filling, and partitioning, have been detailed previously in Knox et al.40. We
used daily mean temperature (air and soil), gross primary productivity as parti-
tioned from net CO2 exchange measurements, precipitation, WTD, wind speed,
atmospheric pressure, and CH4 emissions compiled at the 48 wetland and rice
paddy sites (Supplemental Table 1) currently recorded in the FLUXNET-CH4

database. Soil temperature is often measured at different depths among different
sites, and only about half of the wetland sites report WTD in the current
FLUXNET-CH4 database40. We analyzed the soil temperature reported at the
shallowest and deepest measured soil layers at each site to investigate their effects
on regulating CH4 emissions. The wetland and rice paddy data (207 site-years with
62,384 site-days as of this publication) were categorized into eight CH4 emitting
ecosystem types: bog, fen, marsh, peat plateau, rice paddy, salt marsh, swamp, and
wet tundra, based on previous classification52,53. While gap-filled data are exam-
ined, they are not included in our discussion to eliminate potential biases caused by
the gap-filling procedure45.

Frost-free season. We define the frost-free season as the period when the
observed temperature (air or soil) is >0 °C to investigate the emergent temperature
responses to CH4 emissions (FCH4

) during the biologically active season across
distinct climatic zones. Other data sampling thresholds, such as above-zero GPP
and above 5% of annual GPP maximum, were examined, and positive seasonal
FCH4

hysteresis is identified in 68–81% of site-years (Supplemental Figs. 20, 21),
consistent with those inferred from frost-free season. We chose to present the frost-
free season results because substantial GPP (e.g., above 5% of annual GPP max-
imum) is detected when air temperature is well below 0 °C (Supplemental Fig. 22)
that may complicate our discussion of varying FCH4

led by temperature changes.

Emergent temperature dependence calculation and the hysteresis parameter
ahys. Emergent dependence of CH4 emission (FCH4

) on temperature (air or soil) is
determined by fitting frost-free-season daily measurements of FCH4

and air and soil
temperatures with a quadratic equation (Eq. 1), the Boltzmann–Arrhenius equa-
tion (Eq. 2), and first, second, third, and fifth order polynomials. Daily FCH4

estimates made by site- and time-specific emergent FCH4
temperature (air or soil)

dependence models based on the above-mentioned functional forms show com-
parable root mean square errors (Supplemental Fig. 2). Results inferred from the

Fig. 4 The accuracy of CH4 emission estimates improves with better
representation of the large wetland-site variability caused by varying
environmental conditions. The absolute bias relative to measured CH4

emissions estimated by each model class for each ecosystem type (a). Blue
and red bars denote the number of sites and quality-controlled daily data
points within each ecosystem type, respectively (b). The abbreviations
used in each model group represent air temperature (T), ecosystem-type
variability (type), intra-seasonal variability (ISV), hybrid model based on
random-forest estimated hysteresis parameter (hybrid), inter-site variability
(site), and inter-annual variability (IAV).
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quadratic equation (Eq. 1) are selected because (1) its functional form is mathe-
matically consistent with the second-order polynomial equation of temperature for
methanogenesis inferred from the MacroMolecular Rate Theory54,55; and (2) it can
prescribe seasonal FCH4

hysteresis with a single site- and time- specific parameter
(ahys, defined below).

The fits based on the quadratic equation were forced to pass through the origin
(assuming zero FCH4

at 0 °C, discussed below) and FCH4
measured at maximum

seasonal temperature in each site-year using the Matlab (MathWorks Inc., 2019,
version 9.7.0) polyfix function (downloaded from https://www.mathworks.com/
matlabcentral/fileexchange/54207-polyfix-x-y-n-xfix-yfix-xder-dydx). The resulting
emergent dependence of FCH4

on temperature at any given time period can thus be
represented as:

FCH4
Tð Þ ¼ ahys�T2 þ ðFCH4 ;Tmax

Tmax
� ahys�TmaxÞ�T ð1Þ

The symbols used in Eq. 1 denote CH4 emission (FCH4
Tð Þ, mg C m−2 d−1),

hysteresis parameter (ahys, mg C m−2 d−1 °C−2), daily mean temperature (T , °C;
air or soil), maximum seasonal temperature (Tmax, °C), and CH4 emission
measured at maximum seasonal temperature (FCH4 ;Tmax

, mg C m−2 d−1).
Therefore, the functional relationship between and temperature, described by a
quadratic equation (Eq. 1), is only determined by the value of hysteresis parameter
(ahys) and site-year variables (FCH4 ;Tmax

and Tmax).
The two constraints (passing through the origin and FCH4

measured at
maximum seasonal temperature) imposed in Eq. 1 are intended to force the two
(earlier and later part of the frost-free season) emergent FCH4

temperature (air or
soil) dependencies to form a closed apparent hysteresis loop for each frost-free
season. By doing so, seasonal FCH4

hysteresis can be quantified as the normalized
area enclosed by the two fits, and intra-seasonal changes can be consistently
compared among site-years across distinct climate zones. Ignoring FCH4

around 0 °
C has small effects on the magnitude and distribution of seasonal FCH4

hysteresis
inferred from the current FLUXNET-CH4 database, although substantial FCH4

may
continue when air temperature is around or below 0 °C32,42. To quantify the effect
of ignoring FCH4

around 0 °C, we replaced the constraint of zero FCH4
at 0 °C by the

mean FCH4
measured between −0.5 and 0.5 °C at 0 °C for each site-year, and found

that the resulting patterns of seasonal FCH4
hysteresis (Supplemental Fig. 23) are

consistent with those assuming zero FCH4
at 0 °C (Fig. 2).

Seasonal CH4 emission hysteresis. We apply a quadratic equation (Eq. 1) to
calculate the emergent dependence of CH4 emission (FCH4

) on temperature at the
earlier (FCH4 ;earlier

Tð Þ) and later (FCH4 ;later
Tð Þ) part of the frost-free season separated

by maximum seasonal temperature (Tmax). Two metrics are used to quantify the
observed seasonal FCH4

hysteresis: (1) Normalized area of seasonal FCH4
hysteresis

(HA), defined as the area enclosed by emergent dependencies of FCH4
on tem-

perature inferred from earlier and later parts of the frost-free season (i.e.,

HA ¼
R Tmax

0
ðFCH4 ;later

ðTÞ�FCH4 ;earlier
ðTÞÞdT

maxðabsðFCH4 ;earlier
ðTÞ; FCH4 ;later

ðTÞÞÞ�Tmax
); and (2) mean seasonal FCH4

hysteresis (Hμ),

defined as the difference between mean daily FCH4
inferred from measurements

taken between later and earlier parts of the frost-free season. In each site-year,
positive seasonal FCH4

hysteresis occurs when higher FCH4
are measured later in the

frost-free season at a given air or soil temperature. Hysteretic patterns are similar
when using either air temperatures (Fig. 1) or soil temperatures (Supplemental
Fig. 4), and with either gap-filled (Supplemental Fig. 5) or non-gap-filled (Fig. 1)
FCH4

45. Results derived from air temperature (Fig. 2), soil temperature measured at
the shallowest soil layer (Supplemental Fig. 12), and soil temperature measured at
the deepest soil layer (Supplemental Fig. 13) all indicate predominantly positive
seasonal FCH4

hysteresis across the wetland and rice paddy sites. We chose to
present results derived from air temperature for its longer and more continuous
record in the wetland and rice paddy subset of FLUXNET-CH4 database, although
soil temperature has been shown to be a better predictor for FCH4

33,42. Specifically,
there are 207, 112, and 97 site-years of measurements of air temperature, soil
temperature measured at the sallowest soil layer (0–18.3 cm), and soil temperature
measured at the sallowest soil layer (32–50 cm), respectively.

Temperature dependence model groups. The measurements extracted from the
FLUXNET-CH4 database were analyzed by seven air temperature (Tair)

Fig. 5 CH4 emission prediction error increases substantially as measured CH4 emission increases. The performance of CH4 emissions modeled by the
regression models that only include a universal emergent CH4 emission temperature dependence (a), and those that include site- and time-specific
conditions (b). The root mean square errors associated with the regression models used in (a) and (b) (bars, left axis) and number of data points (green
line, right axis) for measured CH4 emission bins (c). Two of the 27,130 daily observations have CH4 emission above 1600mg Cm−2 d−1, which are not
shown for the ease of representation. Lighter colors in the density scatter plot represent denser data points. Solid blue and dashed black lines represent the
linear best-fit and one-to-one lines, respectively. The abbreviations used in each model group represent air temperature (T), intra-seasonal variability (ISV),
inter-site variability (site), and inter-annual variability (IAV).
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dependence model groups (six regression models and a hybrid model) to evaluate
factors modulating CH4 emission predictions. We design the six regression models
to selectively represent the effects of ecosystem-site variability and ecosystem-type
variability on CH4 emission prediction by labeling data points into different
groups. The relationship between CH4 emission and Tair is analyzed at each part of
the frost-free season, each site-year, each site, and each ecosystem type to quantify
intra-seasonal, inter-annual, inter-site, and ecosystem-type variability, respectively
(Supplemental Table 2). For the hybrid model, we use the hysteresis parameter
predicted by our random-forest model to inform the quadratic equation (Eq. 1) for
CH4 emission estimates. The performance of each Tair dependence model group
was evaluated to determine the most important model components required for
accurate CH4 emission estimates.

Random-forest model selection. We used random-forest model selection to
identify the most important predictors of the hysteresis parameter ahys (Eq. 1) that
determines the functional form of emergent CH4 emission air temperature
dependence and thereby wetland CH4 emissions (FCH4

). Instead of FCH4
, the hys-

teresis parameter ahys was analyzed, so the results can provide useful information on
the source of observed FCH4

hysteresis with an understandable functional form
(Eq. 1). Moreover, the most important predictors identified by the machine-learning
approach can be compared with the results derived from the other approach using a
range of temperature dependence model groups (Supplemental Table 2).

Ten potential predictors were selected for their relatively high predictor
importance to ahys: seasonal branch (i.e., earlier or later part in the frost-free
season), GPP cumulated in a seasonal branch, precipitation cumulated in a
seasonal branch, maximum seasonal temperature, mean temperature in a seasonal
branch, ecosystem type, latitude, site, site-year, and FCH4

measured at maximum
seasonal temperature. Other potential predictors, including observational year,
mean WTD in a seasonal branch, mean wind speed in a seasonal branch, and mean
atmospheric pressure in a seasonal branch were examined and showed limited
predictive power on ahys. Four potential predictors (seasonal branch, ecosystem
type, site, and site-year) were labeled as categorical data and the rest were labeled as
numerical data in our random-forest model. The random-forest model selection
was performed by the Statistics and Machine-Learning Toolbox in Matlab
(MathWorks Inc., 2019, version 9.7.0).

Apparent activation energy for CH4 emissions. We quantify the apparent
activation energy for CH4 emissions by fitting frost-free-season daily measure-
ments of CH4 emission and air temperature with the Boltzmann–Arrhenius
equation of the form:

lnFCH4
Tð Þ ¼ �Ea�ð

�1
kT

Þ þ ε ð2Þ

where FCH4
Tð Þ is the rate of CH4 emission at absolute air temperature T. �Ea (in eV)

and ε correspond to the fitted apparent activation energy (slope) and base reaction
rate (intercept), respectively. k is the Boltzmann constant (8.62 × 10−5 eV K−1).
When the large inter-site, inter-annual, and intra-seasonal variability is muted, the
apparent activation energy for CH4 emission inferred from each ecosystem type is
within the range reported in recent meta-analyses30.

Data availability
This work used publicly available FLUXNET-CH4 Dataset acquired and shared by the
FLUXNET community. All related data is publicly available for download at https://
fluxnet.org/.

Code availability
Code used in the analysis presented in this study is available online, and can be accessed
at https://github.com/ckychang/FCH4_hysteresis56.
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