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Abstract
Genomic	data	are	widely	used	in	predicting	the	breeding	values	of	dairy	cattle.	
The	accuracy	of	genomic	prediction	depends	on	the	size	of	the	reference	popula-
tion	and	how	related	the	candidate	animals	are	to	it.	For	populations	with	limited	
numbers	of	progeny-	tested	bulls,	 the	 reference	populations	must	 include	cows	
and	data	from	external	populations.	The	aim	of	this	study	was	to	implement	state-	
of-	the-	art	single-	step	genomic	evaluations	for	milk	and	fat	yield	in	Holstein	and	
Russian	Black	&	White	cattle	in	the	Leningrad	region	(LR,	Russia),	using	only	a	
limited	number	of	genotyped	animals.	We	complemented	internal	 information	
with	external	pseudo-	phenotypic	and	genotypic	data	of	bulls	from	the	neighbour-
ing	Danish,	Finnish	and	Swedish	Holstein	(DFS)	population.	Three	data	scenar-
ios	were	used	 to	perform	single-	step	GBLUP	predictions	 in	 the	LR	dairy	cattle	
population.	The	first	scenario	was	based	on	the	original	LR	reference	population,	
which	constituted	1,080	genotyped	cows	and	427	genotyped	bulls.	In	the	second	
scenario,	the	genotypes	of	414	bulls	related	to	the	LR	from	the	DFS	population	
were	added	to	the	reference	population.	In	the	third	scenario,	LR	data	were	fur-
ther	augmented	with	pseudo-	phenotypic	data	from	the	DFS	population.	The	in-
clusion	of	foreign	information	increased	the	validation	reliability	of	the	milk	yield	
by	 up	 to	 30%.	 Suboptimal	 data	 recording	 practices	 hindered	 the	 improvement	
of	fat	yield.	We	confirmed	that	the	single-	step	model	is	suitable	for	populations	
with	a	low	number	of	genotyped	animals,	especially	when	external	information	
is	integrated	into	the	evaluations.	Genomic	prediction	in	populations	with	a	low	
number	of	progeny-	tested	bulls	can	be	based	on	data	from	genotyped	cows	and	on	
the	inclusion	of	genotypes	and	pseudo-	phenotypes	from	the	external	population.	
This	approach	increased	the	validation	reliability	of	the	implemented	single-	step	
model	in	the	milk	yield,	but	shortcomings	in	the	LR	data	recording	scheme	pre-
vented	improvements	in	fat	yield.
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1 	 | 	 INTRODUCTION

Genomic	 information	 has	 been	 successfully	 used	 in	
predicting	 dairy	 cattle	 breeding	 values	 during	 the	 last	
decade	(VanRaden, 2020).	In	the	original	genomic	evalu-
ation	approach,	breeding	values	of	the	candidate	animals	
were	 predicted	 using	 information	 derived	 from	 the	 gen-
otyped	 animals	 of	 the	 reference	 population	 (Meuwissen	
et al., 2001).	Multiple	studies	have	shown	that	the	reliabil-
ity	of	genomic	prediction	depends	on	its	size	and	structure	
(Goddard, 2009;	Goddard	&	Hayes, 2009).	Large	commer-
cial	dairy	breeding	schemes	initiated	their	reference	pop-
ulations	by	genotyping	all	progeny-	tested	bulls	and	some	
elite	cows.	However,	this	approach	is	challenging	in	small	
populations	because	only	a	few	progeny-	tested	bulls	may	
be	available,	and	historical	DNA	samples	of	the	bulls	are	
not	available.

The	 obvious	 recipe	 to	 attain	 sufficient	 prediction	
accuracy	 in	 small	 populations	 with	 a	 limited	 num-
ber	 of	 progeny-	tested	 bulls	 is	 to	 increase	 the	 reference	
population	 with	 genotyped	 cows	 (Ding	 et  al.,  2013;	 Li	
et  al.,  2014).	 This	 approach	 increases	 genotyping	 costs	
because	 the	 low	 reliability	 of	 estimated	 breeding	 value	
(EBVs),	typical	to	cows,	requires	a	larger	number	of	gen-
otyped	animals	to	gain	the	same	accuracy	as	when	using	
progeny-	tested	 bulls	 that	 typically	 have	 highly	 reliable	
EBVs	(Daetwyler	et al., 2008).	In	addition,	the	heritability	
of	a	trait	affects	the	optimal	size	of	the	reference	popula-
tion;	the	lower	the	heritability,	the	more	genotyped	ani-
mals	are	needed	in	the	reference	population	(Goddard	&	
Hayes, 2009).	Furthermore,	genomic	prediction	accuracy	
depends	on	the	model	used	in	genomic	prediction.	The	
single-	step	genomic	BLUP	(ssGBLUP)	approach	(Aguilar	
et al., 2010;	Christensen	&	Lund, 2010)	may	yield	more	
accurate	genomic	predictions	than	the	two-	step	approach	
when	the	population	has	a	limited	number	of	genotyped	
animals	(Christensen	et al., 2012;	Song	et al., 2019).

Low	 genomic	 prediction	 reliability	 in	 a	 population	
with	a	 limited	number	of	genotyped	and	progeny-	tested	
animals	 can	 be	 enhanced	 by	 including	 data	 from	 exter-
nal	sources	(Přibyl	et al., 2013;	VanRaden, 2012).	Thus,	a	
joint	reference	population	can	be	created	where	countries	
benefit	uni-		or	bilaterally	 from	 the	data	 sharing.	Several	
reported	 examples	 of	 EBVs	 and	 genomic	 data	 exchange	
between	 countries	 have	 shown	 significant	 increases	 in	
the	reliability	of	genomic	predictions	(Jorjani	et al., 2012;	
Lund	 et  al.,  2011;	 Ma	 et  al.,  2014).	 Even	 though	 several	
countries	 routinely	 make	 joint	 traditional	 and	 genomic	
evaluations	(e.g.	Denmark,	Finland	and	Sweden)	(Lidauer	
et al., 2015),	most	dairy	evaluation	systems	are	unwilling	to	
share	recorded	data	from	cows	and	will	only	disseminate	
EBV	 from	 internal	 evaluations.	 In	 such	 circumstances,	
the	 inclusion	 of	 foreign	 bull	 EBVs	 with	 corresponding	

reliabilities	 into	 national	 or	 internal	 reference	 popula-
tions	has	become	a	common	practice	(Přibyl	et al., 2013;	
Vandenplas	et al., 2014).	EBVs	of	foreign	genotyped	bulls	
can	be	attained	from	the	multi-	trait	across-	country	evalu-
ations	(MACE,	Interbull,	Uppsala,	Sweden).

Several	methods	to	include	external	EBV	into	internal	
evaluations	have	been	developed	(Bonaiti	&	Boichard, 1995;	
Luštrek	et	al.,	2021;	Přibyl	et al., 2013;	Täubert	et al., 2000;	
Vandenplas	 et  al.,  2014;	 VanRaden,  2001,	 2012).	
Vandenplas	et al. (2014)	described	a	unified	approach	for	
combining	external	EBV	with	internal	data	and	pedigree	
information	with	 further	extension	 to	genomic	 informa-
tion	 (Vandenplas	 et  al.,  2017).	The	 blended	 information	
from	multiple	sources	was	shown	to	be	free	from	double	
counting	the	internal	information.	The	method	avoids	the	
overestimation	of	reliabilities	and	can	be	used	in	genomic	
prediction	models	to	include	external	data.

Contemporary	comparison	is	the	current	official	dairy	
bull	 evaluation	 method	 in	 Russia,	 but	 state-	of-	the-	art	
animal	 model	 evaluations	 have	 already	 been	 proposed	
(Kudinov	et al., 2017,	2018).	In	2016,	the	Leningrad	Region	
(LR)	 (Figure  1)	 Committee	 on	 Agriculture	 and	 Fishery	
(Saint	Petersburg,	Russia)	initiated	a	research	and	devel-
opment	project	 to	apply	genomic	evaluations	of	produc-
tion	traits	using	BLUP	methodology.	The	region's	largest	
dairy	cattle	population	consists	of	animals	with	an	admix-
ture	of	Holstein	(HOL)	and	Russian	Black	&	White	(RBW)	

F I G U R E  1  Map.	The	northeastern	part	of	the	Baltic	sea.	The	
Leningrad	region	of	the	Russian	Federation	is	highlighted	with	
a	dark	grey	colour	(the	plot	was	created	in	R	with	the	ggplot2	
software	package,	Wickham,	2016)
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breeds	kept	in	49	herds,	with	an	average	herd	size	of	ap-
proximately	1,000	cows	(Kudinov	et al., 2018).	Because	the	
number	of	progeny-	tested	bulls	was	low	genotyping	cows	
was	 the	 only	 way	 to	 increase	 the	 reference	 population.	
During	 the	period	2015–	2017,	 the	 starting	pool	of	geno-
typed	animals	was	created	from	427	bulls	and	1,080	cows.	
A	 small	 number	 of	 reference	 animals	 expectedly	 would	
limit	genomic	prediction	reliability	for	candidate	animals.	
Thus,	it	was	proposed	to	improve	reliability	when	includ-
ing	 genomic	 and	 pseudo-	phenotypic	 information	 from	
the	neighbouring	Danish,	Finnish	and	Swedish	Holstein	
(DFS)	populations.

The	 aim	 of	 this	 study	 was	 to	 test	 the	 feasibility	 of	
ssGBLUP	for	HOL	and	RBW	cattle	in	the	LR	with	only	a	
small	number	of	genotyped	cows	and	bulls.	We	also	tested	
the	 effect	 of	 including	 genomic	 and	 pseudo-	phenotypic	
information	from	HOL	bulls	from	DFS	on	the	prediction	
ability	 of	 the	 genomic	 model.	 Single-	step	 genomic	 eval-
uations	 were	 computed	 using	 three	 scenarios:	 (a)	 phe-
notypes	and	genotypes	of	LR	animals	only,	(b)	including	
additional	 bull	 genotypes	 from	 the	 DFS	 and	 (c)	 further	
adding	external	MACE	EBVs	at	the	DFS	scale.

2 	 | 	 MATERIALS AND METHODS

2.1	 |	 Leningrad region data

Phenotypic	data,	as	described	in	Kudinov	et al. (2018),	in-
cluded	363,833	records	of	305 days	of	milk	and	fat	yields	
from	 159,069	 highly	 related	 HOL	 and	 RBW	 cows	 in	 49	
breeding	herds.	Some	animals	had	recorded	up	to	the	fifth	
lactation.	The	pedigree	included	221,001	animals	born	be-
tween	1960	and	2015.	For	variance	component	estimation,	
the	data	were	truncated	to	include	records	from	the	first	
three	lactations	only	due	to	the	small	number	of	records	in	
later	lactations.	Correspondingly	the	pedigree	was	pruned	
to	only	include	informative	animals	for	the	truncated	data.	
The	final	data	included	319,509	observations	and	206,356	
pedigree	animals.

2.2	 |	 Nordic data

The	full	ancestral	pedigree	was	traced	for	bulls	present	in	
both	the	LR	and	the	joint	Nordic	cattle	genetic	evaluations	
(NAV;	 Denmark,	 Finland,	 Sweden).	 The	 information	 of	
the	486	bulls	was	extracted	from	MACE	EBVs	published	
by	 Interbull	 in	 December	 2018	 at	 the	 NAV	 scale.	 The	
reliabilities	 of	 MACE	 EBV	 and	 values	 of	 the	 LR	 model	
heritabilities	were	used	to	derive	effective	daughter	con-
tributions	 (EDC)	 using	 reverse	 reliability	 estimation,	 as	

described	in	Taskinen	et al. (2014).	Using	the	calculated	
EDC	and	full	pedigree	information,	the	MACE	EBVs	were	
converted	into	deregressed	daughter	performances	(DRP)	
using	a	matrix	deregression	procedure	(Jairath	et al.,1998;	
Strandén	&	Mäntysaari, 2010).

2.3	 |	 Genotypes

The	 LR	 data	 included	 single	 nucleotide	 polymorphism	
(SNP)	 marker	 genotypes	 from	 1,080	 cows	 and	 427	
bulls	 provided	 by	 repositories	 of	 the	 Russian	 Research	
Institute	 of	 Farm	 Animal	 Genetics	 and	 Breeding	 and	
LLC	Laboratory	Genome	(Saint-	Petersburg,	Russia).	Both	
Illumina	 BovineSNP50v2	 and	 IDBv3	 arrays	 (Illumina,	
San-	Diego,	 USA)	 were	 used	 for	 genotyping.	 Genotyped	
cows	were	from	13	LR	herds.	The	average	(SD)	number	of	
samples	per	herd	was	82	(21).	The	DFS	data	had	414	bull	
genotypes	from	Illumina	BovineSNP50	chip	provided	by	
NAV.	The	DFS	genotypes	were	imputed	and	had	passed	
quality	control	 in	 the	official	NAV	HOL	genomic	evalu-
ations	 (https://www.nordi	cebv.info/).	 The	 LR	 and	 DFS	
genotypes	 were	 synchronized	 to	 have	 identical	 reading	
patterns	(i.e.	coding).	Imputation	was	performed	to	unify	
genotypes	 and	 fill-	in	 missing	 markers.	 Quality	 control	
of	genotypes	was	performed	using	the	following	criteria:	
call	rate	>95%	and	minor	allele	frequency	>5%.	After	pro-
cessing	 43,194	 SNP	 markers	 remained	 for	 the	 genomic	
prediction.

2.4	 |	 Validation of model fit

Two	 reduced	 data	 sets	 were	 created	 for	 calculating	 the	
validation	reliability	and	bias	of	genomic	enhanced	breed-
ing	values	 (GEBV).	For	bull	validation,	 the	milk	and	 fat	
records	 from	 the	 last	 four	 production	 years	 (2012–	2015)	
were	removed	from	the	data,	as	described	in	Mäntysaari	
et al. (2010).	An	exception	was	made	for	genotyped	cows	
that	 were	 not	 closely	 related	 to	 the	 validation	 bulls	 (i.e.	
not	daughters,	 granddaughters,	or	 sibs)	and	 represented	
contemporary	groups	(herd	–		year	–		season)	with	at	least	
five	animals.	The	data	records	from	these	cows	were	kept	
in	order	to	avoid	exhausting	the	training	set.	The	bull	vali-
dation	test	set	included	48	bulls	with	EDCs	greater	than	20	
in	the	full	data,	but	EDC = 0	in	the	reduced	data.	For	the	
cow	validation	test,	records	from	the	last	production	year	
(2015)	 were	 excluded.	 There	 were	 221	 test	 cows	 which	
had	no	records	in	the	reduced	data	but	at	least	one	record	
in	the	full	data.

The	full	data	were	used	to	calculate	daughter	yield	de-
viations	 (DYDs)	 for	 the	bulls	and	yield	deviations	 (YDs)	

https://www.nordicebv.info/
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for	the	cows	(VanRaden	&	Wiggans, 1991)	using	a	corre-
sponding	ssGBLUP	model.	Bias	was	estimated	by	(G)EBV	
overdispersion,	that	is	the	regression	coefficient	b1	in	the	
validation	regression	model	(D)YD = b0 + b1	GEBV,	and	
by	the	average	difference	between	GEBV	and	(D)YD.	The	
DYD	observations	for	bull	i	were	weighted	using	ki,	calcu-
lated	as	ki =

EDCi
EDCi+�1

,	where	λ1 = (4 − h2)/h2.	The	YD	ob-

servations	 for	 cow	 j	 were	 weighted	 using	 parameter	 kj,	
calculated	 as	kj =

ERCj

ERCj +�2
,	 where	 λ2  =  (1  −  h2)/h2,	 and	

ERCj	is	the	effective	record	contribution	(Přibyl	et al., 2013)	
of	cow	 j.	Validation	reliability	(R2)	was	calculated	as	 the	
squared	correlation	between	(D)YD	and	the	reduced	data	
GEBV	 divided	 by	 mean	 kj.	 The	 within-	herd	 heritability	
was	calculated	using	the	formula	h2 = �2a∕

(
�2a + �2pe + �2e

)
	,	

where	�2a,	�
2
pe	and	�2e	are	genetic,	permanent	environment	

and	residual	variances	respectively.

2.5	 |	 Statistical model

The	 repeatability	 animal	 model	 presented	 in	 Kudinov	
et al. (2018)	was	modified	by	including	a	herd-	by-	sire	in-
teraction	 random	 effect	 (Wiggans	 et  al.,  1988)	 and	 a	 re-
spective	variance	component	(�2

hs
).	Variance	components	

and	breeding	values	were	estimated	using	the	model:

where	y	is	a	vector	of	milk	or	fat	yield	records,	b	is	a	vector	
of	the	fixed	effects,	a ∼ N

(
0,A�2a

)
	and	p ∼ N

(
0, I�2pe

)
	and	

h ∼ N
(
0, I�2

hs

)
	are	vectors	of	random	animal	breeding	val-

ues,	permanent	environmental	and	herd-	by-	sire	interaction	
effects,	X	is	a	design	matrix	relating	fixed	effects	to	the	re-
cords,	Z1,	Z2	and	Z3	are	design	matrices	relating	the	random	
effects	to	the	records,	and	e ∼ N

(
0, I�2e

)
	 is	a	vector	of	the	

residual	effects.	Matrix	A	is	the	pedigree-	based	relationship	
matrix	and	I	are	identity	matrices.

Days	open	by	age	of	calving	by	lactation	and	herd-	year-	
season	 were	 the	 fixed	 effects	 (Kudinov	 et  al.,  2018).	 No	
breed	effect	was	used	in	the	model,	as	active	crossbreeding	
of	RBW	cows	with	HOL	bulls	began	in	the	late	1970s,	be-
fore	the	data	sampling	point.	The	218	originally	proposed	
unknown	parent	groups	(UPGs;	Kudinov	et al., 2018)	were	
revised	and	downscaled	to	54,	due	to	a	low	number	of	ob-
servations	 per	 group.	 Rearranged	 groups	 were	 based	 on	

origin	(domestic	or	foreign),	selection	path	and	5-	year	time	
intervals.

2.6	 |	 Genomic evaluation

The	mixed-	model	equations	(MME)	of	the	original	ssGB-
LUP	(Aguilar	et al., 2010;	Christensen, 2010)	 included	a	
joint	relationship	matrix	H	and	its	inverse:

where	 G	 is	 the	 genomic	 relationship	 matrix,	 A	 is	 the	
pedigree-	based	relationship	matrix	and	A22	is	a	subblock	of	
the	A	matrix	including	genotyped	animals	only.	The	UPGs	
were	accounted	in	the	augmented	inverse	relationship	ma-
trix	(A−1

UPG
),	as	presented	in	(Matilainen	et al., 2018;	Misztal	

et al., 2013):

where	B = G−1 −A−1
22

,

Q	includes	the	proportions	of	contributions	each	ani-
mal	receives	from	the	UPG,	Q1	and	Q2	are	the	submatrices	
of	Q	corresponding	to	the	non-	genotyped	and	genotyped	
animals,	 respectively,	 and	 Aij	 is	 the	 submatrix	 of	 A−1,	
with	a	superscript	(i	or	j)	value	of	1	for	the	non-	genotyped	
and	 a	 value	 of	 2	 for	 the	 genotyped	 animals.	 Inbreeding	
coefficients	 were	 used	 in	 the	 calculations	 of	 the	 inverse	
pedigree-	based	relationship	matrices	A−1	and	A−1

22
.

We	assumed	that	genotypes	could	describe	90%	of	the	
genetic	variance,	and	thus	the	genomic	relationships	were	
regressed	towards	the	pedigree	relationships	as:

where	 w	 represents	 the	 residual	 polygenic	 proportion	 0.1,	
and	G05 = 2

(
M101M

�
101

m

)
,	with	M101	as	an	n	by	m	marker	ma-

trix	with	the	genotypes	coded	by	{−1,	0,	1},	m	is	the	number	
of	SNP	markers,	n	is	the	number	of	genotyped	animals,	that	
is	 assuming	 allele	 frequencies	 =0.5.	 The	 scaling	 factor	
st =

(
trace(A22)
trace(G05)

)
	was	used	to	assure	that	the	average	of	the	

y = Xb + Z1a + Z2p + Z3h + e,

H−1 = A−1 +

(
0 0

0 G−1−A−1
22

)
,

H−1 = A−1
UPG +

⎛⎜⎜⎜⎝

0 0 0

0 B −BQ2

0 −Q�
2B Q�

2BQ2

⎞⎟⎟⎟⎠
,

A−1
UPG =

⎛⎜⎜⎜⎝

A11 A12 −
�
A11Q1+A

12Q2

�
A21 A22 −

�
A21Q1+A

22Q2

�
−
�
Q�
1A

11+Q�
2A

21
�
−
�
Q�
1A

12+Q�
2A

22
�

Q�A−1Q

⎞⎟⎟⎟⎠
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diagonals	of	the	genomic	relationship	matrix	is	equal	to	the	
average	of	the	diagonal	of	the	A22matrix.

2.7	 |	 Integration of external information

For	 integration	 of	 MACE	 DFS	 information	 to	 the	 LR	
evaluation,	we	used	the	method	presented	in	Vandenplas	
et al. (2014),	Vandenplas	et al. (2017).	For	notational	sim-
plicity,	we	present	the	MME	with	only	the	animal	breed-
ing	value	and	the	fixed	effects:

where	subscript	N	pertains	 to	 the	DFS	MACE	evaluation,	
the	diagonal	matrix	D−1

N
	has	 the	effective	record	contribu-

tion	(ERC)	increase	for	the	bulls	due	to	the	DFS	information	
and	zero	for	the	cows,	R = I�2e	is	the	residual	(co)variance	
matrix	 and	 âN	 is	 solution	 vector	 of	 breeding	 values,	 and	
ŶN	has	the	DRP	from	the	DFS	MACE	evaluation.	Both	the	
D−1
N

	and	 âN	were	padded	by	zeros	for	animals	in	pedigree.	
The	ERC	were	back	solved	from	reliabilities	in	DFS	evalua-
tions	with	the	reversed	reliability	estimation	as	in	Pitkänen	
et al. (2018).	Separate	herd-	year-	season	fixed	effect	class	was	
used	for	the	bull	pseudo-	observations	to	reflect	the	different	
base	of	DFS	compared	to	the	LR	evaluations.	The	LR	is	not	
part	of	MACE	evaluation,	thus	external	data	were	free	from	
internal	data	and	no	actions	to	avoid	double	counting	of	in-
formation	was	needed.

2.8	 |	 Evaluation scenarios

The	 LR	 ssGBLUP	 evaluations	 were	 implemented	 and	
tested	using	three	scenarios.	In	the	first	scenario,	named	
ssLR,	 only	 LR	 phenotypic	 and	 genomic	 data	 were	 used.	
In	the	second	scenario,	named	ssLRg,	ssLR	was	upgraded	
with	DFS	bull	genotypes.	In	the	third	scenario	(ssLRdfs),	
the	ssLR	was	upgraded	with	the	DFS	genotypes	and	the	
DRPs	from	the	MACE	evaluations.	Thus,	ssLRg	included	
more	genomic	 information	than	ssLR,	while	ssLRdfs	 in-
cluded	more	phenotypic	information	than	ssLRg.

2.9	 |	 Software

Pedigree	 pruning,	 calculation	 of	 inbreeding	 coefficients	
and	relationship	submatrix	A22	were	performed	using	the	
RelaX2	program	(Strandén	&	Vuori, 2006).	Variance	com-
ponents	 were	 estimated	 with	 restricted	 maximum	 like-
lihood	 (REML)	 (Patterson	 &	 Thompson,  1971)	 in	 DMU	
software	(Madsen	et al., 2010)	using	AI-	REML	algorithm.	
Unification	 of	 the	 DNA	 arrays	 and	 imputation	 of	 miss-
ing	alleles	were	performed	using	FImpute	v.	2.2	software	
(Sargolzaei	 et  al.,  2014).	 The	 G−1	 and	 B	 matrices	 were	
computed	using	the	HGinv	v.	0.87	program	(Strandén	&	
Mäntysaari, 2018).	The	EDC,	ERC	and	DRP,	and	finally	
the	(G)EBV	and	(D)YD	computations	were	performed	in	
MiX99	software	(Strandén	&	Lidauer, 1999).

[
X�R−1X X�R−1Z

Z�R−1X Z�R−1Z+H−1
�
−2
a +D−1

N �
−2
e

][
b̂

âN

]
=

[
X�R−1y

Z�R−1y+D−1
N �

−2
e âN

]
,

F I G U R E  2  Average	genomic	
breeding	value	(GEBV)	of	bulls	by	
birth	year	for	milk	yield	(kg).	Black	
line	with	triangles	(ssLR)	denotes	the	
ssGBLUP	model	using	Leningrad	region	
(LR)	phenotypes	and	genotypes;	green	
line	with	snowflakes	(ssLRg)	denotes	
ssGBLUP	using	LR	phenotypes,	genotypes	
and	Nordic	(DFS)	genotypes;	blue	line	
with	circles	(ssLRdfs)	denotes	ssGBLUP	
using	LR	phenotypes	and	genotypes,	and	
DFS	genotypes	and	deregressed	EBVs	
(DRPs)
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3 	 | 	 RESULTS

The	estimated	genetic	(�2a),	herd-	sire	(�2
hs

),	permanent	en-
vironment	 (�2pe)	 and	 residual	 (�2e)	 variance	 components	
with	respective	SEs	for	milk	yield	were	330,735 ± 6,571,	
80,532 ± 3,023,	274,195 ± 8,741	and	955,257 ± 3,352	re-
spectively.	For	the	fat	yield,	the	estimated	variance	com-
ponents	were	451 ± 9	(�2a),	118 ± 4	(�2

hs
),	300 ± 11	(�2pe)	and	

1,393 ± 5	(�2e).	Thus,	the	estimated	heritability	0.21 ± 0.005	
was	the	same	for	the	milk	and	fat	yields.

The	average	GEBV	of	milk	yield	(kg)	by	the	birth	year	
of	bulls	with	EDCs	above	20	for	the	three	ssGBLUP	mod-
els	is	presented	in	Figure 2.	Each	GEBV	trend	was	adjusted	
for	the	same	base	level	by	centring	the	mean	GEBV	of	all	
cows	born	in	2010	to	be	zero.	The	genetic	trends	from	ssLR	
and	ssLRg	had	similar	shapes,	with	an	average	annual	ge-
netic	 progress	 of	 40  kg	 in	 1995–	2010.	 ssLRdfs	 showed	 a	
larger	annual	genetic	trend	(60 kg).	Similar	patterns	were	
observed	for	the	fat	yield	trends;	the	estimated	annual	ge-
netic	gains	were	1.2 kg	for	ssLR	and	ssLRg	and	1.9 kg	for	
ssLRdfs	(Figure 3).

Genetic	trends	in	milk	and	fat	yields	for	the	cows	are	
presented	 in	 Figures  4	 and	 5	 respectively.	 The	 average	
annual	predicted	genetic	gain	in	milk	yield	was	identical	
using	 either	 ssLR	 or	 ssLRg	 (50  kg),	 but	 the	 annual	 ge-
netic	 gain	 was	 55  kg	 when	 using	 ssLRdfs.	 For	 fat	 yield,	
the	annual	genetic	gain	based	only	on	LR	data	was	1.7 kg	
compared	to	a	genetic	gain	of	1.9 kg	obtained	with	an	aug-
mented	data.

Table 1	shows	the	validation	statistics	of	GEBV	of	milk	
yield	based	on	DYD	and	YD	for	bulls	and	cows	respectively.	

The	 highest	 validation	 reliability	 R2	 was	 observed	 for	
ssLRdfs:	0.30	for	bulls	and	0.42	for	cows.	Including	DFS	
genotypes	 (ssLRg)	 in	 bull	 validation	 did	 not	 increase	 R2	
compared	to	ssLR.	For	cows,	R2	was	higher	in	ssLR	(0.38)	
than	in	ssLRg	(0.36).	Regression	coefficients	(b1)	of	DYD	
on	GEBV	for	ssLR	and	ssLRg	were	similar	and	below	one	
(0.78	 and	 0.80).	 ssLRdfs	 gave	 the	 lowest	 b1	 (0.58).	 For	
cows,	the	highest	b1	was	from	ssLR	(1.69)	and	the	lowest	
(1.14)	from	ssLRdfs.

Results	 of	 a	 linear	 regression	 of	 fat	 yield	 (D)YD	 on	
GEBV	are	given	in	Table 2.	For	bulls,	the	highest	valida-
tion	 reliability	 (0.18)	 was	 obtained	 with	 both	 ssLRg	 and	
ssLRdfs.	The	difference	in	R2	values	between	ssLR	and	the	
other	 models	 was	 0.01.	 For	 cows,	 the	 increased	 amount	
of	foreign	information	decreased	validation	reliability;	the	
highest	R2	of	0.41	was	achieved	with	LR	data	only	(ssLR).	
The	R2	value	reduced	by	0.07	units	 in	ssLRg	and	an	ad-
ditional	0.13	units	in	ssLRdfs.	For	fat	yield,	b1	was	larger	
than	that	obtained	from	the	milk	yield.	For	bulls,	b1	values	
were	0.64	and	0.68	 for	ssLR	and	ssLRg,	respectively,	but	
lower	for	ssLRdfs	(0.41).	For	cows,	b1	values	were	above	
one	 for	 ssLR	 and	 ssLRg	 (1.86	 and	 1.67	 respectively).	 In	
ssLRdfs,	b1	was	below	one	(0.89).

4 	 | 	 DISCUSSION

Genomic	 selection	 has	 been	 successfully	 applied	 in	 the	
animal	breeding	of	various	species	(Stock	&	Reents, 2013).	
A	particularly	large	impact	has	been	on	the	dairy	cattle	in-
dustry,	where	genomic	prediction	has	reduced	the	genera-
tion	interval	by	approximately	2.6 years	and	has	increased	

F I G U R E  3  Average	genomic	
breeding	value	(GEBV)	of	bulls	by	birth	
year	for	fat	yield	(kg).	Black	line	with	
triangles	(ssLR)	denotes	ssGBLUP	model	
using	Leningrad	region	(LR)	phenotypes	
and	genotypes;	green	line	with	snowflakes	
(ssLRg)	denotes	ssGBLUP	using	LR	
phenotypes,	genotypes	and	Nordic	(DFS)	
genotypes;	blue	line	with	circles	(ssLRdfs)	
denotes	ssGBLUP	used	LR	phenotypes	
and	genotypes,	and	DFS	genotypes	and	
deregressed	EBVs	(DRPs)
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the	 number	 of	 candidate	 bulls	 at	 AI	 stations	 up	 to	 70%	
(Mäntysaari	 et  al.,  2020;	 VanRaden,  2020).	 Despite	 the	
attractiveness	 and	 benefits	 of	 genomic	 selection,	 it	 can-
not	be	implemented	in	all	cattle	populations	due	to	small	
population	sizes,	low	numbers	of	progeny-	tested	bulls,	or	
other	limited	resources.

In	 our	 study,	 we	 implemented	 the	 ssGBLUP	 model	
for	the	admixed	population	of	HOL	and	RBW	cattle	from	
LR	 with	 a	 limited	 number	 of	 progeny-	tested	 bulls.	 The	
local	 genotyped	 animals	 were	 mostly	 cows.	 To	 improve	
prediction	 accuracy,	 we	 added	 bull	 genotypes	 from	 the	

neighbouring	HOL	DFS	population	and	finally	increased	
the	 number	 of	 progeny-	tested	 animals	 in	 the	 reference	
population	by	integrating	external	deregressed	NAV-	scale	
MACE	EBVs.

The	set	of	reference	animals	in	LR	was	expected	to	be	
too	small	to	perform	genomic	prediction	with	prediction	
reliability	as	high	as	that	reported	for	large	USA	HOL	pop-
ulation	(Wiggans	et	al.,	2017).	One	approach	to	enlarging	
a	 reference	 population	 is	 to	 include	 genomic	 data	 from	
an	external	population.	However,	 the	success	of	 this	ap-
proach	depends	on	the	availability	of	phenotypic	data	for	

F I G U R E  4  Average	genomic	
breeding	value	(GEBV)	of	cows	by	birth	
year	for	milk	yield	(kg).	Black	line	with	
triangles	(ssLR)	denotes	ssGBLUP	model	
using	Leningrad	region	(LR)	phenotypes	
and	genotypes;	green	line	with	snowflakes	
(ssLRg)	denotes	ssGBLUP	using	LR	
phenotypes,	genotypes	and	Nordic	(DFS)	
genotypes;	blue	line	with	circles	(ssLRdfs)	
denotes	ssGBLUP	using	LR	phenotypes	
and	genotypes,	and	DFS	genotypes	and	
deregressed	EBVs	(DRPs)

F I G U R E  5  Average	genomic	
breeding	value	(GEBV)	of	cows	by	birth	
year	for	fat	yield	(kg).	Black	line	with	
triangles	(ssLR)	denotes	ssGBLUP	model	
using	Leningrad	region	(LR)	phenotypes	
and	genotypes;	green	line	with	snowflakes	
(ssLRg)	denotes	ssGBLUP	using	LR	
phenotypes,	genotypes	and	Nordic	(DFS)	
genotypes;	blue	line	with	circles	(ssLRdfs)	
denotes	ssGBLUP	using	LR	phenotypes	
and	genotypes,	and	DFS	genotypes	and	
deregressed	EBVs	(DRPs)
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these	animals	in	the	internal	population	and	the	genetic	
distance	 between	 the	 pooled	 and	 the	 target	 populations	
(Lund	 et  al.,  2014).	 Based	 on	 our	 results,	 a	 gradual	 up-
grade	 of	 the	 data	 by	 adding	 genotypes	 of	 bulls	 with	 ge-
netic	 ties	 to	 both	 data	 sets	 did	 not	 sufficiently	 increase	
the	 size	 of	 the	 reference	 population.	 However,	 we	 did	
not	 include	EBVs	of	bulls	with	ERCs	less	than	20	in	the	
DFS	data.	Nonetheless,	including	414	DFS	genotypes	im-
proved	the	prediction	accuracy	of	the	milk	yield	for	bulls.	
Comparable	to	our	study,	correlation	between	milk	yield	
DGVs	and	DRPs	was	0.26	in	a	small	Chinese	HOL	refer-
ence	population	with	85	genotyped	bulls	and	2,862	geno-
typed	cows	 (Ma	et al., 2014).	Correlation	of	unweighted	
DYDs	and	GEBVs	was	higher	in	current	study,	the	lowest	
value	 (0.38)	 was	 attained	 using	 LR	 data	 and	 genotypes	
only.

The	highest	R2	 in	 the	milk	yield	was	obtained	with	a	
model	 where	 DRP	 pseudo-	phenotypes	 of	 DFS	 bulls	 de-
rived	 from	 Interbull	 MACE	 evaluations	 were	 blended	
with	LR	data.	Similarly,	in	Přibyl	et al. (2013),	R2	increased	
after	Interbull	DRP	pseudo-	phenotypes	were	blended	into	
Czech	HOL	genomic	evaluations.	However,	integration	of	
the	 traditional	 MACE	 evaluations	 should	 be	 performed	

with	caution,	as	genomic	pre-	selection	bias	has	been	ob-
served	in	bulls	born	after	2009	(Patry	&	Ducrocq, 2011).

The	favourable	effect	of	including	DFS	information	on	
R2	in	the	milk	yield	was	not	observed	in	the	fat	yield.	The	
phenotypic	data	recording	pitfalls	in	fat	yield,	such	as	vari-
ability	in	milk	analysis	systems	(Kudinov	et al., 2017),	may	
be	a	potential	explanation	for	this.	Including	the	external	
pseudo-	phenotypes	caused	bias	in	the	unstable	prediction	
approach,	 leading	 to	 discrepancy	 between	 the	 expected	
and	observed	breeding	values.	From	this	viewpoint,	 it	 is	
important	to	understand	whether	various	sources	of	phe-
notypic	data	are	equally	relevant	and	accurate	before	using	
them	 in	 the	 blending	 procedure.	When	 recording	 errors	
are	more	prominent	in	the	internal	data	than	in	the	exter-
nal	data,	a	bias	similar	to	what	we	observed	in	fat	yield	is	
also	expected	in	the	prediction.	The	other	explanation	for	
the	reduced	accuracy	of	the	blended	method	is	the	valida-
tion	test	practice	not	fitting	the	ssLR	model	perfectly.	As	
shown	by	Legarra	and	Reverter	(2018),	a	reciprocal	of	the	
size	of	contemporary	groups	may	generate	upwards	bias	
in	the	R2	due	to	decreasing	size	of	contemporary	groups.	
Hence,	the	bias	may	have	reduced	after	the	integration	of	
DFS	data.	We	computed	(results	not	presented)	reliability	

Modela

Validation animals

Bulls (42 animals) Cows (221 animals)

E (GEBV 
- DYD)b 2 * b1 R2 E (GEBV- YD) b1 R2

ssLR 529 0.78 0.21 65 1.69 0.38

ssLRg 557 0.80 0.21 91 1.55 0.36

ssLRdfs 748 0.58 0.30 113 1.14 0.42

Note: Genomic	enhanced	breeding	values	(GEBV)	and	(daughter)	yield	deviations	(D)YD	were	from	the	
validation	animals.
assLR = model	with	Leningrad	region	genomic	and	phenotypic	data,	ssLRg = ssLR	and	Nordic	(DFS)	
genomic	data,	ssLRdfs = ssLRg	and	DFS	bulls	EDCs.
bE	(GEBV-	DYD) = difference	between	GEBV	and	DYD,	b1 = regression	coefficient,	R2 = validation	
reliability

T A B L E  1 	 Bull	and	cow	validation	
results	of	milk	yield	by	the	three	single-	
step	GBLUP	models	in	the	Leningrad	
Region	Russian	Black	&	White	and	
Holstein	population

Modela

Validation animals

Bulls (42 animals) Cows (217 animals)

E (GEBV 
- DYD)b 2 * b1 R2 E (GEBV- YD) b1 R2

ssLR 18 0.64 0.17 6 1.86 0.41

ssLRg 19 0.68 0.18 7 1.67 0.34

ssLRdfs 27 0.41 0.18 7 0.89 0.21

Note: Genomic	enhanced	breeding	values	(GEBV)	and	(daughter)	yield	deviations	(D)YD	were	from	the	
validation	animals.
assLR = model	with	Leningrad	region	genomic	and	phenotypic	data,	ssLRg = ssLR	and	Nordic	(DFS)	
genomic	data,	ssLRdfs = ssLRg	and	DFS	bulls	EDCs.
bE	(GEBV-	DYD) = difference	between	GEBV	and	DYD,	b1 = regression	coefficient,	R2 = validation	
reliability

T A B L E  2 	 Bull	and	cow	validation	
results	of	fat	yield	from	the	three	single-	
step	GBLUP	models	in	the	Leningrad	
Region	Russian	Black	&	White	and	
Holstein	population



   | 9KUDINOV et al.

and	linear	regression	of	GEBVs	estimated	using	full	and	
reduced	data	(Legarra	&	Reverter, 2018).	Obtained	R2	in-
creased	 along	 with	 increment	 of	 the	 data,	 both	 in	 milk	
and	fat	yields.	However,	any	validation	results	from	bulls	
must	 be	 considered	 with	 caution	 as	 only	 42	 candidates	
were	used.

Advantages	of	 ssGBLUP	can	be	seen	when	 the	num-
ber	 of	 genotyped	 animals	 is	 too	 modest	 to	 allow	 for	 ac-
curate	estimates	 from	the	multi-	step	genomic	prediction	
(Amaya-	Martínez	 et  al.,  2020;	 Christensen	 et  al.,  2012).	
Multi-	step	 genetic	 evaluations	 with	 integrated	 external	
information	may	create	biased	predictions	due	to	an	extra	
step	used	for	blending	the	external	information	(Guarini	
et al., 2019).	In	such	a	case,	using	ssGBLUP	provides	less	
biased	prediction	due	to	the	simultaneous	use	of	genomic	
and	pedigree-	based	information	(Přibyl	et al., 2013).	The	
limitations	of	ssGBLUP	mostly	concern	the	compatibility	
of	 the	 A	 and	 G	 matrices,	 originating	 from	 an	 inconsis-
tency	in	the	base	population	definition	in	the	genotyped	
and	 ungenotyped	 animals	 (Legarra	 et	 al.,  2014).	 Proper	
consideration	of	UPG	in	ssGBLUP	is	important	for	com-
patibility	 between	 the	 A	 and	 G	 matrices.	 Pedigree	 com-
pleteness	is	critical	to	the	compatibility	between	the	G	and	
A22	matrices	(Misztal	et al., 2010,	2013).	A	promising	way	
to	 solve	 the	 compatibility	 of	 the	 G	 and	 A	 matrices	 is	 to	
fit	 the	ancestral	 structure	of	 the	population	by	 so-	called	
metafounders,	as	presented	by	Legarra	et al. (2015).	The	
method	 per	 se	 represents	 a	 fusion	 of	 Christensen's	 idea	
(Christensen	 et  al.,  2012)	 to	 construct	 G	 with	 0.5	 allele	
frequencies	 and	 an	 extension	 of	 the	 pedigree	 by	 related	
and	 inbred	pseudofounders	 (Legarra	et al.,  2015).	These	
relationships	 are	 accounted	 through	 a	 Gamma	 (Γ)	 ma-
trix.	 The	 method	 has	 provided	 promising	 results	 when	
used	in	multiple	breed	pedigrees	(Xiang	et al., 2017)	and	
simulated	 data	 (Garcia-	Baccino	 et  al.,  2017).	 However,	
implementation	 of	 the	 metafounder	 approach	 may	 be	
challenging	when	a	population	has	breeds	with	high	ad-
mixture	(Kudinov	et al., 2020).	We	tested	the	metafounder	
approach	for	the	population	in	our	current	study	but	did	
not	 observe	 improvement	 in	 validation	 reliability.	 We	
used	 nine	 metafounders	 to	 describe	 the	 ancestral	 struc-
ture	 of	 the	 population.	 All	 diagonal	 elements	 of	 the	 Γ	
matrix,	 along	 with	 the	 off-	diagonal	 elements,	 were	 very	
close	to	each	other,	except	for	the	highly	different	old	RBW	
groups.	The	absence	of	validation	reliability	improvement	
with	the	metafounder	approach	may	be	due	to	the	small	
number	of	genotyped	animals,	most	of	which	were	born	
during	 the	 last	 two	 decades.	 The	 self-	relationships	 of	
metafounders	associated	with	old	birth	years	were	mostly	
computed	using	sporadic	genotypes	of	historic	RBW	and	
Dutch	 HOL	 bulls.	 The	 metafounders	 approach	 may	 be-
come	 attractive	 when	 the	 number	 of	 genotype	 animals	
increases	noticeably.

The	 total	 genetic	 effect	 in	 the	 ssGBLUP	 model	 de-
pends	 on	 pedigree	 (A)	 and	 genomic	 relationships	 (G).	
The	 weight	 of	 genomic	 information	 in	 ssGBLUP	 can	 be	
changed	by	including	a	polygenic	proportion	variable	(w),	
which	weighs	variation	due	to	markers	and	pedigree	 in-
formation	in	the	genomic	relationship	matrix.	Commonly	
used	values	for	w	range	from	10%	to	30%	(Ma	et al., 2014;	
Matilainen	et al., 2018;	Přibyl	et al., 2013).	We	tested	both	
10%	and	30%	for	w,	and	observed	only	a	small	difference	
in	the	cross-	validation	results.	Thus,	only	results	with	the	
10%	proportion	are	presented.

A	random	herd	by	sire	interaction	effect	applied	in	the	
model	is	the	same	as	that	originally	used	by	Kudinov	et	al.	
in	LR	data	(Kudinov	et al., 2018).	A	random	herd	by	sire	
interaction	effect	is	also	used	in	routine	evaluations	in	the	
USA	(VanRaden	&	Wiggans, 1991).	The	herds	 in	LR	are	
large,	 but	 their	 management	 and	 the	 origin	 of	 breeding	
animals	may	vary	significantly.	We	observed	that	imported	
semen	 from	the	 top	North	American	bulls	were	used	 in	
only	a	fraction	of	the	LR	farms.	Interactions	between	sire	
and	herd	may	occur	 in	such	situations	or	when	the	best	
bulls	are	only	used	in	a	few	top	herds	(Dimov	et al., 1995).	
Several	Animal	model	and	ssGBLUP	test	runs	performed	
using	 the	 model	 without	 the	 herd-	by-	sire	 random	 effect	
showed	 lower	 reliability	 and	 higher	 bias	 in	 EBV	 predic-
tion.	The	 natural	 future	 direction	 to	 improve	 prediction	
accuracy	in	the	LR	data	is	to	use	test-	day	records	instead	of	
305-	day	records	and	potentially	even	consider	balancing	
investment	 into	 phenotyping	 and	 genotyping	 (Obšteter	
et	al.,	2021).

5 	 | 	 CONCLUSIONS

Single-	step	 genomic	 prediction	 was	 successfully	 imple-
mented	for	the	LR	data.	The	reference	population	included	
more	genotyped	cows	 than	bulls	because	 the	number	of	
progeny-	tested	bulls	was	 low	in	the	LR.	Including	EBVs	
and	genotypes	from	the	Nordic	HOL	population	into	the	
LR	ssGBLUP	evaluation	created	one	of	 the	 largest	dairy	
reference	 population	 among	 Russian	 regions.	 This	 joint	
reference	population	improved	the	prediction	accuracy	in	
the	milk	yield	but	not	in	the	fat	yield.	The	prediction	ac-
curacy	of	breeding	values	can	be	improved	through	better	
recording	of	phenotypes	and	pedigrees,	and	by	drastically	
increasing	 the	 number	 of	 genotyped	 cows	 and	 progeny-	
tested	bulls.
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