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We analysed the effect of the 2018 European drought on greenhouse gas
(GHG) exchange of five North European mire ecosystems. The low precipi-
tation and high summer temperatures in Fennoscandia led to a lowered
water table in the majority of these mires. This lowered both carbon dioxide
(CO2) uptake and methane (CH4) emission during 2018, turning three out of
the five mires from CO2 sinks to sources. The calculated radiative forcing
showed that the drought-induced changes in GHG fluxes first resulted in
a cooling effect lasting 15–50 years, due to the lowered CH4 emission,
which was followed by warming due to the lower CO2 uptake.

This article is part of the theme issue ‘Impacts of the 2018 severe drought
and heatwave in Europe: from site to continental scale’.

1. Introduction
During the summer of 2018, Northwestern Europe experienced an exceptional
drought and heatwave, also affecting Fennoscandian mire ecosystems [1–3]. The
drought and associated warm temperatures can alter the short-term hydrologi-
cal status of mire ecosystems, leading to alterations in biogeochemical processes
within these ecosystems. These changes can have a drastic effect on greenhouse
gas (GHG) exchange between the mires and the atmosphere [4].

Northernmire ecosystems are characterized by two considerableGHG fluxes,
viz. carbon dioxide (CO2) uptake and methane (CH4) emission, that generate
opposite radiative forcing (RF) [5]. On longer timescales, e.g. over millennia,
carbon uptake and storage as peat, i.e. sequestration of CO2 from the atmosphere,
results in a climate cooling effect. Methane emission, on the other hand, has an
intense short-term warming effect on the atmospheric radiative balance [6].

The seasonal variation in the CO2 and CH4 fluxes between the atmosphere
and mires has generally been observed to be related to temperature and water
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Table 1. Flux sites and their climate conditions.

site location type pH references

Degerö 64°110 N 19°330 E
270 m.a.s.l.

oligotrophic fen 3.9–4.0 [18–20]

Kaamanen 69°080 N 27°160 E
155 m.a.s.l.

meso-eutrophic fen 3.7–5.5 [21,22]

Lompolojänkkä 68°000 N 24°130 E mesotrophic fen 5.5–6.5 [23]

Mycklemossen 58°210 N 12°100 E oligotrophic fen with bog characteristics 3.9–4.0

Siikaneva 61°500 N 24°120 E
162 m.a.s.l.

oligotrophic fen 3.2–3.9 [8,10]

Figure 1. Locations of the mire flux measurement sites used in this study
(black dots). FI-Kaa: Kaamanen; FI-Lom: Lompolojänkkä; FI-Sii: Siikaneva;
SE-Myc: Mycklemossen; SE-Deg: Degerö (table 1). Also indicated are the
weather stations providing long-term climate data listed in table 3 (white
diamonds).
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table position [7–11]. Dry conditions and lowered water
tables hinder CO2 uptake [7,12], but they also lead to a
reduction in CH4 emission [4,13,14]. Thus, the same environ-
mental forcing of GHG exchange of mires can lead to
counteracting climatic effects.

To assess the climatic impact ofweather events through eco-
system GHG exchange, the differing radiative properties and
atmospheric lifetimes of GHGs need to be accounted for.
Global warming potential (GWP) is a commonly used metric
that integrates the radiative forcing due to a GHG pulse
emission over a prescribed time (typically 20 or 100 years)
and is expressed as CO2 equivalents, i.e. the cumulative RF
relative to that of CO2 [15]. A more dynamic approach to com-
pare the effects of different GHG fluxes is to examine the
development of instantaneous RF due to these fluxes [16,17].

In addition to effective metrics, reliable data on ecosystem
GHG exchange are needed to assess the climatic impact of
weather events. In Sweden and Finland, GHG fluxes are
measured at several mire ecosystems using eddy covariance
(EC), mostly within national networks of the Integrated
Carbon Observation System (ICOS-Sweden and ICOS-
Finland). Appropriate environmental parameters are also
measured at each site. In this paper, we will use EC and auxili-
ary data from five sites to analyse the effect of the 2018
European drought on the CO2 and CH4 fluxes of mire ecosys-
tems in relation to changes in key environmental drivers.
Furthermore, we will analyse the climatic effect of the
drought-induced changes in GHG fluxes by using both the
GWP and dynamic RF approaches.
2. Material and methods
We selected natural mire ecosystems that have EC measurements
of both CO2 and CH4 fluxes during 2018 and at least one
additional reference year of data. The sites are listed in table 1
and their locations are shown in figure 1. Many of these stations
are either ICOS stations or in the process of becoming such and
thus the measurements follow the ICOS protocols of CO2 and
CH4 fluxes, and those of auxiliary parameters [24–27]. The aver-
age temperature at the sites ranges from −1.4°C to +6.8°C. None
of these sites contain permafrost. The vegetation at the mires is
listed in table 2, with associations to different mire types.

The effect of drought on GHG fluxes was estimated as
differences in the cumulative annual CO2 and CH4 fluxes between
2018 and a reference period (ΔFCO2 and ΔFCH4). The reference
period was selected as a single year or several years with rainfall
and temperature close to the 30-year average (tables 3 and 4).
However, flux data availability places a strong constraint on this.
For some sites, only a few years of data exist on both CO2 and
CH4 fluxes, and the maximum length of time series for any
of the sites was 15 years. As a result of flux data availability,
these reference years vary among different mire sites and the
environmental conditions during these years may slightly deviate
from the long-term average climatological conditions. We related
the changes in annual cumulative fluxes to average changes in
temperature and water table in summertime, as the drought
and heatwave were most conspicuous during this period. The sig-
nificances of these relations were estimated by non-parametric
Spearman’s rank correlation test (Matlab Matlab R2015b,
corr function). We also compared the apparent temperature
dependence of methane emission during the drought and refer-
ence years using bin-averaged daily mean methane fluxes.
For this, we used daily mean peat temperatures and 2°C bins
starting at 0°C.

For the long-term climate reference, we used the 1981–2010
monthly precipitation and monthly average air temperature



Table 2. Dominating vascular plant vegetation on the five mire sites (1 = presence of the species). Mire type indicates the species main distribution range
according to the Northern vegetation classification by Påhlsson [28]; nutrient poor ombrotrophic bog (B) and minerotrophic fens in order of increasing nutrient
availability: poor fen (PF), intermediate fen (IF) and moderate fen (MF). G indicates that the species can be found in all four mire types, and if present in
several types the preferred mire type is indicated by *.

species mire type Mycklemossen Degerö Siikaneva Kaamanen Lompolojänkkä

Calluna vulgaris B 1

Erica tetralix B 1

Empetrum nigrum B 1

Ledum palustre B 1

Vaccinium uliginosum B 1

Vaccinium vitis-idaea B 1

Rubus chamaemorus B, PF 1 1 1

Eriophorum vaginatum B*, PF 1 1 1

Rhynchospora alba B*, PF 1

Carex lasiocarpa PF, IF, MF 1 1

Carex rostrata PF, IF, MF 1 1 1

Eriophorum angustifolium PF, IF, MF 1

Carex chordorrhiza PF, IF*, MF 1 1

Carex aquatilis IF, MF 1

Carex livida IF, MF 1

Carex magellanica IF, MF 1

Carex buxbaumii MF 1

Andromeda polifolia G 1 1 1

Vaccinium oxycoccus G 1 1 1

Carex limosa G 1 1 1

Trichophorum cespitosum G 1

Plant community composition taken from Ström unpubl. results [18,19] [8] [21] [23]

Table 3. Overview of climate datasets from weather stations. For Utsjoki Kevo and Muonio, the reference year is 2017. For Vindeln Svartberget, the reference year
is the average of 2015–2016. For Juupajoki Hyytiälä, the reference year is the average of 2010–2013. For Vänersborg and Uddevalla, the reference year is 2016.

station (mire) location source

mean annual precipitation
[mm] mean annual temperature [°C]

1981–2010 ref. 2018 1981–2010 ref. 2018

Utsjoki Kevo (Kaamanen) 69°430 N 27°010 E FMI 433 519 410 −1.3 −1.1 −0.3
Muonio Alamuonio & kk (Lompolojänkkä) 67°580 N 23°410 E FMI 528 443 472 −0.4 0.3 1.4

Vindeln Svartberget (Degerö) 64°140 N 19°360 E SLU 613 648 546 1.9 3.1 2.8

Juupajoki Hyytiälä (Siikaneva) 61°510 N 24°170 E FMI 703 731 540 3.5 4.3 4.8

Vänersborg (Mycklemossen) 58°210 N 12°220 E SMHI 803 655 599 6.8 7.7 8.2

Uddevalla (Mycklemossen) 58°220 N, 11°560 E SMHI 990 886 820 n.a. n.a. n.a.
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data from nearby weather stations of the Swedish Meteorological
and Hydrological Institute (SMHI)1 and the Finnish Meteoro-
logical Institute (FMI).2 For Siikaneva and Lompolojänkkä, we
selected the nearby stations of Juupajoki Hyytiälä and Muonio
(Alamuonio and kk), respectively. For Degerö, we used climate
data collected by the Swedish Agricultural University (SLU) at
Vindeln Svartberget. For Mycklemossen, we used precipitation
from Uddevalla and temperature from Vänersborg, and for
Kaamanen we used Utsjoki Kevo. An overview of these data
sets is given in table 3.

Annual CO2 and CH4 flux time series were derived
from the half-hourly EC flux data. Missing observations
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Figure 2. Annual cycle of monthly average air temperatures: long-term mean (crosses); reference period (diamonds); 2018 (dots) from weather stations listed in
table 3.

Table 4. Annual carbon dioxide and methane fluxes, and the corresponding GWP-based CO2 equivalents of the difference between 2018 and the reference year
(ΔCO2-eq). Global warming potentials of CH4 [15]: GWP20 = 84, GWP100 = 28.

CO2 reference
g C m−2

CO2 2018
g C m−2

CH4 reference
g C m−2

CH4 2018
g C m−2 ΔCO2-eq 20 yr ΔCO2-eq 100 yr

Degerö −31.4 (2015–2016) 15.2 11.4 (2015–2016) 9.5 −36 100

Kaamanen −8.5 (2017) −5.6 7.6 (2017) 6.8 −80 −20
Lompolojänkkä −29.1 (2017) −56.0 15.0 (2017) 22.0 680 160

Mycklemossen −1.4 (2016) 54.7 9.7 (2016) 5.6 −260 51

Siikaneva −78.8 (2010–2013) 18.4 11.5 (2010–2013) 7.6 −74 220
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due to atmospheric conditions not fulfilling micrometeoro-
logical flux quality criteria or due to instrument malfunctions
were filled in the time series. The CO2 fluxes were gap
filled as in Wutzler et al. [29]. For CH4 fluxes, daily averages
were calculated [10] and gap filling was conducted by linear
interpolation. The uncertainty caused by linear interpolation
was assessed by creating artificial gaps in data, representing
the number and distribution of gaps in original data, and
interpolating the resulting time series. Repeating this 100 times
indicated uncertainty generally below 10%. As the automatic
water table measurement at the Kaamanen site was not
operational in 2017–2018, we used averages of manual
measurements to calculate the monthly water table depths at
this site.

The statistical significance of difference in the daily CO2

and CH4 fluxes between 2018 and the reference years was
tested using the non-parametric Mann–Whitney–Wilcoxon test
(Matlab R2015b, ranksum function, 5% significance level). The
test was conducted for July–August, which was the peak flux
period and had a large 2018-to-reference difference in water
table at most sites.

To compare the climatic effects of the drought-induced
changes in CO2 and CH4 fluxes, we used the GWPs of CH4

with two different time horizons, 20 and 100 years, referred to
as GWP20 (=84) and GWP100 (=28). Multiplying the change
in the annual CH4 mass flux by these GWP values results in
fluxes in which CO2 and CH4 are expressed in common units,
i.e. CO2 equivalents [15]. To characterize the dynamics of the
radiative effect of the GHG flux changes in more detail, we calcu-
lated the radiative forcing due to these changes, i.e. again
adopting a ‘normal’ year as a reference. We used the impulse-
response model described by Lohila et al. [16] and subsequently
updated to include the indirect RF due to atmospheric CH4-to-
CO2 oxidation [30], revised radiative efficiencies [31] and
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future GHG concentration scenarios [32]. The use of this method
allowed us to estimate the decline of an atmospheric GHG
perturbation and the related instantaneous RF over time. We
also positioned the mires to the instantaneous RF switchover
time diagram based on the ratio of changes in annual CH4 and
CO2 fluxes [6].
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3. Results
The summer of 2018 was warmer than on average during the
30-year period of 1981–2010 at all weather stations near the
flux measurement sites, with May and July being especially
warm (table 3 and figure 2). Temperatures in the selected
reference years were close to the 30-year averages during
the summer periods at the three northernmost sites, while
at the two southernmost sites, the reference summertime
temperatures were somewhat higher than the 30-year mean.
In 2018, annual precipitation was considerably lower than
the 30-year mean, especially at Mycklemossen/Uddevalla
and Lompolojänkkä/Muonio, where the drought conditions
prevailed during the whole year (figure 3). It is noteworthy
that at Mycklemossen/Uddevalla the years 2016, 2017
and 2018 all had below-normal annual precipitation.
At Siikaneva/Juupajoki and Degerö/Svartberget, the precipi-
tation in the first half of 2018 was close to the 1981–2010
average, but the end of the year was much drier. At Utsjoki
Kevo, the annual precipitation in 2018 was close to the
long-term average but the first half of the year had below-
average precipitation. The water table at all mires, except
for Lompolojänkkä, was lower in summer 2018 than during
the reference years (figure 4).

Thus, all mire sites except for Lompolojänkkä experienced
a dry year in 2018, as judged from the variations of the water
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table position. The differences in precipitation between 2018
and reference years at different mires did not correlate with
the corresponding differences in water table position.

All the sites showed a typical annual cycle of both daily
CO2 and CH4 fluxes, with CO2 uptake in summer and release
outside the growing season, and CH4 emission peaking during
summer months (figures 5 and 6). The effects of drought and
heatwave on CO2 exchange is conspicuous, with reduced sum-
mertime CO2 uptake at Degerö, Mycklemossen and Siikaneva,
and increased uptake at Lompolojänkkä. Summertime CH4

emission is reduced at all sites except Lompolojänkkä. The
difference in daily CH4 fluxes during July–August between
2018 and the reference period was significant for all sites. For
CO2 fluxes, the difference was significant for all sites except
Lompolojänkkä.

The cumulative CO2 fluxes at Degerö, Lompolojänkkä and
Siikaneva showed annual CO2 uptake in the reference years,
whereas at Mycklemossen and Kaamanen the cumulative net
CO2 uptake was close to zero (figure 5). In 2018, annual CO2

uptake was reduced at all sites except for Lompolojänkkä and
three sites acted as CO2 sources at an annual timescale. The
annual cumulative ecosystem CH4 emission was reduced
during 2018 as compared to the reference years, except at
Lompolojänkkä (figure 6). Not accounting for this site, the
change in the annual CO2 flux (ΔFCO2) ranged from 3 gC m−2

to 100 g C m−2, while the change in annual CH4 flux (ΔFCH4)
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ranged from −0.8 g C m−2 to −4 g CH4 m−2. Lompolojänkkä
had opposite changes compared to the other sites, with
increased CO2 uptake (ΔFCO2=−27 gC m−2) and CH4

emission (ΔFCH4= 7.0 g C m−2).
The relations of ΔFCH4 and ΔFCO2 to the 2018-to-reference

difference in summertime water table position (ΔWT) or the
difference in air temperature were not significant (ΔT)
(figure 7). However, at all sites with a lowered water table,
the CH4 emissions at a given temperature bin were generally
lower during the drought year than in the reference years
(figure 8).

For all mires with a substantial water table lowering in
2018, the drought-induced changes in the annual CO2 and
CH4 balances, estimated above, correspond to a cooling
effect when the fluxes are expressed as GWP20-based CO2

equivalents (negative CO2 equivalents, table 4). This indicates
the short-term dominance of reduced CH4 emissions. How-
ever, the corresponding GWP100-based values were positive,
indicating warming, at all sites except for Kaamanen.

The instantaneous RF due to GHG flux changes, caused by
dry conditions, show an initial cooling effect resulting from the
reduced CH4 emission at all sites except for Lompolojänkkä
(figure 9a). Later, the effect of reduced CO2 uptake will domi-
nate, causing a warming effect at these sites. Lompolojänkkä,
with opposite changes in GHG fluxes as compared to other
mires, shows an initial warming and a subsequent cooling
effect. The switchover of the instantaneous RF from cooling
to warming takes place 15–50 years after the drought year for
the mires which experienced a water table drawdown
(figure 9b), while at Lompolojänkkä the transition was from
warming to cooling (figure 9c).
4. Discussion
The 2018 drought caused a widespread water table draw-
down across North European mire ecosystems. This is a
reflection of the dry and warm conditions during summer
of 2018. In Sweden, precipitation deficit was observed in
nearly the whole country from May to July, with Southern
Sweden experiencing the highest deficit [1]. Furthermore,
May and July were much warmer than the long-term average
for the whole of Sweden, while June was somewhat warmer
in the south and colder in the north [1]. In Finland, the early
summer precipitation deficit was more pronounced in the
southern part of the country [2], with warmer than average
summer for the whole county [3]. However, local hydrologi-
cal features related to e.g. topographical position can cause
some mires to be less sensitive to climatic variations, as
seen at the Lompolojänkkä mire.

We observed similarities in the change of annual GHG
fluxes at all the mires with a water table drawdown, with a
reduction of both CO2 uptake and CH4 emission. Three out
of the four mires with lowered water table turned from CO2

sinks to sources during 2018. The reduction of CH4 emission
was more moderate, the change being mostly less than 20%
of the emission during the reference year, with the exception
of Mycklemossen (42%). Mycklemossen is the southernmost
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of the mire sites in this study and is located within the area
most affected by the 2018 drought. It also experienced drier
than average conditions in 2016 and 2017, the effects of
which may have carried over to 2018. Furthermore, Myckle-
mossen has most ombrotrophic bog characteristics while the
other mires show more minerogenic fen characteristics
(table 2). As bogs typically have a lower water table as com-
pared to minerogenic fens and have a lesser coverage of
aerenchymatous plants, their CH4 emission may be more
sensitive to dry conditions.

We could not establish statistically significant correlations
between the changes of annual CO2 exchange and annual
CH4 emission with summertime temperature or water table
level. However, the apparent dependence of CH4 emission on
peat temperature shows a clear 2018-to-reference difference
in all mires with a lowered water table. Similar differences in
the apparent temperature dependence of CH4 emission have
also been observed previously [33,34]. At Lompolojänkkä,
where the water table was not drawn down, the temperature
response of CH4 emissionwas similar in 2018 and the reference
year. The high peat temperature at Lompolojänkkä in 2018 can
explain the very high CH4 emission in that year. On the other
hand, at Degerö, which also had relatively high peat tempera-
tures in 2018, the CH4 emission was clearly lowered due to the
lower water table. Thus, it seems obvious that both the water
table level and peat temperature play a role in this variation.
The use of such dependencies e.g. for upscaling the climatic
effects of droughts would additionally require establishing a
relationship between water table and precipitation, and peat
temperature and air temperature, as water table position and
peat temperatures are not parameters commonly measured
by weather observation networks.

As the CH4 emissions were reduced, this change first domi-
nated the radiative forcing effects over the reduction in CO2

uptake and resulted in a temporary cooling effect. According
to our RF analysis, this cooling was in most cases limited to
the first 15–50 years after the drought year. The length of this
period depends on the ratio of the changes in the two GHG
fluxes, while the strength of the cooling and warming effects
depend on the magnitude of these changes. At Siikaneva and
Degerö, with a small reduction in CH4 emission as compared
to a reduction in CO2 uptake, the cooling period is short,
whereas for Kaamanen, with a small change in CO2 uptake,
cooling lasts longer. Mires with a large change in CH4 fluxes
showed a large initial change in the instantaneous RF. Siika-
neva, with the largest reduction in CO2 uptake, showed the
largest warming after the switchover from cooling towarming.
The GWP20- and GWP100-based metrics, which essentially
represent RF integrals, reflect the RF-based analysis.

The short-term climatic effect as shown by both the GWP
and RF approaches is very sensitive to the changes in CH4

fluxes. As the variation in annual CH4 emissions fromnorthern
mires can be ca. 2 g C m−2 [10], the selection of reference years
can have a large effect on the estimated short-term climatic for-
cing, which is affected more by CH4 than CO2. Ideally, we
should compare the CH4 emissions during a drought year to
a long-term average. Currently, however, very few CH4

emission time series exceed 10 years. Thus, the development
of long-term flux measurement networks, such as ICOS, is
expected to lead to more representative datasets and improved
understanding of these climate feedbacks.
5. Conclusion
The dry conditions in Northwestern Europe in 2018 led to a
lowering of water table position at most, but not all, flux
measurement sites on mire ecosystems. The lowered water
table led to a reduction of both summertime CO2 uptake
and CH4 emission, and annual exchange of these GHGs.
The apparent temperature dependence of CH4 fluxes was
clearly affected by the lowered water table, but also tempera-
ture effects were obvious. Due to the different atmospheric
residence times of these GHGs, the cooling effect due to the
reduction of CH4 emission dominates for the first 15–50
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years after the drought, after which the warming effect by the
reduced CO2 uptake will dominate.
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