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Graphical Abstract

Summary
Reliabilities of estimated breeding values from a SNP-BLUP model can be calculated using elements of the 
inverse coefficient matrix of the mixed model equations. Computation of the inverse is not feasible for large 
data sets when the model has a residual polygenic (RPG) effect. We developed a full Monte Carlo (MC) sampling-
based method for approximating reliabilities in the SNP-BLUP model with an RPG effect. Reliabilities obtained 
by the full MC approach were compared with the corresponding exact reliabilities obtained by the GBLUP 
model. The full MC approach provided good approximations to the exact values with only a small upward bias. 
The full MC approach is computationally efficient even for large data sets.

Highlights
• Computing time for the full Monte Carlo (MC)-SNP-BLUP was less than for the exact genomic BLUP.
• The full MC-SNP-BLUP better approximated estimated breeding value reliability than an incomplete MC-

based SNP-BLUP approach when the residual polygenic effect was high.
• The higher the exact reliability, the smaller the inflation.
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Abstract: Calculation of individual animal reliability of estimated genomic breeding value by SNP-BLUP requires inversion of the mixed 
model equations (MME). When the SNP-BLUP model includes a residual polygenic (RPG) effect, the size of the MME will be at least 
the number of genotyped animals (n) plus the number of SNP markers (m). Inversion of the MME in SNP-BLUP involves computations 
proportional to the cube of the MME size; that is, (n + m)3, which can present a considerable computational burden. We introduce a full 
Monte Carlo (MC) sampling-based method for approximating reliability in the SNP-BLUP model and compare its performance to the ge-
nomic BLUP (GBLUP) model. The performance of the full MC approach was evaluated using 2 data sets, including 19,757 and 222,619 
genotyped animals selected from populations with 231,186 and 13.35 million pedigree animals, respectively. Genotypes were available 
in the data sets for 11,729 and 50,240 SNP markers. An advantage of the full MC approximation method was its low computational 
demand. A drawback was its tendency to overestimate reliability for animals with low reliability, especially when the weight of the RPG 
effect was high. The overestimation can be lessened by increasing the number of MC samples.

In the last decade, genomic selection has become the main source 
of genetic progress in dairy cattle breeding (Mäntysaari et al., 

2020). Routine genomic evaluations in animal breeding are usually 
performed using genomic relationship-based BLUP (GBLUP) or 
random regression-based SNP-BLUP models. These 2 models are 
equivalent and, thus, yield equal EBV and prediction error vari-
ances (PEV) at the animal level, regardless of whether or not a 
residual polygenic (RPG) effect is fitted (Strandén and Garrick, 
2009; Liu et al., 2016; Ben Zaabza et al., 2020a). Genetic variation 
cannot be completely explained by SNP markers because of the 
incomplete linkage disequilibrium between the SNP markers used 
and the QTL. The RPG effect models the proportion of genetic 
variance not captured by the SNP markers.

The PEV can be used to obtain the accuracy of EBV or its 
square—the reliability (Schaeffer, 2019). The calculation of EBV 
reliability requires elements from the inverse of the coefficient ma-
trix of the mixed model equations (MME). In GBLUP models, the 
inverse of the genomic relationship matrix (G) has to be computed 
as well. The G matrix is a dense matrix of the size of the number 
of genotyped animals (n) without a known simple structure (Meyer 
et al., 2013). Thus, the MME and G inverse matrices need to be 
explicitly computed with a cubic computational cost O(n3) of the 
number of genotyped animals. This is not tenable for very large 
values of n. The SNP-BLUP model requires no G−1 matrix and 
the MME size is bounded by the number of markers (m). When n 
> m, the SNP-BLUP model yields fewer equations to solve than 
the GBLUP model. However, although low-cost SNP arrays with 
approximately 50,000 genome-wide SNPs are often used today 
for most livestock species, even a 700,000-SNP chip array can be 
used (Meuwissen et al., 2013). With such a high-density SNP chips 
available, calculating the inversion of the MME in SNP-BLUP 
can therefore present, at some point, a considerable computational 
burden.

When the RPG effect is included in the SNP-BLUP model, the 
computational cost of inverting the MME in SNP-BLUP increases 
from O(m3) to O[(n + m)3]. Reducing the size of the MME can 
help decrease some of the computational costs. Ben Zaabza et al. 
(2020a,b) presented a Monte Carlo (MC) approach for the RPG ef-
fect in an SNP-BLUP model, in which the number of RPG effects 
was reduced from n to the number of MC samples. In this article, 
we describe a full MC-based SNP-BLUP approach that extends 
the approach in Ben Zaabza et al. (2020a) to reduce the compu-
tational requirements in the calculation of SNP-BLUP genomic 
reliabilities. We compare the performance of the fully MC-based 
SNP-BLUP approach to GBLUP where the model has both SNP 
marker effects and RPG effects.

The SNP-BLUP model with an RPG effect can be expressed as 
(Ben Zaabza et al., 2020a)

 y 1 Zg e= + +nµ R ,  [1]

where y is an n × 1 vector of observations; n is the number of 
phenotypic records; 1n is a vector of n ones; μ is the unknown over-

all mean; Z Z L= −( )





1 w wc ,  where w is the proportion of 

RPG, Zc is a centered and scaled genotype marker matrix of order 
n × m, the square matrix L of size n is the Cholesky decomposition 
of the pedigree-based relationship matrix of genotyped animals 
A22; that is, A22 = LL′; and gR is an mn × 1 vector of unknown ge-
netic effects, mn = m + n. The coefficients in the Zc matrix are 

genotypes at the SNP markers: 1 0 2
s

p
k

k−( ),  1 1 2
s

p
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where pj is the allele frequency of B2 at locus, j = 1, …, m. Com-

monly used scaling factors are s p pk
l

m

l l= −( )
=
∑
1

2 1  and 

s m p pk k k= −( )2 1 ,  often called VanRaden (2008) methods 1 
and 2, respectively. Base population allele frequencies are prefer-
ably used for pj. It is assumed that g 0 IR ~ ,N m un

σ2( )  and 

e 0 R~ ,  ,N eσ
2( )  where σu

2  is the genetic variance, Imn  is an 

identity matrix, and σe
2  is the residual variance. The diagonal ma-

trix R has elements Rii
iw

=
1
,  where wi is the weight for observa-

tion i. Note that this model assumes Var u uwZg ZZ GR( ) = =′σ σ2 2,  

where G Z Z Aw c cw w= −( ) ′ +1 22  is the genomic relationship 
matrix with an RPG proportion of w.

Ben Zaabza et al. (2020a) presented a model in which MC sam-
ples were used instead of the Cholesky decomposition L for the 
RPG effect in [1]. Their MC-SNP-BLUP model can be extended 
to use MC samples for the SNP marker effects as well. We call this 
SNP-BLUP, which uses MC sampling for all genetic effects as full-
MC-SNP-BLUP. The full-MC-SNP-BLUP model can be written as

 y 1 Us e= + +nµ ,  [2]

where s is an nMC × 1 vector of random pseudo-genetic effects, nMC 
is the number of MC samples, and U is an n × nMC matrix of the 
MC samples. The random effects are assumed to be normally dis-
tributed as s 0 I~ ,  ,N uσ

2( )  and e 0 R~ ,  .N eσ
2( )  Each column i in 

the regression matrix U u u= 

1 � nMC
 is an MC simulated 

sample u Zg ai i i= + ,  where the vectors gi and ai can be sampled 

from their assumed distributions: g 0 I~ , N w1−( )



  and 

a 0 A~ ,  .N w 22( )  Hence, ui is a sample from N w0, .G( )  Note that 

the genetic variance σu
2  is a variance parameter for the genetic ef-

fects of the model such that the sampling can be performed without 
it. For more details on the MC sampling of the RPG effect vector 
a, see Ben Zaabza et al. (2020a).

The MME corresponding to the full-MC-SNP-BLUP model [2] 
can be written as
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mate reliability (r2) for EBV of animal j can be calculated as:

 rj
j

j

2
21= −λ
σ

PEV
,  

where PEVj is the prediction error variance and σj
2  the genetic 

variance for the jth individual. Here, PEVj can be calculated as 
PEV t C tj j u

ss
j= ' ,  where tj is equal to the jth row in U. The animal 

genetic variance σj
2  is the diagonal element j in the MC approxi-

mate genomic relationship matrix UU′. Note that instead of using 
the diagonal elements of UU′ for σj

2,  it is possible to compute and 

use the exact value. The exact value is 1 1−( ) ′{ } + +( )w w Fc c jj jZ Z ,  

where Fj is the inbreeding coefficient of animal j.
We applied the method to 2 data sets to demonstrate the effi-

ciency of the proposed approximation. Our first data set (Data1) 
comprised genomic and pedigree information in Finnish Red dairy 
cattle. The pedigree included 231,168 animals. Genotypes were 
available for 19,757 animals. Because SNP-BLUP is computation-
ally less demanding than GBLUP when the number of genotyped 
animals is greater than the number of SNP markers, the number 
of markers in Data1 was reduced to 11,729 SNPs by taking every 
fourth marker. The second data set (Data2) comprised genomic and 
pedigree information from a multibreed Irish beef cattle carcass 
conformation evaluation. Genotypes for 50,240 SNP markers were 
available for 222,619 animals. The pedigree included up to 13.35 
million animals. A summary of Data2 is given in Mäntysaari et al. 
(2017).

Performance examination of the full-MC-SNP-BLUP reliability 
approximation involved 2 steps. First, a standard GBLUP model 
was used to calculate exact GBLUP model reliabilities. Second, the 
full-MC-SNP-BLUP model was used to calculate approximated 
reliabilities under 10 different MC sample sizes (10,000, 15,000, 
20,000, 30,000, 40,000, 50,000, 60,000, 70,000, and 90,000). 
Reliabilities for the 2 approaches were computed using 3 RPG 
proportions (20, 50, and 80%). Performance statistics included 
correlation, maximum difference, and mean-squared error (MSE) 
between the exact GBLUP reliability and the full-MC-SNP-BLUP 
approximated reliability. We fitted the linear regression from the 
true GBLUP reliability on that from the full-MC-SNP-BLUP to 
investigate inflation (or deflation) in the approximated reliability. 
Computational performance was based on wall clock time at se-
lected computing steps.

Table 1 gives statistics on GBLUP versus full-MC-SNP-BLUP 
for Data1 and Data2. For Data1, correlations between the reliabili-
ties from the true and approximation methods ranged from 0.997 to 
1.000. The correlation was lowest with a small MC sample size and 
high RPG weight. For example, the lowest correlation (0.997) was 
observed with an MC sample size of 10,000 and an RPG propor-
tion of 80%. This scenario had the largest MSE (675 × 10−5) and 
the largest maximum difference (0.14).

The largest relative decrease in MSE was observed when the 
number of MC samples was increased from 10,000 to 20,000 (Ta-
ble 1). Increasing the MC sample size beyond 20,000 led to only 
a slight decrease in MSE and the maximum difference between 
full-MC-SNP-BLUP and GBLUP model reliabilities. The MSE 
values, which reflect accuracy or closeness, were consistent with 
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the correlations, which reflect the association. In fact, the higher 
the observed correlation, the smaller the MSE. The results reaf-
firmed the association of the MC sampling sizes with the MSE and 
maximum difference estimates previously reported in Ben Zaabza 
et al. (2020a). In their study, MC sampling was used only for the 
RPG effect, and so it was logical that the higher the RPG weight, 
the greater the inflation in reliability.

We compared the MSE estimates obtained in this study to those 
reported in Ben Zaabza et al. (2020a). Note that in our full-MC-
SNP-BLUP approach, the size of the MME is determined by the 
number of MC samples, but in the MC-SNP-BLUP by Ben Zaabza 
et al. (2020a), the MME size was determined by the number of 
markers plus the number of MC samples. For example, in full-MC-
SNP-BLUP with 20,000 MC samples, we generated and made an 
MME of size 20,000, when the full model size would have been 
11,729 SNP markers + 19,757 genotyped animals. In the MC-SNP-
BLUP approach, 20,000 MC samples were used to generate only 
the RPG effect (19,757 genotyped animals), which made an MME 
of size 31,729. Given that the computing time to invert the MME 
coefficient matrix increases in cubic terms of its size, we compared 
the performance of these approaches at equal MME sizes.

The MSE (66 × 10−5 vs. 81 × 10−5) reached by full-MC-SNP-
BLUP (20,000 MC samples) was similar to that obtained by MC-
SNP-BLUP (10,000 MC samples) with an RPG weight of 20% for 
Data1 (Table 1). When the RPG proportion was increased to 50%, 
the MSE achieved by the full-MC-SNP-BLUP approach (20,000 
MC samples) was much lower, 124 × 10−5, than that achieved by 
MC-SNP-BLUP, 1,822 × 10−5 (10,000 MC samples). The relative 
difference was even larger when the RPG weight was 80% (188 × 
10−5 vs. 8,280 × 10−5). These results suggest that the full-MC-SNP-
BLUP model approximation is less sensitive, in terms of MSE, to 
changes from low to high RPG weight than the MC-SNP-BLUP 
approach at the same MME sizes.

Table 1 shows the intercept (b0) and slope (b1) of the regression 
of correct reliability from GBLUP on approximation by full-MC-
SNP-BLUP for Data1. An unbiased approximation method would 
be expected to give a null intercept and a slope equal to 1. Although 
the regression of GBLUP on full-MC-SNP-BLUP gave estimates 
of b0 close to 0 and b1 close to 1, all scenarios led to inflated reli-
ability because the slopes were slightly greater than 1. The infla-
tion decreased as the MC sample size increased or the RPG weight 
decreased, which was also observed by MC-SNP-BLUP using the 
same data (Ben Zaabza et al., 2020a). However, the full-MC-SNP-
BLUP approach appeared to produce intercept and slope estimates 
smaller than those obtained by MC-SNP-BLUP, especially with 
an RPG weight larger than 20%. For example, in the scenario with 
an 80% RPG weight, the slope was 1.70 with MC-SNP-BLUP 
(10,000 MC samples) but reduced to 1.08 with full-MC-SNP-
BLUP (20,000 MC samples). This was partly a consequence of 
comparing equal-size MME results where the number of MC 
samples used for approximating the RPG effect was larger in full-
MC-SNP-BLUP than in MC-SNP-BLUP. On the other hand, the 
SNP marker effects were accounted for without MC sampling in 
MC-SNP-BLUP but they were approximated with MC samples in 
full-MC-SNP-BLUP. However, the results suggest that when the 
same number of MC samples is used to approximate covariance 
structure between animals, the simulated genomic-based covari-
ance structure is closer to the true one than the simulated pedigree-
based covariance structure because the number of SNP markers is 
less than the number of RPG effects.

Correlations between the exact GBLUP and approximate 
full-MC-SNP-BLUP model reliabilities for Data2 are in Table 1. 
Increasing the number of MC samples increased the correlation 
between the model reliabilities, which became clearer as the 
RPG proportion increased. When the number of MC samples was 
10,000 or more, the full-MC-SNP-BLUP approach gave high cor-
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Table 1. Correlation (r), maximum difference (max), and mean-squared error (MSE) between reliabilities from genomic BLUP and full Monte Carlo-SNP-BLUP 
models under different numbers of Monte Carlo samples (NMC) and residual polygenic proportions (w) in analysis of data sets 1 and 21

NMC  w

Data 1

 

Data 2

r max MSE (×10−5) b0 b1 r max MSE (×10−5) b0 b1

10,000 0.20 0.997 0.10 231 −0.11 1.12 0.993 0.37 6,623 −0.85 1.93
0.50 0.997 0.13 455 −0.13 1.15 0.989 0.46 11,645 −1.05 2.15
0.80 0.997 0.14 675 −0.15 1.17 0.986 0.52 16,006 −1.19 2.31

20,000 0.20 0.999 0.06 66 −0.07 1.06 0.998 0.22 2,308 −0.37 1.41
0.50 0.998 0.07 124 −0.09 1.08 0.996 0.29 4,401 −0.46 1.51
0.80 0.999 0.08 188 −0.10 1.08 0.995 0.33 6,341 −0.51 1.58

30,000 0.20 0.999 0.04 29 −0.03 1.04 — — — — —
 0.50 0.999 0.06 58 −0.04 1.05 — — — — —
 0.80 0.999 0.06 86 −0.05 1.06 — — — — —
40,000 0.20 — — — — — 0.999 0.12 690 −0.17 1.19

0.50 — — — — — 0.999 0.17 1,379 −0.21 1.24
0.80 — — — — — 0.999 0.19 2,057 −0.24 1.27

50,000 0.20 0.999 0.03 11 −0.02 1.02 — — — — —
 0.50 0.999 0.04 21 −0.02 1.03 — — — — —
 0.80 1.000 0.04 33 −0.003 1.03 — — — — —
60,000 0.20 — — — — — 1.000 0.09 327 −0.11 1.25

0.50 — — — — — 0.999 0.12 664 −0.14 1.16
0.80 — — — — — 0.999 0.14 1,001 −0.15 1.18

70,000 0.20 — — — — — 1.000 0.07 243 −0.10 1.11
 0.50 — — — — — 0.999 0.11 499 −0.12 1.13
 0.80 — — — — — 0.999 0.12 757 −0.15 1.18

1Where b0 = intercept and b1 = slope.
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relations (>0.986) in all scenarios, but the size of bias for large 
RPG weights was still affected by the number of MC samples. For 
example, with full-MC-SNP-BLUP and an RPG weight of 80%, 
increasing the MC sample size from 10,000 to 60,000 reduced the 
MSE by up to 16 times. In general, increasing the number of MC 
samples further to 70,000 decreased the MSE only slightly under 
all RPG weights. It is worthwhile noting that to achieve the same 
level of unbiasedness in both data sets, the number of MC samples 
required for Data2 was about 6 times that for Data1. For example, 
the MC sample size needed to achieve an MSE of 231 × 10−5 and 
a maximum difference of 0.1 was 10,000 when analyzing Data1. 
However, more than 60,000 MC samples were needed to attain the 
same MSE with Data2. Note that Data1 was a single breed popula-
tion, whereas Data2 included several breeds. This indicates that 
the goodness of the approximation may be influenced by several 
factors, such as the number of genotyped animals, structure of the 
population, heritability of the trait, and the trait’s architecture (e.g., 
Ben Zaabza et al., 2020a).

We compared the analysis of Data2 between the full-MC-SNP-
BLUP and MC-SNP-BLUP results at about equal MME sizes, as 
was done for Data1. Because Data2 had 50,240 markers, about 
50,000 more MC samples were allowed in the full-MC-SNP-
BLUP than in the MC-SNP-BLUP model when comparing the 
models. The MSE values with full-MC-SNP-BLUP were smaller 
than those obtained by MC-SNP-BLUP in all scenarios when the 
RPG proportion was greater than 20%, which was observed for 
Data1 as well. For example, with Data2, the MSE associated with 
full-MC-SNP-BLUP (70,000 MC samples) was smaller than ob-
served with MC-SNP-BLUP (20,000 MC samples) using an RPG 
weight of 80% (757 × 10−5 vs. 3,142 × 10−5).

The regression of the reliabilities obtained from GBLUP on 
those approximated by full-MC-SNP-BLUP indicated a higher 
degree of correspondence than that between GBLUP and MC-
SNP-BLUP. This became clearer, the larger the RPG weight. For 
example, for an MC sample size of 60,000, the slope was 1.16 (in-
tercept −0.14) and 1.18 (intercept −0.15) for RPG weights of 50% 
and 80%, respectively, when analyzing Data2 using the full-MC-

SNP-BLUP method. However, for an MC sample size of 10,000, 
the slopes (intercepts) corresponding to these RPG weights were 
1.26 (−0.24) and 1.70 (−0.63), respectively, for Data2 using the 
MC-SNP-BLUP method. Nevertheless, the full-MC-SNP-BLUP 
approach tended to overestimate the reliabilities (data not shown). 
Furthermore, the lower the exact GBLUP reliability, the larger the 
overestimation.

The full-MC-SNP-BLUP computations used MC sampling to 
approximate the denominator σj

2.  However, it is possible to com-
pute the exact value as stated in the section Full MC-SNP-BLUP 
Derivations. We tested the exact σj

2  values in the full-MC-SNP-

BLUP model calculations. However, the use of the exact σj
2  de-

creased the accuracy (higher maximum difference and MSE), es-
pecially for RPG higher than 20%. Similar results were obtained 
with the MC-SNP-BLUP approach (Ben Zaabza et al. 2020a).

Table 2 gives the computing times for different steps in the 
calculation of reliability using full-MC-SNP-BLUP for Data1 and 
Data2, respectively. The computing times are averages over the 
used RPG weights. The full-MC-SNP-BLUP method involved 4 
steps: making the MC samples for the marker effect, making the 
MC samples for the RPG effect, making the MME coefficient ma-
trix, and inverting the MME matrix. Table 2 clearly shows that the 
computing times increased along with an increase in the number 
of MC samples, which would be expected, because the number of 
MC samples increases the number of computations in all the steps.

For Data1, the time required for MC sampling of the marker 
effects was often lowest among the computing steps (Table 2). The 
computing times required for MC sampling of the RPG effect, on 
the other hand, were more expensive than those of the marker ef-
fects. However, both of these steps showed a linear increase in 
computing time with the number of MC samples. In contrast, the 
computing time for making the MME is roughly proportional to 
n nMC( )2 .  For instance, increasing the number of MC sample 
from 10,000 to 50,000 increased the computing time by a factor of 
24, which is close to the squared ratio of the MME sizes; that is, 
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Table 2. Computing time (wall clock, in minutes) for calculating model reliability in full Monte Carlo (MC)-SNP-BLUP 
model under different MC sample sizes1

Computing step2

Sample size

10,000 15,000 20,000 30,000 50,000   

Data set 1        
 MC-marker-effects 14 21 30 43 77 — —
 MC-RPG 32 46 66 99 163 — —
 Making MME 11 22 40 92 261 — —
 Inversion 7 26 54 170 565 — —
Total 99 164 254 520 1,575 — —

5,000 10,000 20,000 40,000 60,000 70,000 90,000
Data set 2        
 MC-marker-effects 5 10 18 36 54 61 82
 MC-RPG 9 18 34 77 113 114 155
 Making the MME 0.42 1.5 6 22 48 66 109
 Inversion 0.02 0.13 1 7 21 34 73
Total 36 52 88 193 323 388 586

1Data sets 1 and 2 had 19,757 and 222,619 genotyped animals, respectively, and 11,729 and 50,240 SNP.
2MC-marker-effects = MC sampling of marker effects; MC-RPG = MC sampling of residual polygenic effects; Making MME 
= making the mixed model equations (MME); Inversion = inversion of the MME; and Total = total computing time.
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(50,000/10,000)2. Computing time to invert the MME is roughly 
proportional to nMC( )3 .  Thus, for Data1, it was more expensive 
computationally to invert the MME than to make the MME when 
nMC exceeded the number of genotyped animals (19,757). For 
Data2, the number of genotyped animals n was always higher than 
the number of MC samples nMC (Table 2). Consequently, making 
the MME took more time than inverting the MME in all scenarios, 
accounting for 3% (1.5 min) to 19% (109 min) of the total comput-
ing time. Thus, it can be expected that, for large data sets, making 
the MME can be computationally more demanding than inverting 
the MME coefficient matrix.

Note that the relative differences between the total computing 
time and the 4 steps shown in Table 2 are due to the calculation of 
t C tj u

ss
j′ .  Computing this product in 2 steps from left to right for 

every individual requires O n nMC( )




2  multiplications. In the 

Data1 analyses, nMC was often larger than n, but in Data2 analyses, 
nMC was always less than n; thus, the increase in nMC had a larger 
effect on computing time using Data1 than Data2. The time re-
quired for the calculation of the product t C tj u

ss
j′  decreased from 

35% of the total for 10,000 MC samples to 32% of the total for 
50,000 MC samples with Data1. With Data2, the proportional 
computing time for this product decreased from 43% for 10,000 
MC samples to 28% for 90,000 MC samples.

The computing times for calculating model reliability in ge-
nomic relationship matrix-based GBLUP are given in Table 3. In 
the analysis of Data1, the total computing time required by GB-
LUP was less than by full-MC-SNP-BLUP when the number of 
MC samples was more than 30,000. For Data2, the full-MC-SNP-
BLUP approach always needed less time than GBLUP, and the 
reduction in total computing time was 81% (2,504 min) even with 
the largest MC sample size (90,000 MC samples). In GBLUP, most 
of the computing time was spent in inverting the 2 matrices (G and 
MME coefficient matrix). These 2 matrix inversions accounted for 
28% (71%) of the total computing time for Data1 (Data2). With 
full-MC-SNP-BLUP, the computing time for matrix inversion 
depended on the number of MC samples and took at most 36% 
(12%) for Data1 (Data2). Thus, it is likely that with larger numbers 

of genotyped animals, the GBLUP approach will become compu-
tationally unfeasible due to the time needed for matrix inversion; in 
full-MC-SNP-BLUP, this time can be kept acceptable by control-
ling the number of MC samples.

The reliabilities of the SNP-BLUP models can be approximated 
satisfactorily by using a full MC-based sampling method. The cor-
relation between the correct reliabilities calculated by GBLUP and 
those approximated by the full-MC-SNP-BLUP model approached 
unity in all studied scenarios. The computing time required to in-
vert the MME coefficient matrix was roughly in the proportion 
n nMC( )3  for GBLUP over the full-MC-SNP-BLUP model. The 

approximation method presented in this study is computationally 
efficient and thus is applicable for large-scale problems involving 
many genotyped animals and SNP markers.
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Table 3. Computing times (wall clock, in seconds or minutes) for calculating 
individual animal reliability in genomic BLUP1

Computing step2 Data set 1 (s) Data set 2 (min)

Making G 53 276
Inverting G 50 1,116
Making MME 2 216
Inverting MME 52 1,092
Total 365 3,090

1Reported times are averages over 3 analyses using different residual poly-
genic weights.
2Making G = during making the genomic relationship matrix; Inverting 
G = inversion of the G matrix; Making MME = making of the mixed model 
equations (MME); Inverting MME = inversion of the MME; and Total = total 
computing time. 
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