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Abstract

Forest biomass can be used in two different ways to limit the growth of the atmospheric
greenhouse gas (GHG) concentrations: (1) to provide negative emissions through seques-
tration of carbon into forests and harvested wood products or (2) to avoid GHG emissions
through substitution of non-renewable raw materials with wood. We study the trade-offs
and synergies between these strategies using three different Finnish national-level forest
scenarios between 2015 and 2044 as examples. We demonstrate how GHG emissions
change when wood harvest rates are increased. We take into account CO, and other
greenhouse gas flows in the forest, the decay rate of harvested wood products and fossil-
based CO, emissions that can be avoided by substituting alternative materials with wood
derived from increased harvests. We considered uncertainties of key parameters by using
stochastic simulation. According to our results, an increase in harvest rates in Finland
increased the total net GHG flow to the atmosphere virtually certainly or very likely,
given the uncertainties and time frame considered. This was because the increased
biomass-based CO, and other greenhouse gas emissions to the atmosphere together with
decreased carbon sequestration into the forest were very likely higher than the avoided
fossil-based CO, emissions. The reverse of this conclusion would require that compared
to what was studied in this paper, the share of long-living wood products in the product
mix would be higher, carbon dioxide from bioenergy production would be captured and
stored, and reduction in forest carbon equivalent net sink due to wood harvesting would
be minimized.
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1 Introduction

The Paris Agreement aims to stabilize the global mean temperature increase to a well-below
2 °C compared to the pre-industrial level (UNFCCC 2015). According to current scientific
knowledge, the achievement of the particular target would require deep cuts in global
greenhouse gas (GHG) emissions and an increase in carbon sinks over the next few decades
in order to have GHG emissions and sinks in balance, i.e. net GHG emissions zero by 2050
(Rockstrom et al. 2017). Even if the global GHG emissions are reduced close to zero within a
few decades, the carbon sinks must remain at least at the current level (approximately 4 Gt C
yr'1) or increase to close to 5 Gt C yr! (Rockstrom et al. 2017).

If we are able to restrict global GHG emissions in accordance with the Paris Agreement
target, we will still have the challenge with carbon sink permanence. The fate of natural carbon
sinks, namely ocean and biosphere, is highly uncertain in the future. Stabilization or decline in
atmospheric CO, concentrations, a requirement of achieving a well-below 2 °C target, will
possibly also reduce CO, fertilization and dissolving. They have been one of the most
significant contributors to existing carbon sinks (Rockstrom et al. 2017). Consequently, it is
likely that the achievement of well-below 2 °C will require an increase in purposely made
carbon sinks. These so-called negative emission technologies include bioenergy combined
with carbon capture and storage (BECCS), direct air capture (DAC) and improved land
management (Smith et al. 2016). All negative emission technologies are subject to significant
scientific and political uncertainties (Anderson & Peters 2016). The most mature strategies to
increase sinks are improved land stewardship, including reforestation, afforestation and natural
forest management (Field and Mach 2017; Griscom et al. 2017; Shukla et al. 2019).

Forest biomass can be used in two different ways to limit the growth of the atmospheric
CO, concentrations: (1) to provide negative emissions through sequestration of carbon into
forests and harvested wood products or (2) to avoid CO, emissions through substitution of
non-renewable materials and energy with wood (Pingoud et al. 2010; Helin et al. 2013; Kallio
et al. 2013; Cowie et al. 2019). Carbon is sequestered into forests in net ecosystem production
(NEP) which is the difference between gross primary production and total ecosystem respira-
tion (Lovett et al. 2006). The more powerful is the net primary production (NPP); the more
carbon is sequestered into forests in the absence of disturbances. In managed forests, the
growth of trees over time is maximized when the current annual increment is equal to the mean
annual increment of forests (e.g. Assmann 1970). However, increased harvesting of trees
typically increases biomass-based carbon dioxide in the atmosphere. This is due to
decreased sequestration of carbon in trees, increased carbon dioxide emissions from
decay of litter and soil organic carbon. In addition, only part of the carbon harvested
from the forest remains adequately long in harvested wood products. On the other
hand, wood harvested can be used in place of non-renewable raw materials, thus
decrease the generation of fossil-based CO, emissions.

In Finland, forests cover about 22.8 million hectares of the land area of 30.4 million
hectares (Luke 2019a), forest land area corresponding to 14% of that in the EU28 (Forest
Europe 2015). Finnish forests are relatively young and in well-growing age (Forest Europe
2015). In Finland, forests act both as a significant net carbon sink (i.e. GHG removals are
higher than emissions) and provide a significant amount of wood to society. Between 1990
and 2017, the annual national net carbon equivalent sink of Finnish forest land varied between
5 and 13 Mt C-eq., including CO, and methane (CH,) and nitrous oxide (N,O) balances from
living biomass, soil organic matter and dead organic matter (Statistics Finland 2019a). The
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fluctuation was mainly due to changes in annual commercial roundwood fellings varying from
40 million cubic metres (1991) to 72 Mm? (2017), affected mainly by the international market
of forest industry products (Luke 2019b). The most recent national information about devel-
opment of forest resources indicates that roundwood harvest rates can be increased up to 84
million cubic metres annually (Mm3 yr!) by 2024 and up to 93 Mm? yr~! by 2034 without
turning national forests from net carbon equivalent sink to the source (Luke 2018). Thus,
harvest rates equal or lower than those would keep standing tree stock increasing in Finland.
National forest strategy of Finland 2025 aims to increase the roundwood harvest rates up to
80 Mm? yr! by 2025 (MMM 2019).

In this paper, the trade-offs and synergies between negative CO, emissions through
sequestration and avoided CO, emissions through increased wood use for substitution of
fossil-based emissions are studied. We use three recent Finnish national-level wood harvest
scenarios between 2015 and 2044 as examples. We demonstrate how biomass-based CO,
emissions change when wood harvest rates are increased. In addition, we assess how much
fossil-based CO, emissions can be avoided by substituting alternative materials with wood
derived from increased harvests. We also take into account non-CO, GHG fluxes in forest
land. In the end, we discuss how the possibilities to avoid the generation of biomass-based
CO, emissions through increasing the share of long-living wood products and BECCS
influence the results.

2 Material and methods
2.1 Calculation of the atmospheric carbon dioxide equivalent balances

We calculate the atmospheric carbon dioxide equivalent balances first in absolute terms for the
three different scenarios studied and second as a difference between scenarios. The absolute
CO,-eq. balances are calculated deterministically using default values for each of the input
variables. As the key focus in the paper is on the differences in the atmospheric CO,-eq.
balances between the scenarios, we study the uncertainty of the results applying stochastic
simulation for certain key input variables, i.e. net forest carbon (equivalent) sink and carbon
stock change of harvested wood products and avoided CO,-eq. emissions in material and
energy substitution. We applied Monte Carlo simulation (10,000 runs) which provides a
probability distribution for each output functions using MS Excel add-in software @Risk.
For each stochastic parameter, we assumed non-skewed triangular distribution.

The modelling approach and assumptions used are described in more detail in the following
sub-sections. To characterize the probabilities of our results, we used the IPCC terminology
(see IPCC 2014).

2.2 MELA model coupled with GHG inventory methods

The three different forest scenarios studied were based on those compiled for a background
study on the Finnish National Energy and climate strategy for 2030 (Lehtonen et al. 2016;
Tuomainen et al. 2017). In those scenarios, the development of Finnish forests was estimated
using a large-scale forest planning tool called MELA (version MELA2012) (Redsven et al.
2013) with the sample plot data of the 11th Finnish national forest inventory (NFI11)
measured in the years 2009—2013 (Korhonen 2016). The carbon calculation of the trees was
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based on the biomass functions of Repola (2008, 2009) embedded in MELA. MELA results
concerning the amount of litter from living trees, harvesting residues and natural mortality
were used as inputs for calculating changes in soil carbon stocks using the Yasso07 model
(Tuomi et al. 2011) for mineral soils and a method based on emission factors (Minkkinen et al.
2007; Ojanen et al. 2010) for organic soils (see Sievénen et al. 2014).

The approach adopted in MELA is based on integrated stand-level simulation and forest
area level optimization (Siitonen et al. 1996). The MELA simulator consists of empirical tree-
level models for ingrowth, growth and mortality (Hynynen et al. 2002) and of a set of stand-
level human actions which follow the Finnish forest management recommendations. In
MELA2012, tree-wise basal-area growth models have been calibrated using growth measure-
ment data from the NFI8. In this study, these basal-area growth models were calibrated with
sample tree measurements from the NFI11. The growth measurements of the NFI11 were
adjusted with growth indices to the average level of diameter increment for the years 1984—
2013. The applied method is conservative though it resulted in higher increment; it did not take
into account the climate change since the mid-year (1999) of the period.

From the ample set of simulated management schedules, linear optimization software
(Lappi 1992) embedded in MELA selects the ones which optimize the user-specified region
level objective function subject to a set of given constraints. In this study, the objective
function was net present value using a 4% interest rate. In addition, scenario-specific con-
straints were applied. The modelling time frame of the scenarios was 30 years (2015-2044).

2.3 Scenarios studied

The business as usual (BAU) scenario assumed that the domestic industrial wood use equals to
the levels of domestic wood use of the years 2013-2014, added by 5 Mm? yr! required by
those new forest industry investments that had been already decided and currently running (i.e.
Adinekoski bioproduct mill). In the BAU scenario, the amount of forest industries” roundwood
harvested was 61 Mm?3 yr~!. The energy use of forest chips increased from 7.8 to
13.5 Mm?3 yr~! by 2020 in accordance with the target set in the National Energy and Climate
strategy for 2030 (TEM 2017). Household firewood use remained at the current level of
6 Mm? yr!, and this is included in stemwood for direct energy use figures in Table 1. Total
roundwood removals in this scenario were estimated to be about 73 Mm? yr! from 2020
onwards (72 Mm? yr! on the average between 2015 and 2044 as shown in Table 1). The
increase in harvest rates from the level of 2013-2014 is mainly targeted to thinnings.

The policy scenario (POL) differed from the BAU scenario by the loggings of roundwood.
Timber harvesting increased in this scenario up to 68 Mm3 yr~! by 2035 based on the survey of

Table 1 Average annual harvest rates of sawlogs, pulpwood, stemwood for direct energy use and forest residues
in BAU, POL and MSY scenarios over 2015-2044 (Mm? yr1)

Scenario BAU POL MSY
Saw logs 24.0 28.0 355
Pulp wood 36.5 38.5 425
Stemwood for direct energy use 11.5 11.0 8.0
Total roundwood harvests (forest industries’ and energy) 72.0 77.5 86.0
Forest residues (branches, tops, stumps) 7.0 8.0 9.0
Total wood harvests (roundwood and forest residues) 79.0 85.5 95.0
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the production of the Finnish forest industry (Poyry Management Consulting 2016). The
energy use of wood chips and the households’ firewood use evolved like in BAU based on
the target set in the National Energy and Climate strategy for 2030 (TEM 2017). The total
roundwood removals were at the level of 80 Mm3 yr! since 2025. The increase in harvest
rates compared to the BAU scenario is mainly derived from final fellings.

The maximum sustainable yield (MSY) scenario assumed that the level of harvesting
follows the definition of maximum sustainable yield of Natural Resources Institute of Finland,
where timber harvests and net revenues are not allowed to decline between the subsequent
periods which in our study were 2015-2024, 2025-2034 and 2035-2044. The amount of
harvested timber and energy wood was around 90 Mm? yr~! from 2025 (Lehtonen et al. 2016;
Tuomainen et al. 2017). This was based on the optimal solutions of the MELA model to
maximize net revenues under the given constraints. Increased supply of sawlogs and pulpwood
resulted in decreased supply of stemwood for direct energy use in MSY compared to BAU and
POL. In MSY, the final felling area was significantly higher while the thinning area was lower
compared to BAU and POL scenarios.

In all of these scenarios, we assumed that the annual harvest of stumps for energy can be at
a maximum of 1 Mm? yr~!. Simulation of forest management choice was based on Forest
management guidelines 2013 (Aijéli et al. 2014). Simulations were carried out on all forest
land and poorly productive forest land but forest management was possible only on forest land
available for wood supply and on forest land available for restricted wood supply where clear
fellings were not allowed (Lehtonen et al. 2016).

All approximations for climate change impacts into forest growth and soil organic matter
decomposition were excluded. Estimated scenarios include soil carbon stock change estimates
and also GHG emissions of N,O and CHy from forest land. Non-CO, GHG emissions were
converted into carbon dioxide equivalents using global warming potential (GWP, ) figures
from IPCC AR4 (Table 2.14 in Foster et al. 2007) which are 25 for CH4 and 298 for N,O.
Impact of fertilization, forest fires, residue burning and land-use change for the climate was
excluded. Concerning the scenarios in question, there were no specific policy measures in
connection to scenarios or with respect to different harvesting levels for increasing fertilization,
afforestation or residue burning. Based on historical data of forest fires, there was neither
reason for anticipating differences between the scenarios in the studied time frame.

In this paper, we show the results following the physical flows of carbon dioxide equivalents
as they are assumed to occur. This means that biomass-based CO, emissions are reported as
they are assessed to take place and removals by forest carbon sequestration is determined by the
growth of trees. As a result, the atmospheric CO, balance is the same than by following the
accounting principles of greenhouse gas inventories set by the IPCC, where biomass-based CO,
emissions are reported as zero in the energy sector and stock changes in forest and harvested
wood product pools are reported instead of physical CO, flows (IPCC 2019).

The uncertainty in the latest statistics of forest carbon net sink in Finland is estimated to be
approximately + 30% (Statistics Finland 2019a). It can be assumed that this uncertainty is
higher in the scenarios, in particular, as the development of the growth of trees and variables
influencing soil GHG balances are subject to uncertainties. On the other hand, it can be
assumed that the uncertainty involved in many of the parameters influences the results in the
same direction, i.e. there is a strong positive correlation between many of the parameters.
When calculating the differences in the atmospheric CO,-eq. balances between the scenarios,
we assumed + 40% uncertainty range as 95% confidence interval for and strong positive
correlation (p=0.9) between the forest carbon net sink of the scenarios.
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2.4 Assumptions on avoided emissions

When harvests are increased, materials and energy from additional harvests can be used in
place of alternative materials and energy serving the same function. Thus, substitution credits
from emissions avoided are generated between two scenarios (Soimakallio et al. 2016, Cowie
et al. 2019). Here we refer with the avoided emissions to fossil CO, emissions (from fossil fuel
use and industry) avoided in substitution. Biomass-based CO, flows related to changes in
forest and HWP carbon stocks are considered separately and not included in avoided emissions
in order to avoid double counting of biomass-based CO, emissions. The avoided emissions are
expressed as a dimensionless indicator based on a ratio between fossil CO, emissions avoided
(in tonnes of C) and wood harvested entering the system (in tonnes of C).

When wood is harvested from the forest, it is processed into various types of end-products
which are used by society. Processing requires materials and energy which result in CO,
emissions. Part of the energy requirement is covered by wood harvested (Riiter et al. 2016,
Lippke et al. 2011). The rest is covered by various types of energy sources including fossil
fuels. The direct fossil fuel-based energy requirement and that embodied in the production of
auxiliary materials reduces the amount of fossil CO, emissions avoided in substituting for
alternative materials with wood (Soimakallio et al. 2016).

According to a number of studies, more GHG emissions may be avoided in construction
material substitution than in energy substitution (Gustavsson et al. 2006; Pingoud et al. 2010;
Sathre and O’Connor 2010; Soimakallio et al. 2016). This is the case, in particular, if fossil
fuel-intensive materials are assumed to be replaced and if harvested wood products are
assumed to be used as energy at the end of life to further replace fossil fuels. However,
considering the uncertainties in processing and related emissions of both wood and alternative
products to be replaced, the avoided emissions are not necessarily the highest in scenarios
where the share of mechanical wood products is the highest (Soimakallio et al. 2016). New
products from pulpwood, such as bio-composites, may avoid more fossil CO, emissions in
material substitution than mechanical wood products or traditional paper products
(Hurmekoski et al. 2018; Seppailé et al. 2019).

Scenarios studied in Soimakallio et al. (2016) reflect a continuation of 2010 wood
utilization and five different hypothetical forest industry structures presented in Kallio et al.
(2014). The share of saw logs out of the overall domestic harvests in these scenarios are very
well in line with our BAU, POL and MSY scenarios: BAU corresponds to Kallio et al. (2016)
Base scenario, POL corresponds to Kallio et al. (2016) Stagnation scenario and MSY
corresponds to Continuation of 2010 wood utilization. However, as the avoided emissions
were calculated for the overall wood utilization (in comparison to no harvest scenario) in
Soimakallio et al. (2016), such data is not directly applicable to describe changes between our
scenarios (i.e. between BAU and POL, POL and MSY and BAU and MSY) where the share of
mechanical wood products is significantly increased.

In five out of six scenarios studied by Soimakallio et al. (2016), the share of sawlogs from
the total domestic harvests is close to one-third. Instead, changes between BAU and POL
(Fig. 1a, 1b), POL and MSY (Fig. 1b, 1¢) and BAU and MSY (Fig. 1a, 1c) correspond to the
share of more than two-thirds. We assessed the avoided emissions between our scenarios in
two steps. First, we assessed how much fossil CO, emissions are avoided on average by a unit
of carbon in harvested wood entering the system as presented in Soimakallio et al. (2016). This
data was then applied to the change in pulpwood, energy wood and that amount of saw logs
that corresponds to the share of one-third in total harvests. In other words, we assumed that the
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Fig. 1 a, b and ¢ Average annual carbon equivalent balance (Mt C-eq. yr™!) between 2015 and 2044 of Finnish
forests and domestically harvested wood products (HWP) in BAU (a), POL (b) and MSY (c¢) scenarios. Forest
carbon stock is separated into standing tree stock in forest land available and not available for wood production
and into forest soil. Flows fixed as input parameters in the modelling appear as red font
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Fig. 1 (continued)

change in wood harvesting between our scenarios partly corresponds to the change in forest
industry structures studied by Soimakallio et al. (2016) in their five out of six scenarios
(excluding their Change scenario). For the additional increase in sawlog harvesting, we
assumed that 50% is converted to mechanical wood products and 30% to sawmill residues
used for energy to substitute fossil fuels. These assumptions were based on the following: (1)
in 2018, the amount of mechanical wood products produced in Finland corresponded to
approximately 50% of the domestic sawlog use (Luke 2020a, b) and (2) the energy consump-
tion of mechanical wood products processing corresponded roughly 20% of the energy content
of mechanical wood products (Statistics Finland 2019a, b), thus only 30% were considered to
be available for substitution.

The probability distributions for the avoided fossil CO, emissions were determined as
follows. We calculated the average unit of fossil CO, emissions (expressed as tonnes of
carbon) avoided per unit of carbon (tonnes of carbon) harvested using the data presented by
Soimakallio et al. (2016) for their five scenarios (excl. their Change scenario). For the
calculation, we applied the probability distributions of their input variables including various
types of material, energy and emission conversion and substitution factors related to wood
processing and use (see Soimakallio et al. 2016 for details). The mean values simulated were
between 0.5 and 0.6 (tc/tc), and the minimum 2.5%:ile value was 0.4 and the maximum
97%:ile value was 0.8 for all the five scenarios. We set 0.6 as the mean value and +33.3%
uncertainty as a 95% confidence interval for the particular variable. For the avoided emissions
of using additional mechanical wood products, we applied 1.25 (tc/tc) as mean value and +
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60% uncertainty as a 95% confidence interval based on Soimakallio et al. (2016). For the
additional sawmill residues, the corresponding figures were 0.75 and +33.3%.

2.5 Decay of harvested wood products

We estimated the decay of harvested wood products (HWP) using the methods applied in
Finnish national greenhouse gas inventories to the UNFCCC (Statistics Finland 2019a). The
method applied is so-called Production approach which encompasses domestically produced
HWP originating from domestic harvest. The half-lives applied for coniferous sawnwood,
wood-based panels and pulp were 35a, 25a and 2a, and carbon density (t Cm™) was 0.225,
0.269 and 0.45, respectively (Statistics Finland 2019a).

We separated the decay of carbon stock in existing HWPs which have been produced
before 2015 from the change in the carbon stock of HWPs assumed to be produced in the
studied scenarios between 2015 and 2044. The average annual emissions from the decay of the
HWP stock existing at the beginning of 2015 were assumed to equal 1.9 Mt C between 2015
and 2044 (Ollila 2017). The change in HWP stock due to domestic harvests between 2015 and
2044 was calculated based on the forest scenario activity data. Based on the current situation,
43% and 7% of the carbon content of saw logs harvested were assumed to be converted into
end-products for coniferous sawnwood and wood-based panels.

The uncertainty of HWP carbon stock changes applied in the latest GHG inventory is £ 50%
(Statistics Finland 2019a). Like with the forest carbon net sink, it can be assumed that the uncertainty
involved in HWP carbon stock changes influences the results of various scenarios in the same
direction. When calculating the atmospheric carbon dioxide equivalent balances of HWPs between
scenarios, we applied £ 50% uncertainty as a 95% confidence interval and a strong positive
correlation (p=0.9) for harvested wood product carbon stock changes between scenarios.

3 Results

The annual average carbon dioxide equivalent balances in absolute terms between 2015 and
2044 in the studied forest scenarios are presented in Fig. 1a, 1b and lc. The forest carbon stock
increased in BAU and POL scenarios while remained approximately stable in the MSY
scenario. As was expected, forest carbon stock became lower the more wood was harvested.
Carbon sequestration into forests decreased when harvest rates were increased (Fig. 1a, 1b Ic,
Table 2). In addition, biomass-based carbon dioxide and other GHG emissions to the atmo-
sphere were largest in MSY (Fig. 1¢) and smallest in BAU (Fig. 1a). This is because roughly
half of the increased carbon harvested from forests was released to the atmosphere within the
studied period in energy use and decay of harvested wood products (Fig. 1a, 1b, 1c, Table 2).

Increased harvests provided an increased amount of wood for material and energy substitution.
The avoided fossil CO, emissions were the larger the more wood on average was harvested
(Table 2). However, the overall GHG balance in the atmosphere was very likely increased when
wood harvest rates were increased (Table 2). Given the uncertainty ranges and time frame
considered, this is because the avoided fossil CO, emissions were very likely lower in all the
comparisons than the joint effect of the increased biomass-based CO,-eq. emissions to the atmo-
sphere and reduced carbon sequestration into forests (Table 2). The only comparison between BAU
and POL scenarios showed a small probability (3%) that the atmospheric carbon dioxide equivalents
were reduced when harvest rates were increased (Table 2).
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4 Discussion
4.1 Interpretation of the results

Comparison of various wood harvest scenarios showed that when harvest rates were
increased, less carbon was stored in the forest over a 30-year time horizon simulated.
On average, one additional unit of carbon harvested from forest reduced forest carbon
net sink by approximately two units. This implies that the potential to generate
negative emissions through sequestration of carbon into the forest was heavily reduced
by wood harvests. Even if all the biomass-based CO, emissions from increased wood
harvested could be prevented using BECCS and/or by other means, the atmospheric
CO,; balance would not necessarily reduce within the time horizon considered. This is
because forgone carbon sequestration was in the same order of magnitude as the
avoided fossil-based CO, emissions (Table 2). In addition, increased harvest rates
resulted in increased GHG emissions from litter, deadwood and soil organic matter
over the studied time horizon.

Compared to the BAU scenario, the reduction in forest carbon equivalent net sink
due to increased harvest rates equals 2.0 and 7.2 Mt C-eq. yr! and increase in HWP
carbon stock equals only 0.3 and 0.9 Mt C-eq. yr! for POL and MSY scenario.
Consequently, the net flow of biomass-based carbon dioxide equivalent to the atmo-
sphere is increased by 1.8 and 6.5 Mt C-eq. yr'! in POL and MSY scenario compared
to BAU. These figures can be compared to the development of the GHG emissions
(excluding land use, land-use change and forestry, i.e. LULUCF sector) in Finland. In
2015, the GHG emissions in Finland were roughly 15 Mt C-eq., while the target in
accordance with the National Energy and Climate strategy for 2030 is roughly 11 Mt
C-eq. and for 2050 less than 1-4 Mt C-eq. (TEM 2017). Thus, the increased net flow
of biomass-based carbon dioxide equivalent to the atmosphere can negate a significant
part of the efforts to reduce GHG emissions in other sectors.

Reduction in forest carbon equivalent net sink per increase in average wood harvested was
lower between BAU and POL (1.6 t.cq/t) than between BAU and MSY (2.2 t.cq/t;) or
between POL and MSY (2.6 t.q/t). This indicates that increment loss of trees due to a
reduction in NPP was higher the more wood was harvested.

It should be noted that in the international rules to account for and report GHG
emissions by sources and removals by sinks, CO, emissions from biomass combustion
are considered as zero in the energy sector (IPCC 2019). This influences also the way
how removals by forest carbon sink are defined in the IPCC accounting and reporting
rules (IPCC 2019). As CO, emissions from biomass combustion are accounted as zero
in the energy sector, carbon removed in wood harvests is accounted as an emission
and carbon stock increase in harvested wood products as a removal, both reported in
Land use, land-use change and forestry (LULUCF) sector. This way the atmospheric
balance between CO, emissions and carbon sequestration remains the same than if
physical flows of CO, would have been the basis for biomass carbon accounting and
reporting, such as in this study. Both of these methods are applicable and end up with
the same conclusions but should not be mixed together. The results presented can be
converted to follow the IPCC accounting and reporting rules by considering CO,
emissions from biomass combustion as zero, and forest and harvested wood product
stock changes as an emission (decrease) or removal (increase).
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4.2 Comparison with other studies

Overall carbon balances of different forest management and biomass use scenarios at the
national level in Finland have been studied by Soimakallio et al. (2016), Heinonen et al. (2017)
and Seppild et al. (2019). Changes in forest carbon stocks are based on the Motti model
(Hynynen et al. 2015) in Soimakallio et al. (2016) and on the Monsu model (Pukkala 2011) in
Heinonen et al. (2017) and Seppild et al. (2019). Soimakallio et al. (2016) concluded that
atmospheric CO; is roughly neither increased nor decreased over a 100-year time horizon in
forest utilization scenarios studied and that a large decrease is exceptionally unlikely. Even
though the average avoided emissions were significantly higher in our study than in
Soimakallio et al. (2016), the net CO, flow to the atmosphere was higher in our study than
in Soimakallio et al. (2016). This is mainly because our results indicate a significantly higher
average reduction in forest carbon equivalent net sink per increase in wood harvested (mean
values between 1.6 and 2.6 t./t.) than assessed in Soimakallio et al. (2016) (i.e. 0.4-1.1 t/t.).
Seppild et al. (2019) concluded that atmospheric CO, is increased when wood harvesting
based on current forest management practices is increased over a 100-year time horizon using
current displacement factors (on average 1.1 t/t;). In Seppdld et al. (2019), the average
reduction in forest carbon net sink per additional wood harvested (2.0-2.4 t./t.) was within
the range of our study. Heinonen et al. (2017) concluded that an annual harvest rate of 40 Mm3
provided the highest climate change mitigation effect over a 90-year time horizon within the
range of annual harvests from 40 to 100 Mm3.

Comparison of our results with Soimakallio et al. (2016), Heinonen et al. (2017) and
Seppild et al. (2019) provides two important insights. First based on the results presented by
Heinonen et al. (2017) and Seppala et al. (2019), lengthening the time horizon from 30 to 90—
100 years does not significantly reduce net CO, flow to the atmosphere resulting from
increased wood harvesting and use. Second, the relatively low reduction in forest carbon net
sink per increased wood harvested applied in Soimakallio et al. (2016) is thus explained
mainly by changes in other forest management practices than in harvest rates.

Regarding forest carbon stock changes, Soimakallio et al. (2016) rely on four different
Finnish national-level forest management scenarios over a 100-year time horizon presented in
Hynynen et al. (2015). In ‘The active forest sector and intensive biomass production (INT)
scenario’, they assumed intensified harvest rates and measures of intensive wood production,
such as fertilization and artificial regeneration based on planting with genetically improved
material. This scenario can be compared with their three other scenarios where less wood was
harvested and wood production was less intensified. Based on the comparison, Soimakallio
et al. (2016) showed that over 30 and 100 years, each unit of additional carbon harvested in
INT scenario reduced forest carbon net sink by approximately 1.2 and 0.8 units of carbon (t./
t.). This is significantly less than the mean values (1.6-2.6 t./t;) presented in Table 2 for the
scenarios studied in this paper. Thus, although an extension of the time horizon considered
lowers the reduction in forest carbon net sink per increased wood harvested, lower figures
based on Hynynen et al. (2015) are mainly explained by consideration of forest management
practices that compensate the effect.

Based on the results of our study, Soimakallio et al. (2016) and Seppéla et al. (2019), it is
evident that increasing harvest rates increase atmospheric CO, concentrations at least up to
100 years if current forest management practices and knowledge on avoided emissions are
considered. These studies applied altogether three different forest models (MELA, Motti and
Monsu) for different types of harvest and forest management scenarios and considered
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different factors for avoided emissions. The net biomass-based CO, flow to the atmosphere
can be reduced by applying measures to improve forest growth. Yet, according to Soimakallio
et al. (2016), it is extremely unlikely that the net CO, flow to the atmosphere would be
significantly reduced by additional wood harvesting although measures of intensive
wood production are considered. This conclusion can perhaps be reversed only if
wood harvested could on average substitute significantly larger amounts of fossil-
based CO, emissions and if biomass-based CO, emissions from wood harvested were
significantly lower than is currently expected.

Soimakallio et al. (2016) studied carbon balances in six different scenarios using stochastic
modelling. The amount of mechanical wood products, pulpwood products and energy
products varies between those scenarios. However, Soimakallio et al. (2016) concluded that,
given the parameter uncertainties, the carbon balances per wood entering the system were
close to each other in all the scenarios studied and the parameter uncertainties were much
higher than the variation between scenarios studied. This implies that forest industry structure
alone did not significantly influence the avoided emissions.

The average displacement factor applied in our study was 1.2 t./t. (range from 0.7 to 1.7 t,/
t.). This is close to that applied by Seppild et al. (2019) and significantly higher than some
other country-level displacement factors, such as those presented by Soimakallio et al. (2016)
for Finland (0.4-0.8), Suter et al. (2017) for Switzerland (0.5 t./t.), Lundmark et al. (2014) for
Sweden (0.6) and Smyth et al. (2017) for Canada (0.5 t./t.). Increasing harvest of wood can
show on average more than 1 t/t, displacement factor typically only if a significant share of
the increased harvest of wood is used for construction materials. In addition, the share of
construction materials in the product mix heavily influence the longevity of products; thus,
carbon flows to and from harvested wood products. The more pulp, paper and energy products
are produced, the more likely the average displacement factor is less than 1 t/t., and the more
likely the carbon content of the products is rapidly released to the atmosphere.

4.3 Uncertainties in forest carbon equivalent net sink

Forest carbon net sinks are subject to relatively significant uncertainties. According to the most
recent national GHG inventory (Statistics Finland 2019a), the total forest carbon net sink in Finland
in 2017 is estimated to vary between 6 and 12 Mt C-eq. This underlines the need to further improve
forest carbon net sink estimation methods and especially those for soils that have the highest
uncertainties. Regarding the development of forest carbon net sink in the future, even higher
uncertainties take place even though the overall logging and total removals would be known.

We assumed 40% uncertainty and a strong positive correlation between the forest carbon
net sink of the scenarios. The assumption on the strong positive correlation means that even
though the absolute values of the forest carbon net sink were subject to significant uncertainty,
this uncertainty influenced the same direction in each of the scenarios. Consequently, the
uncertainty between the scenarios (Table 2) is much smaller in absolute terms. However, the
strong positive correlation was based on the rough and simple assumption which should be
justified by more comprehensive uncertainty analysis in further studies.

Climate change and the rise of atmospheric CO, concentrations may significantly influence
forest growth and soil respiration in the future. If these factors accelerate forest growth, the
carbon net sink in forests may increase in absolute terms also in scenarios where harvest rates
are increased from the current level (Kallio et al. 2016). However, this does not mean that the
reducing impact additional harvests have on forest carbon net sink would be lower than in
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scenarios relying on the current climate conditions, such as those studied in this paper. Instead,
the opposite may hold true. This is because the increased growth of existing forests also
increases forgone carbon sequestration between more and less intensive wood harvesting
scenarios (see supplementary information of Soimakallio et al. 2016).

In practice, climate change may influence differently in different types of forests, thus
influencing the impact forest management has on the development of forest carbon stocks.
Forests are prone to risks of different nature. The timing, frequency and severity of biotic (e.g.
insects, parasites, pathogenic fungi) and abiotic disturbances (e.g. drought, wind, wildfire) are
closely linked with climate. It is very likely that climate change will trigger not only direct
changes in forest productivity, composition and diversity (Thuiller et al. 2005) but also indirect
changes via modified disturbance regimes (Seidl et al. 2014; Temperli et al. 2013). Accord-
ingly, disturbances have been found to increase in Europe’s forests during the twentieth
century (Schelhaas et al. 2003). Different forest types featuring different stand structure,
composition and age under given climatic and management regimes have different
resilience, i.e. capacity to withstand different disturbance agents. Brang et al. (2014) describe
principles for reducing the effect of increasing disturbances on the carbon stocks. Increasing
tree species richness improves stand resistance especially against droughts and storms, while
the increase in structural diversity may decrease susceptibility for both abiotic and biotic
disturbance agents, e.g. insects like bark beetle find saplings less attractive than mature trees.
Natural regeneration maintains and increases genetic variation within tree species. Thus, from
a forest management perspective, multi-layered mixed forest stands could be recommended if
these principles together are accounted for. On the other hand, keeping average growing stocks
low, especially in the MSY scenario, may support the resistance of individual trees
due to lower stand density and at the same time, lower carbon density decreases the
risk of a forest fire. We still lack an understanding of disturbance dynamics like
interactions between different agents and scale-dependencies evolvement over time
and in response to climatic change (Seidl et al. 2017).

It is evident that climate change increases the uncertainties related to forests. As far as
climate change increases the growth of trees, reduction in forest carbon net sink due to increased
wood harvests is strengthened. On the other hand, if natural disturbances likely increased by
climate change can be reduced by increased wood harvests, then a reduction in forest carbon net
sink due to increased wood harvests is weakened. Due to a lack of knowledge, it is difficult to
conclude how the exclusion of climate change in our scenarios affects our results. Lack of
knowledge on climate change impacts is not only related to the MELA model applied in this
paper but a typical problem with other forest simulation models as well (Seidl et al. 2017).

5 Concluding remarks

According to our results, an increase in forest harvest rates in Finland certainly or very likely
increased the overall GHG flows to the atmosphere over the 30-year time horizon and
uncertainties considered. This was because the increased biomass-based CO, and other
greenhouse gas emissions to the atmosphere together with decreased carbon sequestration
into the forest were very likely higher than the avoided fossil-based CO, emissions. Increasing
the share of long-living wood products increases the efficiency of how much fossil CO,
emissions can be avoided by the average unit of wood at one hand and increasing the carbon
flow from forests to harvested wood product stock on the other hand. Even if all the biomass-
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based CO, emissions from harvested wood could be eliminated, forgone carbon sequestration
into forests due to increased harvests remains a critical issue which may hinder any climate
benefits of increased wood utilization partly or totally over decades.
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