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Abstract: A novel data analysis method for the evaluation of plant disease risk that utilizes weather
information is presented in this paper. This research considers two different datasets: open weather
data from the Finnish Meteorological Institute and long-term (1991–2017) plant disease severity
observations in different hardiness zones in Finland. Historical net blotch severity data on spring
barley were collected from official variety trials carried out by the Natural Resources Institute
Finland (Luke) and the analysis was performed with existing data without additional measurements.
Feature generation was used to combine different datasets and to enrich the information content of the
data. The t-test was applied to validate features and select the most suitable one for the identification
of datasets with high net blotch risk. Based on the analysis, the selected daily measured variables
for the estimation of net blotch density were the average temperature, minimum temperature, and
rainfall. The results strongly indicate that thorough data analysis and feature generation methods
enable new tools for plant disease prediction. This is crucial when predicting the disease risk and
optimizing the use of pesticides in modern agriculture. Here, the developed system resolves the
correlation between weather measurements and net blotch observations in a novel way.

Keywords: advanced data analysis; feature generation; plant disease prediction; modern agriculture

1. Introduction

Barley, Hordeum vulgare L., is a cereal plant of the grass family Poaceae. It is the fourth largest
grain crop, and it was grown globally on 47 million hectares in 2016 [1]. Barley is primarily grown
as animal fodder and as a source of malt for alcoholic beverages, but is also commonly used in
food products, e.g., breads, soups and stews, and health products. However, barley production
is challenged by several biotic and abiotic pressure factors. On average, plant diseases caused by
microbes can decrease the annual average yield of the barley crop by up to 20% [2]. One of the most
commonly distributed fungal diseases in barley is net blotch, which is caused by the ascomycete
Pyrenophora teres Drechsler. In Finland, net blotch was present in 86% of barley fields investigated in
2009 [3]. The pathogen overwinters on barley debris or seed. During the growing season, it reproduces
asexually on barley leaves. The symptoms start as small brown lesions, which elongate and produce
dark brown streaks across the leaf blades, creating a net-like pattern surrounded by a yellow margin.
Environmental conditions play a significant role in disease development. The leaf wetness period
that is required for conidium germination relates to the temperature. In studies by van den Berg and
Rossnagel [4], it was shown that the minimum leaf wetness period required for P. teres infection was
halved as the temperature was doubled in degrees Celsius. Martin and Clough [5] reported that the
spore release of P. teres correlated positively with temperature, but negatively with relative humidity and
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leaf wetness. In addition to the environmental factors, the host plant and agricultural factors influence
the development of disease epidemics. Plants have evolved different resistance mechanisms against
pathogens, and barley varieties vary in tolerance and resistance [6].

To avoid the negative impacts of agrochemicals, legal obligations have been established at global
and national levels. The optimization of chemical control is one of the key issues in Integrated Pest
Management (IPM), which in the European Union has been codified into the form of a directive.
According to the IPM directive, chemical protection needs to be justified and well documented [7].

Accurate prediction, or disease forecasting, plays an important role when optimizing the
use of agrochemicals. In Abdullah et al. [8], the excessive usage of pesticides in Pakistan is
briefly discussed. The authors have shown that data mining integrated with agricultural data,
e.g., pest scouting, pesticide usage and meteorological recordings, is a useful tool for pesticide
optimization. Overall, data analysis and modeling as well as knowledge of plant diseases are the
components of reliable disease forecasting [9]. The article by Kerr and Keane [10] discusses the
prediction of disease outbreaks with details. The authors present the basis of plant disease prediction
and deal with the information extensively with examples. According to the authors, disease forecasting
is the use of both weather data and biological data to predict disease incidence [10]. Another way to
predict diseases that was mentioned is based on the monitoring of the highs and lows of an annual
disease cycle.

Sentelhas et al. [11] have studied the parameters influencing plant disease occurrence and pointed
out the importance of leaf wetness duration (LWD) in plant disease warning systems. In the article,
the LWD measuring system and the effects of sensor positioning are discussed. However, measurement of
leaf wetness duration is problematic because of the lack of a standard sensor and the lack of a standard
exposure protocol.

Kim et al. [12] reported that costly and arduous measurements could be replaced with a reliable
estimation of LWD. The authors [12] presented an extensive literature survey of LWD estimation with a
comparison of the reported LWD models. They applied some corrections to existing models (e.g., a height
correction to SkyBit wind speed estimates) to enhance estimation accuracy. The model-derived estimates
utilized hourly weather data from 15 weather stations in Iowa, Illinois, and Nebraska during May to
September in 1997, 1998 and 1999 [12]. Furthermore, the modeling of LWD and estimation accuracy
have been studied by Sentelhas et al. [13] and the usability of weather radar data in a plant disease
management system has been studied by Rowlandson et al. [14].

Data analysis and machine learning have been utilized in agriculture and several applications
have been published. Bhor et al. [15] presented a framework for an agricultural web portal, which helps
farmers to predict crop diseases and prevent economic losses. Furthermore, various articles [16–19]
have demonstrated the utilization of data analysis and modeling in crop farming and plant breeding.
Big data technology in plant science has been reviewed in an article by Ma et al. [20]. A more general
presentation of the principles of big data analysis and some applications are reviewed in the article
by Tien [21]. One research study about plant diseases and crop production simulation as a tool for
farmers’ decision-making is presented in an article by Bregaglio and Donatelli [22].

Wang et al. [23] have used the deep learning approach in the estimation of plant disease severity.
The authors trained a neural network to classify apple black rot severity using the images from an
open access database, PlantVillage, with promising results. Moreover, the deep learning technique has
been utilized in an image-based, real-time approach to detect diseases and pests in tomato plants [24].
The effects of plant diseases, pests, weather conditions, and climate issues are topics with the highest
priority in agriculture, and the reliable prediction of phenomena affecting the crop is a valuable tool in
modern agriculture.

However, the complexity or unreliability of models and the difficulties in obtaining informative
data or performing reliable observations may complicate the applicability of present plant disease
forecasting methods. The main contribution of this paper is to show that by combining the information
from existing measurements with data mining methods (feature generation and analysis), years with a
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high risk for net blotch can be distinguished from years with a smaller risk even in the early stage
of the growing season using existing measurements. This information forms the basis for predicting
net blotch occurrence that can be used in deciding on the use of pesticides. To avoid complex model
structures, multiple models, and the costs of extra measurement arrangements, this research aims solely
at combining existing data from different sources, public and private. The resulting methodology is
available for future routine analysis without any specific tests. In addition to data analysis, the usability
of open weather data is demonstrated and discussed.

2. Materials and Methods

This study combines information from two different datasets—weather measurements and the
prevalence of net blotch at the observation fields. During the research, no extra measurements were
arranged; instead, the available data were mathematically combined for a new purpose. The principle
of this study is presented in Figure 1.
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Net blotch data had been collected and pre-processed by the Natural Resources Institute Finland
(Luke) during the years 1991–2017. The numerical data used in this research exists in the Oracle
database. Measurements included information about the observation year, field location (municipality),
cultivated barley genotype, and the disease severity of net blotch. The test fields were located in Central
and Southern Finland. In this research, the net blotch observation data from hardiness zones I–IV were
utilized. The approximate locations of the observation fields can be seen in Figure 2. The data analysis,
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Field experiments had been conducted in 1991–2017 in different locations in Finland, representing
areas where spring barley is typically grown. Experiments were included as part of the Official Variety
Trials and they all followed the standard procedures specified for that purpose [25]. These were managed
by Luke Finland at its numerous regional research units and by plant breeding companies and private
agricultural research stations. All experiments were arranged as randomized complete block designs or
incomplete block designs. The number of replicates varied from three to four depending on the location
and year. In each year, the set of cultivars and breeding lines changed, but only partly; long-term check
cultivars were also used. A typical trial included 30 cultivars. Long-term check cultivars ensure that,
in any well-defined linear model analysis, the effects of cultivars and environments can always be
estimated [26].

The plots were 7–10 m × 1.25 m, depending on the location and year. The seeding rate was
450–550 viable seeds per square metre, conforming to the commonly used seeding rates in Finland.
Fertilizer use depended on cropping history, soil type, and fertility. Weeds and pests were chemically
controlled with the active ingredients largely used in commercial farming. However, diseases were not
controlled with fungicides.

The disease pressure, a risk index depending on environmental factors and the genotype of cereal,
is quantified by Luke Finland by means of equation 1 and using the following steps. The effects of the
environment and genotype were separated by the following statistical model based on the structure of
the data collection:

yijkl = µ + bl(jk) + gi + ejk + geijk + εijkl (1)

where yijk is the observed value for the ith cultivar in the jth year and the kth experimental site.
In addition, all experiments have 3 or 4 replications, and the replication is a nested factor: replication
l is nested in the environmental effect of the jth year and kth experimental site. Parameter µ is the
intercept, bl(jk) is the random effect of the lth replication, gi the effect of the ith genotype, ejk is the
effect of the environment, geijk is the error term for the environmental effect, and εijkl is the residual.
For the incomplete block design, the effect of the block was divided into two parts: variance between
incomplete and complete blocks.

In this research, the estimated values of the environment, ê jk, are mutually comparable estimates,
i.e., despite the fact that the set of genotypes (cultivars) varied between trials and disease resistance
between genotypes vary, trials can be put into order according to the disease pressure. This is important
because modern genotypes have a higher disease resistance than older genotypes. The estimated
values (per year and location) were scaled into three categories: 0 (maximum value 0.5%), 1 (0.6–5%),
and 2 (over 5.1%). One example of the scale for appraising plant disease severity in cereals is presented
in Saari and Prescott [27].

The weather data were obtained from the open database of the Finnish Meteorological Institute
(FMI). More information about FMI open weather data is available in the report by Honkola et al. [28].
In every presented case, the distance between the local weather station and the observation field was
the same throughout the observation years. The information content of weather data was compared
during the whole period under the review. The loaded data were in the .xlsx format and usable in
MATLAB®. The variables analyzed in this study were:

• place of observation,
• date of observation,
• rainfall per day [mm], R,
• average temperature per day, Tav [◦C],
• daily minimum temperature, Tmin [◦C], and
• daily maximum temperature, Tmax [◦C].

The FMI data included some missing information and the data required further pre-processing.
First, FMI data were arranged into datasets according to the year of observation. The datasets which
included consecutive missing observations were discarded at this stage. The FMI datasets were then
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grouped according to the observation place and the net blotch category (0–2). Later, the datasets in the
0-category were referred to as the reference data and the datasets from categories 1 or 2 were compared to
them. Four years’ data of independent weather observations from each hardiness zone and each net blotch
category were utilized, except for hardiness zone IV and category 0 data, where measurements from
three years were available. Brief information about the utilized data is presented in Table 1. It is important
to notice that the different datasets were later indexed both spatially and temporally. The particular years
and weather stations related to the data used are presented in Appendix A.

Table 1. General information about the data selected for analysis.

Barley Leaf Area (Percentage),
Infected by Net Blotch

<0.5%
Category 0

0.6–5%
Category 1

>5%
Category 2

Number of Available Datasets (Years) Per Category

Hardiness zone I 8 5 12
Hardiness zone II 6 7 8
Hardiness zone III 6 6 13
Hardiness zone IV 3 8 11

The net blotch observation data included one value per year while the weather data consisted
of daily observations. The number of weather variables was four in each analysis and the number of
tested feature candidates was 1760.

Because of the different weather conditions, the beginning of the growing season and the sowing
date varied according to the year and the observation field. This must be taken into account in deciding
the starting point of the analyzed period (to). Two variants were compared in this study. The first
one defined the starting point as the beginning of the growing season, defined as the time when the
mean temperature remained over plus five degrees Celsius for five consecutive days. In the second
variant, the sowing date was used as the starting point. The data before this starting point and after the
growing season was omitted. The analyzed period was 14 days from the starting point.

All of the data analysis and result evaluation were performed in the MATLAB® programming
environment. First, the statistical values of the weather measurements were analyzed to find out
whether the reference data differed from the datasets in category 1 or 2. The mean value of daily
rainfall, R [mm], increased as well as the net blotch category when referring to the datasets related to
the beginning of the growing season. In most cases with the datasets starting from the sowing date,
R also increased by net blotch category, but in the case of hardiness zone III, categories 0 and 2 had the
same mean R value. The statistical characteristics of the variables are presented in Table 2.

The feature generation was performed because it was not possible to classify the datasets into
different net blotch categories with the initial calculated statistical values. This means that new
computational variables were generated from the original data by mathematical operations and the
features with the highest information content were selected by using the t-test. More information about
the feature generation methods is published, for example, in [29–33].

The feature generation method used in this study is presented by Ruusunen [34] (p. 50). The method
used composes new variables from the original ones (R, Tav, Tmax, and Tmin) with different mathematical
operations, such as addition, subtraction, multiplication, division, involution, logarithm, square root,
and combinations of them. A list of possible feature prototypes which were generated as mentioned
above are presented with details in [34] (Appendix A). All of those candidates were tested in this study
and the feature validation was performed with the t-test. The utilization of the t-test was carried out in
a MATLAB® environment with the function t-test2 and 70% confidence intervals. Two-sample t-tests
were selected with the assumption that the data vectors were from independent random samples with
unknown variance. The selected features were then the candidates with which categories 1 or 2 could
be separated with most certainty from the reference datasets (category 0). The data analysis procedure
is presented in Figure 3.
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Table 2. Statistical values of the weather data variables at the starting point of the analysis.

Mean value

Hardiness zone I

Beginning of growing season Sowing time

R [mm] Tav [◦C] Tmax [◦C] Tmin [◦C] R[mm] Tav [◦C] Tmax [◦C] Tmin [◦C]

Category 0 0.5 8.8 14.8 2.6 0.9 10.0 15.3 4.4
Category 1 0.8 7.6 13.2 2.1 1.0 11.9 17.4 6.3
Category 2 0.8 9.6 15.4 3.6 1.1 12.9 18.1 7.2

Hardiness zone II

Beginning of growing season Sowing time

R[mm] Tav [◦C] Tmax [◦C] Tmin [◦C] R[mm] Tav [◦C] Tmax [◦C] Tmin [◦C]

Category 0 0.8 7.8 13.9 1.4 1.7 9.4 15.0 3.8
Category 1 0.7 9.1 15.1 3.1 1.6 11.7 17.2 6.0
Category 2 1.4 8.6 14.5 2.4 1.8 12.8 18.1 7.2

Hardiness zone III

Beginning of growing season Sowing time

R[mm] Tav [◦C] Tmax [◦C] Tmin [◦C] R[mm] Tav [◦C] Tmax [◦C] Tmin [◦C]

Category 0 0.6 7.1 13.0 1.1 2.1 10.1 15.7 4.1
Category 1 0.9 8.4 14.6 2.3 1.8 12.0 17.8 5.9
Category 2 1.2 9.7 15.6 3.5 2.1 11.3 16.9 5.1

Hardiness zone IV

Beginning of growing season Sowing time

R[mm] Tav [◦C] Tmax [◦C] Tmin [◦C] R[mm] Tav [◦C] Tmax [◦C] Tmin [◦C]

Category 0 0.8 8.4 14.1 2.4 1.1 10.5 15.6 4.2
Category 1 1.1 9.5 15.3 3.4 1.3 11.4 16.8 5.7
Category 2 1.5 8.9 14.2 3.7 2.8 11.0 15.9 6.0
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Table 2. Cont.

Standard deviation

Hardiness zone I

Beginning of growing season Sowing time

R[mm] Tav[◦C] Tmax[◦C] Tmin[◦C] R[mm] Tav[◦C] Tmax[◦C] Tmin[◦C]

Category 0 1.6 3.6 4.4 3.8 2.2 3.5 4.0 4.1
Category 1 1.9 3.2 4.2 3.7 2.2 3.5 4.4 3.8
Category 2 2.4 3.7 4.1 4.6 2.2 3.5 4.4 3.8

Hardiness zone II

Beginning of growing season Sowing time

R[mm] Tav [◦C] Tmax [◦C] Tmin [◦C] R[mm] Tav [◦C] Tmax [◦C] Tmin [◦C]

Category 0 2.2 3.6 4.5 3.6 4.2 2.9 3.4 3.9
Category 1 2.4 4.2 4.7 4.7 3.3 3.8 4.7 4.1
Category 2 3.6 3.7 4.6 3.6 3.3 3.8 4.6 3.9

Hardiness zone III

Beginning of growing season Sowing time

R[mm] Tav [◦C] Tmax [◦C] Tmin [◦C] R[mm] Tav [◦C] Tmax [◦C] Tmin [◦C]

Category 0 1.4 3.0 4.1 3.4 5.7 3.5 4.2 4.2
Category 1 2.5 3.4 4.8 3.3 3.7 4.3 5.6 3.7
Category 2 4.3 3.1 4.0 3.8 6.2 3.7 4.6 4.1

Hardiness zone IV

Beginning of growing season Sowing time

R[mm] Tav [◦C] Tmax [◦C] Tmin [◦C] R[mm] Tav [◦C] Tmax [◦C] Tmin [◦C]

Category 0 1.8 4.0 5.3 3.5 2.5 4.6 5.6 4.5
Category 1 2.6 3.6 4.4 3.9 2.8 3.4 4.3 3.5
Category 2 2.6 4.3 5.0 4.6 5.4 3.8 4.6 4.4

Median

Hardiness zone I

Beginning of growing season Sowing time

R[mm] Tav[◦C] Tmax[◦C] Tmin[◦C] R[mm] Tav[◦C] Tmax[◦C] Tmin[◦C]

Category 0 0 8.25 14.6 2.4 0 9.85 14.8 4.15
Category 1 0 7.6 13.2 2.4 0 11.15 16.7 6.45
Category 2 0 9.05 14.6 3.9 0 12.6 17.65 8.05

Hardiness zone II

Beginning of growing season Sowing time

R[mm] Tav [◦C] Tmax [◦C] Tmin [◦C] R[mm] Tav [◦C] Tmax [◦C] Tmin [◦C]

Category 0 0 7.7 13.5 1.55 0.1 9.5 14.9 4.45
Category 1 0 8.75 15.25 2.85 0 11.15 16.35 6.15
Category 2 0 8.2 14.05 2.5 0.05 12.45 17.55 7.15

Hardiness zone III

Beginning of growing season Sowing time

R[mm] Tav [◦C] Tmax [◦C] Tmin [◦C] R[mm] Tav [◦C] Tmax [◦C] Tmin [◦C]

Category 0 0 6.85 12.9 0.75 0 10.3 15.5 4.3
Category 1 0 8.2 14.6 1.6 0 11.6 16.9 5.9
Category 2 0 9.5 15.0 3.45 0 11.4 16.95 5.2

Hardiness zone IV

Beginning of growing season Sowing time

R[mm] Tav [◦C] Tmax [◦C] Tmin [◦C] R[mm] Tav [◦C] Tmax [◦C] Tmin [◦C]

Category 0 0 7.7 13.3 2.1 0 10.95 15.2 4.25
Category 1 0 9 14.8 3.35 0 10.9 15.9 5.85
Category 2 0 8 13.35 3.3 0.35 10.75 15.8 5.8
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The two-sample t-test was applied to evaluate the analysis results. In this case, where two data
samples are assumed to be from populations with unequal variances, the test statistic t under the null
hypothesis has an approximate Student’s t distribution with a number of degrees of freedom given by
Satterthwaite’s approximation [35]. This arrangement can also be called Welch’s t-test.

3. Results and Discussion

The statistical characteristics (mean value, standard deviation, and median) of the weather data
are listed in Table 2. The characteristics are indexed by variables, locations and net blotch categories,
and analysis was performed for two alternatives of the starting point, to:t0 equals the beginning of
the growing season and t0 equals the sowing time. From the statistical point of view, the weather
conditions were quite similar in the selected years. The temperature increased from the beginning
of the growing season to the sowing time, which is quite understandable since the beginning of the
growing season was typically two to four weeks earlier than the sowing time.

All of the generated features were tested. The weather data belonging to net blotch categories 1 and 2
were compared with the reference data category 0 with the t-test and the following hypotheses:

H0. the daily feature values have equal means and equal but unknown variances in tested datasets,

H1. the daily feature values have unequal means.

The number of days and feature values from categories 1 and 2 that differed statistically from
the reference data were computed. Feature generation and validation were demonstrated with the
datasets (four years from category 0 and four years from category 2) from hardiness zone III and with
the generated feature (Tmin

2 x Tav
2). The feature values from categories 0 and 2 are first presented in

Figure 4, where the category 0 data points are marked by crosses (x) and category 2 data points as
dots. The observation period is 14 days and t0, the starting point, is the beginning of the growing season.Agriculture 2019, 9, x FOR PEER REVIEW 9 of 16 
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Figure 4. The feature (Tmin
2 x Tav

2[C◦]) values of hardiness zone III data. The category 0 data points
(four years) are marked by x and category 2 data points (four years) by circles. The observation period
is 14 days and t0 is the beginning of the growing season.

In this case (Hardiness zone III), the null hypothesis was rejected nine times and accepted five
times during the 14-day observation period. Then, the two tested datasets differed statistically with the
feature generation technique and t-test with a 70% confidence interval in the case of nine days.

The results of analyzed locations and categories 0 compared to 1, and 0 compared to 2 are presented
in Table 3.
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Table 3. Results of the statistical feature evaluation.

The Number of Days When the Null Hypothesis Was Rejected

Observation Field
t0 = Beginning of the Growing Season t0 = Sowing Date

Category Category
0 vs. 1 0 vs. 2 0 vs. 1 0 vs. 2

Hardiness zone I 9 11 8 9
Hardiness zone II 11 11 11 11
Hardiness zone III 10 9 9 8
Hardiness zone IV 10 10 9 9

As can be seen from Table 3, the separation ability of the most suitable features, where t0 equals
the beginning of the growing season, was at least sufficient and in several cases statistically stronger
than the separation ability of the datasets where t0 equals sowing dates. Consequently, the following
results are presented only with the datasets where t0 equals the beginning of the growing season.
It seems that the information content of the data varies during the growing season, and the optimal
starting point for the analyzed time window has to be studied carefully.

Several features were generated from every spatial dataset with which the best separation results
were achieved. The features that were the most suitable for separating the reference data and categories
1 and 2 are listed in Table 4. The original variables are marked as a, b, c, and d and are R, Tav, Tmax, and
Tmin respectively. According to the t-test, the daily feature values included unequal means 8–11 times
(out of 14) when comparing the reference data and category 1 data, and 9–11 times (out of 14) when
comparing the reference data and category 2 data. The separation ability increased or remained the
same when comparing categories 0 vs. 1 and 0 vs. 2, except for hardiness zone III.

Table 4. The most suitable features for separating between the reference data (category 0) and category
1 and 2 datasets. The original variables are denoted as a, b, c, and d—namely R, Tav, Tmax, and Tmin.

Place of Observations
t0 = Beginning of the Growing Season

Category
0 vs. 1 0 vs. 2

Hardiness zone I (a + b)·b ln(c) + (b)·ln(d)
Hardiness zone II D + b2 a·d
Hardiness zone III (a·c)/b d2

· b2

Hardiness zone IV (b + d)/c (d + a)·d

The cumulative summed feature values (features of Table 4 for each hardiness zone) calculated for
hardiness zones I–IV and categories 0 vs. 1 are presented in Figure 5 and those for categories 0 vs. 2 in
Figure 6. The idea to test the cumulative sum here was based on the assumption that the growth of net
blotch is some kind of dynamic phenomenon. Thus, the effects, for example, of rainfall were assumed
to accumulate during the growing period. With the cumulative sum applied to the time series of listed
features, the effectiveness of the utilization of these features can be demonstrated visually.

The separation ability of the presented features is shown in Figures 5 and 6. The results show that
the infected years can be potentially separated from the reference data using the weather measurements
and the feature generation technique. Feature selection was based on summing up the number of
days in a certain time window when the two datasets differed statistically at the 70% confidence level.
Thus, for example, in Table 3 and in hardiness zone I, the day sums of 9 and 11 both indicate full
classification capability with the method at the respective time. This way, the numbers in Table 3 are
related to the robustness of the features against uncertainties in the measured data.
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Figure 5. The cumulative summed feature values (y-axis) generated from weather data of the different
hardiness zones. The category 0 data (four years’ data in hardiness zones I, II and III, and three years
data in hardiness zone IV) are marked with a solid line and category 1 data (four years in each hardiness
zone) with a dashed grey line. The observation period is 14 days, t0 is the beginning of growing season,
and the time step is one day (x-axis).

Agriculture 2019, 9, x FOR PEER REVIEW 11 of 16 

 

 

Figure 6. The cumulative summed feature values (y-axis) generated from weather data of the different 
hardiness zones. The category 0 data (four years’ data in hardiness zones I, II and III, three years’ data 
in hardiness zone IV) are marked with a solid line and the category 2 data (four years in each hardiness 
zone) with a dashed grey line. The observation period is 14 days, t0 is the beginning of growing season, 
and the time step is one day. 

The separation ability of the presented features is shown in Figures 5 and 6. The results show 
that the infected years can be potentially separated from the reference data using the weather 
measurements and the feature generation technique. Feature selection was based on summing up the 
number of days in a certain time window when the two datasets differed statistically at the 70% 
confidence level. Thus, for example, in Table 3 and in hardiness zone I, the day sums of 9 and 11 both 
indicate full classification capability with the method at the respective time. This way, the numbers 
in Table 3 are related to the robustness of the features against uncertainties in the measured data.  

However, the best suitable features (selected by the t-test) depend on the hardiness zone and the 
estimation should be further extended to a form that is more general in order to increase practical 
usability of the analysis. For that reason, the hardiness zone I–IV datasets were merged and the earlier 
described analyzing steps were then performed. This new dataset included the weather 
measurements from 15 reference years, 16 category 1 years, and 16 category 2 years. The cumulative 
summed feature values for both cases are presented in Figure 7. The selected feature based on the 
analysis in the cases of the reference data vs. category 1 data and the reference data vs. category 2 
data is Tav/Tmin + R. 

0 2 4 6 8 10 12 14

Time = [day]

0

1

2

3

4

5

6

7
Hardiness zone I

0 2 4 6 8 10 12 14

Time = [day]

0

5

10

15

20

25

30

35

40
Hardiness zone II

0 2 4 6 8 10 12 14

Time = [day]

0

20

40

60

80

100

120

140

160
Hardiness zone III

0 2 4 6 8 10 12 14

Time = [day]

0

10

20

30

40

50

60

70

80

90
Hardiness zone IV

Figure 6. The cumulative summed feature values (y-axis) generated from weather data of the different
hardiness zones. The category 0 data (four years’ data in hardiness zones I, II and III, three years’ data
in hardiness zone IV) are marked with a solid line and the category 2 data (four years in each hardiness
zone) with a dashed grey line. The observation period is 14 days, t0 is the beginning of growing season,
and the time step is one day.

However, the best suitable features (selected by the t-test) depend on the hardiness zone and the
estimation should be further extended to a form that is more general in order to increase practical
usability of the analysis. For that reason, the hardiness zone I–IV datasets were merged and the earlier
described analyzing steps were then performed. This new dataset included the weather measurements
from 15 reference years, 16 category 1 years, and 16 category 2 years. The cumulative summed feature
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values for both cases are presented in Figure 7. The selected feature based on the analysis in the cases
of the reference data vs. category 1 data and the reference data vs. category 2 data is Tav/Tmin + R.Agriculture 2019, 9, x FOR PEER REVIEW 12 of 16 
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The classification task was repeated with the new independent dataset applying the same feature
as above. Seven years’ data (category 2) was analyzed as described and compared to the original
reference data (category 0). The classification results with the new dataset are presented in Figure 8.
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The results are interesting and especially the lower graphs in Figure 7 and the graphs in Figure 8
show that there is a difference between the cumulative summed feature values when comparing the
reference data and the category 2 data. Nevertheless, the classification accuracy needs to be improved,
and therefore the generalization potentiality of the method needs further study.
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4. Conclusions

Thorough statistical analyses of weather measurements and net blotch observations were
performed, and the results are presented in this article. This research confirms that weather conditions
have a significant effect on net blotch density. Using advanced data analysis, the information
content of the existing weather measurements was enriched, and extra measurement campaigns
were unnecessary. The feature generation and validation results show that the most suitable features
were combinations of the original measurements, which supports the assumption that the influence of
the weather and the infection of plants are a complex phenomenon.

The analysis was performed with data from four different hardiness zones, each zone separately,
and also jointly as one set of data to test the generalization ability of the developed method. Each spatial
dataset was also analyzed from the temporal point of view in a time window of 14 days using two
datasets: one where the starting point, t0, is the very early stage of the growing season and the other
where t0 is the sowing date. According to the analysis, the separation ability of datasets where t0 equals
the beginning of the growing season was at least sufficient and, in several cases, statistically stronger
than the separation ability of datasets where t0 equals sowing dates. However, the information content
of the data varies during the growing season and the optimal date of t0 still needs thorough research.

The datasets were categorized according to the yearly net blotch density. Category 0 (no net blotch)
was used as the reference data and the datasets from categories 1 and 2 were compared with that.
The aim was to develop a method that can identify the increasing risk for barley net blotch and verify
it with existing data. This method is valuable when predicting net blotch occurrence and possible need
for pesticide use. The best suitable features were evaluated by the t-test. Here, the t-test was a sufficient
evaluation method; however, the feature evaluation step still needs more research.

The reliable identification of the weather conditions that led to a net blotch infection can be utilized
for modeling and eventually for the optimization of pesticides. The FMI open database includes reliable
and usable weather measurements, and the applicability of public data has been demonstrated in
this paper.

This study proves the effectiveness of data analysis and offers a new perspective for net blotch
estimation. Accurate plant disease prediction is a valuable tool for optimizing pesticides and minimizing
their harmful effects on the environment. To achieve a reliable model for net blotch forecasting, data on
the combined four hardiness zones needs more research. The estimation accuracy and the generalization
of the presented method need to be tested with new datasets. In addition, new measurements such as
air humidity should be considered. In conclusion, justified and optimized chemical protection saves
money and the environment in the long run and is part of sustainable agriculture.
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Appendix A : The Data Used

The weather data used has been downloaded from the FMI open database: https://www.
ilmatieteenlaitos.fi/havaintojen-lataus#!/

Hardiness zone I: until year 2011, the FMI weather station “Turku airport” and 2012–2017 the FMI
weather station “Kaarina, Yltöinen”.
Hardiness zone II: the FMI weather station “Jokioinen”.
Hardiness zone III: the FMI weather station “Seinäjoki, Pelmaa”.
Hardiness zone IV: the FMI weather station “Siikajoki, Revonlahti”.

https://www.ilmatieteenlaitos.fi/havaintojen-lataus#!/
https://www.ilmatieteenlaitos.fi/havaintojen-lataus#!/
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Weather Data, listed by Hardiness Zones and Net Blotch Density

Hardiness zone I, net
blotch density <0.5%

Hardiness zone II, net
blotch density <0.5%

Hardiness zone III, net
blotch density <0.5%

Hardiness zone IV, net
blotch density <0.5%

1994 1993 1994 1992

1999 1994 2000 1993

2000 1999 2005 1994

2004 2006 2007

Hardiness zone I, net
blotch density 0.6–5.0%

Hardiness zone II, net
blotch density 0.6–5.0%

Hardiness zone III, net
blotch density 0.6–5.0%

Hardiness zone IV, net
blotch density 0.6–5.0%

2002 2003 2004 1991

2005 2004 2006 2007

2007 2005 2011 2009

2011 2013 2013 2010

Hardiness zone I, net
blotch density >5.1%

Hardiness zone II, net
blotch density >5.1%

Hardiness zone III, net
blotch density >5.1%

Hardiness zone IV, net
blotch density >5.1%

2009 2014 2002 2012

2013 2015 2003 2013

2014 2016 2008 2014

2016 2017 2016 2015

Validation

Hardiness zone I, net
blotch density >5.1%

Hardiness zone II, net
blotch density >5.1%

Hardiness zone III, net
blotch density >5.1%

Hardiness zone IV, net
blotch density >5.1%

1998 1996 2009 1999

2008 1998 2000
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