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Abstract 

Marja Lehto 
Natural Resources Institute Finland (Luke) 

 
 

Fresh-cut vegetables have been cleaned, peeled, chopped, sliced, or diced and then 
packaged but not heated. The fresh-cut vegetable processing industry uses large vol-
umes of water. This water is utilized by hygiene and cleaning processes and for cooling 
of the products. Knowledge has been lacking about waters created and the water use in 
different stages of the fresh-cut vegetable processing. Obtaining information about the 
water use and waste water production is important for recocnizing critical phases for 
risk management and for evaluating the need of water treatments. The aim of this study 
was to improve the processing of fresh-cut vegetables through collecting information on 
the hygienic level of waters and vegetables, decontamination methods and their effica-
cy, water use and waste waters which helps companies to improve their processes and 
self-monitoring activities. One aim of this study was to also evaluate on-farm waste wa-
ter treatment systems carrying out peeling of vegetables. 

Water consumption, measured in six fresh-cut processing companies in this study, 
was 2.0–6.5 m3/t per finished product. The water consumption varied in the same com-
pany between months and according to season, volumes of vegetables processed, and 
the quality of raw material. Through regular measurement of water consumption, it is 
possible to decrease water use in fresh-cut vegetable processing. In the present study, 
water consumption decreased by 15% over the course of the three-year period exam-
ined. This may decrease costs and improve sustainability of the production. 

Vegetables contain 90‒96% water; the remainder is composed of components such 
as carbohydrates, proteins and nutrients. In vegetal cells, water is present in different 
forms; part of this water can easily be removed and a part cannot. Depending on their 
size, the substances of which vegetables are composed form different kinds of solutions 
in combination with water. Most of the organic load and nutrients of the vegetables 
processed were released into water from the peeling of root vegetables, whereas the 
volume of the water came primarily from the rinsing and washing of vegetables. Wash-
ing is an important step in fresh-cut vegetable processing; it removes soil and debris, 
and reduces microbial populations residing on the vegetable surface. Washing is often 
the only step that can remove foreign material and tissue exudates, as well as inactivate 
pathogens. Water plays a dual role in the fresh-cut vegetable processing: it both reduces 
and transmits microorganisms to vegetables. The high quality of water used in pro-
cessing is important, and can be attained through water decontamination or by using 
new potable water that is changed continuously during the process. The high operation-
al cost of water use has resulted in the industry-wide common practice of the reuse or 
recirculation of process water. 
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Fresh-cut vegetables may be contaminated by pathogens in different stages and 
different ways after harvest. Pathogenic microorganisms can cause severe outbreaks of 
foodborne disease. The microbiological quality of vegetables changes during processing. 
The total microbial counts in peeled and cut carrots were lower than in whole washed 
carrots, but higher in grated than in cut carrots. The total microbial count was lower in 
process water than in wash water of carrots. Pathogenic Yersinia enterocolitica was de-
tected in many carrot and water samples by sensitive RT-PCR, but not by the cultivation 
method.  

The data concerning treatment of process water of fresh-cut wagetable processing 
is quite scarce, in particular concerning the effect of treatments on yersinia. Water de-
contamination methods neutral electrolyzed water (NEW), chlorine dioxide (ClO2), or-
ganic acids and UV-C was evaluated, specially on yersinia, E. coli and Candida lambica 
(yeast) in this study. The effect of decontamination on different microbes in water dif-
fers with, e.g., time, concentration, decontamination method, and turbidity of water. 
Technically- and economically effective chlorine-alternative decontamination technolo-
gies are the goal of the fresh-cut industry. In Finland, and in many other EU countries as 
well, chemical treatments of vegetable process waters are restricted in food legislation, 
but allowed in other countries. 

Published information concerning the functioning and feasibility of small on-farm 
waste water treatment plants are few. Waste water generated from vegetable produc-
tion contains high concentrations of biochemical oxygen demand (BOD) and suspended 
solids (SS). One aim of this study was to evaluate on-farm waste water treatment sys-
tems carrying out peeling of vegetables. Primary treatments of waste water remove 
coarse solids, reduce organic matter content and adjust pH. Secondary, biological, 
wastewater treatment removes soluble organic matter and nutrients from water. Bio-
logical waste water treatment, such as a sequencing batch reactor or a trickling filter, 
are used for treating of vegetable processing waste water in small scale companies in 
rural areas. In the case of both systems, the requirements set in legislation were met. 
Tertiary treatment can be used if waste water is reused in subsequent vegetable pro-
cessing or recycled for irrigation of food crops. 

Fresh-cut vegetable processing companies produce high-quality fresh-cut produce 
with appropriate inputs and processes. Each company must establish its own specific 
validation protocols for evaluating their processes. The aim is to minimize the risks and 
produce healthy, safe, fresh and easy-to-use vegetables for consumers. 
 
 
Keywords: Decontamination, carrot, fresh-cut vegetable, lettuce, microbiological quality, 
processing, process water, wash water, waste water treatment, water use 
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Tiivistelmä 

Tuorekasvikset on puhdistettu, kuorittu, pilkottu (viipaloitu, silputtu tai kuutioitu) ja 
pakattu, mutta niitä ei kuumenneta missään prosessin vaiheessa. Tuorekasvisten pro-
sessoinnissa käytetään paljon vettä; sitä tarvitaan raaka-aineiden, tuotteiden ja tilojen 
puhdistuksessa sekä hygienisoinnissa. On vain vähän tutkittua tietoa siitä, missä tuore-
kasvisten prosessoinnin vaiheissa ja miten paljon vettä käytetään ja miten paljon jäteve-
siä muodostuu. Tutkimustieto yritysten veden käytöstä ja jätevesien muodostumisesta 
on tärkeää, jotta voidaan tunnistaa riskien hallinnan kannalta kriittiset prosessien vai-
heet ja arvioida jätevesien käsittelytarvetta. Tämän tutkimuksen tavoitteena oli kehittää 
tuorekasvisten prosessointia keräämällä tietoa vesien ja kasvisten hygieenisestä laadus-
ta, vesien hygienisointimenetelmistä ja niiden tehokkuudesta, veden käytöstä sekä jäte-
vesistä. Tavoitteena oli myös arvioida tilakohtaisia kasvisten prosessoinnin jätevesien 
käsittelymenetelmiä. Tämä tieto auttaa yrityksiä kehittämään prosessejaan ja tehosta-
maan omavalvontaansa. 

Veden määrä, jota mitattiin tässä tutkimuksessa kuudessa tuorekasviksia prosessoi-
vassa yrityksessä, vaihteli eri yrityksissä välillä 2,0–6,5 m3 lopputuotetonnia kohden. 
Veden käyttö vaihteli myös tietyssä yrityksessä eri kuukausina riippuen käsiteltävien 
kasvisten määristä, raaka-aineen laadusta ja vuodenajasta. Yrityksissä, joissa seurattiin 
säännöllisesti veden käyttöä, saatiin veden kulutusta pienennettyä. Tässä tutkimuksessa 
veden kulutus laski yhdessä yrityksessä 15 % kolmen vuoden seurantajakson aikana. 
Säästämällä vettä voidaan pienentää kustannuksia ja parantaa tuorekasvisten proses-
soinnin kestävyyttä. 

Kasvikset sisältävät vettä 90–96 % painostaan; loppuosa koostuu muun muassa hii-
lihydraateista, proteiineista ja muista ravintoaineista. Suurin osa kasvisten prosessoin-
nissa jäteveteen päätyvästä orgaanisesta aineesta (BOD, biological oxygen demand) ja 
ravinteista siirtyi tutkimuksen mukaan veteen juuresten kuorintavaiheessa, kun taas 
pääosa veden kulutuksesta tapahtui kasvisten pesussa ja huuhtelussa. Kasvisten pesu on 
tärkeä vaihe tuorekasvisten prosessoinnissa; siinä kasviksista poistuu maa-ainesta ja 
kasvisten pintakerrosta ja se vähentää mikro-organismien määrää kasvisten pinnalla. 
Pesu on usein ainoa vaihe, jolla voidaan poistaa epäpuhtauksia ja muuta vierasta mate-
riaalia kasviksista. Vedellä on kuitenkin kaksitahoinen rooli tuorekasvisten prosessoinnis-
sa: mikro-organismien vähentämisen lisäksi vesi voi myös levittää niitä kasviksiin. Tuore-
kasvisten prosessoinnissa käytettävän veden laadun täytyy olla hyvää, ja laadun hallin-
nassa voidaan käyttää hyväksi erilaisia veden puhdistusmenetelmiä tai vettä voidaan 
vaihtaa jatkuvasti prosessin aikana. Veden korkean käyttökustannuksen vuoksi yritykset 
pyrkivät kierrättämään tai käyttämään vettä uudelleen. 

Kasvisten mikrobiologinen laatu muuttuu prosessoinnin aikana. Tautia aiheuttavat 
mikro-organismit voivat saastuttaa kasviksia prosessin eri vaiheissa ja aiheuttaa ruoka-
myrkytyksiä. Tässä tutkimuksessa kokonaismikrobien määrä kuorituissa ja pilkotuissa 
porkkanoissa oli alhaisempi kuin kokonaisissa, pestyissä porkkanoissa, mutta määrä oli 
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korkeampi porkkanaraasteessa kuin pilkotuissa porkkanoissa. Kokonaismikrobien määrä 
oli alhaisempi porkkanoiden prosessi- kuin pesuvedessä. Patogeenista Yersinia enteroco-
litica-bakteeria löydettiin monista porkkana- ja vesinäytteistä kun käytettiin herkkää 
PCR-menetelmää, mutta bakteeriviljelymenetelmällä niitä ei havaittu. 

Aiempia mittaustuloksia tuorekasvisten prosessivesistä on melko vähän saatavissa, 
varsinkin yersiniaan liittyen. Tässä työssä vertailtiin veden puhdistusmenetelmiä, kuten 
neutraalia elektrolysoitua vettä (NEW), klooridioksidia (ClO2), orgaanisia happoja ja ult-
raviolettivaloa (UV-C), ja arvioitiin menetelmien tehoa yersinia- ja E. coli -bakteereihin 
sekä Candida lambica -hiivaan. Puhdistuksen tehokkuuteen vaikuttaa näissä vesissä eri-
tyisesti veden sameus. Tuorekasvisten prosessoinnissa tavoitteena on löytää teknisesti 
ja taloudellisesti tehokas veden puhdistusmenetelmä, jossa ei käytetä klooria. Suomessa 
ja monessa muussa EU-maassa kemiallista käsittelyä, esimerkiksi kloorin käyttöä, kasvis-
ten prosessoinnissa on rajoitettu elintarvikelainsäädännössä, mutta klooria käytetään 
monissa muissa maissa.  

Pienen kokoluokan yrityskohtaisesta jätevedenkäsittelystä on olemassa vähän jul-
kaistua tietoa. Kasvisten prosessoinnissa muodostuva jätevesi sisältää paljon orgaanista 
ainetta sekä kiintoainetta. Jäteveden esikäsittelyllä voidaan muun muassa vähentää 
veden kiintoaineen ja orgaanisen aineen pitoisuuksia sekä säätää happamuutta. Biolo-
gista jäteveden käsittelyä, kuten panospuhdistamoa tai biosuodinta, voidaan käyttää 
kasvisten prosessoinnissa muodostuvien jätevesien käsittelyssä viemäriverkostojen ul-
kopuolisilla alueilla. Tässä tutkimuksessa molemmilla menetelmillä (panospuhdistamo ja 
biosuodin) saavutettiin lainsäädännön vaatimukset. Jäteveden puhdistusta ja hy-
gienisointia tarvitaan jäteveden käsittelyn jälkeen, jos jätevettä käytetään uudelleen 
kasvisten käsittelyprosessissa tai kasteluvetenä kasvintuotannossa.  

Tuorekasviksia prosessoivien yritysten tavoitteena on tuottaa korkealaatuisia tuot-
teita yrityksen kokoluokkaan ja resursseihin suhteutetuilla panostuksilla ja prosesseilla. 
Yritykset laativat oman, yrityskohtaisen omavalvontaohjeistuksensa, jolla he arvioivat 
prosessejaan ja koko tuotantoketjuaan. Tavoitteena on pienentää riskejä ja tuottaa ter-
veellisiä, turvallisia ja helppokäyttöisiä kasviksia kuluttajille. 

 
Asiasanat: Dekontaminaatio, jätevesi, mikrobiologinen laatu, porkkana, pesuvesi, 
prosessivesi, prosessointi, salaatti, tuorekasvis, veden käyttö 

 
 
 



Natural resources and bioeconomy studies 80/2019 

 7 

Forewords 

The need for the study arose from discussions with representatives of a company that 
was concerned about the quality of their production and vegetable products. This hap-
pened over 15 years ago at the time when companies in Finland had begun to extend 
their activities from primary production to fresh-cut vegetable production including pro-
cessing. There was little information on what should be measured, how to ensure that 
products were safe, and how the waters and waste water used in production ought to 
be treated so that customers and the authorities were satisfied.  

In the projects belonging to this study we have cooperated with several Finnish 
fresh-cut vegetable companies. Several measurements have been performed and sam-
ples have been taken in the companies studied. Companies have also actively participat-
ed in planning and giving information of their production. I am grateful to all the com-
panies studied for their co-operation, help, kindness and interest in our research, and 
for valuable information of the branch of activity.  

I sincerely thank Professor Laura Alakukku, Docent Hanna-Riitta Kymäläinen and 
Senior Scientist Maarit Mäki for contributing of final form of this dissertation thesis.  
I gratefully acknowledge Professor Francisco Artés Hernández and Professor Hülya 
Ölmez for pre-examination of the text and for their valuable comments on the manu-
script. I also would like to thank Senior Expert Ilkka Sipilä and Research Coordinator Risto 
Kuisma for their contributions for the study and so much more. I also would like to thank 
my colleagues and co-authors Jenni Määttä, Maarit Hellstedt and Sanna Sorvala for co-
operation as well as Senior Scientist Leena Hamberg who helped me with statistical 
methods. 

I would like to thank Professor emerita Anna-Maija Sjöberg, who suggested the pos-
sibility of doing postgraduate studies on this subject. I am also grateful for the support 
given me by the Natural Resources Institute Finland (Luke) and group leader Tuomo 
Tupasela.  

The collection and analysis of the material related to this dissertation would not 
have been possible without project funding. We have had several projects during the 
period 2004–2016, the topic of which was fresh-cut vegetables and their production, 
water, wastes and waste water. These projects were funded by the Centre for Economic 
Development, Transport and the Environment Häme and Southwestern Finland and the 
participating companies, all of which are warmly acknowledged. 

Finally I wish to thank my family for the opportunity to think of other things.  
 

 
 
 
 



Natural resources and bioeconomy studies 80/2019 

 8 

List of original publications 

This thesis is based on the following publications: 
 

I Lehto, M., Sipilä, I., Alakukku, L. & Kymäläinen, H-R. 2014. Water consumption and 
wastewaters in fresh-cut vegetable production. Agricultural and Food Science 23, 
246–256. 
 

II Määttä, J., Lehto, M., Kuisma, R., Kymäläinen, H-R. & Mäki, M. 2013. Microbiological 
quality of fresh-cut carrots and process waters. Research note. Journal of Food 
Protection 76, 1240–1244. 
 

III Lehto, M., Kuisma, R., Kymäläinen, H-R. & Mäki, M. 2017. Neutral electrolysed 
water (NEW), chlorine dioxide, organic acid product and ultraviolet-C for 
inactivation of microbes in fresh-cut washing. Journal of Food Processing and 
Preservation, 42, 1, e13354. https://doi.org/10.1111/jfpp.13354 

 
IV Lehto, M., Sipilä, I., Sorvala, S., Hellstedt, M., Kymäläinen, H-R. & Sjöberg, A-M. 

2009. Evaluation on-farm biological treatment processes for wastewaters from 
vegetable peeling. Environmental Technology 30, 1, 3–10. 

 

 

 

 

 

 

 

 

https://doi.org/10.1111/jfpp.13354


Natural resources and bioeconomy studies 80/2019 

 9 

Contributions 

The following table presents the contributions of the authors to the original articles of 
the dissertation: 
 

 Article I Article II Article III Article IV 
Initial idea ML ML, MM, JM ML, MM, RK ML, MH 
Planning the  
experiment 

ML, IS MM, ML, JM ML, MM, RK ML, IS 

Conducting  
the experiment 

ML, IS MM, JM MM, RK ML. IS, SS 

Processing of  
results 

ML, IS MM, JM, ML MM, ML, RK ML, IS, SS 

Manuscript  
preparation 

ML, H-RK, IS, 
LA 

ML, H-RK, RK, 
MM 

ML, MM, H-RK, 
RK 

ML, H-RK, A-MS 

 
LA Laura Alakukku, University of Helsinki 
MH Maarit Hellstedt, Natural Resources Institute Finland (Luke) 
RK Risto Kuisma, University of Helsinki 
H-RK Hanna-Riitta Kymäläinen, University of Helsinki 
ML Marja Lehto, Natural Resources Institute Finland (Luke) 
MM Maarit Mäki, Natural Resources Institute Finland (Luke) 
JM Jenni Määttä, University of Helsinki (present affilation: Forenom) 
IS Ilkka Sipilä, Natural Resources Institute Finland (Luke) 
A-MS Anna-Maija Sjöberg, University of Helsinki (emerita) 
SS  Sanna Sorvala, MTT Agrifood Research (present affiliation: Yhtyneet 

Medix Laboratoriot Oy) 

 

 

 

 

 



Natural resources and bioeconomy studies 80/2019 

 10 

Abbreviations 

BOD  Biochemical oxygen demand 
CFU  Colony forming unit 
Clean water Clean water is natural water or treated water: e.g., lake 
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DBP   Disinfection/decontamination by-products 
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IS  Interfering substance 
LOX  Lipoxygenase 
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UV-C  Ultraviolet-C 
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1. Introduction 
Fresh-cut produce is defined as “any fresh fruit or vegetable or any combination thereof 
that has been physically altered from its original form, but remains in a fresh state” 
(IFPA 2005). Fresh-cut vegetables have been cleaned, cored, peeled, chopped, sliced, or 
diced and then packaged (Francis et al. 2012). The markets for fresh-cut vegetables vary 
between countries and trends in consumption seem to reflect the trends for the total 
production of vegetables in the different European countries (Rojas-Graü et al. 2011; 
Baselice et al. 2014). Consumption of fresh-cut produce in Europe has been expected to 
increase by 12% from 2015 to 2020 (Euromonitor 2015). 

As a group, fresh-cut vegetables satisfy the consumer demand for easy-to-use, con-
venient and healthy food: low in fat, but high in vitamins, minerals and fibre. Such foods 
are also rich in components known as phytochemicals or phytonutrients: e.g., carote-
noids and phenols (Cox et al. 1996; Craig & Beck 1999; Francis et al. 2012). Consumers of 
fresh-cut products are retail dealers or food service establishments such as schools, 
hospitals, catering services and restaurants, as well as households. The main advantages 
to consumers of fresh-cut vegetables are: the reduced preparation time, decrease in 
labor required for produce preparation, its characteristics as a fresh food, the uniformity 
and consistency of a high-quality product, the easy supply of healthy products, the rea-
sonable price and its ease of storage, requiring little storage space and generating low 
quantities of waste. All these factors have led to the rapid growth of this industry in re-
cent years (Artés & Allende 2005; Garcia & Barrett 2005; Francis et al. 2012). The fresh-
cut vegetable industry is significantly different compared to that of ready-to-eat cooked 
foods because there is no thermal step in the food processing chain for reduction and 
control of microorganisms. Disadvantages of the fresh-cut products are: rapid deteriora-
tion, short shelf life of the products in the marketplace, and the potential health hazards 
associated with spoilage (Brecht et al. 2004). Concurrently, there has been a large num-
ber of foodborne disease outbreaks linked to fresh produce (Harris et al. 2003; Lynch et 
al. 2009; da Silva et al. 2013; CDC 2017). 

The fresh-cut vegetable industry is very diverse, including many products, each with 
its own structure at the point of production. The production of fresh-cut produce re-
quires investment in facilities as well as investment in employees and their education, 
technology, equipment, management systems and strict observance of food safety prin-
ciples and practices in order to ensure product quality (James & Ngarmsak 2010). In 
addition, high-quality water is required for processing. However, fresh-cut vegetable 
processing involves adding value to an agricultural business (Francis et al. 2012). 

The water content of vegetables and water used in processing, have a significant ef-
fect on maintenance of the quality of vegetables: microbes cannot grow without water. 
The fresh-cut industry is the most water-intensive sector of the food industry, and al-
most all food processing techniques for fresh-cut vegetables involve the use of water 
(Kirby 2003; Ölmez 2013). Water is used in vegetable processing for many purposes, 
including: cleaning, processing, cooling, rinsing and conveying of vegetables, and for 
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cleaning of production facilities. The availability of freshwater resources, both in quanti-
ty and quality, is important to food production and food security and safety (Ölmez 
2013; Vaclavik & Christian 2014).  

A lack of data has been reported on the amount of water consumed and discharged 
at specific steps of the processing line of the fresh-cut vegetable industry (Ölmez 2013). 
The processing steps of fresh-cut vegetables and the effect of these steps on vegetables 
and waters have seldom been reported. The safety and quality of fresh-cut vegetables 
must be taken into account in the entire processing line.  

The primary focus of this thesis is water in fresh-cut vegetable processing: what the 
quality of water and water treatment is, both during and after the processing of vegeta-
bles. Figure 1 illustrates fresh-cut vegetable processing, water use in such processing, 
and related issues such as the framing of the content of this thesis. 
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Figure 1. Fresh-cut vegetable production, waters involved in the process and related issues as the 
framing of this thesis. The dotted line indicates the (system) boundaries of this study. Process 
water is drinking water “which is transferred to the food process. This water can remain in a 
portion of the produce or it can be removed completely” (EC 852/2004). Wash water can be 
clean water: lake water, among other things. 
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1.1. Vegetables and water in fresh-cut vegetable processing  
Vegetables consist of plant cells, which in turn contain a cell wall, chloroplasts, a vacuole 
and a nucleus. The cell wall has an intrinsic role to play in the quality characteristics of a 
vegetable (Waldron et al. 2003). Plant epidermal tissue functions as protection against 
infections, insects and physical damage, in order to maintain turgor pressure within the 
tissue by preventing water loss, and to provide for gas exchange between internal cells 
and the environment (Frank 2001).  

Vegetable cells are cut and bruised when vegetables are peeled, cut and grated. 
Large areas of internal tissue are exposed, disrupting some subcellular compartmentali-
zation. Enzymes are released from the cells and oxygen becomes accessible for reac-
tions. Exposing of the cytoplasm provides micro-organisms with a versatile source of 
nutrients as compared to intact produce. Stress response reactions lead to increased 
respiration rates and to the synthesis of lignin (Bolin & Huxsoll 1991; Barry-Ryan et al. 
2000; Damoraran 2017). Solutes of vegetables and water used in processing become 
mixed resulting in altered properties of both constituents.  

Vegetables contain generally 90‒96% water, but other various components as well. 
The relationships between cellular components and water determine the textural differ-
ences of vegetables. The degree and tenacity of water binding or hydration depends on 
a number of factors including: the nature of the nonaqueous constituent, salt composi-
tion, pH, and temperature (Damodaran 2017). In vegetal cells, water is present in the 
following forms (Vaclavik & Christian 2014):  

 
• Bound water that cannot be extracted easily and which is bound to polar and ionic 
groups  

- It is not free to act as a solvent for salts and sugars. 
- It can be frozen only at very low temperatures (below freezing point of water). 
- It exhibits essentially no vapor pressure. 
- Its density is greater than that of free water. 

• Free water that can be extracted easily from foods by squeezing, cutting or pressing 
• Entrapped water that is immobilized in capillaries or cells, but if released during cut-
ting or damage, flows freely. It has properties of free water and none of the properties 
of bound water. 
 
Various substances from vegetables, such as salts, sugars, carbohydrates among other 
things, are either dissolved, dispersed, or suspended in water depending on their parti-
cle size and solubility (Table 1). 
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Table 1. Dissolved, dispersed, or suspended substances in vegetal cell water of vegetables (Vacla-
vik & Christian 2014).  

 Dissolved Dispersed Suspended 

Particle size Small molecules, < 1 nm 1–100 nm > 100 nm 

Solutions True solutions  
– ionic or molecular 

Colloidal dispersion Suspension with 
water particles 
settled out 

Substances Salts, sugars, water-
soluble vitamins 

Cellulose, pectic sub-
stances, gums, some 
proteins 

Starch 

 
The dry matter of vegetables consists of biomolecules (carbohydrates, proteins and 

lipids), minerals, vitamins, and phytonutrients. The main component (more than 90%) of 
the dry matter of vegetables is carbohydrates (Sanchez-Moreno et al. 2006; Butnariu & 
Butu 2014). Nutrient content and biochemical composition vary with vegetable prod-
ucts, because they come from different vegetables and different parts of the plants. 
Roots are rich in fibers and skeleton-type tissues with high lignin and cellulose (Butnariu 
& Butu 2014). These constituents are also dispersed in process and waste waters during 
vegetable processing. 

The two major groups of micro-organisms found in vegetables are bacteria and fun-
gi, the latter consisting of yeasts and moulds. Most microorganisms that are initially 
observed on whole vegetable surfaces are soil inhabitants, members of a very large and 
diverse community of microbes (Barth et al. 2009). The high level of water activity and 
the approximately neutral pH of vegetable tissue facilitate rapid microbial growth. Bac-
terial communities differ with respect to both the taxonomic structure and produce type 
of vegetable (Leff & Fierer 2013). 

 
Carrot and lettuce as the example vegetables for this study 

The carrot (Daucus carota) is one of the most popular root vegetables grown throughout 
the world (Sharma et al. 2012). Unpeeled and unwashed carrot raw material can be 
stored 6 to 8 months at 0‒1 °C and at a relative humidity of more than 95% without loss 
of quality, provided that pathogens do not develop (Edelenbos 2010). The moisture con-
tent of carrots varies from 86‒89%. Carrots contain a significant amount of phytonutri-
ents, as well as carbohydrates and minerals such as Ca, K, Na, Fe and Mg. Carrots are 
high in dietary fiber (2.5–3.0%) and pectin (1.4%)(Bao & Chang 1994).  

Lettuce is a commonly used vegetable in the EU (Freshfel 2014). There are four 
basic types of lettuce: crisphead or iceberg (Lactuca sativa var. capitata), butterhead (L. 
sativa, var. Flandria); cos or romaine (L. sativa, var. longifolia); and leaf (L. sativa, var. 
crispa) lettuces. Iceberg lettuce is considered one of the most popular of fresh-cut vege-
tables (Ragaert et al. 2004). Lettuce should be quickly cooled and maintained as close to 
0 °C as possible with 98−100% relative humidity. Head types (iceberg, butterhead and 
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cos) are better adapted to prolonged storage than leaf lettuces, but none keep longer 
than 4 weeks at 0 °C (Saltveit 2004). Because lettuce is very fragile, it must be handled 
with care. Lettuce contains about 95% water. The structure of a leaf can be viewed as a 
construction in which the outer layers form a ‘skin’ that protects the plant from rapid 
breakdown (Glenn et al. 2005). 

1.2. Processing of fresh-cut vegetables
The steps of fresh-cut vegetable processing are depicted in Fig. 2. Fresh-cut vegetables 
are altered in form by peeling, slicing, chopping, shredding, coring, or trimming, with or 
without washing or other treatment, prior to being packaged for use by the consumer or 
a retail establishment. The vegetable raw material to be processed should be of premi-
um quality (Turatti 2011). 

 
Figure 2. A general process flow diagram of fresh-cut vegetables, modified from Oliveira et al. 
(2015). Points where water is used and waste water is formed are marked with brown arrows. 
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1.2.1. Processing steps in which water is used or removed 
Water is an essential part of vegetable processing; it is used in many steps of the process 
(Fig. 2). The quantity and quality of water involved in fresh-cut vegetable processing is 
depicted in section 1.3. Fresh-cut vegetable processing includes many phases and differ-
ent kinds of equipment and techniques: 

 
Preliminary washing 

Roller brush washers are used for handling of round- or oval-shaped produce. A roller 
brush washer rotates or tumbles produce on a series of revolving brushes (Hall & 
Sorenson 2006). In the initial polishing of vegetables, clean or circulated water can be 
used. Soaking is used as a preliminary stage in the cleaning of root vegetables, which are 
heavily contaminated by soil. The efficiency of soaking is improved by moving the water 
relative to the product by means of caged propeller-stirrers built into the tank or by 
means of slow-moving paddles (Lo & Argim-Soysa 2005).  

 
Washing  

Washing is an important step in fresh produce processing, because it removes soil and 
debris and lowers the amount of microbial populations found on the surface of vegeta-
bles (Luo 2007; Palma-Salgado et al. 2014). Washing of vegetables generally reduces the 
microbial load by 100 to 1000-fold (Narender et al. 2018). Produce washers are designed 
according to the physical characteristics (size, shape, fragility, etc.) of harvested produce 
(Sapers 2003). There can be several stages in the washing process (Fig. 3). Fresh-cut 
products can be single-washed, double-washed, or triple-washed, or various wash-and-
spray combinations can be implemented (Luo 2007). 

According to Pao et al. (2012), two types of produce washers are used by the indus-
try. Immersion washers wash produce by dumping, submerging, and/or floating produce 
in process water (Ahvenainen 2000). Non-immersion washers wash produce by spraying 
or rinsing produce on flat or curved wash beds or in a basket or drum (Pao et al. 2012). 
Depending on the product to be rinsed, the water temperature must be as cold as pos-
sible. 0 °C is the optimal water temperature for most products.  

Vegetables can be cut before washing/decontamination or cut after wash-
ing/decontamination. According to Palma-Salgado et al. (2014), the reduction of Esche-
richia coli was 1.04 log10 when iceberg lettuce was first cut and then washed with water 
and 1.33 log10 when first washed and then cut. The difference was larger when decon-
tamination (e.g., utilizing chemicals) was used during washing. The washing-before-
cutting process will help the produce industry enhance the efficacy of sanitization and 
reduce microbial hazards. 

 
Moisture removal 

Wet fresh-cut carrots and lettuce decay considerably more rapidly compared to those 
that have been well dewatered (Turatti 2011). Free moisture must be removed gently 
after washing (Artes & Allende 2014). Centrifugation is generally used, and is the best 
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method for vegetables. However, alternatives are utilized such as vibration screens and 
air blasts. The centrifugation time and rate should be chosen carefully, so that centrifu-
gation removes only loose water, but does not rupture vegetable cells (Ahvenainen 
2000). Lettuce centrifuged at 2000 rpm resulted in increased desiccation of the product 
and increased storage life (Bolin & Huxsoll 1991).  

 
Peeling of carrots 

Peeling of carrots removes the epidermis and some sub-epidermal tissue. It bruises un-
derlying tissue and leaves the new outer layer of cells damaged, causing leakage of cellu-
lar fluids which encourages microbial growth and enzymatic changes (Barry-Ryan & 
O'Beirne 2000). The primary peeling methods for vegetables are: lye peeling, steam 
peeling, and mechanical peeling. Mechanical peeling is most common in small-size vege-
table processing companies; this process can be dry or wet. The types of mechanical 
peelers are: abrasive devices, drums, rollers, knives and milling cutters (Shirmohammadi 
et al. 2011; Sumonsiri & Barringer 2014). When root vegetables are peeled with a knife, 
the final result is a “peeled by hand” look. Using a sharp knife reduces the physical dam-
age to cut vegetables, and less stress is observed in the cells of produce (Ahvenainen 
2000). Abrasive peelers utilize abrasive surface rollers to remove the outer skin from the 
product. In general, knife peeling is more gently than abrasive peeling (Kleiber et al. 
2005). Wet peelers contain a water spraying unit which washes vegetables and increases 
water use (Singh & Sukhla 1995).  

1.2.2. Effect of processing on the quality of fresh-cut vegetables and wash 
waters 
Processing of fresh-cut vegetables causes injury to plant tissue such as mechanical dam-
age, biochemical changes, microbiological growth and physiological spoilage (Guerzoni 
et al. 1996; Allende et al. 2004). The composition of vegetables determines the type of 
spoilage (Ragaert et al. 2011; Fig. 3). 
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Figure 3. Dominant mechanisms of spoilage and influences on spoilage of leafy vegetables versus 
sugar-rich vegetables (modified from Ragaert et al. 2011). 

 
Effect of washing on the quality of fresh-cut vegetables and wash waters 

Many studies have shown that the rate of microbial reduction during washing is influ-
enced by several factors, including the quality of washing water and the efficacy of sani-
tizers for microbial inactivation (Zhang & Farber 1996; Gonzalez et al. 2004; Rodgers et 
al. 2004; Das et al. 2016). Washing is often the only step that can remove foreign mate-
rial and tissue exudates, as well as inactivate pathogens (Gil et al. 2009). In the study by 
Luo et al. (2018), organic load increased gradually over time as more products were 
washed in the same flume water. Lopez-Galvez et al. (2018) measured organic load in 
lettuce and shredded vegetables wash waters. The concentration of chemical oxygen 
demand (COD) increased from 72 to 298 mg/l during washing after three to five hours. 
Turbidity increased during lettuce washing from 4 to 21 NTU, and total dissolved solids 
(TDS) from 0.55 to 0.75 g/l. In shredded vegetable washing, COD increased from 448 to 
7092 mg/l, turbidity from 1 to 287 NTU and TDS from 1.2 to 7.2 g/l.    

When fresh-cut produce is fully submerged in water, either for washing or as a 
means of cooling, such produce is likely to have wash water infiltration into the tissues. 
The reason is that microorganisms, including human pathogens, have a greater affinity 
to adhere to cut surfaces than uncut surfaces (Seo & Frank 1999; Takeuchi & Frank 
2000; Liao & Cook 2001) or in punctures or cracks in the external surface (Burnett et al. 
2000).  
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Effects of peeling and cutting on the quality of fresh-cut vegetables and wash wa-
ters 

Peeling and slicing of root vegetables cause tissue disruption, breaking of protective 
epidermal layers and the release of nutrients and enzymes (Adams et al. 1989). In the 
study by O’Beirne et al. (2014), coarse abrasion peeling of carrots disrupted the surface 
of the carrot tissue. The damage caused by abrasion peeling did not affect the underly-
ing tissue. No cracks or fissures were detected at the surface or at 1000 µm below the 
surface. Hand peeling did not cause severe surface damage and did not appear to cause 
any damage to the underlying tissue (O’Beirne et al. 2014).  

In the study by O’Beirne et al. (2014), there was no significant difference between 
different peeling methods on the number of E. coli O157:H7 colonising or penetrating 
into the peeled carrot tissue. According to Gleeson & O’Beirne (2005), E. coli survived 
better on carrots sliced with a blunt machine blade than on carrots sliced with a sharp 
blade. Below the surface of the carrot, bacteria did not penetrate into carrot cells, but 
remained in the intercellular spaces (Auty et al. 2005). Optimum cutting during pro-
cessing might also increase the efficiency of washing and anti-microbial dipping treat-
ments in reducing pathogen counts (O’Beirne et al. 2014). 

Cutting and shredding of lettuce causes disruption of cells in lettuce, which induces 
an increase in ethylene and phenolic compounds such as formation of volatiles (Saltveit 
2003; Belitz et al. 2004). The cutting direction of lettuce has been observed to have an 
influence on emitted volatiles and sensory perception of the lettuce. In the study by 
Deza-Durand & Petersen (2011), cutting the lettuce transverse to the midrib caused 
more severe damage to the tissue than did longitudinal cutting, based on aroma produc-
tion of lipoxygenase (LOX) volatiles. Sharp rotating blades gave better results in cutting 
lettuce (lower respiration and lower microbial count during storage) than sharp station-
ary blades (O’Beirne 1995). In the case of shredded iceberg lettuce, blade sharpness has 
been observed to have a small effect; however, stationary blades increased respiration 
rate and microbiological counts, and reduced acceptability (Ahvenainen 2000).  
 

Microbial contamination of fresh-cut vegetables 
Vegetables can become contaminated at any stage of food production and preparation, 
from the field to the consumer. Water can play a dual role in fresh-cut vegetable pro-
cessing, in both reducing and also transmitting microorganisms to vegetables. Process 
water can constitute a source of cross-contamination of vegetables with microorganisms 
(Gil et al. 2009). Cross-contamination can take place even when large quantities of water 
are used, or even in the presence of sanitizers (Nguyen-the & Pruner 1989; Francis et al. 
1999; Lopez-Galvez 2009). The washing procedure can also create produce mechanical 
injury and thus promote internalization of microbiological and chemical contaminates of 
vegetables (Allende et al. 2004; Pao et al. 2012). 

The epidermis of root vegetables, which provides a protective barrier against the 
development of microbes on the vegetable surface, is removed during processing 
(Martn-Belloso et al. 2006). The destruction of vegetable surface cells exposes the cyto-
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plasm and provides micro-organisms with a richer source of nutrients as compared to 
intact produce (Barry-Ryan et al. 2000). Therefore, processing can increase microbial 
spoilage of fresh-cut produce due to the transfer of microflora from the surface to the 
vegetable, which acts as a complete medium for growth (Quadri et al. 2015).  

The total counts of microbiological populations on fresh-cut vegetables after pro-
cessing are known to range from 3.0 to 6.0 log10 units (Ragaert et al. 2007). Shredding 
and slicing steps in fresh-cut processing have resulted in increased microbial populations 
by 1–3 log10 on cut lettuce (Garg et al. 1990) and at least a 1 log10 increase for lettuce 
salads (von Jockel & Otto 1990). Lactic acid bacteria and several species of yeasts and 
moulds are commonly found on fresh-cut vegetables (Nguyen-the & Carlin 1994; Ka-
kiomenou et al. 1996; Zagory 1999). As they have higher sugar content, they likely un-
dergo microbial fermentation. Lactic acid bacteria increased in shredded or sliced car-
rots, achieving counts of 108 cfu/g (Fonseca 2006).  

Fresh-cut vegetables can be contaminated with pathogens (disease-producing 
agents) in the course of primary production (Bartz et al. 2017). Numerous pathogens 
have been isolated from fresh-cut vegetables (Ragaert et al. 2011). Pathogens dislodged 
from contaminated vegetables can survive in wash water and spread to others (Holvoet 
et al. 2012). Some pathogens are capable of growing in the cold temperatures applied 
by the fresh-cut vegetable industry: for example, Aeromonas spp. and Yersinia spp. (Jan-
da & Abbott 1998; Jacxens et al. 1999). 

1.2.3. Quality properties of vegetables 
Quality consists in a combination of characteristics that determines the value of produce 
to the consumer and customer. The quality of vegetables is related to several attributes, 
including appearance, texture, flavor, nutritional and safety aspects (Francis et al. 2012). 
The quality parameters of vegetables vary with the commodity, its intended use, and the 
preferences of the consumer (Saltveit 2003) or other customer (Grunda 2005; Table 2). 
Freshness is probably the most important quality parameter for fresh vegetables (Lap-
palainen et al. 1998; Ragaert et al. 2004; Peneau et al. 2005; Peneau et al. 2009). Legisla-
tion in the European Union (EU) and national legislation in different countries adopted 
to improve food safety includes: standards regarding the characteristics of the final 
product, production practices in the supply chain, traceability within the supply chain 
and legal liability of the supply chain (Yosoff et al. 2015). Fresh-cut vegetables are per-
ishable products and susceptible to the effects of temperature abuse, and therefore 
must be kept continuously at temperatures between 0 and 6 °C during processing, dis-
tribution and marketing (Hui 2015).  
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Table 2. Value and quality criteria of vegetable raw material and fresh vegetable product (Grunda 
(2005), Barrett et al. (2010), and Francis et al. (2012) (modified)). 

Raw-material criteria Product criteria 

Market  
value 

Processing 
value 

Product  
value 

Sensory 
quality 

Nutritional 
value 

Color 
Size 
Shape 
Freshness 
Consistency 
Extraneous 
ingredients 

Temperature 
Freshness 
Shape 
Size 
Processability 
Defects 
Allergens 

Freshness 
Shelf life 
Transport- 
ability 
Storability 
Cold chain 

Flavor (tase 
and aroma) 
Odor 
Color 
Appearance 
Textural 
properties 

Vitamins 
Minerals 
Phytonutrients 
Carbohydrates, 
dietary fiber 

 

1.3. Process water 
Process water is “drinking water or clean water, which is transferred to the food pro-
cess, can remain in a portion of the produce or it can be removed completely” (EC 
852/2004). Drinking or potable water meets the legal requirements of European Council 
Directive 98/83/EC, and is used as process water in the fresh-cut vegetable industry in 
Finland. If the water is potable, then it is probably acceptable for all food contact uses 
(ILSI 2008). Wash water can be clean water, which is natural water: e.g., lake water, or 
treated water, in which there are no micro-organisms or harmful pollutants to such an 
extent that it could have a direct or indirect impact on the health status or the quality of 
the food (Kekki 2013). 

1.3.1. Water use and quality 
The fresh-cut vegetable processing industry uses high volumes of water in the amount of 
2.4–11 m3/t of processed product (Derden et al. 2002; Ölmez 2013). High water use in 
the food sector is primarily caused by the hygiene and cleaning demands of processes 
and products, such as the need to cool the vegetable products (Ölmez 2013; Ölmez 
2014; Hellman & Simola 2016).  

Process water or purified waste water can be circulated and used for washing of 
vegetable raw material (Derden et al. 2002). Directive 98/83/EC permits processors to 
reuse or recycle water unless the water poses a risk to product safety (Ölmez 2013). 
Process water contains soluble compounds and dry matter from vegetables (sugars, 
proteins, organic acids, phenols and other compounds) (section 1.1) (Teng et al. 2018) as 
well as microorganisms. Care is needed in recycling water so as not to introduce new 
risks of increased microorganisms to be produced during washing. Safe water reuse in a 
food company can be controlled and managed by using Hazard Analysis and Critical Con-
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trol Points (HACCP), a set of risk-based self-monitoring principles (Casani & Knøchel 
2002; Casani et al. 2005).  

The high operational cost of water use has resulted in the industry-wide common 
practice of reuse or recirculation of process water. In the study by Luo (2007), water 
quality deteriorated rapidly during produce washing as a result of the accumulation of 
cut produce tissue fluids, solids, and other foreign matter in the course of fresh-cut veg-
etable processing. Using new potable water that is changed continuously during the 
process could be a possible solution, but it will be very expensive for the fresh produce 
industry to do so (Manzocco et al. 2015). 

1.3.2. Physical, chemical and biological decontamination methods for pro-
cess water quality 
Physical, chemical and biological water decontamination methods and their combina-
tions are used in the fresh-cut vegetable industry (Fig. 4). In order to increase shelf life 
and enhance the microbial safety of vegetables, in the fresh-cut industry chlorine is 
commonly applied as hypochlorous acid (HOCl) and hypochlorite (OCl-) as a disinfectant 
of waters at concentrations varying between 50 and 200 ppm of free chlorine, and for a 
maximum exposure time of 5 min (Rico et al. 2007; Goodburn & Wallace 2013). The 
washing of vegetables with chlorine is common. However, in many European countries, 
including Finland, such decontamination is not approved and because of health and 
environmental factors, washing has to be done with water only (Artés et al. 2007; Rico 
et al. 2007; Artés et al. 2009; Tirpanalan et al. 2011). Figure 4 presents the physical, 
chemical and biological decontamination methods for process water and their ad-
vantages and disadvantages. 
 

Water decontamination methods  
Water decontamination methods studied in this thesis were: neutral electrolyzed water 
(NEW), chlorine dioxide (ClO2), organic acids and ultraviolet-C (UV-C). Chlorine com-
pounds are also active in EOW and ClO2 methods. EOW was generated by the electroly-
sis of a sodium chloride solution. Electrodes are separated by nonselective membranes. 
EOW is usually generated on-site by passing a dilute salt solution (sodium chloride, NaCl, 
potassium chloride, KCl) though an electrolytic cell. In the conventional process, a dilute 
salt solution is electrolyzed with a membrane partition, resulting in the production of 
acidic EOW, pH 2.5–3.5, at the anode and alkaline EOW, pH 10–11.5, at the catode (Izu-
mi 1999; Umimoto et al. 2013). At the anode acidic EOW is obtained, production of vari-
ous chlorine compounds and ions such as hypochlorous acid (HOCl), hypochlorite (OCl-), 
and chlorine gas (Cl2) (Gil et al. 2015). An electrolysed acid with HOCl is a more effective 
sanitizer compared to hypochlorite (OCl-), and lower concentrations can be used (Buck 
et al. 2002; Len et al. 2002). 
 



Natural resources and bioeconomy studies 80/2019 
 

25 

 

Figure 4. Schematic overview of the advantages and disadvantages of chlorine and the alterna-
tive methods of decontamination (physical, chemical and biological, and their combination) of 
process waters (Meireles et al. 2016, modified)(UV = ultraviolet, US = ultrasound, EOW = electro-
lyzed oxidizing water, O3 = ozone, DBP = decontamination by-product). 

Chlorine dioxide (ClO2) has increasingly been used as an alternative to sodium hypo-
chlorite and it has been observed to have an equal or greater antimicrobial potency than 
chlorine. ClO2 is a monomeric free radical and readily dissolves in water without reacting 
with it, unlike chlorine. ClO2 remains stable and does not ionize in solution between pH 2 
and 10 (Lopez-Galvez et al. 2010; Chen & Zhu 2011; Feliziani et al. 2016).  

Organic acids such as acetic, citric, malic, tartaric and propionic acids, can act as an-
timicrobials, because many microbes generally cannot grow at pH values below 4.5 (Par-
ish et al. 2003). Antimicrobial activity varies among the organic acids. For example, lactic 
acid and citric acid can be considered more effective than acetic acid for fresh-cut let-
tuce decontamination (Tirpanalan et al. 2011). 

Physical decontamination technologies, such as ultraviolet-C (UV-C), have not usual-
ly produced decontamination by-products (Keyser et al. 2008; Gil et al. 2010). The UV-C 
portion of electromagnetic spectrum encompasses wavelengths from 200‒280 nm, the 
absorption maximum at 273 nm. UV energy penetrates the outer cell membrane of the 
microbe, passes through the cell body and disrupts its DNA, preventing reproduction. 
The degree of inactivation of microbes by ultraviolet radiation is directly related to the 
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UV dose applied to the water. UV-C light processing is confirmed to be easy to use and is 
characterized by favorable costs of equipment, energy and maintenance (Linden et al. 
1998; Lazarova et al. 1999; Bintsis et al. 2000; Keyser et al. 2008; Ignat et al. 2015; Artes-
Hernandez et al. 2017). According to Pilkington (1995), if water is highly turbid and col-
ored, it is unsuitable for decontamination by chlorination, ozonation, or UV.  
 
Table 3. Evaluation of decontamination treatments (Natrium hypochlorite (NaOCl), Chlorine diox-
ide (ClO2), electrolysed oxidizing water (EOW), organic acids and UV-C) applied to fresh-cut vege-
table process water. 

Treatment Water / COD 
(mg/l) 

Ability to inhibit 
cross-
contamination* 

References 

Natriun 
hypochlorite NaOCl, 
≥ 5 ppm 

Clean water 
Process water, 
COD = 500–1000 

+++ 
+++ 

Luo et al. (2011, 2012); 
Tomas-Callejas et al. 
(2012); van Haute et al. 
(2013); Gomez-Lopez et 
al. (2014); Lopez-Galvez 
et al. (2010) 

ClO2 , ≥ 3 ppm Clean water +++ Lopez-Galvez et al. 
(2010); Pao et al. (2007) 

EOW Process water, 
COD = 3–14 

+ Ongeng et al. (2006) 

EOW, pH 6.5, < 1 
ppm FC 

Process water, 
COD = 500 

+ Gomez-Lopez et al. 
(2015) 

EOW + 0.5 % salt, ≥ 
5 ppm FC 

Process water, 
COD = 500 

+++ Gomez-Lopez et al. 
(2015) 

Organic acids Lettuce wash 
water 

+ van Haute et al. (2013) 

Lactic acid, pH 2.5, 
20 000 ppm 

Process water, 
COD = 500–700 

+ Lopez-Galvez et al. 
(2010)  

UV-C, 0.1 kJ/m2 Clean water  
Lettuce wash 
water 

+++             ++ Ignat et al. (2015) 

UV-C, 0.4 kJ/m2 Lettuce wash 
water 

+++ Ignat et al. (2015) 

*- = non, + = low, ++ = middle, +++ = good, FC = free chlorine 
 

Protein/peptide concentration contributes most of the chlorine demand in water 
decontamination, and its removal will help to ensure the safety of wash water when 
chlorine is used (Teng et al. 2018). According to Luo et al. (2018), surviving microbes in 
the wash water correlated closely with free chlorine concentration below 10 mg/l 
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throughout the processing of fresh-cut vegetables, irrespective of the organic load in the 
wash water. Table 3 presents the effect of decontamination treatments on process wa-
ters of fresh-cut vegetables.  
 

Combined techniques 
Different decontamination methods could be combined in order to increase their anti-
microbial efficacy (Fig. 4). Combinations of physical-chemical, chemical-chemical, chemi-
cal-biological and biological-biological methods have been studied by Singh et al. (2002), 
Arevalos-Sánchez et al. (2012) and Gabriel (2015). A combination of diverse methods 
may allow a wider antimicrobial action than a single treatment (Goodburn & Wallace 
2013). In addition to the previously-mentioned combinations, a physical-physical comb-
nation of ultrasound (US) and UV-C light may be a promising energy efficient decontam-
ination technology for fresh-cut wash water effluents when taking into account quality 
and safety parameters (Petri et al. 2015; Millan-Sango et al. 2017). 
 

Decontamination by-products 
In the process water of fresh-cut vegetables there is a large quantity of organic matter in 
water effluents from the exudates of the cut tissues. When water decontamination is 
utilized, decontamination by-products (DBP) can be formed (Gil et al. 2016; Gil et al. 
2019). Decontamination by-products which have been defined as carcinogenic com-
pounds are: trihalomethanes, haloacetic acids, haloketones and chloropicrin (Nikolaou 
et al. 1999), as well as other toxic compounds without a proven carcinogenic potential 
such as chlorate (WHO 2017). The generation and accumulation of DBP can occur in 
wash water effluents, but also transmitted from the water to the final fresh produce. In 
order to reduce the formation of decontamination by-products, producers try to avoid 
the use of chlorine-based compounds for the decontamination of process water (Fig. 4). 
A rinsing step after washing decreases trihalomethane concentration below the detec-
tion limit in vegetables (Gomez-Lopez et al. 2013; Gomez-Lopez et al. 2017). According 
to Gil et al. (2019), activated carbon filtration treatment significantly reduced the con-
centration of DBPs in vegetable process water, leading to a lower concentration of chlo-
rate in the washed produce. 

1.4. Waste water from processing of fresh-cut vegetables  

1.4.1. Waste water quantity and quality 
Waste water generated from vegetable production contains high concentrations of bio-
chemical oxygen demand (BOD) and suspended solids (SS) (Derden et al. 2002; Liu 
2007). Common quality parameters and their concentrations of waste water are pre-
sented in Table 4. In addition, the waste waters from the carrot washing process gener-
ally contain a high concentration of nitrogen and phosphorous (Mebalds & Hamilton 
2002). In general, 70 to 80% of the total organic matter in fresh-cut vegetable waste 
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waters is in the dissolved form, and is not easily removed from waste water by conven-
tional mechanical means such as sedimentation (Liu 2007).  
 
Table 4. Common quality parameters of waste water and their characteristics (Karttunen 2004; 
Puchlik & Struk-Sokołowska 2017). 

Parameter Characteristics Concentration, 
waste water from 
vegetable pro-
cessing (mg/l)  

BOD, Biochemical 
oxygen demand 
BOD7, BOD5 

 

Estimates the degree of organic content 
by measuring the oxygen required for 
the oxidation of organic matter by the 
aerobic metabolism of microbial com-
munities. BOD7 is biochemical oxygen 
demand for 7 days and BOD5 for 5 days. 

860–3200 (BOD5) 

COD, Chemical  
oxygen demand 

Estimates the total organic matter con-
tent of waste waters, and is an approach 
based on the chemical oxidation of the 
organic materials in the waste water. It 
involves either oxidation of the organic 
matters by permanganate or oxidation 
by potassium dichromate (K2Cr2O7). COD 
analysis using dichromate is the most 
common method, and it is possible to 
use for continuous monitoring of biologi-
cal waste water treatment systems. 

920–3700 

Solids: total solids 
(TS), Total suspend-
ed solids (TSS) (non-
dissolvable) and 
dissolved solids (DS) 

SS is non-dissolvable and DS dissolved 
solids. Total solids is a measure of the 
suspended, colloidal, and dissolved solids 
in water. 

250–420 (TSS) 

Nitrogen (N) and 
phosphorous (P) 

The sources in food and agricultural 
waste water can include chemical ferti-
lizers, synthetic detergents used in clean-
ing food processing equipment, and 
metabolic compounds from proteina-
ceous materials. 

40–60 (N) 
9–16 (P) 

 
Physicochemical processes, such as adsorption and chemical oxidation or mem-

brane-based technologies, are capable of removing dissolved solids in relatively low 
concentrations at higher costs (Liu 2007). In addition to microbiological risks, the high 
amounts of organic matter in waste water are challenging for the efficient operation of 
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waste water treatment systems (Derden et al. 2002). Most vegetable industries have 
applied conventional waste water treatment methods such as anaerobic and aerobic 
biological processes (Chen 2015). 

According to Hamilton et al. (2005), the high levels of organic matter from vegeta-
ble processing in waste water could potentially encourage the growth of plant patho-
gens. When it is used to irrigate vegetables, contaminated waste water can result in the 
transmission of many disease agents and cause outbreaks in countries world-wide (Kirby 
et al. 2003). 

The conventional biological treatment of waste water requires a high biodegrada-
ble influent, where a high BOD5 / COD ratio is usually necessary (Chen 2015). Suspended 
solids are a nuisance in waste waters from vegetable processing, because they can ei-
ther settle on the bottom or float on the surface of the tank or the basin (Liu 2007). 

1.4.2. Waste water treatment in fresh-cut vegetable processing companies 
Waste water treatment systems are classified as primary (mechanical), secondary (bio-
logical) and tertiary (polishing) treatments (Isosaari et al. 2010). 
 

Primary waste water treatment  
Possibilities for primary treatment of vegetable processing waste water include: screen-
ing, flotation, flocculation, sedimentation, and (sometimes) granular sand filtration (Ta-
ble 5). Coagulation and flocculation are widely used for food industry waste waters to 
precipitate out particulate and dissolved matter (Hafez et al. 2007; van Haute et al. 
2015). They are intended to remove coarse solids and to reduce organic matter content 
and adjust pH prior to the secondary treatment processes (Joshi 2000; Paranychianakis 
et al. 2006; Liu 2007). 

Sedimentation is used in biological treatments such as activated sludge and trickling 
filters for solid removal. Suspended solids, which have higher densities than that of wa-
ter, are removed from waste water within a reasonable period of time by the action of 
gravity in the bottom of a settling tank or equalization basin (Karttunen 2004). The pur-
pose of an equalization basin is to balance out process parameters such as flow rate, 
organic loading, the strength of waste water streams, pH, and temperature. The purifi-
cation efficiency of clarifying to phosphorous, nitrogen and organic matter is 10−20%. A 
correctly dimensioned sedimentation basin can decrease the amount of precipitated 
and settleable solids by about 70% (Rontu & Santala 1995). 
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Table 5. Primary treatment methods of waste water in general, also used in vegetable pro-
cessing. 

Treatment Substances 
removed 

Method/equipment Property Reference 

Screening Relatively 
large solids, 
> 0.7 mm  

Screen, e.g., static Cheap, quick Liu (2007) 
 

Flotation Fine and 
light 
suspended 
particulates 

Air bubbles make floating 
particles lighter than 
water, rise to the surface, 
removed with mechanical 
skimmers 

Particulates 
to aggregate 

Karttunen 
(2004) 

Sedimenta-
tion 

Suspended 
solids 

Action of gravity within a 
reasonable period of time 

Solid removal Karttunen 
(2004) 

Coagulation Colloid 
particles  
0.1–0.01 µm 

Negative charged 
colloidal particles are 
neutralised by chemicals 
(e.g., alum and 
polyaluminium chloride) 

Bigger flocks Liu (2007) 

Flocculation Colloid 
particles  
0.1–0.01 µm 

Destabilisation of 
colloidal particles, form 
aggregates with added 
water-soluble polymers 

Bigger   
particles 

Liu (2007) 

Filtration Flocs (or 
bioflocs), 
solids, 
precipitates  

Sand, crushed antrachite 
coal, diatomaceous earth, 
perlite, powdered or 
granulated carbon 

Used in  
every waste 
water treat-
ment stage 

Liu (2007) 

Clarifying Precipitated 
and floating 
matter 

Particles separated from 
water 

 Rontu & 
Santala 
(1995) 

 
Secondary (biological) waste water treatment  

Biological treatment of waste water aims to remove of soluble organic and inorganic 
matter from water. Microorganisms, primarily bacteria, utilize organic matter and inor-
ganic salts in waste water. Table 6 presents a characterisation of the sequencing batch 
reactor (SBR) and trickling filter used in treating high strength organic waste waters. 
Biological processes are the more effective the more easily biodegradable the organic 
ingredients are. Biological treatment is widely used for vegetable processing waste wa-
ter, either by using anaerobic treatment (Moises et al. 2001; Moody & Raman 2001; 
Chen 2015), aerobic treatment or a combination of both (Austermann-Haun et al. 1999; 
Mulkerrins et al. 2004). Aerobic processes are only generally applicable and cost-
effective when the waste water is readily biodegradable (EU 2006). 
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SBR is simple and cost effective, and can provide very effective treatment for the 
removal from waste water of BOD, TSS, ammonia, and nutrients such as nitrogen and 
phosphorus. SBR systems are suited for waste water treatment applications character-
ized by low or intermittent flow conditions, and can easily be adapted to variable pollu-
tant concentrations (Jang et al. 2004; Mahvi 2008). A trickling filter is one type of con-
ventional biofilm reactor (Grady et al. 1999). The filter medium is stationary: e.g., plastic 
covered with bacteria. The waste water is distributed over the filter, trickles down 
through the medium, circulates and is collected under the medium and removed. Mi-
croorganisms grow on the filter media and form biofilm. Waste water comes into con-
tact with the biofilm and air, pollutants are diffused to the biofilm, and are converted 
into harmless compounds (Zhu & Rothermel 2014).  
 
Table 6. Chracterisation of sequencing batch reactor (SBR) and trickling filter.  

- = no information, + = low ++ = middle, +++ = high 
Natural processes include land application, constructed wetlands, and various pond 

systems (Isosaari et al. 2010). Land application systems are typically designed to provide 
secondary or tertiary treatment for pretreated waste water (Crites et al. 2006). Land 
application systems are perceived as low-technology options that do not require compli-

Characteristic/criteria SBR Trickling filter 
BOD removal (%) 89–98 80–90 
TSS removal 85–97 75–85 
Nitrification (%) 91–97 - 
Total nitrogen removal (%) >75 66–70 
Biological P removal (%) 57–69 - 
Hydraulic retention time (h) 12–40 13–14 
Advantages Single reactor vessel 

Operating flexibility and 
control 

Tolerance for variations 
in loading 

Advantages/ 
disadvantages 

Expertice needed 
 
Maintenance needed 

Flexibility and control are 
limited 
Moderate level of skill 
and expertise needed 

Operating costs + + 
Investment costs ++ ++ 
Suitability Low or intermittent flow 

conditions  
Easily adapted to variable 
pollutant concentrations 

All kinds of biodegradable 
waste waters 
 

References EPA (1999); Mahvi (2008); 
Jang et al. (2004); Lam et 
al. (2015) 

Joshi (2000); Karttunen 
(2004); Daud et al. (2018) 
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cated engineering structures and continuous process control. Its designs have been clas-
sified as: slow-rate systems, soil-aquifer treatment, and overland flow. The rates of most 
natural processes are highly temperature-dependent. Furthermore, experience from 
field sites shows that the quality expected to result from the process has not always 
been achieved (Isosaari et al. 2010). Treatment efficiency in pond systems can be im-
proved, for example, by use of floating elements which can be used to improve hydraulic 
characteristics of the treatment (Craggs 2005; Crites et al. 2006). Bubble aeration en-
sures aerobic conditions throughout the pond and prevents settling of suspended solids 
(Liu 2007). 

 
Tertiary treatments  

Tertiary treatment can be used if waste water is reused in vegetable processing or recy-
cled for irrigation of food or landscape crops (Gerba 2008). Examples of tertiary treat-
ment processes which reduce the number of pathogens are:  

• Filtration  
• Flocculation and filtration processes 
• Membrane processes 
• Detention in ponds or reservoirs 
• Natural systems: wetlands, soil-aquifer treatment 
• Chemical and physical treatments 
 
Reduction of pathogens in waste water treatment 

Waste water detention in ponds can significantly reduce the concentrations of enteric 
pathogens in waste water. Inactivation and removal of pathogens are controlled by 
temperature, sunlight, pH, adsorption to or entrapment by settleable solids and settling 
of the larger organisms. Indicator bacteria and pathogenic bacteria can be reduced by 
90‒99% or more, depending on retention times (Gerba et al. 2008). 

Trickling filters are generally less effective in removing pathogens from waste water 
than the activated sludge treatment. Trickling filters can remove 20‒80% of enteric bac-
teria (Feachem et al. 1983). In the study by Arimi et al. (1988), sedimentation and trick-
ling filter in combination were found to remove 99.9% of the Campylobacter spp. from 
waste water. 

In the activated sludge process, removal rate for all pathogens has been reported to 
range from 40 to 99%. Most of this removal is due to sedimentation and adsorption, or 
incorporation into the biological flocs which form during the process (Gerba 2008). In 
the study by Ottosen et al. (2006), a membrane bioreactor removed E. coli, enterococ-
cus and coliphages more efficiently than activated sludge involving denitrification by 
sand filtration and upflow anaerobic sludge blanket (UASB) treatment. The membrane 
bioreactor process consists of a biological reactor integrated with membranes that com-
bine clarification and filtration of an activated sludge process (Fazal et al. 2015).  
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Reuse of waste water from vegetable processing in washing or irrigation 
Reuse of waste water from vegetable processing should contribute to a saving of water 
and reduce costs. Waste water can be used to irrigate a crop, or for initial washing of 
vegetables, without adversely affecting food quality or safety (Rajkowski et al. 1996; 
Hamilton et al. 2005). For many countries, irrigation of fields with waste water from the 
food industry remains the main reuse application (Angelakis et al. 1999; Muñoz et al. 
2009). Irrigation with waste water carries with it environmental risks such as pollution of 
groundwater and surface water, degradation of soil quality and impacts on plant 
growth. Other risks include the transmission of diseases via the consumption of waste 
water-irrigated vegetable, and even increased greenhouse gas emissions associated with 
pumping large volumes of waste water to an irrigation district. The significance of such 
risks will plainly be dependent on the reuse scheme at hand. Ultimately, the challenge 
facing waste water reuse is minimisation of such risks so as to maximise the net envi-
ronmental gain (Hamilton et al. 2005).  

In the study by Xu et al. (2010), when reclaimed water was used for irrigation of 
fresh produce (e.g., leafy greens) microbiological food safety could lead to the prohibi-
tion of its use on agricultural products. In the study by Libutti et al. (2018), waste water 
from vegetable processing was secondarily treated by means of activated sludge treat-
ment and sedimentation, and tertiarily treated with ultrafiltration and UV radiation. 
Vegetables (tomato and broccoli) were irrigated with treated waste water by the drip 
irrigation method. The microbiological quality of the vegetables was not affected by the 
irrigation water used. Dissolved air flotation (DAF) and centrifuge were able to remove 
solids more than 95% and these treatments followed by ultraviolet (UV) disinfection 
make it possible to reuse waste water for washing, rinsing and processing applications 
(Mundi & Zytner 2015). 

The quality of irrigation water must meet requirements, because when in irrigation 
in contacts the edible part of the plant, it plays a major role in plant safety. According to 
the regulation of primary production (1368/2011), in Finland the water used on edible 
parts of plants at the source site for irrigation must be clean enough, which means that 
it fulfils the requirements cocnerning E. coli and intestinal enterococci, for example. 

1.5. Summary of the literature 
The main focus of the present study is water used in fresh-cut vegetable processing. The 
single most abundant component of fresh vegetables is water, which may account for 
up to 90% of the total mass of a vegetable. Part of this water cannot be extracted easily, 
and another part is released easily: for example, during cutting. In the course of pro-
cessing, cells of vegetables are cut and bruised so that solutes are mixed with and re-
leased to the process water. Vegetable raw-material processed should be of the best 
quality, and processes should be suitable for the vegetables to be processed. Produce 
quality and safety are the most important targets which must be taken into account at 
every stage of the process. The characteristics of vegetables, as well as processing and 
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water consumption, have an influence on wash and waste water quality and quantity 
(section 1.1). 

Fresh-cut vegetable processing includes many phases, many kinds of equipment and 
techniques. For example, vegetables are first polished and washed, then peeled, cut and 
shredded. Water is an essential part of these processes. Processing causes mechanical, 
biochemical, microbiological and physiological changes to the quality of fresh-cut vege-
tables and to their cellular structure, leading to leakage of nutrients and cellular fluids 
(Heard 2002; Varoquaux 2002). Fresh-cut vegetable processing operations make fresh-
cut produce more susceptible to microbial attack in comparison to intact produce. How-
ever, fresh-cut vegetables can be contaminated at any stage of food production chain. 
Water plays a dual role both in reducing and in transmitting microorganisms to vegeta-
bles (section1.2).  

 Water used in the vegetable food industry often is directly linked to the safety of 
vegetables. To ensure the quality of fresh-cut vegetables, enough high-quality water 
should be available for use. Different kinds of water-decontamination methods are uti-
lized in order to ensure water quality. However, chemical decontamination is forbidden 
in many European countries, including Finland (see section 1.3). 

Waste water from fresh-cut vegetable processing contains high concentrations of 
biochemical oxygen demand (BOD) and suspended solids (SS) such as nutrients (Derden 
et al. 2002; Mebalds & Hamilton 2002; Liu 2007). Waste water treatment can be divided 
into the following types: primary (mechanical), secondary (biological), and tertiary (re-
ducing pathogens) treatments. Biological treatment is widely used for food-processing 
waste water, either by using aerobic treatment, anaerobic treatment, or a combination 
of both. Tertiary treatment is necessary if waste water has been recycled (section 1.4).  

There is a limited amount of prior information about vegetable processing compa-
nies and their use of water, information such as: the quality of water, formation and 
treatment of process water and waste water, and the way of using water in order to 
maintain the quality and safety of vegetables. Water decontamination methods and 
their efficiency on microbes were discussed. Fresh-cut vegetable processing, in which 
any decontamination was not used, also has been little explored and is presented in this 
thesis. In addition, wash- and process water formation in the course of the different 
processing stages was monitored in the study. Previously there was little publicly acces-
sible data about this kind of water use. In addition, prior information concerning on-site 
waste water treatment plants for vegetable processing is sparse. 

For the vegetable processing industry, the major environmental issue to be solved is 
the high consumption rate of high-quality water and the generation of waste water con-
taining high levels of organic load (Derden et al. 2002). In Finland, there is a large quanti-
ty of water available, but water treatment is expensive and water use needs to be con-
trolled. In many countries in which water scarcity is an important national issue, water is 
commonly recycled in vegetable processing (Gómez-López & Gogate 2018). In Finland, 
waste water is not usually reused or recycled in vegetable processing. 
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2. Objectives of the study 
The overall objective of this study was to improve food safety and sustainability of fresh-
cut vegetable production. This study has a strong link with companies, and the aim was 
also that the results help the HACCP (Hazard Analysis and Control Points) processes in 
companies. In this study existing fresh-cut vegetable processing was examined and data 
of wash-, process-, and waste waters as well as of the microbiological quality of vegeta-
bles during processing was collected.  

 
The detailed aims of this study were the following: 
1. To determine the water use in different vegetable processing companies, as well as its 
quantity and the microbiological, physical and chemical quality of the wash-, process- 
and waste waters generated from the different steps of process lines at fresh-cut vege-
table processing companies (Article I).  
2. To examine the level of microbiological quality of fresh-cut vegetables and the chang-
es in the microbiological quality of products during processing. Wash- and process wa-
ters were also analysed. The general aim was to improve the process hygiene of fresh-
cut vegetables (Article II).  
3. To evaluate the effectiveness of decontamination methods, including NEW, ClO2, or-
ganic acids and UV-C, in wash waters for fresh-cut vegetables, in particular the effec-
tiveness of these methods on Yersinia enterocolitica and Yersinia pseudotuberculosis, 
Escherichia coli and Candida lambica (Article III).  
4. To evaluate the performance of two biological and one chemical waste water treat-
ment system on farms carrying out the peeling of vegetables. The general aim was to 
obtain information concerning farm-scale waste water treatment for developing sec-
ondary trades in rural areas and agriculture (Article IV). 
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3. Materials and methods 
The fresh-cut vegetable processing industry and the quality of the activity of fresh-cut 
vegetable processing in Finland was studied. We collaborated with companies in which 
we examined the quality of process waters, the formation of process and waste waters, 
and the decontamination of process waters as well as the microbiological quality of 
fresh-cut vegetable products. The companies were situated in southern, western and 
eastern Finland (Häme, South-west Finland, Satakunta and South Savo). Carrot and let-
tuce are among the most common vegetables in Finland (Luke 2017); these were also 
processed in the companies studied and were used as example vegetables in the study.  

Figure 5 presents wash, process and waste waters generated by the processes of 
carrot, lettuce and other vegetables described and studied in this thesis (articles I–IV). In 
addition, the microbiological quality of carrot (II) was measured. 

 

 

 
Figure 5. Waters and vegetables studied in articles I – IV. 

 

3.1. Examination of vegetable production companies’ process-
es, vegetables and waters 
Samples were obtained from 11 vegetable processing companies. The examined vegeta-
ble processing varied in production, volumes, processes, production stages and products 
(Fig. 6); some purchased their raw material washed, while others treated or processed 
vegetables from their own farm. 
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Figure 6. Types of fresh-cut vegetable production companies examined in this study. Letters indi-
cate production types: washing of root vegetables (A, B), washing and processing of carrots (C), 
processing of different vegetables (D), production of vegetable salads (E). 

Article I elaborated upon the topic of process waters and waste waters in different kinds 
of production phases and in vegetable processing companies: washing of root vegeta-
bles, washing and processing of carrots and other vegetables, and production of vegeta-
ble salads. Article II examined the microbiological quality of untreated whole and 
washed, peeled, peeled and cut, and peeled and grated carrot, as well as their wash- 
and process waters. Article III was addressed to the decontamination of process waters 
for carrots and other vegetables. Article IV examined waste waters from different kinds 
of vegetable processing. Articles I–IV focused on examining wash, process and waste 
waters (Table 7). 

In addition, water consumption was measured in seven companies (I, IV). Article III 
evaluated four different decontamination methods (neutral electrolyzed water (NEW), 
chlorine dioxide (ClO2), organic acid based product (FPW) and ultraviolet-C (UV-C)) with 
different microbes with a suspension test (>100 analyses), as well as decontamination of 
industrial carrot process water treated with UV-C. 
 
Table 7. Number of vegetable processing companies, production type and samples examined in 
articles I-IV.  –  = not examined. 

Article Number of 
companies 

Production 
type  

Samples  
Vegetables Wash 

water 
Process 
water 

Waste 
water  

I 4 B, C, D, E - X X X 
II 6 A, B, C, 3*D X X X - 
III 1 C - - X - 
IV 3 3*D - - - X
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3.1.1. Water consumption levels of different processing stages of vegeta-
ble processing 
Water consumption at different measuring points (washing of vegetable raw material, 
peeling, and other operations such as cleaning of premises and machines) were meas-
ured using water meters (Model GSD, B-Meters) during a four-week period in 2009 in 
two fresh-cut vegetable processing companies (article I), and in 2005 and 2006 in three 
companies (IV). The water consumption involved in washing, processing, use of pressure 
washers and other uses in company D was monitored over three years (I). 

3.1.2. Microbiological quality of vegetables 
From 2009 to 2011, raw vegetable samples were taken from six carrot processing com-
panies in Finland. The levels of processing hygiene of the companies were evaluated 
simultaneously with the vegetable and water sampling (Lehto et al. 2011). The level of 
microbiological quality was measured from whole, peeled, peeled and cut, and peeled 
and grated carrots (II). Microbial analyses from the carrot samples are described in Table 
10 (section 3.2). 

3.1.3. Physical, chemical and microbiological quality of wash- and process 
waters 
Wash water samples intended for microbiological and chemical analyses were taken at 
the end of the working day from a washing basin or from a water pipe (I, II). The anal-
yses of these water samples are described in Table 10 (section 3.2). Samples of wash 
waters of root vegetables for the purpose of microbiological and chemical analyses were 
taken from a outgoing washing water in 2009–2011 (I). The sub-samples were collected 
in the course of one working day (between 7 a.m. and 16 p.m.), once per hour, resulting 
in 9–10 samples per day. The sub-samples were then combined and a two-litre sample 
was taken to the laboratory. Samples were kept in a refrigerator before the microbiolog-
ical and chemical analyses (I). 

Samples of process water from carrot peeling were taken from the peeling machine 
of the company studied and samples of process water from lettuce batch washing were 
taken from the basin used for lettuce batch washing (I). The process water sample (30 
liters) of study III was taken the day before the testing from a container in which whole 
carrots had been washed before they went to filling machines. Industrial process water 
was tested in a laboratory experiment (III) (Table 8 in section 3.1.4) with UV-C with and 
without. The UV-C treatment was applied using a TIO-UV ECO 2000 lamp. The water was 
continuously filtered through a 150 µm filter before treatment (III). 
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3.1.4. Effect of decontamination on microbiological quality of process wa-
ters  
Decontamination methods are utilized in order to maintain the good hygienic quality of 
process water. The efficiency of decontamination methods on different microbes in car-
rot process water was tested with a suspension test and a test of industrial washing 
water (Table 8). Article III evaluated neutral NEW, ClO2, FPW and UV-C in processing 
waters and their effect on E. coli, Candida lambica (yeast), Yersinia enterocolitica and 
Yersinia pseudotuberculosis. The methods employed were: a suspension test with and 
without interfering substance (IS), carrot juice (1%), and UV-C decontamination of carrot 
processing water from the company, with and without filter. 

Suspension tests (EN1276:1998) on pure cultures of microbes were conducted with 
and without 1% of sterile carrot juice as an interfering substance (IS) at a low tempera-
ture between 5 °C and 10 °C (Fig. 7). Candida lambica, E. coli, Yersinia enterocolitica, and 
Yersinia pseudotuberculosis were used as test microbes. The suspensions were diluted 
to contain approximately 105 cfu/ml in test solution at the beginning of the test. The cell 
concentration of C. lambica in suspensions was lower, around 3 log10 cfu/ml. Suspension 
tests are used for indicating disinfectant efficacy (Holah 2014). 
 
Table 8. Studied decontamination methods of water (article III).  

Test and microorganisms 
tested 

Treatment (abbreviation) Concentrations  

Suspension test 

Y. enterocolitica,        
Y. pseudotuberculosis,       
E. coli, C. lambica 

Neutral electrolyzed  
water (NEW) 

30, 50, 100 ppm free 
chlorineb 

Chlorine dioxide (ClO2) 10, 50, 100 ppm free 
chlorine 

Commercial wash* (FPW)  0.125, 0.25, 0.5% dilutions 
UV-C (254 nm) 30 mJ/cm2  

Test of industrial washing 
water 

Total colony count 

UV-C (254 nm) - 
UV-C (254 nm + filter 150 
µm) 

- 

*Commercial citric acid-based produce wash (FPW). 
b The available chlorine was analysed by means of  titration with 0.1 M sodium tiosulphate (Ta-
mine 2008). 
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Carrot juice
(interfering

substance, IS)

Bacterial
suspension

80% test reagent, 
10% carrot juice or distilled water

and  10% bact. suspension

1 ml sample to 9 ml of  diluent with
neutralizer after

0 s, 30 s, 60 s, 3 min, 5 min, 15 min

Cultivation on plate
count agar, 

1 or 2 d  incubation
at 30 °C

 

Figure 7. Procedure of the suspension test for testing decontamination of vegetable process 
waters (III). 

3.1.5. Quality and treatment of waste waters 
Three full-scale waste water treatment systems of the processing companies studied 
were evaluated on site. Waste waters from vegetable processing were treated in sedi-
mentation basins and with chemical precipitation (I, IV), in a trickling filter (IV) and in a 
sequencing batch reactor (SBR) (IV).  

Wash water of root vegetables was piped to two sedimentation basins (110 m3 and 
90 m3)(I) and waste water from washing and processing was piped to the basin (8000 
m3) without any mixing (I). Water remained in the basin from four to six months. Mi-
crobes were not detected in the middle or in bottom level of the basin. 

In the study (I), half-litre waste water subsamples were collected in the course of 
one working day, once per hour. The subsamples were then mixed and a two-litre sam-
ple was taken to the laboratory. Samples were kept in a refrigerator before microbiolog-
ical and chemical analysis (article I).  

In the study (IV) sampling was performed three times, in spring, autumn and winter, 
in the years 2005 and 2006. The processes are illustrated in article IV. An ISCO 6700 au-
tomatic water sampler was used to collect a sample of 100 ml coming from the peeling 
process every half-hour during the working day. One combined sample per day of 500 
ml was taken from the container and stored at −20 °C. Sedimentation chemicals used in 
the study are presented in Table 9.  



Natural resources and bioeconomy studies 80/2019 
 

 41 

Table 9. Sedimentation and neutralization chemicals used for waste water pretreatment (I, IV). 

Chemical Formula Product Producer/Importer Article 

Ferrous sulphate FeSO4 Kemira COP Kemira, Fnland IV 
Ferric sulphate Fe2(SO4)3 PIX-115 Algol Chemicals, 

Finland 
I 

Polyaluminium chlo-
ride 

Aln(OH)mCl3n-m Eka WT91 Eka Chemicals, 
Finland 

I, IV 

Aluminium sulphate Al2(SO4)3 33%-
solution 

Tamro, Finland I, IV 

Calcium carbonate CaCO3 Liquid lime Kemira, Finland IV 
Natrium hydroxide NaOH Lye Tamro, Finland IV 

 

3.2. Microbiological methods 
Microbiological analyses used in the study are summarized in Table 10. Detailed descrip-
tions of the methods are presented in the original publications I-IV. 
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Table 10. Microbiological methods used in the study. 

Samples Microbe type Method Article 
Carrot  
 

Aerobic plate 
count 

ISO 4833:2003: Plating on Plate Count Agar (PCA), 
incubated at 30 °C for 3 days. 

II 

 Presumptive E. 
coli  

•Plating on Violet red bile agar (VRB) incubated at 
44.5 °C for 24 h.                     •NMKL 125:2005. Plating 
on Tryptic Soy Agar combined with VRB. 

II 

 Coliform bacteria  ISO 4832:2006 (E). VRB incubated at 37 °C for 24 h.  II 
 Enterobacteria  ISO 21528-2:2004 NMKL144:2005 VRB glucose agar 

(KVVY LAB M) incubated at 37 °C for 24 h. 
II 

 Yeasts and 
moulds  

ISO 21527-1 NMKL 98:2005 (KVVY). Plating on Di-
chloran Rose Bengal Chloramphenicol agar (DRBC), 
incubated at 22 °C for 5d. 

II 

 Y. enterocolitica RT-PCR and ISO 10273 II 
 Y. pseudotubercu-

losis 
RT-PCR and Bacteriological Analytical Manual Online, 
modified. 

II 

Water  Heterotrophic 
plate count  

Plating on R2A agar (LabM Ltd), incubated at 30 °C 
for 3 days SFS-EN ISO 6222, 1999. HUA (Water Plate 
Count agar), incubated at +22.0 ± 2.0 °C for 68 ± 4 h. 

I, II 

 Faecal coliform 
bacteria  

SFS 4088:2001. Filtration through a Millipore 45 µm 
filter and incubation on mFC agar at 44 °C for 24 h.  

I, II 

 Coliform bacteria 
and E. coli  

Filtration through a Millipore 45 µm filter, incubation 
on Harlequin™ E. coli/coliform agar (LabM Ltd) at 37 
°C for 24 h. Blue-purple colonies were counted as 
presumptive E. coli and all blue-purple and magenta 
colonies were counted as presumptive coliforms; 
Colilert® Quanti-Tray 18®-protocol (IDEXX), incubat-
ed at +36 °C ± 1 °C for 18–21 h.  

I, II 

 Y. enterocolitica 
Y. pseudotubercu-
losis 

RT- PCR LA517H I 

 Sulphite reducing 
clostridia 

SFS-EN26461-2, 1993 I 

 Enterococci SFS-EN 7899-2, 2002 I 
 Total solids SFS-EN 872, 2005 I, IV 
 Total phosphorus SFS-EN ISO 6878, 2004 modified, SFS-EN 1189 (IV) I, IV 
 Total nitrogen SFS 5505, 1988 modified I, IV 
 CODCr ISO 15705, 2002, SFS 5504 (IV) II, IV 
 BOD7 (ATU) SFS-EN 1899-2, 1998 modified I, IV 
 pH SFS 3021 IV 
 NH4-N SFS 3032 IV 
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3.3. Improving of the function of the trickling filter (Article IV, 
case B) 
The construction of the trickling filter examined in study IV was observed to be insuffi-
cient for the kind of waste water process in which the volume of sludge generated was 
high. The sludge could not be properly removed from the filter, and the volume of the 
trickling filter was too small to treat the biological load. Due to these factors the trickling 
filter had to be cleaned from sludge and solids which were accumulated in the filter.  

Because of its lack of functioning, the system was improved after the publication of 
article IV. The software of the process control unit was finally checked and adjusted (Fig. 
8). The lower part of the filter was replaced. In addition, the old, flat bottom was partly 
removed and a new tapered (coniform), solid bottom, made from stainless steel, was 
installed. The new bottom was designed at Luke, (the former MTT), and was built by 
Stainless Team Oy. These improvements increased the active storage capacity of the 
filterfrom 1.8 m3 to 3.2 m3 and the volume of the aeration unit from 5.5 m3 to 6.9 m3. A 
1000 W pump (Leader BVP, Italy) was installed in the bottom of the cone, which circu-
lated water from the bottom up onto the filter material (plastic particles) of the filter. 
The water nozzle was also changed so that it constantly spread water on the filter. 

 

 

 
Figure 8. Trickling filter used in study IV for treatment of waste water (input) a) before (presented 
in article IV) and b) after improvement. 
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3.4. Evaluation of the data and methods of the present study  
In this study, the level of quality of fresh-cut vegetable processing in Finland was studied 
by defining the microbiological quality of vegetables during processing, as well as water 
use and the quality and handling of water. The total amount of fresh water consumed in 
the processes was measured with water meters installed at the companies. Samples 
were collected from eleven companies. Water samples from each day were combined, 
and sub-samples from waters were collected over the course of the week. This was done 
because the quality and quantity of water fluctuates over the course of the day. Combi-
nation samples describe the level quality of wash-, process- and waste water well. 
Chemical and microbiological analyses were conducted in three replicates. The results 
are expressed as an average value of replicates. Ranges of chemical and microbiological 
analyses were calculated. In the suspension test, the sample was taken at certain inter-
vals; it was found that the results were consistent.  

The microbiological quality of fresh-cut vegetables was measured in article II. The 
level of microbes of the longer time is important to know and follow. The findings on the 
trend of microbe level in the processing companies helps in developing preventive strat-
egies for improving the quality and safety of fresh-cut vegetables (Tango et al. 2018). 
The microbial quality of carrot wash- and process waters was studied in article II and 
biological, chemical and microbial quality as well in article I. The quality of process wa-
ters needs to be sufficiently high and it should be monitored regularly. Process water 
can act as a means of spreading microbial contamination in the production batch (Luo et 
al. 2012; Gil et al. 2016). The suspension tests (Holah et al. 1990; Gibson et al. 1995) 
gained important knowledge of the effect of these methods for inactivating various mi-
crobes (E. coli, Y. enterocolitica, Y. pseudotuberculosis and C. lambica).  

Yersinia was analysed by means of cultivation and with RT-PCR (real-time polymer-
ase chain reaction). RT-PCR has provided better estimates and more rapid results for the 
occurrence of yersinia than the cultivation method (Fredrikson-Ahomaa & Korkeala 
2003; Thisted Lamberz et al. 2008; Fukushima et al. 2011). In our study, when RT-PCR 
positive samples were cultivated yersinia was not detected. 

In the present study, level of functioning of waste water sedimentation basins and 
three waste water treatment plants was evaluated on site. In order to make the biologi-
cal waste water treatment process work well, the system needs good control and care, 
such as knowledge of waste water treatment. Only a small amount of information on 
this kind of on-site vegetable waste water treatment plants has been published (Mundi 
& Zytner 2015; Mundi et al. 2017). More practical solutions were needed, however, 
laboratory- and pilot-scale studies of these kinds of waste water treatment plants have 
been performed (Sterritt & Lester 1982; Vanerkar et al. 2013; Chen 2015; Moore 2015).  
 

Statistical analysis 
Statistical analysis was performed from microbiological assays using reasonable analyti-
cal amounts. The number of samples varied and in some cases was quite small.  
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The differences between the number of cfu values in the different samples of car-
rots and carrot processing waters were investigated using linear mixed models with 
function lme in library nlme in the statistical program R (R Core Team 2018). Log trans-
formation was applied to the cfu values when the models were estimated. In the water 
models, the phase of a process (a factor with three categories: 1 = carrot wash water, 2 
= carrot process water, and 3 = lettuce wash water) was used as an explanatory variable, 
and in the carrot models, the phases (a factor with four categories) were: 1 = washed, 
whole carrots, 2 = washed and peeled carrots, 3 = washed, peeled and cut carrots, and 4 
= washed, peeled and grated carrots. The code for a factory was used as a random factor 
in the models to take into account the fact that samples from the same origin could be 
more similar than randomly collected samples.  

Other biological, chemical and volume measurements were implemented to find 
out the overall concentration levels and in these cases no statistical comparisons were 
performed. 
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4. Results 
Water consumption and quality were measured in different companies, as well as the 
microbiological quality of fresh-cut vegetables processed at those companies. The water 
decontamination of process water of carrot- and on-site waste water treatment was 
also tested. 

4.1. Water consumption of different processing stages of vege-
table processing 
Different kinds of raw material, processes and processing machines are used in vegeta-
ble processing, a fact which influences water use and quality. Water consumption, 
measured in six fresh-cut processing companies, was 2.0–6.5 m3/t of finished product 
(Table 11).  
 
Table 11. Water use in different vegetable companies (I and IV). 

Processing of vegetables Article Company Water used (m3/t of product) 

Washing of root vegetables  I B 2.0 
Washing of carrots  IV A 2.5 
Processing of root vegetables  I C 3.5 
Processing of vegetables  I D 4.4 
Processing of lettuce  un-

published 
E 2.8 

Processing of root vegetables  IV D 6.5 

 
The volume and organic matter content of wash and process water were measured 

in two companies (C, D). The total volumes of water from the washing and polishing 
phases (38 and 43%) and from peeling and rinsing (45 and 48%) were rather similar in 
both companies. Most of the organic load (BOD7) and nutrients were released into the 
water from the peeling of root vegetables, whereas the volume comes primarily from 
rinsing and washing (Fig. 9)(I). 
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Figure 9. Comparison of carrot washing and polishing, peeling and rinsing as well as other water 
use during carrot processing. The mean and ranges (min-max) of the volume (%) and BOD7 (%) of 
water were measured at two plants (I), n= 2. 

Water consumption was measured over the course of three years in a company 
which washed and processed root vegetables (I). Water was used for washing (30%), low 
pressure cleaners (14%), for processing (42%) and washing of premises and machines 
(13%). The total water use varied among months according to the season, volumes of 
vegetables, and quality of raw material. When water consumption was measured over 
the cource of three years, consumption was found to have decreased by 5% during the 
first two years and by 10% during the third year, compared to the situation at the begin-
ning of the taking of measurements. Reduced consumption was achieved in the washing 
phase, which was made more effective by changing water feeders to more efficient ones 
and by monitoring water consumption with water meters (I). 

4.2. Microbiological quality of vegetables 
During the processing of fresh-cut vegetables the counts of microbes in the vegetables 
changed at different stages of the process (Fig. 10). In the article II, washed, unpeeled 
whole carrots in general contained the highest total microbial counts (mean 5.3 log10 
cfu/g) and coliform bacteria (mean 3.8 log10 cfu/g). An indicative difference was found in 
the total microbial count which was lower in peeled carrots (p = 0.095) than in whole 
carrots. Statistically significant difference in the total microbial count was found be-
tween whole and and cut carrots (p = 0.014): the microbial count was lower in cut than 
in whole carrots. An indicative difference was found in the count of coliform bacteria; 
microbial count was lower in peeled than in whole carrots (p = 0.060). There was also an 
indicative difference in the cfu values of molds between whole and cut carrots (p = 
0.072); the count of molds seemed to be lower in cut carrots than in whole carrots. Oth-
er differences were not statistically significant. Escherichia coli was not detected in any 
carrot sample (II).  
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Figure 10. The means and ranges (min-max) of total microbial count, coliform bacteria, entero-
bacteria, yeasts and molds in whole, peeled, cut and grated carrots (II). Statistically significant 
differences (p < 0.05) between whole carrots and the processed carrots are indicated with (*), 
and indicative difference (0.05 < p < 0.10) with (.). The numbers (N) of samples analysed are 
marked in the figure. 

4.3. Microbiological and chemical quality of wash and process 
waters 
The microbiological quality of wash and process waters was measured in three compa-
nies in which root vegetables were washed (II). In addition, in the article II wash and 
process waters were collected from six carrot washing and processing companies. The 
results are collected in Fig. 11.  
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Figure 11. The means and ranges (min-max) of microbes of wash- and process waters of root 
vegetables (primarily carrots) and process waters of lettuce (I, II). The numbers (N) of samples 
analysed are marked in the figure. Significant differences (p < 0.05) between wash water and the 
other waters are indicated with (*), p < 0.05). Differences in faecal coliforms were not analysed 
statistically. 

 

A statistically significant difference in the counts of total microbes was found between 
carrot wash water and carrot process water (p = 0.012): the microbial count was lower 
in process water than in wash water. In addition, a significant difference in the total 
microbial count was found between carrot wash water and lettuce wash water (p = 
0.031). There was no difference in coliform bacteria counts between carrot wash-, pro-
cess- and lettuce wash waters (p > 0.10). These statistical analyses have not been pre-
sented before. Non-pathogenic Yersinia enterocolitica was found in almost all wash wa-
ter samples, but in only two of the ten process water samples (I) (Table 12). 
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Table 12. The presence of Y. enterocolitica in carrot and water samples analysed by cultivation (II).  

Sample deatils Total N of 
samples 

N of PCR positive sam-
ples by cultivation 

% positive samples 

Carrot, washed 9 5 67 
Carrot, washed and 
peeled 

5 3 60 

Carrot, washed, 
peeled and cut 

4 4 100 

Carrot, washed, 
peeled and grated 

2 1 50 

Wash water 5 4 80 
Process water 10 2 20 
Waste water 6 5 83 
N = number 
 

Some carrot and process water samples were analyzed by means of RT-PCR, which 
is more sensitive than cultivation. With the RT-PCR method, pathogenic Y. enterocolitica 
was observed in all washed carrot samples and in almost all peeled carrot samples. 
However, when the positive RT-PCR samples were cultivated, pathogenic Y. enterocoliti-
ca was not detected (II) (Table 13). 
 
 
Table 13. Presence of pathogenic Y. enterocolitica in carrot and process water samples analysed 
by PCR (II). 

Sample Total N of 
samples 

N of PCR positive sam-
ples 

% positive samples 

Carrot, washed 3 3 100 
Carrot, peeled 7 5 71 
Carrot, grated 3 1 33 
Process water 7 2 29 
 

The chemical quality of wash- and process waters was determined in three compa-
nies which wash vegetables, in three companies which wash and process root vegeta-
bles and in one lettuce processing company (I). Concentrations of total solids (TS), bio-
logical oxygen demand (BOD7), chemical oxygen demand (CODCr), and nutrients P and N 
of the samples of washing and processing waters of root vegetables and process waters 
of lettuce are presented in Figures 12 and 13. 
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Figure 12. Mean concentrations and ranges (min-max) of TS, BOD7 and CODCr of wash- and pro-
cess waters of root vegetables (N = 6) and process water of lettuce (N = 2) (I).  

 

Figure 13. Means and ranges (min-max) of concentrations of nutrients P and N of wash- and 
process water of root vegetables (N = 6) and process water of lettuce (N = 2) (I).  

4.4. Effect of decontamination on microbiological quality of  
process waters  

Suspension test  
In the suspension test, 50 ppm NEW inactivated Y. pseudotuberculosis in 5 minutes in 
the presence of interfering substance IS (III). At the lower concentration of 30 ppm, inac-
tivation took 15 minutes. A 5 log10 cfu/ml reduction of Y. enterocolitica was achieved by 
30 ppm NEW in 5 minutes in the presence of IS. E. coli was more sensitive than yersinia, 
because it was inactivated by 30 ppm NEW in 3 minutes. A 3 log10 cfu/ml reduction of C. 
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lambica took 0.5 minutes. These results were from samples in which an interfering sub-
stance IS was added (III). 

ClO2 efficiently decreased Y. enterocolitica, Y. pseudotuberculosis and E. coli counts 
in water (> 4 log10 cfu/ml reduction), but at 10 ppm of ClO2 concentration IS impaired 
the effect. In the presence of IS at 10 ppm ClO2 showed no effect on C. lambica (Table 
14). 

 
Table 14. Log reductions of Yersinia enterocolitica, Y. pseudotuberculosis, E. coli and C. lambica 
colony counts in water suspension treated with NEW, ClO2 and FPW (III). Reaction time = 30 s. Y. 
enterocolitica EELA 56 and Y. pseudotuberculosis EELA 549 were obtained from the culture collec-
tion of the Finnish Food Authority. E. coli DSM 787 and C. lambica VTTC-00360 were obtained 
from the VTT Culture Collection. 

Treat-
ment 

Concen-
tration 

Microbe 

  Y. entero-
colitica  
EELA 56  

Y. pseudotu-
berculosis  
EELA 549 

E. coli  

DSM 787 

C. lambica  

VTTC-00360 

  No IS With 
IS 

No IS With 
IS 

No IS With 
IS 

No IS With 
IS 

NEWc 30 ppm ** * *** * * NE * * 
 50 ppm *** * ** ** *** ** * * 
 100 ppm *** *** *** *** *** *** * * 
ClO2

c 10 ppm *** * ** NE *** * * NE 
 50 ppm *** ** *** ** *** *** * * 
 100 ppm  *** *** *** *** *** *** * * 
FPW 0.125% - - - - ** * * NE 
 0.25% - - - - *** * * * 
 0.5% - - - - *** ** * * 
c Concentration of free chlorine, IS = interfering substance 
*** = > 4 log10 reduction, ** = > 3 log10 reduction, *= > 2 log10 reduction  
NE = mild or no effect, less than 2 log10 reduction,   – = not measured 

 
FPW solutions reduced the numbers of E. coli by 5 log10 cfu/ml within 3 minutes. IS 

diminished the effect so that the maximum reduction was attained in less than 3 min: 
4.2 log10 cfu/ml reduction for 0.5% FPW solution and 2.5 log10 cfu/ml reduction for 0.25 
and 0.125% FPW solutions. C. lambica was inhibited to the limit of detection (2.8 log10 
cfu/ml), at all concentrations with or without IS, except for the 0.125% solution with IS, 
with which the maximum log reduction was achieved in 15 minutes (III). 

The effect of UV-C on logarithmic reductions of E. coli was more than 2 log10 cfu/ml 
in 5 minutes and 5 log10 cfu/ml in 15 minutes. The influence of the interfering substance 
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was minor. The reduction of C. lambica counts in water suspension treated with UV-C 
was 2.0 in 5 minutes and reached the limit of detection, 2.5, in 15 minutes. When the 
interfering substance was used, the respective reductions were 1.5 and 1.8 log10 cfu/ml 
(Table 15). 
 
Table 15. Log10 reductions of Yersinia enterocolitica, Y. pseudotuberculosis, E. coli and C. lambica 
colony counts in water suspension treated with UV-C (III). Reaction times were 0.5‒15 minutes. 
 
UV-C Microbe 
Time Y. enterocolitica  

EELA 56  
Y. pseudotuberculosis  
EELA 549 

E. coli  
DSM 787 

C. lambica  
VTTC-00360 

  No IS With IS No IS With IS No IS With IS No IS With IS 
0.5 min * * * * * * NE NE 
5 min * * * * * * NE NE 
15 min *** *** *** *** *** *** * NE 
IS = interfering substance 
*** = > 4 log10 reduction, **= > 3 log10 reduction, * = > 2 log10 reduction 
NE = mild or no effect, less than 2 log10 reduction 

 
UV-C treatment of industrial processing water (III) 

The water from carrot processing was treated with UV-C with and without filtration. At 
the beginning of the test, the total colony count of the processing water was 7.1*105 
cfu/ml and pH 6.58. After 10 minutes, the colony count decreased by 2.5 log10 cfu/ml 
using UV-C treatment and by 3.5 log10 cfu/ml when the UV-C was combined with filtra-
tion (150 µm filter). After 30 minutes, the reductions were 2.5 and 5.0 log10 cfu/ml, re-
spectively (III). 

4.5. Quality and treatment of waste waters 
With regard to waste water treatment, sedimentation basins and their efficiency (I, IV), 
three on-site waste water treatment plants (IV) and tests of chemical precipitation (I) 
were studied. Reductions of treatments of article I are presented in Fig. 14 and treat-
ments of article IV in Fig. 15. The trickling filter was improved and reductions after this 
improvement are found in Table 16. 
 

On-site waste water treatment  
Reductions of TS, BOD, COD, TP and TN were compared in two sedimentation basins. 
Colony counts of microbes were at the same level in the incoming water and in the 
egress of the basin and not detected in the middle or in the ground of the basin. The pH 
of the waste water was between 5 and 6 (I).  
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Figure 14. Comparison of the reductions of TS, BOD7, COD, TP and TN of two waste water sedi-
mentation basins of a company carrying out root vegetable washing, and washing and processing 
(II). TS = total solids, TP = total phosphorus, TN = total nitrogen. 

 

Three waste water treatment methods (trickling filter, sequencing batch reactor 
and sedimentation with chemicals) were compared in the article IV. Waste water from 
processing of root vegetables was treated in a sequencing batch reactor (SBR); the re-
duction of BOD7 was more than 99%, COD 97%, phosphorus about 95% and nitrogen 
94% (IV). Samples were taken three times, in the spring, autumn and winter. 
 

 

Figure 15. The means and ranges (min-max) of reductions of different-quality parameters of 
waste waters (N = 3) treated with different waste water treatment methods: biofilter/trickling 
filter, SBR (sequencing batch reactor) and sedimentation bond (IV). Treatment took place year 
round. The cold season did not influence the biofilter and SBR, because the trickling filter was in a 
warm place and the SBR was below ground. Waste water treatment processes also produce heat. 
The sedimentation bond was covered by ice during the winter. 
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The reduction of BOD7 was only 63% for waste water treated with the trickling filter 
(IV). The filter was improved later (chapter 3.4); after these improvements, reductions of 
BOD7 and COD were 93% and 92%, respectively (Table 16). 
 
Table 16. Properties of untreated and treated waste waters before (IV) and after improving the 
trickling filter system. 

Pa-
rame-
ter 

Before improvements (IV) After improvements         
(previously unpublished) 

Influent Effluent Reduc-
tion 

Influent Effluent Reduc-
tion 

 mean range mean range %   % 
BOD7 910  820–

1000 
340  250–

450 
63 662 44 93 

COD 1445  1240–
1600 

610  430–
800 

58 1050 80 92 

pH 4.7 4.5 - - 5.0 7.2 - 
Q 7 m3/d -                      - - 6 m3/d - - 

- = not applicable 
 
 

Chemical precipitation 
All tested chemicals (Table 9, section 3.1.5) improved the precipitation of organic matter 
and nutrients of waste waters. With the precipitation of vegetable washing water, about 
80% of organic matter was precipitated (COD was reduced from 2700 to 500 mg/l) (II). In 
the carrot processing water, the best results were achieved using a 0.05%-solution of 
ferrisulphate and polyaluminium chloride and 20–25% of the organic matter was precip-
itated. When the waste water of vegetable washing was examined, the best dosages of 
aluminium sulphate and ferrisulphate were 0.1% and 0.05% solutions, respectively. In 
the article IV aluminium sulphate Al2(SO4)3 was used in a sedimentation basin in which 
there was no aeration. Water remained in the basin four to six months. The basin was 
nearly anaerobic. The reduction of BOD7 was 67% (IV). 
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5. Discussion 
The objective of fresh-cut vegetable processing was to produce high-quality fresh-cut 
produce with reasonable inputs (Gil et al. 2009; Ölmez 2013). Water is an important part 
of food processing (Kirby 2003). In the present study, fresh-cut vegetable processing and 
waters were examined over the course of many years in 11 fresh-cut vegetable compa-
nies in Finland. In Finnish fresh-cut vegetable companies, the production of fresh cut 
vegetables was based on high-quality water and clean processes. Chemical water decon-
tamination was not used; nevertheless, the quality of vegetable products was good. In 
Finland, water of high quality was available abundantly, but special attention must be 
paid to process hygiene and process water quality in order to maintain product safety. 

5.1. Water consumption of different processing stages of vege-
table production 
Fresh-cut vegetable industry is one of the major water intensive sectors of the food pro-
duction and processing (Kirby 2003; Ölmez 2013). The minimization of water use and 
waste water discharges are big challenges for the fresh-cut industry that will be increas-
ingly required to implement sustainable strategies for water saving (Ölmez & Kretzsch-
mar 2009; Gomez-López et al. 2013; Manzocco et al. 2015). In the present study, water 
use in the different vegetable processing companies was 2.0–6.5 m3/t of finished prod-
uct (I), and these volumes primarily came from the washing stage (I). The recommended 
quantity of water to be used in the fresh-cut industry is 5‒10 m3/t of product before 
peeling and cutting, and 3 m3/t after peeling and cutting (Ahvenainen 2000). According 
to Ölmez (2013), water consumption in the vegetable production industry was in the 
range of 2.4‒11 m3/t of product. The present results (I) of water consumption in Finland 
were lower when compared with the recommendation and the result mentioned above. 
However, the present results were similar to the results of Mundi et al. (2017), who es-
timated that up to 5 m3 of waste water was generated per tonne of produce in post-
harvest processing of vegetables in Canada. The measured quantity of water in the pre-
sent study clearly differs from other results in the literature. This could be caused by the 
different habits of water use and a lack of water meters, leading to water quantities 
presented only as estimates in the literature.  

When water consumption is measured regularly, it is possible to control water use. 
In the present study, water consumption decreased by 15% during the three-year period 
examined. According to Ölmez (2013), a systematic approach to water management can 
lead to about a 30–50% decrease in total water use of water in fresh-cut vegetable pro-
cessing. When the costs of water rise, different means of water recycling and reuse will 
become a viable operation (Hancock 1999). The quality of process water in fresh-cut 
vegetable processing is critical for vegetable quality. It is recommended that water used 
during minimal processing be monitored to assess its microbial quality (EFSA 2014). Liu 
(2007) states that the generalized description of waters from vegetable processing 
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needs to be understood as an approximation for explaining a complex issue. This com-
plexity was also observed in the present study, when water use was monitored over 
three years (II). For example, the water consumption varied between months and ac-
cording to season, volumes of vegetables processed, and the quality of raw material 
used in the same company. In the autumn, when root vegetables were just harvested 
and in high seasons, e.g., before Christmas, water consumption was high. Daily water 
consumption in the washing period varied in different companies from 3.5 to 212 m3 
and in processing from 22 to 105 m3 (I). Water consumption was thus shown to vary not 
only according to natural variation during the periods of production, but also depending 
on the effectiveness of the processes themselves. Water used and waste water generat-
ed should be monitored systematically, so that the quantitative and qualitative water 
requirements for each particular process can be identified (Kirby et al. 2003; Ölmez 
2013). 

5.2. Microbiological quality of fresh-cut vegetables and wash, 
process and waste waters 
Self-monitoring of food safety focuses on the evaluation and control of foodborne haz-
ards. The identification of spoilage organisms carried by fresh-cut vegetables is an im-
portant step in developing approaches to inhibiting and controlling these organisms (Fan 
& Song 2008). In this study level of microbes in wash, process and waste waters from 
fresh-cut vegetable processing plants was evaluated and samples were collected from 
companies. In the present study, E. coli values in vegetables were < 10 cfu/g (below de-
tection limit), but in other studies E. coli has been detected in processed vegetables 
(Bohaychuk et al. 2000; Abadias et al. 2008; Olaimat et al. 2012; Jeddi et al. 2014). Ac-
cording to the present study, the total microbial counts and coliform bacteria counts in 
peeled and cut carrots were lower than in whole washed carrots (II). Total microbial 
counts can be seen to be higher in grated than in cut carrots (II). Processing of fresh-cut 
vegetables increases their perishability (Cantwell & Suslow 2002; Abadias et al. 2008), 
and each step in their processing affects the quality and microflora of fresh-cut vegeta-
bles. In this study, grated carrots contained the highest microorganism counts. In addi-
tion, Torriani & Massa (1994) found that the peeling of carrots reduced the amount of 
total microbes about 2 log10 cfu/g, but the amount of microbes increased during cutting.  

Microbes found in carrot and lettuce, come mainly from soil but also from post-
hatvest handling and prosessing (Delaquis 2005; Siponen & Niskanen 2006; Martinez-
Vaz et al. 2014). The ability to remove naturally present microorganisms from fresh-cut 
produce by means of washing is limited (0.5–2.0 log10 reduction) (Tirpanalan et al. 2011; 
Olaimat & Holley 2012; Goodburn & Wallace 2013; Van Haute et al. 2013). On the other 
hand, according to Holvoet et al. (2012), during the production of fresh-cut vegetables 
the washing step has been identified as a potential pathway for dispersion of microor-
ganisms to the end product. The first washing phase of harvested carrots removes soil 
from the surface of carrots, which leads to microbiological load of the washing waters. 
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In the present study, the total microbial count was lower in process water than in wash 
water of carrots (I,II). However, the counts of faecal coliforms were 1.5 log10 higher in 
process water than in wash water (II). As an example, at the depth of 0–15 cm, total 
microbial counts of 8–9 log10 cfu/g have been observed in soil (Hoorman & Islam 2010).  

In spring, when carrots have been stored for more than six months, the risk of yer-
sinia has been observed (Finnish Food Authority 2009). In the present study, nonpatho-
genic Yersinia enterocolitica was found in several water and carrot samples by cultiva-
tion, but by more sensitive RT-PCR, also pathogenic Y. enterocolitica was observed in 
many carrot samples: all washed carrot samples and in 70% of peeled carrots (II). Non-
pathogenic Y. enterocolitica was also observed in almost all our wash and waste water 
samples, but in only two of the ten process water samples (II). According to Bari et al. 
(2011), water is probably a significant reservoir for nonpathogenic Y. enterocolitica. In 
the present study, Yersinia pseudotuberculosis was not detected in the vegetable sam-
ples. If the environment of growth is favorable for nonpathogenic yersinia, possibly 
there is also a risk for the growth of pathogenic yersinia. The effect of decontamination 
methods on yersinia in vegetables has been examined only in a few studies (Escuerda et 
al. 1999; Velazquez et al. 2009; Delibato et al. 2018), but in the present study decontam-
ination of yersinia was not examined on vegetables, but on waters instead. Earlier stud-
ies about decontamination on yersinia on process or waste waters were not found. In 
the study by Selma et al. (2006) ozone treatments (1.4 and 1.9 ppm) for 1 min decreased 
the Y. enterocolitica population in clean water by 4.6 and 6.2 log10 cfu/ml, respectively. 
More generally, the effect on decontamination has typically been measured on vegeta-
bles and studies on waters are very few.  

5.3. Chemical quality of wash and process waters 
In the present study, the majority of the organic load (> 90%) and nutrients were trans-
ferred to water from the processing stage (peeling and polishing) and most of the total 
solids from washing. Concentrations of nutrients were the highest in process waters 
from processing of root vegetables, and the lowest in lettuce process waters (I). Concen-
trations of TS and nutrients in the lettuce washing and processing waters were low when 
compared to that of root vegetables (I). In addition, Mundi et al. (2017) found that the 
lower values of BOD, COD, total P and N in lettuce wash water, when compared to root 
vegetables, and processing produced higher levels of these values. Water from vegeta-
ble processing contains dissolved organic solids from various operations and debris from 
mechanical processing (Liu 2007). In the present study, most of the organic load came 
from the peeling phase (I). 
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5.4. Effect of decontamination on microbiological quality of pro-
cess waters 
The outbreaks associated with fresh-cut vegetables have been increased in the recent 
years (Jeddi et al. 2014). Washing of fresh-cut produce with sanitizing solutions has been 
considered the only step to achieve a reduction in spoilage micro-organisms (Alegre et 
al. 2013). The effect of decontamination on different microbes in water differs with 
time, concentration, decontamination method, and turbidity of water. The ability of 
chemical substances or physical decontamination methods to remove natural microor-
ganisms from fresh-cut produce is limited. Some microbial reductions occur, but total 
reduction is unachievable with most methods (Tirpanalan et al. 2011; Olaimat & Holley 
2012; Goodburn & Wallace 2013; van Haute et al. 2013). Organic load and turbidity of 
water decrease the efficiency of the methods. In the present study, interfering sub-
stances impaired the effect of chlorine dioxide (ClO2), neutral electrolyzed water (NEW), 
FPV and UV-C (III). Publications of water treated with UV-C decontamination of vegeta-
ble process waters are few, but instead this method has widely been used to decontam-
ination of vegetables (Artes et al. 2009; Turtoi 2013; Fan et al. 2017).  

In the present study, the effect of UV-C on E. coli in water was more than 2 log10 
cfu/ml in 5 minutes and 5 log10 cfu/ml in 15 minutes in the suspension test (lll). Ignat et 
al. (2015) used UV-C light to treat lamb’s lettuce wash water. Water was obtained from 
5 washing cycles and about 3 log10 reductions in total viable count were achieved by 
exposure to UV-C light. Iceberg lettuce and oak leaf lettuce wash water was treated with 
UV-C and reduction was detected of 3.2 and 2.1 log10 cfu/ml of total bacteria, respec-
tively (Wulfkuehler et al. 2013). In the study by Selma et al. (2008), a 2.4 and 3.9 log10 
cfu/ml natural microflora reduction was observed when an UV-C light was applied for 60 
min for the decontamination of onion and escarole wash water, respectively. With long-
er treatment times, good reductions in process waters are attained. The decontamina-
tion efficacy of UV-C light is highly related to the presence of suspended particles (Mil-
lan-Sango et al. 2017) and these systems may also require an additional capital cost of a 
filtration system to remove particulate matter from the water stream (Garrett et al. 
2003).  

In the present study the efficiency of decontamination methods on different mi-
crobes in carrot process water was tested with a suspension test in a laboratory. How-
ever, this method is not commonly used in analysing of vegetable processing waters. 
The test gave a good indication of time and concentration at which a certain level of 
decontamination was reached. Suspension tests are useful for indicating general decon-
taminant efficacy and for assessing parameters such as contact time and interfering 
matter (Reybrouck 1998).  

Organic acids such as acetic, citric, malic, tartaric and propionic acids are classified 
as GRAS (Generally Regarded as Safe) compounds by the FDA (2018), and can be added 
to vegetables as preservatives (Feliziani et al. 2016). In the present study, the commer-
cial citric acid based product (FPW, Fresh Produce Wash) was tested by suspension test 
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(III). An interfering substance (IS, carrot juice) diminished the effect of reducing numbers 
of E. coli so that the maximum reduction with IS was reached in less than 3 minutes and 
reduction was 4.2 log10 cfu/ml for 0.5% FPW solution and 2.5 log10 cfu/ml for 0.25% FPW 
solution. C. lambica was inhibited to the limit of detection (2.8 log10 cfu/ml) in concen-
trations 0.5 and 0.25% of FPW with or without IS (lll). Virto et al. (2006) studied the inac-
tivation of E. coli by organic acids, citric (0.01‒0.15 mg/l) and lactic (1‒60 mg/l) acids, at 
different temperatures (4, 20 and 40 °C) with modelling. The bactericidal effect of both 
acids was dependent on time and temperature of exposure and on acid concentration. 
Lactic acid was more effective than citric acid. According van Haute et al. (2013), weak 
organic acids were inefficient water disinfectants. In addition, in the present study the 
reductions detected were less than 3 log10 cfu/ml, when the manufacturer’s recom-
mended FPW concentration of 0.25% was used.  

Common recommendations do not exist for the decontamination of process water 
of vegetables. Drinking water is disinfected and chlorine is present in most drinking wa-
ter at concentrations of 0.2–1.0 mg/l (WHO 2017). Decontamination is utilized to main-
tain the quality of the wash water of fresh cut vegetables despite limited, direct micro-
bial benefits on the produce (Gil et al. 2009). In Finland, as well as in many other EU 
countries, chemical treatments of process waters are restricted by food legislation. 
However, UV-C, for example, is suitable for decontamination of processing water of 
vegetables (Kekki 2013). The implementation of UV-C decontamination technology 
could decrease the water use of the process as well the risk for residuals of toxic chemi-
cals in the final product (Ignat et al. 2015). The effect of UV-C light is highly related to 
the presence of suspended particles in water (Millan-Sango et al. 2017)(III). Further re-
search at the laboratory scale on the efficacy of decontaminants on washing water is 
recommended, in particular with experimental designs reflecting industrial conditions 
(Banach et al. 2015). Technically and economically effective chlorine-alternative decon-
tamination technologies are the main goal of the fresh-cut industry (Petri et al. 2015). 
Regulations should be re-examined toward the global of harmonization of processing 
aids for water decontamination (Gil et al. 2009; Coroneo et al. 2017). It is recommended 
that the best quality potable water be used for the final rinse of intact vegetables prior 
to fresh-cut processing (Derden et al. 2002).  

5.5. Quality and treatment of waste waters 
The environmental issues of vegetable processing are mainly related waste water and 
treatment of by-products from the process (Helsky et al. 2006). The waste water from 
vegetable processing consists of organic substances, like cellular fluids, starch and other 
carbohydrates. The load of untreated waste water of a small vegetable production com-
pany is corresponding to the untreated waste water load of more than 100 persons 
(Helsky et al. 2006). In general, in Finland waste water from vegetable processing should 
be piped to a municipal waste water treatment plant. If this is not possible, waste water 
should be treated on-site (Finnish Government Decree 157/2017). In Finland, companies 
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processing fresh-cut vegetables are often located in rural areas (Isosaari et al. 2010). 
Many municipalities in Canada and in Finland as well impose a surcharge fee on food 
processors for the waste water that is discharged into the sewer system (Lam 2015).  

According to the EU water framework directive (2000/60/EC) and the national regu-
lations of the Finnish Council of State (Finnish Government Degree 157/2017), the advi-
sory reductions resulting from domestic waste water treatment systems should be at 
least 80% for organic matter, 70% for total phosphorus and 30% for total nitrogen. For 
the food industry, there is also the recommendation of the Baltic Marine Environment 
Commission (Helcom 1996) for treatment plants with a waste water flow exceeding 25 
m3/d. Small plants are also obliged to reach the corresponding purification levels of 
treated waste water, except for removal of nitrogen. In the present study (IV), only the 
sequence batch reactor (SBR) reached the requirements of current legislation, as well as 
the trickling filter after improvement (section 3.3).  

A waste water treatment process should be capable to clean up polluted waste wa-
ter in a sustainable way; economical, safe and accessible (Aderibigbe et al. 2017). In the 
present study (lV), the reduction of BOD7 in the trickling filter was only 63%. The main 
problem was the pH of the waste water, which was too low for efficient biological activi-
ty and the high organic load. If the biological process is not effective enough, organic 
matter may be precipitated onto the plastic particles of the filter. Due to the poor per-
formance of the trickling filter system, it was partly reconstructed after publication of 
article IV. The active storage capacity of the filter was increased from 1.8 m3 to 3.2 m3 

and the volume of the aeration unit from 5.5 m3 to 6.9 m3. The reduction of BOD7 was 
93% after the improvement of the filter. Reductions of total solids of root vegetable 
wash water in sedimentation basins was 60% and that of carrot wash- and process wa-
ter 77% (I). In the sedimentation pond, in which the pH of waste water was adjusted 
with liquid lime (CaCO3) to pH 6−7 and aluminium sulphate (Al2(SO4)3) was added to pre-
cipitation, reduction of TS was 94% (lV).  

Levels of E. coli, coliform bacteria and enterococci were similar in wash- and process 
waters of root vegetables. The levels of E. coli, coliform bacteria and enterococci were 
1.1 log10, 2.5 log10 and 0.4 log10 cfu/100 ml higher in waters from lettuce processing than 
in waters from root vegetable processing, respectively (I). Yersinia enterocolitica was 
found in all waste water samples (I). A few publications are available concerning the 
formation and hygiene of waste water in the fresh-cut industry. Water reuse is becom-
ing an increasingly common component of water resource planning worldwide as the 
costs of waste water disposal rise and drought become more common (Radcliffe 2004; 
Apostolodis et al. 2011). The waste water of vegetable processing should be treated 
before reuse because of the organic load and the microbial quality of waters. The Codex 
Alimentarius (2003) states that, if water is circulated for re-use, no risk to the safety and 
suitability of food should be caused. In Finland, waste water is rarely used for irrigation, 
and if it is used for that purpose, not for irrigation of vegetables. In the companies in this 
study, when biologically treated waste water reached the legal requirements it was 
piped to a ditch. 
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5.6. Applicability of the data to fresh-cut vegetable production  
The need for this kind of research has come from Finnish companies that process vege-
tables. Companies need knowledge and information for developing their business. In 
most cases, companies have first cultivated vegetables, and then expanded their opera-
tions to vegetable processing when the demand for fresh-cut vegetables grew. From this 
point of view, companies needed information about process hygiene, microbial quality 
of vegetables, process water quality, waste waters, waste water treatment and water 
conservation. 

The companies also understood the existing risks of fresh-cut vegetables and hoped 
for ways to manage them. This research has been designed to meet the needs of com-
panies, and was accomplished in co-operation with them. Environmental authorities 
require that waste water and wastes are managed appropriately, and the Finnish Food 
Safety Authority also has its hygiene requirements. In addition, according to the re-
quirements of the trade, the entire production chain must be in order.  

Fresh-cut vegetable processing requires a lot of water, and waste waters contain 
large amounts of organic matter which were observed to cause a notable load on natu-
ral water systems. Companies needed information on the quality, quantities and treat-
ment methods of waste water; the lack of waste and waste water treatment is a barrier 
to business. In this study, various waste water treatment solutions were introduced for 
the companies. In addition, for example, biological waste water treatment plants were 
built in several companies. With regard to vegetable processing companies and interest 
groups, guidance for best practices in the fresh-cut vegetable processing industry was 
found in the projects related to these studies collected, documented and reported in 
guidance for best practices evaluated by the Finnish Food Authority (2015)  

There are many research studies of different techniques for the decontamination of 
process water (Gil et al. 2009; Banach et al. 2015, Gil et al. 2015; Gomez-Lopez et al. 
2015,Gomez-Lopez et al. 2017). In Finland, as in many other European countries, the use 
of chemicals such as chlorine in the rinsing water of fresh-cut vegetables is forbidden 
(Kekki 2013). According to this thesis, fresh-cut vegetables of good quality could be pro-
duced without any water decontamination.  

Each company must establish its own specific validation protocols for evaluating 
wash system performance, and each company is responsible for the efficacy of those 
systems (Gombas et al. 2017). Not all risks can be eliminated; the aim is to minimize the 
risks (EFSA 2011). Hygiene and health problems with pathogens should be prevented as 
early as possible in the production chain. The level of microbes in vegetables and pro-
cess water should be monitored in the company with HACCP (Hazard Analysis and Criti-
cal Control Points). Self-monitoring and trend analysis of microbial counts in the process 
and products are ways of forecasting and preventing microbial contamination of prod-
ucts, and should be examined in the long term (Lehto et al. 2015). 

Future trends in the field of fresh-cut vegetable processing should include: more 
gentle processing techniques with less waste and waste water, larger production com-
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panies with process automation, automatic sampling, rapid tests and more safe prod-
ucts. In addition, different kinds of vegetable raw material suitable for processing and 
products should be developed. 
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6. Conclusions 
1. The quantity and quality of water streams from the vegetable processing vary consid-
erably with the operations of the processing and seasons. There are no two companies 
with similar processes and processing capacity of vegetable products, who have similar 
water use and generation of waste waters. There are too many variables (technical or 
otherwise) in the process. Most of the waste water in this study was generated from the 
washing and processing of vegetables, but most of the organic load (90%) came from 
the vegetable peeling phase. Water consumption could be decreased by regular moni-
toring of water consumption with water meters and by localizing the main consumption 
points. Information about, which part or parts of the process used the most water and 
which parts generated the most waste water, helps in directing the control operations of 
water use and quality management to the right steps of the process. Designing the pro-
cesses to allow separation of solids would help waste water treatment because of lower 
concentrations of organic matter and nutrients. Waste water should be treated before 
re-use. Pretreatment of waste waters using precipitation chemicals and sedimentation 
in basins decreases the organic load and total solids in the waste water.  
2. The quality of vegetables changes during processing. The peeling of carrots reduces 
the amount of microbes, but microbial counts can be increased during cutting. Wash- 
and process water plays a dual role: both reducing and transmitting microorganisms to 
vegetables. The process water samples contained less microbes than wash waters. Wa-
ter quality should be monitored continously and it should be changed often enough. In 
Finland, carrots are stored 6–8 months during the winter. This situation makes it possi-
ble for yersinia to grow, if the storage environment is favorable. Counts of pathogenic 
yersinia were very low. When carrot process water samples were analysed by RT-PCR, 
pathogenic Y. enterocolitica was detected almost in all samples, but when these positive 
samples were cultivated, no pathogenic yersinia was detected.  
3. A suspension test was used for testing of the decontaminating effect of NEW, ClO2, 
FPW and UV-C to Y. enterocolitica, Y. pseudotiberculosis, E. coli and C. lambica with and 
without interfering substance. The decontamination of carrot processing water was 
tested with UV-C with and without filtering. The inactivation times of different decon-
tamination methods for different microbes differed. In most cases, the organic matter in 
water impaired the effect of the treatments, the reaction times were longer and concen-
trations needed to be stronger to cause inactivation. The turbidity of the water can be 
decreased by filtration. 
4. Two biological systems and one chemical waste water treatment system were evalu-
ated and in addition one waste water sedimentation systems. A waste water system 
should be proportioned correctly and good care should be taken regarding the function-
ing of the system to ensure that good treatment results can be attained. The biological 
waste water treatment methods examined were suitable for waste waters from vegeta-
ble processing, because of the high organic loads of the waste water. The sequencing 
batch reactor (SBR) and trickling filter were both found to be suitable for waste waters 
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from vegetable processing, and with both systems the requirements mandated in legis-
lation were attained. Sedimentation and chemical precipitation were suitable as waste 
water pre- or post-treatment method, but their ability to remove organic loading was 
insufficient. Operation of waste water treatment in a cold climate condition is challeng-
ing and must be taken into account, because land applications (for example) are not 
applicable all year round in a cold climate. Small-scale waste water treatment should be 
cost-efficient.  

Water is an important part of the fresh-cut vegetable industry. High-quality water is 
greatly needed to ensure the safety of products, but water should be also conserved and 
its use should be controlled to improve sustainability. Water use should be measured 
continuously; in addition, processing machines and techniques should be water-saving. 
Suitable water decontamination can be used to prevent microbial cross-contamination 
from water to vegetable products. Waste water from fresh-cut vegetable production has 
a high organic load and also contains nutrients. Waste water should be treated on-site 
or piped to a communal waste water treatment plant.  

This study gave valuable information about waters created and the water use in dif-
ferent stages of the fresh-cut vegetable processing, the quality of process and waste 
waters and processed vegetables, as well as about the efficacy of some decontamination 
methods on water and on-site treatment of waste waters. The results help companies to 
improve their processes and self-monitoring activities. The study is also an important 
contribution for the scientific community of the branch. 
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