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Abstract 16 

Windstorms cause major disturbances in European forests. Forest management can play a 17 

key role in making forests more persistent to disturbances. However, better information is 18 

needed to support decision making that effectively accounts for wind disturbances. Here we 19 

show how empirical probability models of wind damage, combined with existing spatial data 20 

sets, can be used to provide fine-scale spatial information about disturbance probability over 21 

large areas. First, we created stand-level damage probability models using wind damage 22 

observations within 5-year time window in national forest inventory data (NFI). Model 23 

predictors described forest characteristics, forest management history, 10-year return-rate of 24 

maximum wind speed, and soil, site and climate conditions. We tested three different 25 

methods for creating the damage probability models - generalized linear models (GLM1), 26 
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generalized additive models (GAM) and boosted regression trees (BRT). Then, damage 27 

probability maps were calculated by combining the models with GIS data sets representing 28 

the model predictors. Finally, we demonstrated the predictive performance of the damage 29 

probability maps with a large, independent test data of over 33,000 NFI plots, which shows 30 

that the maps are able to identify vulnerable forests also in new wind damage events, with 31 

area under curve value (AUC) > 0.7. Use of the more complex methods (GAM and BRT) 32 

was not found to improve the performance of the map compared to GLM, and therefore we 33 

prefer using the simpler GLM method that can be more easily interpreted. The map allows 34 

identification of vulnerable forest areas in high spatial resolution (16 m x 16 m ), making it 35 

useful in assessing the vulnerability of individual forest stands when making management 36 

decisions. The map is also a powerful tool for communicating disturbance risks to forest 37 

owners and managers and it has the potential to steer forest management practices to a 38 

more disturbance-aware direction.  Our study showed that in spite of the inherent 39 

stochasticity of the wind and damage phenomena at all spatial scales, it can be modelled 40 

with good accuracy across large spatial scales when existing ground and earth observation 41 

data sources are combined smartly. With improving data quality and availability, map-based 42 

risk assessments can be extended to other regions and other disturbance types. 43 

Keywords: forest disturbances; storm damage; windthrow; tree mortality; forest 44 

management 45 

1. Introduction 46 

Forest wind disturbances have major economic, societal and ecological consequences in 47 

Europe. Forest disturbances have substantial effects on forest productivity and carbon 48 

storage (Seidl et al., 2014; Reyer et al., 2017). In European forests, the disturbance-related 49 

reduction of the carbon storage potential has been estimated to be 503.4 Tg C in years 50 

                                                                                                                                                  
– national forest inventory (11th Finnish NFI, 12th Finnish NFI), NLS – National Land Survey of Finland, RF-

random forest, ROC – receiver operating characteristic 
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2021-2030 (Seidl et al., 2014). Actions to reduce and manage the disturbances are thus 51 

crucial in assuring the persistence of the forest carbon sinks. The damage caused by wind 52 

storms in European forests has increased during the past century (Schelhaas et al., 2003; 53 

Seidl et al., 2011, Gregow et al., 2017) and this trend is expected to continue (Ikonen et al., 54 

2017; Seidl et al., 2017). The question of forest wind disturbances is therefore becoming 55 

increasingly important in the future. 56 

Forest management practices play a key role in making forests less vulnerable to wind 57 

disturbances. Management driven changes in European forests, such as increasing standing 58 

timber volume and promotion of conifer species, have been identified as one of the major 59 

causes of increased forest disturbances in Europe during the latter half of the 20th century 60 

(Schelhaas et al., 2003; Seidl et al., 2011). If management practices are shifted to reduce 61 

forest vulnerability to wind, it may be possible to decrease the negative effects of wind 62 

disturbances. However, changing the forest management practises to more disturbance-63 

aware direction is not always easy, as illustrated by the 2005 storm Gudrun in southern 64 

Sweden: despite the massive damage and economic losses caused by the storm and the 65 

Swedish Forest Agency’s recommendations for alternative, less vulnerable, management 66 

options, the forest management practises in the area remained largely unchanged after the 67 

storm (Valinger et al., 2014, Andersson et al., 2018). This demonstrates that not only is 68 

information about the wind damage risks urgently needed to account for disturbances in 69 

management decisions, but it is also crucial that this information is in a form that can be 70 

effectively used and communicated to forest owners and managers. 71 

The development of remote sensing methods and the progress of open data policies have 72 

substantially increased the amount, quality and availability of spatial data relating to forests. 73 

This opens new possibilities for detailed spatial estimation of forest sensitivity to 74 

disturbances. Vulnerability of forests to wind damage is affected by forest characteristics, 75 

forest management as well as the abiotic environment, such as local wind and soil 76 

conditions (Mitchell, 2013). For example, probability of wind damage has been shown to 77 
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increase with tree height and certain species, such as Norway spruce, are particularly 78 

vulnerable to wind (Peltola et al., 1999; Dobbertin, 2002; Valinger and Fridman, 2011). 79 

Forest management has major effects on wind damage sensitivity, as trees that have grown 80 

in sheltered conditions and have later been exposed to wind, because of thinning or clear cut 81 

of the neighboring stand, are especially sensitive to damage (Lohmander and Helles, 1987; 82 

Peltola et al., 1999; Suvanto et al., 2016). Areas that are exposed to strong wind gusts 83 

(Schindler et al., 2016) or where rooting conditions are limited due to soil characteristics 84 

(Nicoll et al., 2006) are more predisposed to wind damage. Therefore, in order to provide 85 

useful information on forest vulnerability to wind, information from several different sources, 86 

scales and disciplines needs to be brought together.  87 

Logistic generalized linear models (GLM) have long been applied in statistical modelling of 88 

forest wind damage (Lohmander and Helles, 1987; Valinger and Fridman, 1997; Suvanto et 89 

al., 2016). In addition, different approaches allowing more flexible model behaviour than fully 90 

parametric GLMs have been used, such as generalized additive models (GAM; Schmidt et 91 

al., 2010) that use non-parametric smooth functions to allow more flexibility in the 92 

relationship of response variable and predictors (Hastie et al., 2009). Machine learning 93 

approaches have also been successfully applied to wind disturbance modeling (see 94 

Hanewinkel et al. 2004 for an early example) and recently especially tree-based ensemble 95 

models, such as random forests (RF) and boosted regression trees (BRT), have been 96 

popular and often shown to perform well in predicting wind damage (see Schindler et al., 97 

2016; Kabir et al., 2018; Albrecht et al., 2019; Hart et al., 2019 for examples using RF and 98 

Díaz-Yáñez et al. 2019 for BRT). While machine learning methods and additive models are 99 

able to more flexibly fit the data and account for non-linearities, GLMs have strengths in their 100 

straightforward interpretability and the robustness of predictions (Nakou et al., 2016; 101 

Albrecht et al., 2019). 102 

In this study, our goal was to answer the need for information to be used for taking forest 103 

disturbances into account in management decisions by creating a high-resolution map of 104 
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forest vulnerability to wind damage, using damage observations from national forest 105 

inventory (NFI) data. While there have been some previous attempts to map forest 106 

vulnerability to wind damage using statistical models (Schindler et al., 2009; Saarinen et al., 107 

2016; Suvanto et al., 2016), the resulting maps and their applicability to disturbance 108 

situations outside of the original model data have rarely been rigorously tested, limiting the 109 

conclusions that can be drawn about the performance and usefulness of such maps. In 110 

addition, we aimed to test the suitability of different modelling methods, ranging from fully-111 

parametric GLM to more flexible methods, for creating such maps. More specifically, our 112 

aims were to (1) create a damage probability statistical model based on a large and 113 

representative data set of wind damage observations in the Finnish NFI, (2) compare three 114 

methods for creating the model, GLM, GAM and BRT, to test the suitability of different 115 

methods for the task, (3) calculate a damage probability maps by combining the models with 116 

national extent GIS layers of model predictors, compiled from different sources, and (4) test 117 

the performance of the maps with a large data set containing independent damage 118 

observations from over 33,000 NFI plots. 119 

2. Material and methods 120 

2.1 National Forest Inventory and wind damage observations 121 

In this study, we used stand level wind damage observations from the 11th Finnish national 122 

forest inventory (NFI11) to create an empirical model of wind damage probability (Fig. 1). 123 

The field work for the NFI11 was conducted from 2009 to 2013 (Korhonen, 2016; Korhonen 124 

et al., 2017). In later stages of the study, we also used NFI12 (field work in 2014 to 2018) to 125 

test the created map (see section 2.5). 126 

In our analysis, we only included plots that were defined as forest land. Poorly productive 127 

forests were excluded because they are unimportant for forestry and their wind damage risks 128 

tend to be small due to low volume of growing stock. In addition, plots on treeless stands or 129 

seedling stands without upper canopy layer were excluded because seedlings have very low 130 
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wind damage probability (8633 plots). Plots with missing data or unrealistic (erroneous) 131 

values for any of the used variables were excluded (52 plots). Plots within less than 1 km 132 

from the national border were also excluded, as the data set describing local wind conditions 133 

(Venäläinen et al., 2017) had edge effects (214 plots).  If a plot was located on the border of 134 

two or more forest stands, we only used the data from the stand where the plot centre was 135 

located.  The final data set consisted of a total of 41,392 NFI plots. 136 

Observations of stand level wind damage and an estimate of the damage time is 137 

documented in the Finnish NFI (Tomppo et al., 2011; Korhonen, 2016). Here, we used only 138 

the wind damage observations that had occurred no more than 5 years before the date of 139 

the field visit. Since the field work of NFI11 was done in 2009 to 2013, the data can contain 140 

observations from damage that has occurred between 2004 and 2013. During these years, 141 

several high impact storms affected Finland, such as cyclone Dagmar (known as Tapani in 142 

Finland), which caused severe damage in Finland during December 26th and 27th 2011 143 

(Kufeoglu and Lehtonen 2014), and a series of severe thunderstorms in summer 2010 (Viiri 144 

et al. 2010). 145 

The severity of damage was not considered in the analysis, because the degree of damage 146 

was only recorded as cumulative effect of all damage agents, and no information of wind 147 

damage severity was available in cases where there was more than one damaging agent 148 

present. The restriction of the analysis to only severe damage cases would also have limited 149 

the number of damage observations available. Therefore, the binary damage variable 150 

contains stands with different damage severities. Stand level wind damage was observed at 151 

1,070 plots of the total 41,392 NFI plots in the dataset. 152 

2.2 Model predictors 153 

2.2.1 National Forest Inventory data 154 

Most predictors in the statistical models were extracted from the NFI field data (Tables 1-2).  155 

To describe the forest characteristics of the stand, dominant tree species and mean tree 156 
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height in the stand were used. If several canopy layers and species were recorded in the 157 

data, the values from the layer with largest tree height were used, as the tallest trees can be 158 

assumed to be most vulnerable to wind. The NFI also documents the type and time of most 159 

recent forest management operations, and based on this data we created a variable 160 

describing the time since last thinning. 161 

NFI information about soil type, soil depth and site fertility was also used (Tables 1-2). Soil 162 

type variable differentiated between organic and mineral soils, as well as fine and coarse 163 

grained mineral soils. Fine mineral soils included clay and fine sands, whereas sands and 164 

coarser soils were classified as coarse mineral soils. Grain size was estimated on the field 165 

by NFI teams. Site fertility classes in the NFI are estimated in eight classes, but in our 166 

analysis they were regrouped into two classes so that class “Fertile” contained sites from 167 

herb-rich to mesic forests on mineral soils and from euthrophic to meso-oligothrophic 168 

peatlands. Less fertile classes were included in the “Poor” fertility class (see Tomppo et al., 169 

2011 for detailed description of the site fertility classes used in the Finnish NFI). 170 

The used data covers the whole country and contains damage observations from several 171 

years and, there is thus large variation in the wind conditions experienced by the trees in the 172 

data. Not all plots were exposed to similar wind conditions and this needed to be taken into 173 

account in the statistical model. However, we did not have reliable data available about the 174 

spatial variation in maximum wind speed conditions during the study period and lacking such 175 

an important factor affecting the damage probability is likely to bias the estimation of the 176 

effects of other predictors. Therefore, a different approach was taken. To account for areas 177 

subjected to severe storm events, variable “Damage density ratio” was calculated using the 178 

locations of NFI plots as the ratio of 2D kernel density of damaged plots and all plots (Table 179 

1). That is, the ratio describes the spatial density of damaged plots in comparison to all NFI 180 

plots included in the model. A value of 2, for example, can therefore be interpreted as two 181 

times higher density of damaged plots than what would be expected from the density of all 182 

plots. The damage density variable was then transformed into a categorical variable (with 183 
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classes 0-2, 2-3, and >3). The upper limit of the lowest class was set relatively high to 184 

identify only the strongest clusters of damaged plots and to avoid catching all the large-scale 185 

spatial trends with this variable. The calculations were done in R with the KernSmooth 186 

package (Wand, 2015) using bandwidth of 20 km (see details in S1). 187 

2.2.2 Other data sets and the delineation of forest stands 188 

In addition to the NFI field data we also supplemented the model predictor set with additional 189 

variables describing local wind conditions and open forest borders from other data sources 190 

(Tables 1-2).  To describe the long-term wind conditions at each plot, we used a data set 191 

describing the local 10-year return levels of maximum wind speeds in 20 m x 20 m raster 192 

cells. That is, the value of each pixel represents the level of maximum wind speed (ms-1) 193 

expected to be reached on average once in every 10 years (detailed description of the data 194 

and its methodology in Venäläinen et al., 2017; see S5 for map of the data). The data is 195 

downscaled from coarse-scale wind speed estimates in ERA-Interim reanalyzed data with a 196 

wind multiplier approach using CORINE land-use data and digital elevation model 197 

(Venäläinen et al., 2017). The data set contains maximum wind speeds calculated for eight 198 

different wind directions, and in this study we used the maximum value of these for each 199 

pixel.  200 

To identify stands with open forest borders (variable ‘Open neighbour stand’, Table 1), we 201 

used the multi-source NFI forest resource maps (MS-NFI; Tomppo et al., 2008; Mäkisara et 202 

al., 2016) that combine satellite data and NFI field data to create national extent forest 203 

resource maps in a 16 m x 16 m resolution grid. 204 

However, the used wind damage observations were documented on the level of forest 205 

stands and the stand borders were not mapped in the data but only estimated by the NFI 206 

team at the field. Therefore, in order to combine the stand-level damage information with 207 

other data sources, the locations of stand borders first needed to be defined. A forest stand 208 

in the the Finnish NFI is defined as spatially continuous land area that is homogeneous with 209 
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respect to properties such as administrative boundaries, site fertility, structure of the growing 210 

stock (e.g. maturity class, tree species composition) and forest management (Tomppo et al., 211 

2011). To create polygons that would approximately correspond to the stands assessed in 212 

the field by the NFI team, we used image segmentation on the MS-NFI data layers 213 

(corresponding to year 2013) describing growing stock volumes by main tree species groups 214 

(pine, spruce and deciduous species) and tree height. Land property boundaries obtained 215 

from the National Land Survey of Finland were also included in the segmentation, as they 216 

are considered as stand boundaries in the NFI. The image segmentation was conducted 217 

with the methodology described by Pekkarinen (2002), using the “segmentation by directed 218 

trees” algorithm by Narendra and Goldberg (1980). 219 

Once the stand polygons were defined with image segmentation, they were used for 220 

calculating local wind conditions and finding stands with open stand borders. For each stand 221 

polygon, maximum wind-speed within the stand boundaries was calculated (Table 1). 222 

Maximum value was used because the NFI field data does not specify the exact location of 223 

the damage within the stand, and we assumed that damage occurred in the most wind 224 

exposed part of the stand. 225 

To identify plots with open neighbor stands, median tree height was first calculated for each 226 

stand polygon using the MS-NFI tree height data. A stand was defined to have an open 227 

stand neighbor if the median tree height of any of the stand neighbours was smaller than 5 228 

meters (Table 1). Median was used instead of mean so that it would be less affected by 229 

possible outlier values resulting from inaccuracies in defining the stand polygons. 230 

Calculations of maximum wind speeds and open stand neighbors for the segments were 231 

conducted with PostGIS (version 2.4.0) and Python (version 2.7.12) with packages 232 

geopandas (version 0.3.0) and rasterstats (version 0.12.0). 233 

2.3 Statistical modelling 234 
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Damage probability models were created using three different methods: GLM, GAM (Wood 235 

2006) and BRT (Elith et al., 2008). In all the models the dependent variable was the 236 

presence of wind damage in the stand and independent variables described forest 237 

characteristics, forest management history, soil and site type, the 10-year return level of 238 

maximum wind speed, temperature sum and the local damage density ratio (Table 1). 239 

Binomial GLM with logit-link function were fitted in R (version 3.5.1, R Core Team, 2017). To 240 

account for non-linear relationships, logarithm transformation were tested for all continuous 241 

independent variables and included in the final model if they showed lower AIC than models 242 

with non-transformed variables. The transformations were included only for the GLM model, 243 

since GAM and BRT enable more flexibility in the shapes of the relationship between 244 

response variable and predictors, and can therefore account for non-linear relationships 245 

without transformations. 246 

Variable selection was based on several criteria: (1) only variables that, based on earlier 247 

research, were expected to have a causal effect to wind damage probability were included, 248 

(2) since the ultimate goal of the model was to produce the damage probability map, we only 249 

included variables for which reasonably high-quality national-extent GIS data sets were 250 

available or could be derived from existing data, (3) the behaviour of the variable in the 251 

model was plausible based on existing understanding of forest wind damage. We also aimed 252 

to build the model so that all major components related to wind damage probability were 253 

included. Collinearity of predictors was inspected with Pearson’s correlation coefficients and 254 

generalized variance inflation factors (GVIF, Fox and Monette, 1992). All correlations 255 

between included continuous predictor variables were weaker than 0.5 and GVIFs for all 256 

variables were lower than 4. 257 

GAM is an extension of a GLM where the linear predictor contains a sum of smooth 258 

functions of covariates. This specification of the model in terms of smooth functions instead 259 

of detailed parametric relationships allows for more flexibility in the dependence of the 260 
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response of the covariates (Wood, 2017). In our analysis, GAM with logit-link function was 261 

fitted in R with package mgcv (version 1.8-24, Wood, 2011), using the same predictors that 262 

were included in the GLM. All continuous predictors were included in the model through non-263 

linear smoothing spline functions. The dimension parameter (k), effectively setting the upper 264 

limit on the degrees of freedom related to the smooth, was set to 15 for all variables, except 265 

for temperature sum for which k = 5 was chosen to avoid unrealistically fluctuating large-266 

scale patterns in the predictions. The effective degrees of freedom (edf) after fitting the 267 

model were lower than k for all of the terms (see S2 for details), suggesting that the chosen 268 

k’s were sufficiently large. 269 

BRT is an ensemble method that combines a large number of regression trees with a 270 

boosting algorithm (Elith et al., 2008). Here, BRTs were computed with R package dismo 271 

(version 1.1-4, Hijmans et al., 2017). To find the best parameters, BRTs with different 272 

parameter combinations of tree complexity (tested values 1, 2, 3 and 5), learning rate (0.05, 273 

0.01 and 0.005) and bag fraction (0.5, 0.6 and 0.75) were fitted. The number of trees was 274 

not assigned manually, but was estimated with k-fold cross-validation using the function 275 

gbm.step (Hijmans et al., 2017). To estimate the number of trees and to compare different 276 

parameter combinations, gbm.step was run separately for each parameter combination. 277 

Following the rule-of-thumb suggested by Elith et al. (2008), we excluded parameter 278 

combinations that led to models with fewer than 1000 trees. Thus, the model with parameter 279 

combination leading to lowest holdout residual deviance in the cross-validation performed by 280 

gbm.step and at least 1,000 trees was chosen for the final model (tree complexity = 2, 281 

learning rate = 0.01, bag fraction = 0.5, 2,250 trees, see S3 for details). 282 

To make sure that the unbalanced ratio of damaged versus non-damaged plots did not affect 283 

the results, BRTs were fitted also from two balanced datasets where the balancing of the 284 

observations was done by (1) undersampling the non-damaged plots or (2) oversampling the 285 

damaged plots. In both cases the cross-validated area under curve (AUC) values were very 286 
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similar to ones calculated from the original unbalanced dataset and, therefore, the original 287 

data set was used for the final results. 288 

To account for the sampling design, weights based on the forest area each plot represents 289 

were used in all models (Korhonen, 2016). For example, in northern Finland the NFI 290 

sampling design is sparser and therefore the weight of one plot in modelling is higher. To 291 

test if the clustered sampling design had an effect on the results, GLMs and GAMs were also 292 

fitted as mixed models (GLMM and GAMM) with plot clusters as random intercepts, using R 293 

packages lme4 (Bates et al., 2015) for GLMM and gamm4 (Wood and Scheipl, 2017) for 294 

GAMM. However, as the mixed model predictions (in the scale of the linear predictor, using 295 

only fixed effects for prediction) were highly correlated with the fixed effect model prediction 296 

(Pearson’s r = 0.998, p < 0.001 for GLM vs GLMM, and r = 0.979, p < 0.001 for GAM vs 297 

GAMM) and our interest was in marginal instead of conditional inference, no random effects 298 

were included in the final models. 299 

The models were validated with 10-fold stratified cross-validation, where number of 300 

damaged plots was divided evenly into the folds. In the cross-validation, the variation in 301 

damage density variable was not used in the prediction, because the variable was included 302 

in the model only to account for spatial structures in storm severity in the data, and in an 303 

aimed use case of the models (i.e., estimating damage vulnerability in future events) we 304 

would not have this information available. Instead, separate predictions for test-folds were 305 

calculated with each class of the damage density variable (0-2, 2-3, >3). Then, these three 306 

predictions were averaged based on the frequency of each class in the original model data. 307 

See details in S1. 308 

Receiver operating characteristic (ROC) curves and AUC values were calculated for each 309 

iteration of cross-validation and used to assess the performance of the models. The ROC 310 

curve plots the true positive rate (sensitivity) and true negative rate (specificity) of the model 311 

with all possible classification thresholds. The AUC values represent the area under ROC 312 
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curve and measure the model’s ability to discriminate between events and non-events. AUC 313 

values of 0.5 correspond to a situation where the classifier is no better than random (ROC 314 

curve along diagonal) and value of 1 a situation where the model perfectly discriminates 315 

between events and non-events. As a rule of thumb, AUC values over 0.7 are considered 316 

acceptable discrimination between classes, values over 0.8 excellent and values over 0.9 317 

outstanding (Hosmer et al., 2013). 318 

2.4 Calculation of the damage probability map 319 

A GIS raster data layer with resolution of 16 m x 16 m and extent of the whole country was 320 

prepared for each predictor variable used in the models (Table 1). Forest variables 321 

(dominant species, tree height, height-diameter ratio, open forest edge) were derived from 322 

the Finnish MS-NFI data for year 2015 (Mäkisara et al., 2019). A grid cell was defined to be 323 

on an open forest edge if tree height in the MS-NFI data was lower than 5 meters in any of 324 

the cells within a 5 x 5 cell neighborhood. 325 

Spatial data on forest management history (the time of last thinning) was derived from the 326 

forest use notification collected by the Finnish Forest Centre. This data consists of forest use 327 

notifications that forest owners are required to report to the Forest Centre before conducting 328 

management operations in their forests. For each 16 m x 16 m pixel, we first assigned the 329 

year of the latest notification of planned thinning in that location of the pixel and then 330 

calculated the difference to year 2015. 331 

Data for the 10-year return-rates of maximum wind (Venäläinen et al., 2017), originally in 20 332 

m x 20 m resolution, was resampled to the 16 m x 16 m grid with GDAL using bilinear 333 

interpolation. Soil type was defined as ORGANIC for areas within the peatland polygons in 334 

the Topographic Database produced by the National Land Survey of Finland (NLS, 2018). 335 

Other areas were defined as mineral soils, and further divided to fine or coarse mineral soils 336 

based on the top soil information in the 1:200,000 resolution soil map of the Geological 337 

Survey of Finland (GTK, 2018). Data layer for soil fertility classes was made by reclassifying 338 
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the MS-NFI fertility class data layer from the original five classes to the two classes used in 339 

the models (see details in section 2.2.1). Average annual temperature sum was calculated 340 

with a threshold of 5°C from daily weather data grids (Aalto et al., 2016) for the years 1985 341 

to 2014. 342 

Similarly as in the cross-validation, the variation in damage density variable was not used in 343 

the prediction, because we would not have this information available for future events. 344 

Instead, separate predictions were calculated with each class of the damage density variable 345 

and these three predictions were then averaged based on the frequency of each class in the 346 

original model data. See details in S1. 347 

The damage probability map was calculated from the GLM, GAM and BRT model objects 348 

and the GIS data layers using R packages raster (Hijmans, 2017) and sp (Pebesma and 349 

Bivand, 2005). 350 

2.5 Testing the map with new damage observations 351 

The accuracy of the damage probability map was validated with an independent test data 352 

set. The map was compared to the damage observations in the most recent NFI 353 

measurements (12th Finnish NFI, NFI12), which were not included in the model fitting data 354 

that was from the NFI11. Compared to NFI11, which covers the whole country, NFI12 does 355 

not cover the northernmost parts of Finland as plots in the three most northern municipalities 356 

(Northern Lapland), where the proportion of forest land is low, are not measured as 357 

frequently as other parts of the country (see S5 for maps of plot locations in NFI11 and 358 

NFI12). 359 

We included the NFI12 plots that had been measured during 2014-2018, were classified as 360 

forest land by the field team, and were located within forest area in the MS-NFI forest 361 

resource maps (i.e., there were data in the wind damage probability map at the location of 362 

the plot). For wind damage we also used the same  criteria as with the model data, i.e. only 363 

observations estimated to have occurred during the last 5 years were included and the 364 
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severity of the damage was not considered. In addition, those permanent plots that were 365 

measured already in NFI11 were excluded from the test data, as the previous 366 

measurements in the same plots were used in the model fitting. The final test data consisted 367 

of 33,754 plots with wind damage in 734 of the plots. 368 

Values of the wind damage probability maps were extracted at the locations of test data 369 

plots as the mean value of map pixels within 20 meter buffer from the location of the plot 370 

center. ROC curves and AUC values were calculated using the wind damage information in 371 

the test data and the extracted values of the damage probability maps. The extraction was 372 

conducted in R with package raster (version 2.8-19, Hijmans, 2017) and ROC/AUC 373 

calculations with package pROC (version 1.12.1, Robin et al., 2011). 374 

3. Results 375 

The results showed that forest vulnerability to wind damage is strongly driven by forest 376 

characteristics, especially tree height. In all models, the damage probability increased with 377 

tree height, and the increase was strongest for spruce dominated forests (see Fig. 2 and 378 

Table 3 for GLM, Fig. 3 for GAM and Fig. 4 for BRT). Higher values of damage density ratio 379 

led to higher damage probability in all models, as expected (Fig. 5). Also forest management 380 

affected damage probability in the models, as recently thinned forests and forests with open 381 

stand borders were more susceptible to damage. These predictors, related to the forest 382 

characteristics, very much drive the fine-scale spatial variation of damage probability in the 383 

(Fig. 7). 384 

Wind damage probability was found to show distinct large-scale trends, most importantly the 385 

decreasing damage probability from south to north (Fig. 7). This effect in the models comes 386 

from the temperature sum, but also other predictors contributed to the large-scale trends in 387 

the map, as there as large-scale patterns in wind conditions, forest characteristics and soil 388 

and site fertility conditions (see Fig. 2 for GLM, Fig. 3 for GAM and Fig. 4 for BRT, S5 for 389 

maps of predictor raster data). The north-south pattern in damage density was evident in the 390 
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damage probability maps with all model methods. However, the map created with the BRT 391 

showed unexpectedly high damage probability values for the northernmost parts of the 392 

country (Fig. 7). 393 

The model predictors showed in general rather similar effects in the three tested methods 394 

(GLM, GAM and BRT). Yet, there are also differences, especially in the shape of relationship 395 

between the continuous predictors and predicted damage probability. In GLM, the 396 

relationships are restricted to sigmoidal curves (Fig. 2), whereas GAM (Fig. 3) and BRT (Fig. 397 

4) allow more flexible shapes of responses. This can be seen, for example, in how 398 

increasing tree height in pine forests shows steadily increasing damage probability with GLM 399 

(Fig. 2) whereas in GAM damage probability peaks around tree height 200 dm and then 400 

declines (Fig. 3).  401 

As the BRT predictions are calculated from ensembles of regression trees, they enable very 402 

sharp changes in the prediction within small changes in the values of the predictor (Fig. 4). 403 

They can also contain diverse interactions between the predictors, which are unfortunately 404 

not visible in partial dependence plots like Fig. 4. The BRT results showed somewhat 405 

different trends than the other methods in model responses to predictors (Fig. 4). For 406 

example, while tree height in spruce forests increases damage probability throughout the 407 

range of data in GLM (Fig. 2) and GAM results (Fig. 3), in BRT results similar strongly 408 

increasing trend is not found, instead the relationship between height and damage 409 

probability seems to saturate for all tree species (Fig. 4).  The large-scale spatial patterns in 410 

map prediction also differed for BRT compared to the other models, as high values of 411 

damage probability were predicted for the northernmost parts of the country. (Fig. 7). 412 

Cross-validation showed higher predictive performance of the GAM model compared to the 413 

GLM and BRT (Fig. 6). However, when the final damage probability maps were tested with 414 

the NFI12 test data, all models showed very similar performance in discriminating between 415 

damaged and non-damaged plots in the test data. (Fig. 8). All maps gave on average higher 416 
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damage probability values for damaged than non-damaged plots and showed an acceptable 417 

level of discrimination between the two (AUC > 0.7). The added flexibility and ability to 418 

account for nonlinear relationships in GAM and BRT did not considerably improve the 419 

predictive performance of maps compared to the fully parametric GLM (Fig. 8). 420 

4. Discussion 421 

4.1 The damage probability map 422 

We created a new spatial wind damage risk product based on inventory data spanning over 423 

several years and several other data spatial sources, including information where the actual 424 

harvests have recently occurred in Finland. Validation of the map with independent and large 425 

data set showed that the map is able to identify vulnerable stands also in new storm events. 426 

While there have been attempts to map wind damage probability based on empirical 427 

damage models (Schindler et al., 2009; Saarinen et al., 2016; Suvanto et al., 2016), our 428 

work here uniquely provides national extent and high spatial resolution information about 429 

forest vulnerability to wind and its validity is also tested with large external test data. 430 

The successful identification of damage vulnerability in an independent test data is not trivial. 431 

First of all, wind damage is challenging to predict and extending the performance of 432 

statistical wind damage models to new data sets has been shown not to be straightforward 433 

(Fridman and Valinger, 1998; Lanquaye-Opoku and Mitchell, 2005; Kamimura et al., 2015). 434 

Moreover, because we wanted to test how well our map identifies forest vulnerability to wind 435 

in future events, for which we don’t have detailed information of, we did not include any 436 

information about spatial distribution of wind speeds or storm events during the time frame of 437 

the test data when we tested the map. Thus, the discrimination of damaged from non-438 

damaged plots with fair accuracy (AUC = 0.726) for the entire extent of Finland indicates that 439 

the map is indeed successful in identifying the vulnerable forests, and implies that efficient 440 

combination of inventory data and several new spatial data sources is a promising way to 441 

map damage risks. 442 
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A major factor contributing to the successful extension of the map to new test data was the 443 

large and systematically sampled forest and damage data that spanned over several years. 444 

Thus, our model was able to represent the different conditions (forest characteristics, soil, 445 

etc.) within the country. The need for comprehensive model data in empirical wind damage 446 

models has been demonstrated, for example, by Hart et al. (2019) who showed that it is 447 

possible to generalize to new storm events when the model data covers the variation of 448 

predictor variables in the new data set. 449 

In addition to good representation of environmental and forest conditions, our data also 450 

represents different types of wind events, since the data consisted of damage observations 451 

in a 5-year time window. Most wind disturbance studies typically concentrate on one or few 452 

storms (e.g., Schindler et al., 2009; Kamimura et al., 2015; Saarinen et al., 2016; Suvanto et 453 

al., 2016; Hart et al., 2019), which limits their ability to generalize to different storm events. 454 

While modelling of multi-event data can be more challenging than single-event data 455 

(Albrecht et al., 2019), we argue that it is necessary when the purpose of the model is in 456 

assessing damage probability in new storm events, outside of the original model data. 457 

Availability of high-quality and high-resolution spatial data of the model predictors was also 458 

crucial for the ability of the damage probability map to identify damaged stands in the test 459 

data. Additional uncertainties arise from the input data sets when model predictions are 460 

made with GIS data gathered from several different sources instead of the field-measured 461 

data that were used for fitting the model. In our case, we were able to utilize several high-462 

quality and high-resolution data sources, such as the MS-NFI raster maps of forest 463 

characteristics (Mäkisara et al., 2019) and new data products of local wind conditions 464 

(Venäläinen et al., 2017). We were also able to use the recently opened forest use 465 

notification data from the Finnish Forest Centre that provided us with nation-wide information 466 

about the recent forest management history of the stands. This type of legacy information 467 

about forest management is typically difficult to obtain and has rarely been included in 468 

predictive wind damage risk models before, despite the clear effects of management history 469 
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on forest disturbance dynamics. While all these data sources contain uncertainties, the 470 

verification of our map with independent test data showed that they were nevertheless able 471 

to represent well the main factors determining forest susceptibility to wind. 472 

With new data sources and increasing quality and availability of data in the future, the 473 

accuracy of the map could still be improved. This could mean, for example, improved 474 

accuracy of tree height information through the use of lidar data or inclusion of variables that 475 

were left out of the current map due to lack of national level spatial data about their 476 

distribution (e.g. distribution of wood decaying fungi that weaken trees’ resistance to wind). 477 

Soil data had maybe the lowest resolution and higher uncertainties of the used GIS data 478 

and, therefore, increased quality of those data sets would also be desirable. However, the 479 

effects of soil variables in the model were relatively small, and therefore the effects of only 480 

improving the soil GIS data in the prediction would most likely not be drastic. Instead, more 481 

detailed soil data would be needed for the model data to improve the description of the role 482 

of soil characteristics on tree vulnerability to wind in the model. Integrating projections of 483 

future wind climate would also add value to the map, as the current version only uses data 484 

describing present wind conditions (that is, the data by Venäläinen et al. 2017). 485 

4.2 Drivers of forest susceptibility to wind disturbance 486 

The factors that were found to affect damage probability in our results are well in line with 487 

previously published results. For example, increasing damage probability with tree height 488 

and the higher vulnerability of Norway spruce have been shown in previous studies (Peltola 489 

et al., 1999; Valinger and Fridman, 2011; Suvanto et al., 2016). New stand edges after 490 

clearcutting of the neighboring stand and recently thinned stands have also been known to 491 

be at higher risk of windthrow (Lohmander and Helles, 1987; Peltola et al., 1999; Wallentin 492 

and Nilsson, 2014). 493 

While open stand edges did increase the risk of wind damage in our results, the effect was 494 

not as distinct as could be expected from earlier research that emphasizes the role of forest 495 
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edges (e.g., Peltola et al., 1999). This may in part result from the use of stand level data, 496 

where defining and identifying the open stand borders from the NFI data is more uncertain 497 

than in the case of tree-level analysis (see section 2.3.2 for the used methodology). Earlier 498 

work with storm damage data from severe autumn storms in Finland showed that the effects 499 

of open forest edges on damage probability were more emphasized in tree-level analysis 500 

(Suvanto et al., 2018) than in the stand-level analysis of the same data (Suvanto et al., 501 

2016). In the future, potential improvements to the presentation of damage probability at the 502 

forest edges in the map could be achieved by combining tree-level results or mechanistic 503 

approaches to the current stand-level modeling approach. 504 

In the model, the effect of wind speed data (Venäläinen et al., 2017) on damage probability 505 

showed logical behaviour of increasing damage probability with increasing 10-year return-506 

rates of maximum wind speed. The wind speed data accounts for the effects of topography 507 

on general wind conditions, and therefore variables describing topographical conditions were 508 

not included in our models, even though they have been shown to be linked with wind 509 

damage probability (e.g., Schindler et al., 2009).  510 

Variation in wind conditions were accounted for in the models by two variables: 10-year 511 

maximum wind speed return-rates, which described the local long-term wind conditions at 512 

the plots, and the damage density variable, which was used to account for major storm 513 

events during the study period due to the lack of direct wind speed data with sufficient spatial 514 

coverage and accuracy. The use of indirect variable (damage density) to account for this has 515 

the risk of not representing the occurred wind conditions well enough, and thus distorting the 516 

estimates of other predictors. However, in our results the damage density variable seems to 517 

have filled its purpose, as the relationships between predictors and damage density are well 518 

in line with previous research and the maps resulting from the models are able to identify the 519 

vulnerable stands also in the test data, in which the plots have been affected by different 520 

storm events. 521 
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Large-scale geographical patterns in our results showed that the probability of wind damage 522 

in Finland decreases from south to north. This is in agreement with results from previous 523 

studies combining forest model simulations with mechanistic wind damage models (Peltola 524 

et al., 2010; Ikonen et al., 2017). The higher susceptibility of forests in southern Finland to 525 

wind disturbances is related to the shorter length of the soil frost period in southern parts of 526 

the country. When the soil is frozen, trees are well anchored to the ground and less 527 

vulnerable to windthrow and, therefore, forests located in areas with longer periods of soil 528 

frost are less likely to be damaged during winter storms (Gregow et al., 2011; Laapas et al., 529 

2019). However, other factors affecting forest wind susceptibility also change along the 530 

north-south gradient. The proportion of Scots pine, a species more resistant to wind than 531 

Norway spruce, increases towards north, and trees in the north have on average lower 532 

height-to-diameter ratio, which is linked to wind damage sensitivity (Peltola et al., 2010; 533 

Ikonen et al., 2017).  In addition, in southern parts of the country, forest stands are smaller in 534 

area and there are less protected areas compared to the north. Thus, more frequent 535 

windthrows related to new stand edges and recent thinnings may also contribute to higher 536 

damage probability in the south. Similarly, butt rot caused by Heterobasidion sp., which 537 

increases tree vulnerability to wind (Honkaniemi et al., 2017), currently affects the southern 538 

parts of the country more severely (Mattila and Nuutinen, 2007; Müller et al., 2018) and may 539 

also contribute to the north-south pattern in the wind damage probability in our results. 540 

Therefore, it is not entirely clear what are the exact mechanisms causing increased damage 541 

probability with temperature sum in our model. 542 

4.3 Comparison of methods 543 

While the results for GLM and GAM models were rather similar, the BRT showed somewhat 544 

different model behaviour in the responses of damage probability to the predictors (Fig. 4) 545 

and different patterns in the spatial prediction (Fig. 7). Since the visible differences in the 546 

predictions are in the northernmost part of the country, the lack of test data in this area (see 547 

S5) makes the interpretation of the test results (Fig. 8) for the BRT challenging, as the area 548 
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with unexpected BRT predictions is mainly not covered by the test data. In any case, the 549 

high values of BRT predictions in northernmost Finland do not seem realistic. 550 

Our results did not show improved predictive performance of the map with the more flexible 551 

methods, GAM and BRT, compared to the logistic regression model (GLM). This is 552 

somewhat surprising, especially in the case of BRTs, as they are able to account for non-553 

linearity and interactions between predictors flexibly and this has been seen as an 554 

advantage leading to more accurate predictions (Elith et al. 2006, 2008, Díaz-Yáñes et al. 555 

2019). It seems that while BRT has advantages in accounting for more complex 556 

relationships and interactions in the data, they may also catch patterns that are not helpful 557 

for making predictions for test data (see, e.g., the unrealisticly high probabilities of damage 558 

with very low wind speeds in BRT, Fig. 4). This is likely to hamper the performance of BRTs 559 

in our study so that they are not able to improve cross-validation performance compared to 560 

GLM. 561 

While Díaz-Yáñes et al. (2019) used BRTs for modelling wind and snow data using NFI data, 562 

they unfortunately did not compare the method to other methods, report metrics about how 563 

well the models predicted damage occurrence or test their results with independent data, 564 

which makes the comparison to our results difficult. Several recent studies have shown good 565 

performance of RF for modelling storm disturbances (Albrecht et al., 2019; Hart et al., 2019; 566 

Kabir et al., 2018). RF is a tree-based ensemble method that has similarities to BRT in the 567 

aspect that it also combines a large number of regression trees in order to create accurate 568 

predictions. Yet, in our results BRT did not lead to better predictive performance in cross-569 

validation or with test data compared to the two other tested methods. 570 

The comparison to the studies finding good results with RF is complicated due to the 571 

differences between the methods, even if they have also similarities. Our analysis differs 572 

also from that of (Albrecht et al., 2019; Hart et al., 2019; Kabir et al., 2018) on a few other 573 

aspects. First, we modelled wind damage on the level of forest stands, whereas the above 574 
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mentioned studies were operating on tree-level. Second, we were using longer term NFI 575 

damage observations whereas most others used data from specific storm events. However, 576 

the study by Albrecht et al. (2019) contained both event-specific and non-event-specific data 577 

and they found random forests to outperform GLMs in both types of data. Third, we 578 

performed the cross-validation without considering the spatial variation in the storm 579 

conditions (the damage density variable in our analysis). This was done because we did not 580 

want to use this variable in the prediction, as the final aim was to generalize the results to 581 

future damage events, where this information would not be available. It is possible that this 582 

approach is disadvantageous to the BRT. 583 

While the above mentioned studies did find machine learning methods outperform logistic 584 

models in many ways, they also showed some positive sides of the logistic models. Most 585 

importantly, even though random forests showed superior performance when cross-586 

validating models with data from one storm event in Hart et al. (2019), logistic models 587 

showed the highest AUC values compared to the other methods when the model was 588 

applied to another storm event, supporting the value of GLMs when generalizing the results 589 

to new storm events. 590 

Use of GLMs has the extra benefit of being more easily communicated to the end user, and 591 

they can be easily applied to new use cases when model coefficient estimates are 592 

published. The interpretation of relationships between predictors and the response variable 593 

is more straightforward, whereas especially in BRTs very small changes in e.g. tree height 594 

can lead to drastic changes in model prediction (Fig. 4). The unexpectedly high damage 595 

probability values in northern Finland also demonstrate the unpredictability of BRT model 596 

behaviour. This aspect is particularly important when the end product is meant to be used in 597 

practical applications. 598 
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4.4 Applications and use of the maps 599 

The strength of the map is in its high resolution and large extent. The high-resolution makes 600 

it useful for assessing wind damage susceptibility of individual forest stands in fragmented 601 

forest landscapes where spatial variation of forest characteristics is high. On the other hand, 602 

the national extent of the map makes it widely available and accessible to everyone who is 603 

making forest management decisions in Finnish forests. To further improve the accessibility 604 

and usability of the map, we created an openly available web map application, where users 605 

can explore the map and find the estimated wind damage vulnerabilities of the  forests they 606 

are interested in, without expert knowledge in GIS software (see 607 

https://metsainfo.luke.fi/en/tuulituhoriskikartta, currently only in Finnish, click “Tuulituhoriskit” 608 

to see the wind damage vulnerability map). By providing an effective tool for identifying the 609 

vulnerable stands and for communicating wind damage risks to forest managers and 610 

owners, the map has potential to steer forest management practices towards a more 611 

disturbance-aware direction. 612 

In addition to forest management, high-resolution information about forest wind vulnerability 613 

is crucially needed also in other sectors and applications. For example, the map can help in 614 

identifying high-risk locations where windthrown trees can harm infrastructure by damaging 615 

power lines and blocking roads. Insurance companies may also use high-resolution 616 

vulnerability information for a more risk-based pricing of forest insurances. 617 

While wind disturbances have major consequences from the human point of view, they are a 618 

natural process and have an important role in shaping the structure and function of forest 619 

ecosystems (Bouget and Duelli, 2004; Kuuluvainen, 2002). By exploring the drivers and 620 

spatial variability of wind disturbance dynamics, our results can therefore provide insight in 621 

current disturbance regime and its effects in the ecosystem, such as biodiversity and carbon 622 

cycling. Improved information about forest disturbances and tree mortality is also urgently 623 

needed for vegetation models from stand to global scales to understand how forests will 624 

react to the changing climate (Bugmann et al., 2019; Friend et al., 2014). 625 

https://metsainfo.luke.fi/en/tuulituhoriskikartta


25 

When applying the map in practice, it is important to consider its limitations. First, the 626 

damage probabilities in the map are in reference to the damage happened during the study 627 

period. The amount of wind damage varies strongly between years and future conditions are 628 

not likely to exactly match the conditions during the period from which the data comes from. 629 

Therefore, instead of exact probability values, it is better to interpret the map values as 630 

relative differences in damage vulnerability. Second, it is important to note that the damage 631 

probabilities do not only refer to complete damage of the stand, as our analysis also included 632 

less severe damage cases and we did not account for damage severity. Third, it is good to 633 

keep in mind that the map presents forest vulnerability to wind and it is not possible to 634 

predict the exact location of future wind disturbances, as there are many things - such as 635 

tracks and meteorological conditions of future storms - that cannot be accounted for in the 636 

map. The uncertainties need to be taken into consideration when using the map. 637 

Wind disturbances are strongly linked to other processes of the forest and, therefore, should 638 

be considered in larger context. Thus, the greatest benefits of our results can perhaps be 639 

achieved by combining them with information and understanding of other processes that 640 

control forest ecosystems and forest management decisions. For example, the risk model 641 

can be coupled with forest growth simulators and thereafter storm damage risks of different 642 

forest management strategies can be evaluated simultaneously when making future 643 

scenarios of forests. The map can be combined with spatial information of wood volumes 644 

and prices to assess economic risks wind disturbances. Combining wind disturbance results 645 

with the dynamics of other disturbance agents is also crucial, as wind damage is strongly 646 

linked to bark beetle outbreaks and root rot, and these interactions are becoming 647 

increasingly important with the changing climate (Seidl et al., 2017; Seidl and Rammer, 648 

2017). A comprehensive approach is therefore needed to understand and effectively 649 

manage wind disturbances in forests. 650 

5. Conclusions 651 
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In this study, we show how damage probability models based on NFI damage observations 652 

combined with existing spatial datasets can be used to provide a fine-scale large-extent map 653 

of wind disturbance probability. We also demonstrate the ability of the map to identify 654 

vulnerable stands in future events with an extensive external test data. These maps provide 655 

a powerful tool for supporting disturbance-aware management decisions, communicating 656 

disturbance risks to forest owners, and accounting for the effects of windthrown trees in 657 

other sectors, such as maintenance of powerline infrastructures. 658 

Our results show that more flexible methods, such as GAM and BRT, do not always provide 659 

superior results compared to parametric statistical models, such as GLM. As the 660 

interpretation of these methods can be less straightforward, they can sometimes lead to 661 

unpredictable prediction outcomes. Therefore, it is crucial to always assess the benefits of 662 

different approaches and to carefully test the performance of the used method with test data 663 

that is not used in model fitting. Partial dependence plots and other ways for exploration of 664 

model predictions in different situations also provide useful tools for assessing if model 665 

behaviour is realistic and biologically plausible. 666 

The success of our results is based on large and representative model data as well as high-667 

quality and high-resolution GIS data used as map inputs. In Finland, good data sets for both 668 

the model fitting and the map inputs are available, which provided a good starting point for 669 

the work done in this study. Even though the study here was conducted for Finland, the 670 

results have high international relevance, showing that in spite of the inherent stochasticity of 671 

the wind and damage phenomena at all spatial scales, wind damage can be modelled with 672 

good accuracy across large spatial scales when existing ground and earth observation data 673 

sources are combined smartly. With improving data quality and availability (for both damage 674 

observations for model fitting and GIS data for map inputs), similar work can be extended to 675 

other regions and to other disturbance types. 676 
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Tables 918 

Table 1. Description of predictors used and their sources in the model and in the damage 919 

probability map. See section 2.2.1 for details. Abbreviations: NFI11 – 11th Finnish National 920 

Forest Inventory, NFI12 – 12th Finnish National Forest Inventory, MS-NFI – multi-source NFI, 921 

GTK – Geological Survey of Finland, NLS – National Land Survey of Finland. 922 

Variable Type* Unit / Classes Source in model Source in map 

Tree species C pine, spruce, 

other 

NFI11 MS-NFI 2015 

Tree height N dm NFI11 MS-NFI 2015 

Time since 

thinning 

C 0-5, 6-10, 

> 10 years 

NFI11 MS-NFI 2015, 

Forest use notifications 

Wind (10-year 

return level of 

max wind speed) 

N ms
-1 

Venäläinen et al. 

2017 

Venäläinen et al. 2017 

Open neighbor 

stand 

C True, False MS-NFI 2013 MS-NFI 2015 

Soil type C Mineral/coarse, 

Mineral/fine, 

Organic 

NFI11 GTK 2018, 

NLS 2018 

Mineral soil depth 

< 30 cm 

C True, False NFI11 GTK 2018, 

NLS 2018 

Site fertility C Fertile, Poor NFI11 MS-NFI 2015 

Temperature sum 

(average 1985-

2014) 

N 100 dd (over 

5C) 

Aalto et al. 2016 Aalto et al. 2016 

Damage density 

ratio 

C 0-2, 2-3, <3 NFI11 In the calculation of the 

map, this variable was 

included as a weighted 

average of all classes, 

because it was included in 

the model only to account 

for spatial structures in 

storm severity. 

* C – categorical, N – numerical (continuous)  923 
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Table 2. Descriptive statistics for the NFI11 data. Mean and standard deviation for non-924 

damaged, damaged and all plots continuous variables, and percentages of each class for 925 

categorical variables. The definitions of the variables are in table 1. 926 

  Non-damaged Damaged All 

Number of plots 40322 1070 41392 

Species 
   

Scots pine 63.4% 59.1% 63.3% 

Norway spruce 24.0% 36.8% 24.3% 

Other 12.6% 4.1% 12.4% 

Tree height 163.0 (50.5) 195.2 (45.1) 163.9 (50.6) 

Time since thinning 
   

0-5 years 13.4% 26.0% 13.7% 

6-10 years 9.2% 15.5% 9.4% 

> 10 years 77.4% 58.5% 76.9% 

Wind 12.1 (2.0) 12.5 (2.0) 12.2 (2.0) 

Open neighbor 
   

False 85.7% 84.6% 85.7% 

True 14.3% 15.4% 14.3% 

Soil type 
   

Mineral, coarse 66.9% 77.8% 67.2% 

Mineral, fine 12.7% 9.8% 12.7% 

Organic 20.3% 12.4% 20.1% 

Soil depth < 30 cm 
   

False 89.5% 85.0% 89.4% 

True 10.5% 15.0% 10.6% 

Site fertility 
   

Poor 34.8% 31.9% 34.7% 

Fertile 65.2% 68.1% 65.3% 

Temperature sum 1,185 (178.9) 1,262.6 (130.4) 1,187.0 (178.3) 

  927 
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Table 3. GLM model results. See Table 1 for descriptions of variables. For categorical 928 

variables, the first class listed in Table 1 is the reference class and not listed separately in 929 

this table, i.e., the results of other classes are presented in reference to the reference class. 930 

Classes of categorical variables are presented as subscripts. Colons are used to present 931 

interaction terms between variables. 932 

 933 

  934 

  Estimate Std. Error z value Pr(>|z|) 

(Intercept) -14.690 1.061 -13.841 < 0.001 

SpeciesSpruce -8.494 1.918 -4.430 < 0.001 

SpeciesOther -9.314 3.931 -2.370 0.018 

log(Height) 1.661 0.189 8.807 < 0.001 

Last thinning6-10 years -0.298 0.113 -2.637 0.008 

Last thinningover 10 years -0.844 0.084 -9.995 < 0.001 

log(Wind) 0.749 0.238 3.152 0.002 

Open stand borderTRUE 0.310 0.095 3.284 0.001 

Soilmineral, fine -0.356 0.124 -2.875 0.004 

Soilorganic -0.216 0.110 -1.962 0.050 

Soil depth < 30cmTRUE 0.214 0.106 2.011 0.044 

Site fertilityFertile -0.425 0.092 -4.611 < 0.001 

Temperature sum 0.096 0.025 3.843 < 0.001 

Damage density2-3 1.104 0.088 12.498 < 0.001 

Damage density>3 1.898 0.111 17.137 < 0.001 

SpeciesSpruce : log(Height) 1.634 0.358 4.561 < 0.001 

SpeciesOther : log(Height) 1.625 0.742 2.190 0.029 
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Figures 935 

 936 

Figure 1. General approach and workflow. Abbreviations in the figure: NFI – national forest 937 

inventory, MS-NFI – multi-source national forest inventory, GLM – generalized linear model, 938 

GAM – generalized additive model, BRT – boosted regression trees 939 

  940 
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 941 

Figure 2. GLM partial dependence plots for the map predictors. Prediction of damage 942 

probability is calculated for the range of each predictor variable when other predictors are set 943 

to average (continuous variables) or reference class (categorical variables). Rugged x-axis 944 

describes the distribution of data. Confidence intervals are calculated as 2 x prediction 945 

standard error (in the scale of the linear predictor). 946 

 947 

Figure 3. GAM partial dependence plots for the map predictors. Prediction of damage 948 

probability is calculated for the range of each predictor variable when other predictors are set 949 

to average (continuous variables) or reference class (categorical variables). Rugged x-axis 950 

describes the distribution of data. Confidence intervals are calculated as 2 x prediction 951 

standard error (in the scale of the linear predictor). 952 
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 953 

Figure 4. BRT partial dependence plots for the map predictors. Prediction of damage 954 

probability is calculated for the range of each predictor variable when other predictors are set 955 

to average (continuous variables) or reference class (categorical variables). Rugged x-axis 956 

describes the distribution of data. 957 

 958 

Figure 5. Partial dependence plots for damage density in the different models (GLM, GAM 959 

and BRT). Damage density was included in the models to account for spatial variation in 960 

severity of storm damage in the data, and it was set to 0 when calculating the wind damage 961 

probability map. Note that the y-axis range differs from figures 2-4. 962 

  963 
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 964 

Figure 6. Distribution of AUC values in the 10-fold cross-validation for GLM, GAM and BRT. 965 

 966 

Figure 7. Damage vulnerability maps calculated for the whole country (upper panel) and a 967 

fine-scale detail of the maps (lower panel), calculated with the three different damage 968 
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probability models (GLM, GAM and BRT), and an orthophoto from the same location (B). 969 

Colors in the damage vulnerability map are defined by the percentiles of the map data (e.g., 970 

the first class contain the lowest 10% of map values). The upper panel maps are resampled 971 

to 1 km x 1 km resolution with bilinear interpolation. Note that the orthophoto is not from the 972 

exact same time as the forest resource data used for the calculation of the map. Orthophoto 973 

© National Land Survey of Finland, published under CC-BY 4.0 licence. 974 

 975 

Figure 8. Density plots of the distributions of map predictions for test data plots with wind 976 

damage (red) and without wind damage (blue), and ROC curve showing the ability of the 977 

maps to distinguish between damaged and non-damaged test plots for the different model 978 

methods (GLM, GAM and BRT).  979 
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