

The costs of poultry production diseases: what do we actually know?

Philip Jones, Jarkko K. Niemi, Richard Tranter

Results

Setting the scene

The economic problem

- Producer margins being squeezed by increasing costs
- Limited opportunity to pass on these extra costs to consumers due to:
- lack of market power
- Fierce competition from other international suppliers

<u>Industry response</u>

- Increase efficiency as a way of further reducing costs (the historic response).
- A key part of this strategy is to reduce losses caused by production diseases

Introduction

How is good disease management achieved?

- Good disease management decision making requires data on:
- The risks posed by various production diseases
 - incidence and severity;
- The financial impacts of different diseases; and
- Availability and effectiveness of different control and prevention measures
- Cost of interventions
 - financial benefits/disbenefits arising from use
- Goal of study: to what extent are these data available?
 - What are the financial impacts of diseases & interventions?

What do we mean by the term: 'production disease'?

- A health condition
- May occur in wild bird populations
- Not limited to infections
 - Physical damage (bruising, bone breaks, skin lesions)
- Becomes increasingly problematic with the intensity of production system and failures in management

- Nine production diseases were identified for study
 - Selection made by scientists on the project
 - Selection based on importance in their respective countries

Data sources

- Literature review
- Generate financial impacts data
- Stakeholder consultation
 - Responses from 100 upstream & downstream stakeholders
 Vets, transporters, abattoirs, processors, retailers
- Finland, Germany, Poland, Spain & UK
 Identify most important production diseases financially
 Validate financial data derived from literature review
- Bio-economic modelling

The literature search

- Systematic literature review of studies reporting financial or productivity impacts (9 production diseases)
 - Web search tools, websites, reference lists (recent projects)

• Exclusions:

- Regions where production not similar to EU conditions
- Studies prior to 1995
- Modelling exercises and reviews (i.e. no primary data generated)
- Duplicates

The results of the literature review?

- No financial data found
- Costs had to be estimated from changes in physical parameters
- 127 relevant publications found:
- Surveys (occasional) of disease incidence (countries or regions)
- Experimental studies productivity effects of disease 'V' control group
 - Impacts measured in physical terms (e.g. FCR)
- Experimental studies efficacy of measures to control diseases
 - Usually measured in physical terms (productivity or disease indicators, eg bacteria counts)

Introduction Methods

Results

Standard cost model

	Broiler production costs (€/ 100 kg l.w.)		
Revenues			
Broilers, 2,276 g of meat per bird;	124.00		
Layers, 340 eggs at €8.67/100		29.48	
Spent hen		0.36	
Costs			
Day old chicks / pullets (17 weeks)	15.20	3.30	
Mortality	2.02	0.87	
Feed	67.00	10.29	
Medication	1.40	0.09	
Heating & electricity	2.20		
Water	0.60	1.41	
Litter (incl. cleanout & disposal)	3.70		
Labour	3.40	1.10	
Housing	6.40	2.75	
General	1.00	0.41	
Total costs	102.92	20.22	
Net margin	21.08	9.62	

Sources: van Horne (2014); Agro-Business Consultants Ltd (2012); RBR (2014)

Poultry diseases and their interventions

Results

Introduction

Have we chosen the right diseases?

Results

What is the incidence of the selected production diseases?

Note: Incidence = % of flocks with disease at a severity that causes financial losses

Impacts - mortality

Current mortality: layers (6-11%); Broilers (4-6%)

Results

Losses: revenues; expenditures on birds that die; disposal of carcasses

Impacts - physical outputs

Production disease	Average change in output (%)			
Broilers	Meat (liveweight)	Carcass downgrades		
Tibial dischondroplasia	-10	<1		
Acites	0	N.A.		
Clostridiosis	-1.24	N.A.		
Coccidiosis	-17.7	N.A.		
Footpad dermatitis	-7.3	<1		
Laying flocks	Eggs (number)	Egg downgrades		
		Weight	Quality	
Keel bone damage	-3.5	-3.2	N.A.	
Infectious bronchitis	-32,9	-8.7	N.A.	
Salpingoperitonitis	N.A.	N.A.	<1	
Injurious feather pecking	-5.1	0	0	

Impact – feed conversion ratio (FCR)

Results

 Birds eat more food, when stressed by a disease, to add body mass or produce eggs

Impacts - financial

- Application of physical impacts to the standard broiler and layer cost models
- Excluded costs:
 - additional carcass disposal costs
 - additional vet/ medicine costs
 - labour costs for increased monitoring/inspection
- Losses represent losses per surviving bird, i.e. accounting for losses from changes to mortality
- Losses are higher for laying hens because diseases are impacting over a longer production period

Financial losses - broilers

Results

Typical commercial broiler profit (2013) was around 10 €Cents / bird

Most efficacious interventions used - (reflects high-end of what can

Financial losses - layers

Laying hens typically generate a margin of around €6 per bird

How reasonable are the Net Margin impacts?

Bio-economic modelling

- Constructed a computer-based optimisation model to explore the economic rationale for adoption of health-improving interventions
- Explored in the project (intervention trials)

Results

- Other recent trials
- The scientific literature
- We focussed on trials with data on common leg disorders (FPD)
- Other interventions available in literature not included
 - Don't provide productivity data (and/or)
 - Don't provide data on FPD

Types of interventions found

Results

- Nutritional supplement (Vitamin D)
- Increased bird movement
- Physical separation from floor litter
- Better data on house environmental conditions (to vet & producer)
- 12 different interventions in total

PROHEALTH

Financial impacts – per Kg liveweight

Financial impact – enterprise level

Results

Summary

- Production diseases can cause major financial losses to poultry farms if not controlled effectively
- Diseases with the highest incidence are enteric (coccidiosis, clostridiosis – almost endemic)
- Efficacy of interventions varies by the context
 - Beneficial interventions available for all diseases (CBR>1)
- For FPD some effective interventions, but not economically rational to use them.

Data availability

Production disease	Mortality	FCR	Physical output	Down- grades
Drailara				
Broilers				
Tibial		X		
dischondroplasia				
Acites				Χ
Clostridiosis				Χ
Coccidiosis	Χ			Χ
Footpad dermatitis				
Laying flocks				
Keel bone damage		Χ		Χ
Infectious	Χ	Χ		
bronchitis				
Salpingoperitonitis		Χ	Χ	Χ
Injurious feather	X			
pecking				

Note: X signifies absence of data

- Even expressing disease effects as changes to physical parameters, there are major gaps in available data
- Where are commercial producers and their advisors, getting their data?
- Poultry diseases researchers need to 'raise their game'

Thank you for your attention

CSIRO PUBLISHING

Animal Production Science https://doi.org/10.1071/AN18281

A review of the financial impact of production diseases in poultry production systems

P. J. Jones A.D., J. Niemi^B, J.-P. Christensen^C, R. B. Tranter^A and R. M. Bennett^A

Philip Jones
School of Agriculture, Policy & Development
University of Reading, UK

M +44 118 318 186 p.j.jones@reading.ac.uk