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Abstract
The extensive spatial and temporal coverage of many citizen science datasets (CSD) 
makes them appealing for use in species distribution modeling and forecasting. 
However, a frequent limitation is the inability to validate results. Here, we aim to as-
sess the reliability of CSD for forecasting species occurrence in response to national 
forest management projections (representing 160,366 km2) by comparison against 
forecasts from a model based on systematically collected colonization–extinction data. 
We fitted species distribution models using citizen science observations of an old- 
forest indicator fungus Phellinus ferrugineofuscus. We applied five modeling approaches 
(generalized linear model, Poisson process model, Bayesian occupancy model, and two 
MaxEnt models). Models were used to forecast changes in occurrence in response to 
national forest management for 2020- 2110. Forecasts of species occurrence from 
models based on CSD were congruent with forecasts made using the colonization–ex-
tinction model based on systematically collected data, although different modeling 
methods indicated different levels of change. All models projected increased occur-
rence in set- aside forest from 2020 to 2110: the projected increase varied between 
125% and 195% among models based on CSD, in comparison with an increase of 
129% according to the colonization–extinction model. All but one model based on 
CSD projected a decline in production forest, which varied between 11% and 49%, 
compared to a decline of 41% using the colonization–extinction model. All models thus 
highlighted the importance of protected old forest for P. ferrugineofuscus persistence. 
We conclude that models based on CSD can reproduce forecasts from models based 
on systematically collected colonization–extinction data and so lead to the same forest 
management conclusions. Our results show that the use of a suite of models allows 
CSD to be reliably applied to land management and conservation decision making, 
demonstrating that widely available CSD can be a valuable forecasting resource.
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1  | INTRODUCTION

Species distribution models (SDMs) have been extensively applied in 
forecasting species responses to future habitat and climate change 
(Elith & Leathwick, 2009). The temporal and spatial extent of such 
studies can be expanded through the increasingly popular use of citi-
zen science data (CSD) (Devictor, Whittaker, & Beltrame, 2010). CSD 
provide an inexpensive source of species observation data, particu-
larly as the online collation of data is becoming common practice for 
many regions of the world (Silvertown, 2009). This greatly expands 
the potential scope of SDM forecasting studies. Forecasts can provide 
valuable insights into possible future conditions, allowing land use 
managers and conservationists to make informed decisions (Mouquet 
et al., 2015).

A drawback of CSD is that they are frequently presence- only 
observations, which cannot be modeled using established pres-
ence–absence frameworks such as generalized linear models (GLMs). 
New methods have therefore been developed specifically to model 
presence- only data; foremost of these is MaxEnt (Phillips, Anderson, 
& Schapire, 2006). MaxEnt has been shown to outperform other 
methods when predicting species’ distributions and has been exten-
sively tested against presence–absence methods such as GLMs (e.g., 
Elith et al., 2006). MaxEnt has been widely applied to CSD and used 
to address a diverse range of topics, including conservation applica-
tions (Elith et al., 2011). Yet, MaxEnt has often been misunderstood or 
misused (Yackulic et al., 2013). Therefore, any inferences made from 
model projections must be carefully assessed, particularly in a man-
agement context.

A second drawback is that CSD often suffer from spatial recording 
biases (Dickinson, Zuckerberg, & Bonter, 2010). Volunteer recorders 
may disproportionately visit sites close to home or roads, or may favor 
species- rich habitats (Dennis & Thomas, 2000). If observation data are 
presence- only, then separating out species–habitat associations from 
volunteer- habitat preferences can be difficult (Barbosa, Pautasso, & 
Figueiredo, 2013). Spatial or environmental filtering of records can re-
duce bias and improve model performance (Boria, Olson, Goodman, & 
Anderson, 2014); however, such methods involve throwing away data. 
Alternatively, spatial recording bias can be explicitly modeled using a 
small amount of presence–absence data (Fithian, Elith, Hastie, & Keith, 
2015). This reduces the investment required in obtaining presence–
absence data while making use of extensive presence- only datasets. 
This approach performed well on one species group (Fithian et al., 
2015), but has yet to be widely tested.

Thirdly, the imperfect detection of species in the field is a gen-
eral feature of observation data, yet is rarely accounted for in SDMs 
(Lahoz- Monfort, Guillera- Arroita, & Wintle, 2014). The detectability of 
a species (the probability that an individual is observed where pres-
ent) may vary among sites and/or over time (van Strien, van Swaay, & 
Kery, 2011). In the context of citizen science, detection may also vary 
among recorders due to differing identification skills or search effort. 
We henceforth use the term “occupancy model” for joint modeling 
of occurrence and detectability (MacKenzie et al., 2002). Occupancy 

models were initially developed to account for imperfect detection 
using repeat- survey data, but have recently been applied to ad hoc 
CSD, successfully recovering expected trends in species’ distribu-
tions (van Strien, van Swaay, & Termaat, 2013). Moreover, occupancy 
models identified biologically reasonable species–habitat associations 
when applied to spatially biased data, in contrast to conventional 
regression models (Higa et al., 2015). The application of occupancy 
models to spatially biased and/or ad hoc data is as yet very limited, 
however, and further testing is required to determine whether infer-
ences from a diversity of datasets are reliable.

There are thus a broad variety of modeling approaches available 
and previous work has concluded that no single method consistently 
produced the most accurate results (Qiao, Soberón, & Peterson, 2015). 
Moreover, different approaches to deal with recording biases can pro-
duce different conclusions (Isaac, van Strien, August, de Zeeuw, & 
Roy, 2014). A further source of variation stems from the increasingly 
popular technique of combining correlative and mechanistic compo-
nents in species distribution modeling. The combination of correlative 
and mechanistic components, such as physiological constraints or 
population dynamics, has been advocated to improve the biological 
realism of models (Kearney & Porter, 2009). However, the inclusion 
of mechanisms can quantitatively change projected trends (Swab, 
Regan, Matthies, Becker, & Bruun, 2015), implying yet another source 
of variation among methods. Therefore, it may in fact be preferable 
to apply multiple methods in order to address sources of uncertainty 
(Qiao et al., 2015).

A limitation of many modeling studies that apply CSD is the lack 
of validation against independent models based on systematically 
collected data. If CSD are to be widely applied in areas such as land 
management and conservation decision making, then the ability of 
models based on CSD to produce forecasts that are congruent with 
forecasts from models based on systematically collected data should 
be demonstrated. Congruence would provide confidence in applying 
cheap, widely available CSD to a range of forecasting questions, which 
would increase the scope of forecasting studies and avoid the need for 
costly, time- consuming data collection by experts.

In this study, we aimed to assess the reliability of species oc-
currence forecasts from models based on CSD. We tested whether 
five different occurrence models based on open access CSD pro-
duced forecasts that were congruent with forecasts from a dynamic 
model based on colonization–extinction data that were systemati-
cally collected by experts. We thus compared forecasts from models 
based on differing quality of data (in terms of citizen scientist ver-
sus expert collection) and differing biological information content 
(occurrence CSD versus dynamic colonization–extinction data). We 
projected changes in the occurrence of Phellinus ferrugineofuscus, 
an old- forest indicator fungus, in response to national forecasts of 
forest management in Sweden. All five species distribution mod-
els based on CSD utilized presence- only and/or presence–absence 
data collected by volunteer recorders and were selected to encom-
pass a diverse range of data requirements and assumptions about 
recording biases.
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2  | METHODS

2.1 | Study species

Phellinus ferrugineofuscus is a polyporus species associated with 
Norway spruce, Picea abies. Polyporus fungi are important dead-
wood decomposers and many species are negatively affected by for-
est management (Nordén, Penttilä, Siitonen, Tomppo, & Ovaskainen, 
2013). The occurrence of P. ferrugineofuscus is determined by 
deadwood availability and connectivity old spruce- dominated for-
est (Jönsson, Edman, & Jonsson, 2008). Phellinus ferrugineofuscus 
is classified as near threatened (NT) in Sweden due to forestry 
(Artdatabanken, 2015). It has been widely used as an old- forest indi-
cator species in nature conservation inventories in the Nordic coun-
tries (Niemelä, 2005). Phellinus ferrugineofuscus is easy to find and 
identify in the field.

2.2 | Citizen science species observation data

Citizen science data for P. ferrugineofuscus were downloaded from the 
Swedish open access Lifewatch website (www.analysisportal.se) for 
the period 2000–2013 at the 100 m grid cell resolution. Observations 
were presence- only, and the species was recorded in 5,317 cells 
(Figure 1). The Lifewatch website is a portal that compiles observation 
data from multiple sources. The primary source for fungal observa-
tions is the Swedish Species Observation System (www.artportalen.
se). Data uploaded to the Species Observation System come from 
many different recorders ranging from amateur enthusiasts to trained 
field workers carrying out inventories for forestry companies. Data 
may be complete species checklists or single species observations; 
however, as recorders are not required to register species absences, 
this information is unknown.

To obtain a presence–absence dataset for P. ferrugineofuscus, we 
interviewed recorders of wood- dependent fungi. Each recorder was 
asked the same questions about their field methods. If field searches 
were thorough and consistent (see Appendix S1 in Supporting 
Information), then observation records from that recorder were com-
piled to create a presence–absence dataset. Among these, the pres-
ence of species other than the target species was taken to indicate the 
absence of the target species. Data from eight recorders were used 
covering 15,508 grid cells (Appendix S1).

2.3 | Environmental data

We hypothesized that P. ferrugineofuscus occurrence probability in-
creased with living spruce volume and forest stand age. Forest data 
were based on estimates which combine satellite images and ground- 
truthing; “kNN- Sweden” (http://skogskarta.slu.se; Reese et al., 2003; 
for details, see Appendix S2). During model development, it became 
clear that recording effort was biased toward older forest. Therefore, 
forest age was excluded in order to avoid modeling recording bias 
rather than species occurrence.

The kNN data were also used to test the hypothesis that species 
occurrence increased with connectivity to old forest, which reflects the 
potential dispersal sources for the species in the surrounding landscape. 
We used a connectivity calculation adapted from Nordén et al. (2013) 
(detailed in Appendix S2). We tested three values for the dispersal pa-
rameter representing a mean dispersal distance of 1, 5, and 10 km.

We hypothesized that P. ferrugineofuscus occurrence was nega-
tively related to temperature and precipitation, given the northern bo-
real distribution of the species. We also hypothesized that there was 
an interactive effect as the effect of high water availability on fungal 
activity is lower at colder temperatures due to reduced metabolic rates 
(Boddy et al., 2014). Gridded meteorological data were obtained from 
the EURO4M Mesan dataset (Landelius, Dahlgren, Gollvik, Jansson, 
& Olsson, 2016). We used mean annual temperature and seasonally 
accumulated precipitation from May to November, both averaged over 
the period 1989–2010 (see Appendix S2 for details). This time frame 
includes the 10 years prior to the species observation data as fruiting 

F IGURE  1 Observed 100 m grid cell resolution occurrences of 
Phellinus ferrugineofuscus 2000–2013 (N = 5,317) obtained from 
Swedish Lifewatch (analysisportal.se)
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bodies observed from 2000 onwards may reflect colonization several 
years earlier.

We calculated a wetness index and a variable which reflected the 
steepness and orientation of a grid cell using a digital elevation map 
(Swedish land survey service; www.lantmateriet.se; calculations in 
Appendix S2). The hypothesis was peak occurrence at intermediate 
wetness, which represents the optimum conditions for the species’ 
primary habitat. For the variable reflecting steepness and orientation, 
we hypothesized a linear relationship reflecting increased occurrence 
on steeper, north- facing slopes due to lower sun exposure.

One of the modeling approaches we applied accounted for spa-
tial biases in the collection of presence- only data (Fithian et al., 2015). 
We used the variables population density (number of people per km2 
in 2010; Statistics Sweden, www.scb.se), log population density, dis-
tance to small roads, distance to main roads, distance to the five larg-
est cities, distance to all cities, and distance to towns (road and urban 
area data from the Swedish land survey service). All variables were 
transformed from polygon data to 100 m grid cells. We tested for both 
linear and quadratic effects of each bias variable.

2.4 | Occurrence models based on citizen 
science data

The complexity of models was constrained to improve comparative 
ability among models, to allow evaluation of the biological plausibility 
of the species’ response curves, and to avoid overfitting (Merow et al., 
2014). To facilitate assessment of the relative importance of covari-
ates, all variables were standardized (division with the standard devia-
tion) prior to modeling. All modeling based on CSD was carried out at 
the 100 m grid cell resolution and the occurrence data were utilized 
as a single snapshot.

2.4.1 | GLM

A generalized linear model with a binomial distribution and logit link 
was fitted to the presence–absence data. We first fitted a model using 
living spruce volume as the explanatory variable. Model complexity 
was then assessed using AIC (Burnham & Anderson, 2002) to ensure 
that model fit was improved with the inclusion of further covariate or 
interaction terms, see Environmental data above. Models were fitted 
using R version 3.1.0 (R Core Team, 2014).

2.4.2 | MaxEnt

MaxEnt is a maximum entropy model which makes use of species 
presence- only observations and a background sample (Elith et al., 
2011; Phillips et al., 2006). The background sample may also be re-
ferred to as “pseudo- absence” data. We used two approaches to 
obtain the background sample. Firstly, we sampled 40,000 grid cells 
randomly from the study area, excluding cells with presence- only re-
cords of the focal species. Secondly, in order to account for record-
ing biases, we applied the target- group background (TGB) method 
(Phillips & Dudik, 2008), where background cells were selected based 

on the presence of species with similar recording biases (but not the 
focal species). We selected wood- dependent fungal species (N = 202; 
Stokland & Meyke, 2008) as the target group. This gave 34,430 back-
ground cells (downloaded from Swedish Lifewatch for 2000–2013 at 
100 m resolution).

In order to prevent the inclusion of spurious interactions or qua-
dratic terms with no biological justification, we created all interactions 
and quadratic terms and entered them into MaxEnt as so- called lin-
ear features. All other MaxEnt features were switched off (Phillips & 
Dudik, 2008). Variable selection was carried out by maintaining only 
the covariates which had an importance or contribution greater than 
zero. AUC was calculated on the presence–absence data to ensure 
that no loss in predictive ability occurred when variables were re-
moved. Models were fitted using MaxEnt version 3.3.3 run from R 
using the dismo package version 1.5 (Hijmans, Phillips, Leathwick, & 
Elith, 2014).

2.4.3 | PA/PO model

We also applied an inhomogeneous Poisson point- process model 
which combines presence- only and presence–absence species’ obser-
vation data (termed here “PA/PO model”; Fithian et al., 2015). The 
approach models species occurrence against environmental variables 
while explicitly modeling spatial bias in recording effort, by combining 
a species occurrence component and a recording bias component. The 
model requires presence- only data for multiple species, a small sample 
of presence–absence data, and a background sample.

We used presence- only and presence–absence data for our study 
species and six other spruce- associated deadwood- dependent fungi 
(Amylocystis lapponica, Fomitopsis rosea, Leptoporus mollis, Phellinus 
chrysoloma, Phellinus nigrolimitatus, and Phlebia centrifuga). For the 
background sample, we randomly sampled 40,000 cells across the 
study area. We tested the environmental and bias variables described 
in Environmental data above. Variable selection was based on AIC for 
P. ferrugineofuscus. Models were fitted in R using the package multispe-
ciesPP version 1.0.

2.4.4 | Occupancy model

Estimating species detectability using occupancy modeling relies on 
data from repeat visits to sites within a closed period. We established 
a detection/nondetection dataset for P. ferrugineofuscus using the 
presence- only citizen science data. We first identified other old- forest 
indicator species of deadwood- dependent fungi which, based on our 
knowledge, citizen scientists interested in P. ferrugineofuscus were 
highly likely to also search for and record when found (N = 35; see 
Appendix S3). We used detections of indicator species other than our 
focal species to indicate the nondetection of the focal species. A small 
proportion of grid cells had two or more species observation records 
occurring on different days within the same calendar year, and we 
utilized these observations as repeat- visit data. We used a calendar 
year as the definition of a closed period as the species’ fruiting body 
life span is 1–2 years. The data consisted of 29,615 grid cells, of which 
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807 grid cells received two or more visits (of these, maximum number 
of visits = 7, median = 2).

We formulated the occupancy model in a Bayesian framework. 
The probability of occurrence and the probability of detection were 
modeled as a logistic function, essentially as in Kéry, Gardner, and 
Monnerat (2010). Observed data are a result of the interaction be-
tween the true occurrence and the detectability of the species. True 
occurrence was modeled as a function of the environmental variables. 
Detectability was assumed to vary among recorders (and therefore to 
vary among sites and visits depending on the recorder present) and 
was modeled against the total number of days each individual recorder 
had submitted records of wood- living indicator species during the 
study period. For a discussion of the detectability variables considered, 
see Appendix S4.

Variable selection for species occurrence was based on the poste-
rior distributions of the parameters (the use of DIC is not appropriate 
for mixture/hierarchical models; Hooten & Hobbs, 2014). If the 95% 
credible interval of the parameter estimate did not include zero, then 
the variable was considered to be significant. We started with a model 
which included living spruce volume as the explanatory variable for 
occurrence and an intercept- only detection model. Complexity was 
increased by adding one variable at a time and assessing significance. 
Once the species occurrence model was established, the detectabil-
ity model was fitted. The models were fitted using OpenBUGS (Lunn, 
Spiegelhalter, Thomas, & Best, 2009) through R using the packages 
R2OpenBUGS and BRugs. We ran two chains with 80,000 iterations 
thinned by two, after a burn- in of 20,000 iterations. The BUGS code 
for the final model is given in Appendix S5.

2.5 | Colonization–extinction model based on 
systematically collected field data

Occurrence models based on CSD were compared against a dynamic 
model fitted to systematically collected data on colonization– extinction 
events (Harrison, P.J, Mair, L, Nordén, J, Siitonen, J, Lundström, A, 
Kindvall, O, Snäll, T, in preparation). To obtain colonization– extinction 
data, we conducted resurveys in 2014 of 174 forest stands in Finland 
that were initially surveyed in 2003–2005 (Nordén et al., 2013). In 
both time periods, we inventoried all deadwood objects with a diam-
eter at breast height (DBH) ≥5 cm and length ≥1.3 m within a fixed 
survey plot (usually 20 m × 100 m) inside each stand. Deadwood char-
acteristics (used as explanatory variables in addition to those described 
in Environmental data above) and polypore presences were recorded.

We modeled the cut and noncut stands separately. We used for-
ward stepwise model selection and variables were retained based on 
the posterior distributions of the parameters. We first define Zj,t as the 
true occupancy state of plot j during survey period t. We assume that 
Zj,t ~ Bernoulli(ψj,t). For the second survey period:

where c∗
j,t

 and e∗
j,t

 give, respectively, the colonization and extinction 
probabilities, which have been offset to correct for the different num-
bers of years between the surveys and the different plot areas, such 
that:

where nj,t gives the number of years between the surveys divided by 
10 (i.e., scaled by the typical number of years), and aj,t gives the plot 
area divided by 0.2 (i.e., scaled by the typical plot size in hectares). If 
the forest in the plot had been clear- cut (either before the first survey 
or between the two survey events), then cloglog(cj,t) = δ1 and clo-
glog(ej,t) = ε1. We chose to use the complementary log–log link func-
tion, cloglog, as due to its asymmetrical nature it is better suited than 
the more conventional logistic link function to cases where the proba-
bilities are very large or very small. If the forest in the plot had not been 
clear- cut, we assumed that:

and that cloglog(ei,j,t) = ε2. Due to data limitations, we could not in-
clude covariates in the models for the extinction probabilities or the 
colonization probability on clear- cut cells (intercept- only models were 
used in these cases). The l covariates used in the model for the colo-
nization probability are given by Xl,j,t with corresponding parameter 
values βl. Finally, we define Yj,t as the observed occupancy state of plot 
j during survey period t. For the observation model, we assume that 
Yi,j,t ~ Bernoulli(Zj,tp) where p gives the detection probability. This de-
tection probability was estimated as 0.9 based on an intensive control 
study. No colonization events occurred on cut sites and so their colo-
nization probability was set to zero. In order to initialize the models 
used to simulate the future dynamics of the polypore species, we used 
a model fitted to the occurrence data from 2014.

2.6 | Temporal forecasts of species occurrence in 
response to forest management

In order to test whether the occurrence models based on CSD  produced 
forecasts that were congruent with forecasts from the  colonization– 
extinction model based on systematically collected  dynamics data, we 
used the models to project species occurrence in response to a forest 
management scenario. Forest projection data were available from the 
Swedish nationwide Forest Scenario Analyses 2015 (FSA 15; Claesson, 
Duvemo, Lundström, & Wikberg, 2015; Eriksson, Snäll, & Harrison, 
2015). Using the Heureka system (Wikström et al., 2011), projections 
were made for the National Forestry Inventory (NFI) plots (Fridman et al., 
2014) for every fifth year from 2020 to 2110. We used data for a total of 
17,383 NFI plots from the whole boreal region of Sweden (160,366 km2 
of productive forest). Data on projected changes in living and dead-
wood spruce volume and forest age were available (for data details see 
Appendix S6 and for calculation of connectivity see Appendix S7). We 
used a scenario which assumes that 84% of the land is used for wood 
production and 16% is set- aside from forestry. The aim of set- aside for-
est is to improve biodiversity conservation within the forested landscape.

Projections of species response to forest management were based 
on a space–time substitution, such that we projected the occurrence 
of the species across the NFI plots at each time step, and so obtained 

ψj,t= (1−Zj,t−1)c
∗
j,t
+Zj,t−1(1−e∗

j,t
)

c∗
j,t
=1− (1−cj,t)

nj,taj,t

e∗
j,t
=1− (1−ej,t)

nj,t

aj,t

cloglog(cj,t)=δ2+
∑

l

βlXl,j,t



     |  373MAIR et Al.

the change in species occurrence over time. The procedure was as fol-
lows. Separately for each of the models, we predicted the probability 
of species’ occurrence at each NFI plot for each time step. Mechanistic 
assumptions were then incorporated into the projections. The species 
could not occur where no deadwood was present (it is a deadwood- 
dependent species), or where forest age was 25–64 years (due to 
deadwood turnover on cut sites; see Appendix S8 for details). The val-
ues predicted at each plot were then scaled to reflect the proportion 
of the total country that each plot represents (density of plots varies 
across the country and thus the area that each plot represents varies). 
Scaled probabilities were summarized across the whole region and 
separated into production and set- aside forest. Temporal projections 
using the models based on CSD were compared against projections 

using the colonization–extinction model. We also calculated the rel-
ative change in species occurrence over time. Finally, we averaged 
projections of relative change across all five models based on CSD in 
order to test an ensemble modeling approach.

We investigated the sensitivity of the results to the mechanis-
tic assumptions outlined above. We compared projections from the 
models based on CSD including (i) no mechanistic assumptions; (ii) the 
forest age threshold assumption alone; (iii) the deadwood presence 
assumption alone; and (iv) both mechanistic assumptions together.

2.7 | Spatial prediction of current occurrence

To assess the spatial accuracy of predictions of current species’ occur-
rence from the models based on CSD, we used block cross- validation 
and calculated the area under the receiver operating curve (AUC; see 
Appendix S9 for details). We also used the models to predict the cur-
rent distribution of P. ferrugineofuscus in Sweden at the 10 km grid 
cell resolution. Species probabilities of occurrence were predicted 
across the 100 m resolution sample of random background points 
and aggregated to 10 km resolution using the mean. We applied the 
mechanistic assumption relating to forest age, but could not apply the 
deadwood assumption as no national GIS layer on deadwood occur-
rence exists. Maps were compared visually.

3  | RESULTS

3.1 | Temporal projections: forest management 
scenario

Forecasts from the occurrence models based on CSD were gener-
ally congruent with forecasts from the colonization–extinction model 
based on systematically collected data (Figures 2 and 3). All models 
projected probability of occurrence of P. ferrugineofuscus (or suitabil-
ity in the case of MaxEnt) to be lower in production forest than in 
set- aside forest set- aside (Figure 3). Probability of occurrence was 
projected to increase over time in set- asides, but to decline in pro-
duction forest according to all but one of the models based on CSD 
(MaxEnt TGB projected a slight increase).

F IGURE  2 Forecasts of mean probability of Phellinus 
ferrugineofuscus occurrence in response to projected forest 
management over the coming century from the colonization–
extinction model based on systematically collected data. Mean 
probability of occurrence is presented for all forest and for 
production and set- aside forest separately. The relative changes in 
probability of occurrence (%) from 2020 to 2110 are given for set- 
aside and production forest
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Although all models projected comparable trends, different models 
projected different amounts of change over time. The increase from 
2020 to 2110 in probability of occurrence in set- asides varied be-
tween 115% and 195% among models based on CSDs, compared to 
an increase of 129% projected by the colonization–extinction model. 
In production forest, only the MaxEnt TGB model projected a slight in-
crease in probability of occurrence of 2%, while the remaining models 
based on CSD projected declines of 11% to 49%. The colonization– 
extinction model projected a decline of 41%.

Projected trends in relative change over time were very similar 
between the colonization–extinction model and the averaged models 
based on CSD, although the latter projected larger increases in  set- aside 
forest (Figure 4). Averaging across models based on CSD gave an in-
crease of 162% in set- asides and decline of 20% in  production forest.

3.2 | Spatial predictions: species distributions maps

Similar AUC scores on both training and withheld testing data were 
obtained for all models based on CSD (Appendix S9), suggesting that 

the different approaches all achieved good fits. The mean training 
AUC was 0.83–0.84 and mean testing AUC was 0.78–0.79.

All five approaches highlighted central Sweden as having the high-
est probability of P. ferrugineofuscus occurrence (Figure 5). The GLM, 
PA/PO model, and occupancy model differed in absolute probabili-
ties, with the occupancy model predicting generally higher values. The 
MaxEnt model predictions of relative suitability were typically also 
higher values.

3.3 | Key environmental variables in models based 
on citizen science data

Final models had varying structures but notable similarities (Appendix 
S10). All models identified living spruce volume as the variable with 
the strongest positive relationship with P. ferrugineofuscus occur-
rence. The variable with the second strongest and positive effect was 
connectivity. Fitted lines illustrating the effects of the four most im-
portant variables (spruce volume, connectivity, temperature, and pre-
cipitation) indicated that the MaxEnt TGB model identified a weaker 

F IGURE  4 Forecasts of relative change 
in Phellinus ferrugineofuscus occurrence in 
response to projected forest management 
over the coming century from (a) the 
colonization–extinction model based 
on systematically collected data and (b) 
averaged projections from the models 
based on citizen science data (mean ± SD). 
Relative change is presented for all forest 
(“total”) and for production and set- aside 
forest separatelyYear
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effect of spruce volume relative to the other modeling approaches 
(Appendix S10).

The variables explaining spatial recording biases identified by the 
PA/PO model were population density and distance to small roads 
(Appendix S10). The recording bias was highest at intermediate densi-
ties (around 2220 people per km2), falling to very low recording prob-
abilities at the extremes of population density. Recording bias was 
highest at short distances from small roads.

The sensitivity analysis showed that the overall probability of oc-
currence (or suitability) was reduced with the inclusion of mechanistic 
assumptions (Appendix S10). The inclusion of the deadwood presence 
assumption resulted in a greater reduction in probability of occurrence 
than inclusion of the forest age assumption. The inclusion of mecha-
nistic assumptions resulted in both greater increases over time in set- 
aside forest and more negative trends in production forest relative to 
projections that did not incorporate mechanistic assumptions.

3.4 | Colonization–extinction model

From the Finnish plot- level data, we observed nine extinction events 
(four on noncut sites and five on cut sites) and twelve colonization 
events (all of which occurred on the noncut sites). Only stand age was 
selected as the variable explaining the colonization probability of non-
cut sites (Harrison et al. in prep).

4  | DISCUSSION

Species distribution models built using citizen science data fore-
cast changes in P. ferrugineofuscus occurrence in response to forest 
management that were qualitatively congruent with forecasts from 
a colonization–extinction model built using systematically collected 
data (Harrison et al. in prep). The five modeling approaches we applied 
(GLM, PA/PO model, Bayesian occupancy model, MaxEnt random 
background, and MaxEnt TGB) all projected an increase in probabil-
ity of occurrence over time in forest set- aside from production. All 
but one model (MaxEnt TGB) projected a decline in the already very 
low probability of occurrence in production forest. Thus, the range of 
modeling approaches applied here produced concurrent forest man-
agement conclusions, highlighting the importance of set- aside forests 
for the persistence of P. ferrugineofuscus. Our results demonstrate 
that CSD can be a useful forecasting resource, with the potential to 
reliably inform land management and conservation decision making.

All models based on CSD achieved good spatial fit and predicted 
distribution maps indicated agreement that central Sweden was the 
most suitable for P. ferrugineofuscus. Nevertheless, there was quantita-
tive variation among model forecasts. Thus, model performance may 
vary depending on whether it is assessed spatially or temporally (Smith 
et al., 2013). The MaxEnt models projected the smallest amount of 
change over time and, in particular, the TGB method failed to capture 
the decline in suitability in production forest that was projected by 
all other models. Previous work has found that, for spatially biased 
data in MaxEnt, selecting background points (sometimes referred to 

as “pseudo- absences”) based on the presence of other ecologically 
similar species (the target- group background (TGB) method) resulted 
in better model performance than taking a random background sample 
(Phillips et al., 2009); therefore, the poorer performance of the TGB 
approach was unexpected. The TGB model estimated a weaker effect 
of spruce volume on species occurrence compared to the other mod-
els, which may explain the differing projection trends. It is likely there-
fore that the selection of species for the TGB sample is important in 
determining model performance. Moreover, our results demonstrate 
that previously tested methods to reduce problems of spatial record-
ing bias are not necessarily universally applicable (Stolar & Nielsen, 
2015). Thus, the comparison of multiple different models in order to 
establish agreement has the potential to improve reliability and is likely 
to be of particular importance when extending studies to new regions 
and species.

Previous work has suggested that, in order to improve forecasting, 
variation among models can be dealt with by using an ensemble ap-
proach (Araújo & New, 2007; Marmion, Parviainen, Luoto, Heikkinen, 
& Thuiller, 2009). Indeed, averaging across projections from the mod-
els based on CSD resulted in forecasts of relative change that were 
quantitatively similar to forecasts from the colonization–extinction 
model. Nevertheless, overall the models based on CSD tended to 
overpredict increases in set- aside forests and underpredict declines 
in production forest compared to the colonization–extinction model 
based on systematically collected data. By capturing the slow dynam-
ics of certain species, colonization–extinction models are expected to 
yield more informative predictions of species occurrences than static 
SDMs (Yackulic, Nichols, Reid, & Der, 2015). Data on species dynamics 
are rare, however, and our results show that similar qualitative conclu-
sions can be reached using occurrence models based on widely avail-
able citizen science occurrence data.

The use of presence–absence, rather than presence- only, data 
is often considered preferable for species distribution modeling 
(Brotons, Thuiller, Araújo, & Hirzel, 2004). Our results support this as-
sertion as the models which used presence–absence data (GLM and 
PA/PO model) projected larger declines in production forest, which 
were more acquiescent with the colonization–extinction model fore-
casts. Our results additionally support the PA/PO model (Fithian et al., 
2015) as a promising advance in the efficient use of available data, due 
to the good performance demonstrated here and the requirement for 
only a small amount of presence–absence data. Obtaining presence–
absence data for this study was a time- consuming but worthwhile en-
deavor, as the use of presence–absence data avoids recording biases 
being modeled as species’ habitat associations (Yackulic et al., 2013). 
However, this also highlights the benefit of asking citizen scientists to 
provide information on their methodologies during data uploading. A 
slight increase in information provided can greatly improve the value 
of ad hoc observation data; for example, complete species lists can be 
used to ascertain absences (Isaac et al., 2014).

Occupancy modeling has been advocated as a particularly useful 
tool for extracting robust conclusions from citizen science data (Bird 
et al., 2014). We applied presence- only data to the occupancy frame-
work, which is a relatively novel approach (but see Kéry, Royle, et al. 
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(2010) and van Strien, Termaat, Groenendijk, Mensing, and Kery (2010) 
for early examples). Previous work has found that species lists must be 
comprehensive in order to produce reliable trends (van Strien et al., 
2010). However, based on our results, we suggest that both short 
and long species lists can be used together, along with an informative 
detectability variable reflecting recorder experience, in order to make 
use of all available observation data. One limitation of our approach 
was that the occurrence of the focal species was modeled relative to a 
wider group of ecologically similar species. As a result, our predictions 
were of the occurrence of P. ferrugineofuscus given the presence of 
other old- forest indicator fungi, which explains the high probabilities 
of occurrence in the predicted distribution maps. Nevertheless, pro-
jections of relative change were reasonable, suggesting that reliable 
results can be obtained even for spatially biased data, supporting con-
clusions by Higa et al. (2015).

Of importance in generating reasonable projections was the in-
clusion of mechanistic assumptions. The incorporation of mechanistic 
assumptions into correlative models can provide novel insights into 
the processes affecting species dynamics (Swab et al., 2015). The in-
corporation of mechanistic assumptions here improved the biological 
realism of the models, by capturing aspects of P. ferrugineofuscus ecol-
ogy which were not included in the correlative structures and reducing 
the likelihood of overpredicting species occurrence.

This study is one of the few to apply species distribution models to 
CSD for a sessile species (but see Marmion et al. (2009) for a study on 
plants). Deadwood- dependent fungi are a less well- studied organism 
group relative to the popular birds and butterflies; however, such ses-
sile species could in fact be particularly appealing for citizen science 
initiatives, given the opportunity for time to be taken over identifi-
cation. Moreover, deadwood- dependent fungi are a functionally very 
important group (Ottosson et al., 2015), and their successful model-
ing could facilitate the consideration of different facets of ecosystem 
functioning in forest forecasting. For example, P. ferrugineofuscus is a 
red- listed species and its presence is likely to indicate a relatively nat-
ural forest and the presence of other deadwood (spruce)- dependent 
species. The results presented here open up the opportunity for CSD 
on other sessile organism groups, such as lichens and bryophytes, to 
also be used in modeling and forecasting.

We have shown that models based on citizen science data pro-
jected trends in P. ferrugineofuscus occurrence in response to forest 
management that were congruent with trends from a model based on 
systematically collected field data on colonization–extinction events. 
Applying a range of approaches based on different assumptions and 
achieving agreement among them strengthened confidence in the re-
sults. Citizen science data hold the potential to be reliably applied in 
forecasting species responses to land use scenarios, opening up the 
possibility that such extensive data could be useful for conservation 
and forest management planning.
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