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Recent advances in high-throughput sequencing technologies and bioinformatics have

generated huge new opportunities for discovering and diagnosing plant viruses and

viroids. Plant virology has undoubtedly benefited from these new methodologies,

but at the same time, faces now substantial bottlenecks, namely the biological

characterization of the newly discovered viruses and the analysis of their impact at the

biosecurity, commercial, regulatory, and scientific levels. This paper proposes a scaled

and progressive scientific framework for efficient biological characterization and risk

assessment when a previously known or a new plant virus is detected by next generation

sequencing (NGS) technologies. Four case studies are also presented to illustrate the

need for such a framework, and to discuss the scenarios.
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INTRODUCTION

Until recently, plant virus discovery appeared as a long and fastidious task, mainly driven by the
need to identify the etiology of diseases of unknown origin. In the last few years, however, the advent
of next generation sequencing (NGS) has revolutionized the study of plant viruses by providing a
powerful alternative for their detection and identification, without any a priori knowledge. NGS
technologies are progressively reaching the diagnostic field (Massart et al., 2014), impacting also
quarantine regulations (Martin et al., 2016). Their use allows the continuous discovery of new plant
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viruses, the observation of an increasing diversity of variants
for known viruses and the frequent existence of a complex of
different viruses. Downstream of these findings, the main
challenge to be addressed is the biological significance
(pathogenicity, hosts, transmission, epidemiology...) of the
discovery of a novel virus species or strain in single plants,
particularly in asymptomatic plants and for viruses that are the
founding members of new virus genera or families and share
little or no sequence similarity with known viruses (Wu et al.,
2015). Plant virologists are now challenged to do the work
backwards, namely to characterize new viruses, with genome
sequence information as the unique starting point. Furthermore,
the ability of NGS to detect cryptic (symptomless) viruses
in cultivated and wild plants, and the reported mutualistic
interactions challenging the traditional dogma that all viruses are
pathogens (Roossinck, 2011), are adding new difficulties to the
prediction of the impact of new viruses.

Undoubtedly, these new scientific outcomes will have to be
handled with extreme care in terms of dissemination from basic
research to applied agronomy, and to plant health, agriculture
and forestry policy makers and regulators. Indeed, the amount of
information needed to assess the risk posed by a new virus species
to a certain commodity or region is huge. Scientists may indeed
have to work for years to provide the answers needed to conduct
a thorough Pest Risk Analysis (PRA) according to international
phytosanitary standards (ISPM 2 and ISPM 11) (FAO, 2004,
2007). Therefore, the main challenge for scientists arising from
the discovery of a new viral sequence is to efficiently characterize
the biological properties through efficient short, mid-, and
long-term strategies while creating appropriate communication
channels with the regulatory authorities. In this paper, we aim
to discuss the new challenges raised by NGS as illustrated by
case studies, and to suggest guidelines for researchers, policy
makers, plant health authorities and plant inspection services by
describing the necessary steps, the appropriate interactions and
the inherent prioritization to be followed after discovering a new
virus sequence [or a new isolate or variant, or (a) new host(s)].

Overall, the advent of new NGS technologies wisely
complemented by traditional or classical virus study methods is
expected to globally promote plant health and plant protection,
but may also cause mayhem in trade and agriculture if challenges
and questions are not addressed properly.

CURRENT SITUATION WITH KNOWN
VIRUSES

Quarantine and certification lists are regularly updated following
new PRAs. They are based on 6 categories of information:
(i) knowledge of the identity of the pest (and therefore being
able to differentiate it from other viral agents); (ii) data on its
distribution and (iii) host range; (iv) information on the modes
and efficiency of spread and on the identity of any vector(s); (v)
suitability of the local agro-environmental conditions for the pest
[and vector(s)]; and (vi) the ability to cause a disease and impact
the development, reproduction, or productivity of cultivated or
wild host plants. Further, refinement of the risk assessment can

be based on additional information such as the availability of
efficient and easy-to-implement control methods.

The PRA provides the risk assessor with a risk assessment tool
whose details will depend both on data availability concerning
the six points listed above and on the needs of the risk manager,
whose role is to consider the available scientific information
(risk assessment) as well as other factors (economical, acceptable
political risk, feasibility, and impact of measures) in reaching
a decision on whether to regulate or address the pest in any
specific way.

EMERGING CHALLENGES FOR
SCIENTISTS AND AUTHORITIES

When a known virus is detected by NGS technologies, the
main questions are related to its legal status (see Figure 1). The
decision scheme to be applied is based on existing quarantine
or certification regulations and is similar to the process
routinely carried out with PCR or ELISA-based methodologies.
Nevertheless, NGS may also reveal additional complexity and
even reorient disease investigation for known species (see the
Study Case N◦1 in Supplementary Material).

It should be stressed that risk assessment is sometimes needed
or requested by National Authorities in situations where hardly
any information is available, a seen in recent examples in 2016
for Pepper vein yellow virus (PeVYV) or Grapevine pinot gris
virus (Germany). In such a case, risk assessors cannot wait
until enough data is available and first conclusions have to be
reached based on whatever information is at hand. This must
be done cautiously, while simultaneously taking into account the
uncertainties associated to or caused by the lack of data and
making them clear to the risk manager.

In this context, the increasing identification of new viral
sequences by NGS technologies may complicate the decision-
making process for certification programs, quarantine processes,
and more generally the trading of plant materials (see the Study
Case N◦2 in Supplementary Material). The only information
available may be the full or partial genome sequence with
the additional complexity that it may have been detected in
asymptomatic samples or in combination with other viruses. It
is therefore increasingly important to understand the biology
of any new viral sequence to provide a basis for assessing the
risk they pose and take scientifically-based decisions. Scientists
are therefore now challenged to provide biological data on these
newly described viral sequences, in a short timeframe and with
limited funding. The following chapters propose a framework
of scaled actions to efficiently address the need for PRA of
regulatory authorities.

EARLY STEPS OF BIOLOGICAL
CHARACTERIZATION

The detection of a new viral sequence should directly be
followed by several immediate actions for its early biological
characterization to reach a first decision level of notification to
authorities (see Figure 2).
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FIGURE 1 | Framework for known viruses. Y means positive response and N negative response (dotted lines correspond to optional analyses for non quarantine

pathogens depending on the request of the customer).

Confirmation of Detection
To dispel a laboratory or bioinformatics error or contamination,
NGS-based identification of putative new viral sequence or new
strains of existing viral species requires further confirmation by
complementary methods, usually by (RT)-PCR using specific
primers. If the concentration is very low, the sample can be
enriched in viral particles through homogenization, filtration,
and/or ultracentrifugation prior to nucleic acid extraction.
Enriched viral particles can also be observed by electron
microscopy, even if electron microscopy lacks sensitivity and
viral particles can be missed. For DNA viruses, especially
Caulimoviridae, additional research is also needed to evaluate
whether the detected viral sequences exist in an episomal form
and not only as the trace of a “fossilized” virus integrated in
the plant genome (Liu et al., 2010; Aiewsakun and Katzourakis,
2015).

Provisional Taxonomy Assignment
The assembled contig will generally allow for provisional
taxonomic assignment of the viral sequence. Nevertheless, this
can turn out to be a very difficult task, made even more
complex by (i) the frequent incompleteness of the genome
sequence data obtained, (ii) the variable and irregular coverage
of viral genomes, (iii) the incompleteness of viral taxonomy,
and (iv) the variability of species, genus, or family molecular
discrimination criteria. Specific guidelines can be found in the
latest ICTV report (http://www.ictvonline.org). The detected
viral sequences may also correspond to a bona fide virus infecting
other organisms associated with the sample, including bacteria,
fungi or arthropods (Al Rwahnih et al., 2011; Marzano and
Domier, 2015) or to viral sequences integrated into the plant

genome. The future solution to this problem is to establish the
baseline of virus presence through an improved knowledge of the
viromes of agronomically important plants as well as viromes of
natural ecosystems, including the integrated viral sequences.

Bibliography
Overall, provisional taxonomic assignment should always be
considered with caution but can give first clues on the physical
and/or chemical properties of a virus as well as on its
biology, including (i) the putative host range for the tentative
identification of alternative hosts, (ii) the prediction of the
pathogenic potential in those hosts, (iii) the modes of horizontal
and/or vertical transmission, including the identification of
candidate vectors. These hypotheses have practical consequences
such as the selection of appropriate hosts and experimental
modes of inoculation, a first assessment of the possible epidemic
potential of a new viral agent, or a tentative identification of
possible alternative hosts in ecosystems. Altogether, this early
step, which requires expertise in molecular biology, in plant
virology, and basic bioinformatics skills, might lead to the
elaboration of a draft epidemiological scenario (Loconsole et al.,
2012; Adams et al., 2014). Nevertheless, this approach can be
biased as for example in the genusClosteroviridae, which includes
economically important viruses with similar virion morphology,
genome size, and organization but with contrasted biological
properties (Martelli et al., 2012).

Sample Documentation
In addition, all the metadata about the sample should be collected
precisely to feed the risk assessment process. It is important to
document symptoms (if any) and time of appearance, to identify
the plant species and cultivar, to describe the sampled plant
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FIGURE 2 | Framework proposal following discovery of new viruses. Y means positive response and N negative response. The numbers between brackets

correspond to the chapters in the text. *The absence of viral particle should be recorded and further experiments carried out if new cases are discovered.

part (leaves, fruit, seeds, etc.), the geographical origin of the
sample, its intended use etc... Any missing information should
be completed at this stage so as to be included in the first
notification.

Full Genome Sequencing and Annotation
The assembly of viral sequence(s) based on NGS reads can
result in three scenarios of genome coverage: (i) complete,
(ii) incomplete but continuous, or (iii) a set of scaffolds and

contigs. The reconstruction of the full genome sequence of a
candidate new virus is mainly based on targeted (RT)-PCR
amplification and sequencing to fill the sequence gaps between de
novo generated contigs, verify their exclusive viral origin and the
absence of host-derived sequences. Taxonomic assignment can
also be fine-tuned thanks to the whole genome sequence; but in a
worst case situation, even the availability of a complete genomic
sequence may be insufficient to settle such a question (Marais
et al., 2016).
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Development of a Diagnostic Protocol
Identifying a new virus species, even from a partial genome
sequence, triggers the immediate need to develop a diagnostic
protocol. This is a fundamental step toward the management
of viral diseases in cultivated crops or the unveiling of a new
virus eco-epidemiological role in wild plants. The diagnostic of
newly identified and confirmed viruses is usually done using
PCR-based methods (the most popular ones for new viruses) or
with the LAMP technology, as a recent alternative (Boonham
et al., 2014). Nucleic acid-based methods are currently preferred
to diagnose new viruses because they are quicker, easier and
cheaper to develop than antibody production for ELISA.

Field/Batch Observation
Small-scale epidemiological surveys at the discovery location
can be undertaken. Such surveys will also take into account the
hypotheses that may have arisen after bibliographical research
and should be focused on the plant species where the virus
was detected; but they could also take into account, whenever
possible, the potential host(s) and vector(s), their geographical
spread and seasonality. Likewise, sampling methods enabling for
the statistical linking of findings and field observations should be
selected. Several scenarios are possible depending on the origin
of the sample: field or trade/quarantine/certification.

The presence of symptoms in the initial field host has often
been perceived as a starting point for further investigations about
the presence of a virus, but asymptomatic plants must also
be included in the sampling because symptomatology reflects
the complex interplay of infectious agent(s), the host plant
metabolism, its defense systems and varietal specificities, as well
as abiotic factors. The advent of wide metagenomic studies of
environmental viromes (Kristensen et al., 2010; Mohiuddin and
Schellhorn, 2015) allows for the identification of new viruses
from any sample, including asymptomatic field samples. Thus,
even if focused symptom observations in the field cannot be
neglected, a survey cannot be led by symptomatology alone.
Hence, virus spread to other agro-ecological niches where they
may encounter new hosts, co-infecting viruses or vectors, may
cause a shift in their pathogenic potential and result in a serious
disease.

IN-DEPTH BIOLOGICAL
CHARACTERIZATION

The in-depth biological characterization of a new virus
is envisioned as a mid- to long-term goal in order to
gradually reduce the uncertainties associated with the early risk
assessment and decision-making processes. More specifically, in-
depth biological characterization aims to build comprehensive
knowledge on the symptomatology/etiology, epidemiology and
ecology of a new virus by gathering information on its host range,
its symptomatology on various cultivars and host species, its
vectors and modes of transmission, its geographical distribution,
and its interactions with other viruses. Fulfilling Koch’s postulates
can be considered as a cornerstone and is pivotal in this in-
depth biological characterization. An additional difficulty arises
in the case of a virus identified from asymptomatic tissue

or viruses with potentially neutral of beneficial interactions
with the plants (Xu et al., 2008; van Molken et al., 2012).
In these cases, Koch’s postulates may prove useless, because
they presume the development of disease symptoms following
introduction of the pathogen into a healthy host. But laboratory
and greenhouse experiments as well as field surveys will bring
more information and might bring the proof of mutualistic or
synergistic interactions between the virus and the plant. These
data will be necessary for risk assessment to make further
progress by determining whether the virus is present (locally or
widespread) or not in a given geographical area, its potential
for spread (type of transmission, host range), and ultimately to
evaluate its economic impact (symptoms alone or in association).
In turn, local authorities may define appropriate regulatory
measures in relation to Plant Health protection and control if
required. The Study Case N◦3 on Grapevine Pinot Gris virus (see
Supplementary Material) exemplifies this complex approach.

Transmission Experiments
The inoculation of a new virus to test plants in
laboratory/greenhouse conditions is the basis for any biological
characterization and may be particularly complex. Depending
on the objective, the virus can be transmitted to indicator plants,
host plant candidates or other cultivars of a same species. The
modes of vertical and horizontal transmission of viruses are
diverse, so that the integration of taxonomic (Figure 2 and
Section Provisional Taxonomy Assignment), bibliographical
(Figure 2 and Section Bibliography), and field survey data
(Figure 2 and Section Field Surveys) is of utmost importance for
the proper design of experimental transmission procedures in
the laboratory or the greenhouse.

Plants can be inoculated by several techniques, the most
common ones being mechanical inoculation, grafting, vector
inoculation or the use of dodder, but all these techniques
have potential limitations as they may not separate viruses in
case of a mixture of viruses. A very interesting and universal
technique for an in-depth characterization of a virus is the
preparation of infectious clones. The infectious clones, requiring
the complete viral genome sequence, offer valuable information
about (i) symptomatology for individual viruses and for mixture
of viruses, (ii) host range studies and transmissibility, (iii) the
assessment of natural or induced mutation/recombination rates
in host plants, and (iv) the effects of targeted modifications
on virus-host interactions and symptomatology. Mastering virus
transmission will also be key to the development of research
efforts to understand the potentially positive effects of viruses
on plants. Inoculated plants from various species or cultivars can
be submitted to biotic or abiotic stresses, and their reaction can
be studied in laboratory and/or in greenhouse experiments to
provide evidence of beneficial interactions.

Field Surveys
Large-scale surveys, organized on a national or international
scale and based on the diagnostic technique(s) developed for
the new agent, should be undertaken to evaluate its prevalence
and distribution within a given ecosystem (Krenz et al., 2014).
These studies will aim to monitor the candidate/demonstrated
host plants/vectors. They should be carried out in agricultural
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ecosystems (fields, commercial orchards or vineyards, nurseries,
and germplasm collections), and in natural ecosystems, to
enable a holistic characterization of the pathosystems with
particular attention to symptomatology. They will complement
the preliminary information gained at a smaller scale (See
Section Field/Batch Observation) or in the laboratories and
greenhouses (See Section Transmission Experiments). The
interplay between field surveys and laboratory experiments is
particularly important at this stage because it will allow targeting
the most appropriate host plant(s) and vector(s), and thus
increases knowledge on virus biology.

Large-scale surveys will also provide insights into the genetic
variability of a new virus within the surveyed territories.
This knowledge will be key for efforts to optimize diagnostic
techniques by selecting primers covering the genetic diversity of
the species (Massart et al., 2014). In addition, the identification
of new variants may bring new fundamental hypotheses on the
pathogenicity of the viruses, and these new variants could be
characterized under laboratory and greenhouse conditions (See
Section Transmission Experiments).

The Specific Challenge of Virus Complexes
The biological characterization of new virusesmay be particularly
challenging with complex of different viruses, where the
combination of two or more viruses can significantly modify
their pathogenic potential through synergistic or antagonistic
interactions (Martin and Elena, 2009; Syller and Grupa, 2016).
Mixture of virus species is indeed very frequent, especially
in woody plants like grapevine (Jooste et al., 2015), often
leading to unpredictable variations in symptoms, infectivity,
accumulation, and/or vector transmissibility. Biological and
technological solutions for isolating and determining the role
of individual viruses are sometimes possible using selective
experimental hosts followed by back-inoculation of “purified”
isolates to the original host (Ali and Roossinck, 2008), partial
sanitation (Maliogka et al., 2015), infectious clones (Nagyová
and Šubr, 2007), or the use of ion-exchange chromatography
on monolithic supports to separate viral particles (Ruščić et al.,
2015). The biological properties of viruses alone or in mixture
can therefore be compared in depth (see Section Field Surveys).
The complexity of disease etiology in field conditions might pose
additional challenges, as exemplified in the Case Study N◦4 on
carrot (See Supplementary Material).

CONCLUSIONS

NGS technologies pose new challenges to scientists and to plant
health authorities when it comes to analyzing the risks associated

with a new virus or pathogen, its potential to spread, or its
economic impact and when trying to take a timely decision
on whether to let go or destroy contaminated plant materials.
As sequencing throughput and bioinformatics analyses are less
and less limiting, downstream epidemiology and disease etiology
studies will be the obvious bottlenecks in ability to conclude
on the biological significance and impact of novel viruses or
of complex of different viruses. While exhaustive knowledge
on the etiology of a disease or the epidemiology of a virus
is very difficult if not impossible to achieve, we propose a
framework of experiments and investigations to characterize
these newly discovered viruses and to undertake relevant actions
in a timely fashion in relation to the context of the finding.
In the frame of the risks posed by growing trade and climate
change, the aim is to progressively reduce the uncertainties
linked with risk management and to help plant health protection
authorities decide on the importance of a new virus in a
quarantined material or a certified seed stock. However, this
decision will also always be influenced by local legislation and the
socio-economic and political interpretation of the progressively
generated information. Once adopted by authorities and trade,
this framework should help to take rationalized decisions on the
most relevant actions to take (i.e., confirmation using specific
methods, ways to assess impact of a virus in its environment) and
potentially prevent “conflicts” between import/export partners.
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Ruščić, J., Gutiérrez-Aguirre, I., Tušek Žnidarič, M., Kolundžija, S., Slana, A.,
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